Files
swift-mirror/lib/SILGen/ResultPlan.cpp
Michael Gottesman 6cf9ee5ebf Merge pull request #81014 from gottesmm/pr-af452b4f8348d8c3dc39d9a1682b01910a7c3194
[silgen] When emitting a foreign async completion handler for a method, use merge isolation region to tie self and the block storage into the same region.
2025-04-24 10:17:36 -07:00

1453 lines
57 KiB
C++

//===--- ResultPlan.cpp ---------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "ResultPlan.h"
#include "Callee.h"
#include "Conversion.h"
#include "Initialization.h"
#include "LValue.h"
#include "RValue.h"
#include "SILGenFunction.h"
#include "swift/AST/ConformanceLookup.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/LocalArchetypeRequirementCollector.h"
#include "swift/Basic/Assertions.h"
#include "swift/SIL/AbstractionPatternGenerators.h"
using namespace swift;
using namespace Lowering;
//===----------------------------------------------------------------------===//
// Result Plans
//===----------------------------------------------------------------------===//
void ResultPlan::finishAndAddTo(SILGenFunction &SGF, SILLocation loc,
ArrayRef<ManagedValue> &directResults,
SILValue bridgedForeignError,
RValue &result) {
auto rvalue = finish(SGF, loc, directResults, bridgedForeignError);
assert(!rvalue.isInContext());
result.addElement(std::move(rvalue));
}
namespace {
/// A result plan for evaluating an indirect result into the address
/// associated with an initialization.
class InPlaceInitializationResultPlan final : public ResultPlan {
Initialization *init;
public:
InPlaceInitializationResultPlan(Initialization *init) : init(init) {}
RValue finish(SILGenFunction &SGF, SILLocation loc,
ArrayRef<ManagedValue> &directResults,
SILValue bridgedForeignError) override {
init->finishInitialization(SGF);
return RValue::forInContext();
}
void
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
SmallVectorImpl<SILValue> &outList) const override {
outList.emplace_back(init->getAddressForInPlaceInitialization(SGF, loc));
}
};
/// A cleanup that handles the delayed emission of an indirect buffer for opened
/// Self arguments.
class IndirectOpenedSelfCleanup final : public Cleanup {
SILValue box;
public:
IndirectOpenedSelfCleanup()
: box()
{}
void setBox(SILValue b) {
assert(!box && "buffer already set?!");
box = b;
}
void emit(SILGenFunction &SGF, CleanupLocation loc, ForUnwind_t forUnwind)
override {
assert(box && "buffer never emitted before activating cleanup?!");
auto theBox = box;
if (SGF.getASTContext().SILOpts.supportsLexicalLifetimes(SGF.getModule())) {
if (auto *bbi = dyn_cast<BeginBorrowInst>(theBox)) {
SGF.B.createEndBorrow(loc, bbi);
theBox = bbi->getOperand();
}
}
SGF.B.createDeallocBox(loc, theBox);
}
void dump(SILGenFunction &SGF) const override {
llvm::errs() << "IndirectOpenedSelfCleanup\n";
if (box)
box->print(llvm::errs());
}
};
/// Map a type expressed in terms of opened archetypes into a context-free
/// dependent type, and return a substitution map with generic parameters
/// corresponding to each distinct root opened archetype.
static std::pair<CanType, SubstitutionMap>
mapTypeOutOfOpenedExistentialContext(CanType t, GenericEnvironment *genericEnv) {
auto &ctx = t->getASTContext();
SmallVector<GenericEnvironment *, 4> capturedEnvs;
t.visit([&](CanType t) {
if (auto local = dyn_cast<LocalArchetypeType>(t)) {
auto *genericEnv = local->getGenericEnvironment();
if (std::find(capturedEnvs.begin(), capturedEnvs.end(), genericEnv)
== capturedEnvs.end()) {
capturedEnvs.push_back(genericEnv);
}
}
});
GenericSignature baseGenericSig;
SubstitutionMap forwardingSubs;
if (genericEnv) {
baseGenericSig = genericEnv->getGenericSignature();
forwardingSubs = genericEnv->getForwardingSubstitutionMap();
}
auto mappedTy = mapLocalArchetypesOutOfContext(t, baseGenericSig, capturedEnvs);
auto genericSig = buildGenericSignatureWithCapturedEnvironments(
ctx, baseGenericSig, capturedEnvs);
auto mappedSubs = buildSubstitutionMapWithCapturedEnvironments(
forwardingSubs, genericSig, capturedEnvs);
return std::make_pair(mappedTy->getCanonicalType(), mappedSubs);
}
/// A result plan for an indirectly-returned opened existential value.
///
/// This defers allocating the temporary for the result to a later point so that
/// it happens after the arguments are evaluated.
class IndirectOpenedSelfResultPlan final : public ResultPlan {
AbstractionPattern origType;
CanType substType;
CleanupHandle handle = CleanupHandle::invalid();
mutable SILValue resultBox, resultBuf;
public:
IndirectOpenedSelfResultPlan(SILGenFunction &SGF,
AbstractionPattern origType,
CanType substType)
: origType(origType), substType(substType)
{
// Create a cleanup to deallocate the stack buffer at the proper scope.
// We won't emit the buffer till later, after arguments have been opened,
// though.
SGF.Cleanups.pushCleanupInState<IndirectOpenedSelfCleanup>(
CleanupState::Dormant);
handle = SGF.Cleanups.getCleanupsDepth();
}
void
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
SmallVectorImpl<SILValue> &outList) const override {
assert(!resultBox && "already created temporary?!");
// We allocate the buffer as a box because the scope nesting won't clean
// this up with good stack discipline relative to any stack allocations that
// occur during argument emission. Escape analysis during mandatory passes
// ought to clean this up.
auto resultTy = SGF.getLoweredType(origType, substType).getASTType();
CanType layoutTy;
SubstitutionMap layoutSubs;
std::tie(layoutTy, layoutSubs) =
mapTypeOutOfOpenedExistentialContext(resultTy, SGF.F.getGenericEnvironment());
CanGenericSignature layoutSig =
layoutSubs.getGenericSignature().getCanonicalSignature();
auto boxLayout =
SILLayout::get(SGF.getASTContext(), layoutSig,
SILField(layoutTy->getReducedType(layoutSig), true),
/*captures generics*/ false);
resultBox = SGF.B.createAllocBox(loc,
SILBoxType::get(SGF.getASTContext(),
boxLayout,
layoutSubs));
if (SGF.getASTContext().SILOpts.supportsLexicalLifetimes(SGF.getModule())) {
resultBox = SGF.B.createBeginBorrow(loc, resultBox, IsLexical);
}
// Complete the cleanup to deallocate this buffer later, after we're
// finished with the argument.
static_cast<IndirectOpenedSelfCleanup&>(SGF.Cleanups.getCleanup(handle))
.setBox(resultBox);
SGF.Cleanups.setCleanupState(handle, CleanupState::Active);
resultBuf = SGF.B.createProjectBox(loc, resultBox, 0);
outList.emplace_back(resultBuf);
}
RValue finish(SILGenFunction &SGF, SILLocation loc,
ArrayRef<ManagedValue> &directResults,
SILValue bridgedForeignError) override {
assert(resultBox && "never emitted temporary?!");
// Lower the unabstracted result type.
auto &substTL = SGF.getTypeLowering(substType);
ManagedValue value;
// If the value isn't address-only, go ahead and load.
if (!substTL.isAddressOnly()) {
auto load = substTL.emitLoad(SGF.B, loc, resultBuf,
LoadOwnershipQualifier::Take);
value = SGF.emitManagedRValueWithCleanup(load);
} else {
value = SGF.emitManagedRValueWithCleanup(resultBuf);
}
// A Self return should never be further abstracted. It's also never emitted
// into context; we disable that optimization because Self may not even
// be available to pre-allocate a stack buffer before we prepare a call.
return RValue(SGF, loc, substType, value);
}
};
/// A result plan for working with a single value and potentially
/// reabstracting it. The value can actually be a tuple if the
/// abstraction is opaque.
class ScalarResultPlan final : public ResultPlan {
std::unique_ptr<TemporaryInitialization> temporary;
AbstractionPattern origType;
CanType substType;
Initialization *init;
SILFunctionTypeRepresentation rep;
public:
ScalarResultPlan(std::unique_ptr<TemporaryInitialization> &&temporary,
AbstractionPattern origType, CanType substType,
Initialization *init,
SILFunctionTypeRepresentation rep)
: temporary(std::move(temporary)), origType(origType),
substType(substType), init(init), rep(rep) {}
RValue finish(SILGenFunction &SGF, SILLocation loc,
ArrayRef<ManagedValue> &directResults,
SILValue bridgedForeignError) override {
// Claim the value:
ManagedValue value;
// If we were created with a temporary, that address was passed as
// an indirect result.
if (temporary) {
// Establish the cleanup.
temporary->finishInitialization(SGF);
value = temporary->getManagedAddress();
auto &substTL = SGF.getTypeLowering(value.getType());
// If the value isn't address-only, go ahead and load.
if (!substTL.isAddressOnly()) {
auto load = substTL.emitLoad(SGF.B, loc, value.forward(SGF),
LoadOwnershipQualifier::Take);
value = SGF.emitManagedRValueWithCleanup(load);
}
// Otherwise, it was returned as a direct result.
} else {
value = directResults.front();
directResults = directResults.slice(1);
}
return finish(SGF, loc, value, origType, substType, init, rep);
}
static RValue finish(SILGenFunction &SGF, SILLocation loc,
ManagedValue value,
AbstractionPattern origType, CanType substType,
Initialization *init,
SILFunctionTypeRepresentation rep) {
// Reabstract the value if the types don't match. This can happen
// due to either substitution reabstractions or bridging.
SILType loweredResultTy = SGF.getLoweredType(substType);
if (value.getType().hasAbstractionDifference(rep, loweredResultTy)) {
Conversion conversion = [&] {
// Assume that a C-language API doesn't have substitution
// reabstractions. This shouldn't be necessary, but
// emitOrigToSubstValue can get upset.
if (getSILFunctionLanguage(rep) == SILFunctionLanguage::C) {
return Conversion::getBridging(Conversion::BridgeResultFromObjC,
origType.getType(), substType,
loweredResultTy);
} else {
return Conversion::getOrigToSubst(origType, substType,
value.getType(), loweredResultTy);
}
}();
// Attempt to peephole this conversion into the context.
if (init) {
if (auto outerConversion = init->getAsConversion()) {
if (outerConversion->tryPeephole(SGF, loc, value, conversion)) {
outerConversion->finishInitialization(SGF);
return RValue::forInContext();
}
}
}
// If that wasn't possible, just apply the conversion.
value = conversion.emit(SGF, loc, value, SGFContext(init));
// If that successfully emitted into the initialization, we're done.
if (value.isInContext()) {
return RValue::forInContext();
}
}
// Otherwise, forcibly emit into the initialization if it exists.
if (init) {
init->copyOrInitValueInto(SGF, loc, value, /*init*/ true);
init->finishInitialization(SGF);
return RValue::forInContext();
// Otherwise, we've got the r-value we want.
} else {
return RValue(SGF, loc, substType, value);
}
}
void
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
SmallVectorImpl<SILValue> &outList) const override {
if (!temporary)
return;
outList.emplace_back(temporary->getAddress());
}
};
/// A result plan which calls copyOrInitValueInto on an Initialization
/// using a temporary buffer initialized by a sub-plan.
class InitValueFromTemporaryResultPlan final : public ResultPlan {
Initialization *init;
CanType substType;
ResultPlanPtr subPlan;
std::unique_ptr<TemporaryInitialization> temporary;
public:
InitValueFromTemporaryResultPlan(
Initialization *init, CanType substType,
ResultPlanPtr &&subPlan,
std::unique_ptr<TemporaryInitialization> &&temporary)
: init(init), substType(substType), subPlan(std::move(subPlan)),
temporary(std::move(temporary)) {}
RValue finish(SILGenFunction &SGF, SILLocation loc,
ArrayRef<ManagedValue> &directResults,
SILValue bridgedForeignError) override {
RValue subResult = subPlan->finish(SGF, loc, directResults,
bridgedForeignError);
assert(subResult.isInContext() && "sub-plan didn't emit into context?");
(void)subResult;
ManagedValue value = temporary->getManagedAddress();
if (init) {
init->copyOrInitValueInto(SGF, loc, value, /*init*/ true);
init->finishInitialization(SGF);
return RValue::forInContext();
}
return RValue(SGF, loc, substType, value);
}
void
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
SmallVectorImpl<SILValue> &outList) const override {
subPlan->gatherIndirectResultAddrs(SGF, loc, outList);
}
};
/// A result plan which calls copyOrInitValueInto using the result of
/// a sub-plan.
class InitValueFromRValueResultPlan final : public ResultPlan {
Initialization *init;
ResultPlanPtr subPlan;
public:
InitValueFromRValueResultPlan(Initialization *init, ResultPlanPtr &&subPlan)
: init(init), subPlan(std::move(subPlan)) {}
RValue finish(SILGenFunction &SGF, SILLocation loc,
ArrayRef<ManagedValue> &directResults,
SILValue bridgedForeignError) override {
RValue subResult = subPlan->finish(SGF, loc, directResults,
bridgedForeignError);
ManagedValue value = std::move(subResult).getAsSingleValue(SGF, loc);
init->copyOrInitValueInto(SGF, loc, value, /*init*/ true);
init->finishInitialization(SGF);
return RValue::forInContext();
}
void
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
SmallVectorImpl<SILValue> &outList) const override {
subPlan->gatherIndirectResultAddrs(SGF, loc, outList);
}
};
/// A result plan which breaks a @pack_out result into some number of
/// components.
class PackExpansionResultPlan : public ResultPlan {
SILValue PackAddr;
SmallVector<ResultPlanPtr, 4> ComponentPlans;
public:
PackExpansionResultPlan(ResultPlanBuilder &builder, SILValue packAddr,
std::optional<ArrayRef<Initialization *>> inits,
AbstractionPattern origExpansionType,
CanTupleEltTypeArrayRef substEltTypes)
: PackAddr(packAddr) {
assert(!inits || inits->size() == substEltTypes.size());
auto packTy = packAddr->getType().castTo<SILPackType>();
auto formalPackType =
CanPackType::get(packTy->getASTContext(), substEltTypes);
auto origPatternType = origExpansionType.getPackExpansionPatternType();
ComponentPlans.reserve(substEltTypes.size());
for (auto i : indices(substEltTypes)) {
Initialization *init = inits ? (*inits)[i] : nullptr;
CanType substEltType = substEltTypes[i];
if (isa<PackExpansionType>(substEltType)) {
ComponentPlans.emplace_back(
builder.buildPackExpansionIntoPack(packAddr, formalPackType, i,
init, origPatternType));
} else {
ComponentPlans.emplace_back(
builder.buildScalarIntoPack(packAddr, formalPackType, i,
init, origPatternType));
}
}
}
RValue finish(SILGenFunction &SGF, SILLocation loc,
ArrayRef<ManagedValue> &directResults,
SILValue bridgedForeignError) override {
for (auto &componentPlan : ComponentPlans) {
auto componentRV = componentPlan->finish(SGF, loc, directResults,
bridgedForeignError);
assert(componentRV.isInContext()); (void) componentRV;
}
return RValue::forInContext();
}
void finishAndAddTo(SILGenFunction &SGF, SILLocation loc,
ArrayRef<ManagedValue> &directResults,
SILValue bridgedForeignError,
RValue &result) override {
for (auto &componentPlan : ComponentPlans) {
componentPlan->finishAndAddTo(SGF, loc, directResults,
bridgedForeignError, result);
}
}
void gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
SmallVectorImpl<SILValue> &outList) const override {
outList.push_back(PackAddr);
}
};
/// A result plan which transforms a pack expansion component.
class PackTransformResultPlan final : public ResultPlan {
/// The address of the pack. The addresses of the tuple elements
/// have been written into the pack elements for the given component.
SILValue PackAddr;
/// A formal pack type with the same shape as the pack.
CanPackType FormalPackType;
/// The index of the pack expansion component within the pack.
unsigned ComponentIndex;
/// An initialization that the expansion elements should be fed into.
Initialization *EmitInto;
/// The abstraction pattern of the expansion type of the expansion.
AbstractionPattern OrigPatternType;
SILFunctionTypeRepresentation Rep;
public:
PackTransformResultPlan(SILValue packAddr, CanPackType formalPackType,
unsigned componentIndex, Initialization *init,
AbstractionPattern origType,
SILFunctionTypeRepresentation rep)
: PackAddr(packAddr), FormalPackType(formalPackType),
ComponentIndex(componentIndex), EmitInto(init),
OrigPatternType(origType), Rep(rep) {}
void gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
SmallVectorImpl<SILValue> &outList) const override {
llvm_unreachable("should not be gathering from an expansion plan");
}
RValue finish(SILGenFunction &SGF, SILLocation loc,
ArrayRef<ManagedValue> &directResults,
SILValue bridgedForeignError) override {
// We opened a generic environment for the loop prior to the call
// which wrote element addresses into the pack. We can't open the
// same environment twice in a function, though, so we need a new
// environment.
auto eltPatternTy =
PackAddr->getType().castTo<SILPackType>()
->getSILElementType(ComponentIndex);
auto substPatternType = FormalPackType.getElementType(ComponentIndex);
SILType eltAddrTy;
CanType substEltType;
auto openedEnv =
SGF.createOpenedElementValueEnvironment({eltPatternTy}, {&eltAddrTy},
{substPatternType}, {&substEltType});
// Loop over the pack, initializing each value with the appropriate
// element.
SGF.emitDynamicPackLoop(loc, FormalPackType, ComponentIndex, openedEnv,
[&](SILValue indexWithinComponent,
SILValue expansionIndex,
SILValue packIndex) {
EmitInto->performPackExpansionInitialization(SGF, loc,
indexWithinComponent,
[&](Initialization *eltInit) {
// Pull the element address out of the pack, which is cheaper
// than re-projecting it from the tuple.
auto eltAddr =
SGF.B.createPackElementGet(loc, packIndex, PackAddr, eltAddrTy);
// Move the value into the destination.
ManagedValue eltMV = [&] {
auto &eltTL = SGF.getTypeLowering(eltAddrTy);
if (!eltTL.isAddressOnly()) {
auto load = eltTL.emitLoad(SGF.B, loc, eltAddr,
LoadOwnershipQualifier::Take);
return SGF.emitManagedRValueWithCleanup(load, eltTL);
}
return SGF.emitManagedBufferWithCleanup(eltAddr, eltTL);
}();
// Finish in the normal way for scalar results.
RValue rvalue =
ScalarResultPlan::finish(SGF, loc, eltMV, OrigPatternType,
substEltType, eltInit, Rep);
assert(rvalue.isInContext()); (void) rvalue;
});
});
EmitInto->finishInitialization(SGF);
return RValue::forInContext();
}
};
/// A result plan which produces a larger RValue from a bunch of
/// components.
class TupleRValueResultPlan final : public ResultPlan {
CanType substType;
SmallVector<ResultPlanPtr, 4> origEltPlans;
public:
TupleRValueResultPlan(ResultPlanBuilder &builder, AbstractionPattern origType,
CanType substType)
: substType(substType) {
// Create plans for all the elements.
origEltPlans.reserve(origType.getNumTupleElements());
origType.forEachTupleElement(substType,
[&](TupleElementGenerator &origElt) {
AbstractionPattern origEltType = origElt.getOrigType();
auto substEltTypes = origElt.getSubstTypes();
if (!origElt.isOrigPackExpansion()) {
origEltPlans.push_back(
builder.build(nullptr, origEltType, substEltTypes[0]));
} else {
origEltPlans.push_back(builder.buildForPackExpansion(
std::nullopt, origEltType, substEltTypes));
}
});
}
RValue finish(SILGenFunction &SGF, SILLocation loc,
ArrayRef<ManagedValue> &directResults,
SILValue bridgedForeignError) override {
RValue tupleRV(substType);
// Finish all the component tuples.
for (auto &plan : origEltPlans) {
plan->finishAndAddTo(SGF, loc, directResults, bridgedForeignError,
tupleRV);
}
return tupleRV;
}
void
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
SmallVectorImpl<SILValue> &outList) const override {
for (const auto &plan : origEltPlans) {
plan->gatherIndirectResultAddrs(SGF, loc, outList);
}
}
};
/// A result plan which evaluates into the sub-components
/// of a splittable tuple initialization.
class TupleInitializationResultPlan final : public ResultPlan {
Initialization *tupleInit;
SmallVector<InitializationPtr, 4> eltInitsBuffer;
SmallVector<ResultPlanPtr, 4> eltPlans;
bool origTupleVanishes;
public:
TupleInitializationResultPlan(ResultPlanBuilder &builder,
Initialization *tupleInit,
AbstractionPattern origType,
CanType substType,
bool origTupleVanishes)
: tupleInit(tupleInit), origTupleVanishes(origTupleVanishes) {
// Get the sub-initializations.
SmallVector<Initialization*, 4> eltInits;
if (origTupleVanishes) {
eltInits.push_back(tupleInit);
} else {
MutableArrayRef<InitializationPtr> ownedEltInits
= tupleInit->splitIntoTupleElements(builder.SGF, builder.loc,
substType, eltInitsBuffer);
// The ownership of these inits is maintained in eltInitsBuffer
// (or tupleInit internally), but we need to create a temporary
// array of unowned references to the inits, after which we can
// throw away the ArrayRef that was returned to us.
eltInits.reserve(ownedEltInits.size());
for (auto &eltInit : ownedEltInits) {
eltInits.push_back(eltInit.get());
}
}
// Create plans for all the sub-initializations.
eltPlans.reserve(origType.getNumTupleElements());
origType.forEachTupleElement(substType,
[&](TupleElementGenerator &elt) {
auto origEltType = elt.getOrigType();
auto substEltTypes = elt.getSubstTypes();
if (!elt.isOrigPackExpansion()) {
Initialization *eltInit = eltInits[elt.getSubstIndex()];
eltPlans.push_back(builder.build(eltInit, origEltType,
substEltTypes[0]));
} else {
auto componentInits = llvm::ArrayRef(eltInits).slice(
elt.getSubstIndex(), substEltTypes.size());
eltPlans.push_back(builder.buildForPackExpansion(componentInits,
origEltType,
substEltTypes));
}
});
}
RValue finish(SILGenFunction &SGF, SILLocation loc,
ArrayRef<ManagedValue> &directResults,
SILValue bridgedForeignError) override {
for (auto &plan : eltPlans) {
RValue eltRV = plan->finish(SGF, loc, directResults,
bridgedForeignError);
assert(eltRV.isInContext());
(void)eltRV;
}
// Finish the tuple initialization; but if the tuple vanished,
// this is handled in the loop above.
if (!origTupleVanishes) {
tupleInit->finishInitialization(SGF);
}
return RValue::forInContext();
}
void
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
SmallVectorImpl<SILValue> &outList) const override {
for (const auto &eltPlan : eltPlans) {
eltPlan->gatherIndirectResultAddrs(SGF, loc, outList);
}
}
};
class ForeignAsyncInitializationPlan final : public ResultPlan {
SILLocation loc;
CalleeTypeInfo calleeTypeInfo;
SILType opaqueResumeType;
SILValue resumeBuf;
SILValue continuation;
ExecutorBreadcrumb breadcrumb;
SILValue blockStorage;
CanType blockStorageTy;
CanType continuationTy;
public:
ForeignAsyncInitializationPlan(SILGenFunction &SGF, SILLocation loc,
const CalleeTypeInfo &calleeTypeInfo)
: loc(loc), calleeTypeInfo(calleeTypeInfo)
{
// Allocate space to receive the resume value when the continuation is
// resumed.
opaqueResumeType = SGF.getLoweredType(AbstractionPattern::getOpaque(),
calleeTypeInfo.substResultType);
resumeBuf = SGF.emitTemporaryAllocation(loc, opaqueResumeType);
}
void
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
SmallVectorImpl<SILValue> &outList) const override {
// A foreign async function shouldn't have any indirect results.
}
std::tuple</*blockStorage=*/SILValue, /*blockStorageType=*/CanType,
/*continuationType=*/CanType>
emitBlockStorage(SILGenFunction &SGF, SILLocation loc, bool throws) {
auto &ctx = SGF.getASTContext();
// Wrap the Builtin.RawUnsafeContinuation in an
// UnsafeContinuation<T, E>.
auto *unsafeContinuationDecl = ctx.getUnsafeContinuationDecl();
auto errorTy = throws ? ctx.getErrorExistentialType() : ctx.getNeverType();
auto continuationTy =
BoundGenericType::get(unsafeContinuationDecl, /*parent=*/Type(),
{calleeTypeInfo.substResultType, errorTy})
->getCanonicalType();
auto wrappedContinuation = SGF.B.createStruct(
loc, SILType::getPrimitiveObjectType(continuationTy), {continuation});
const bool checkedBridging = ctx.LangOpts.UseCheckedAsyncObjCBridging;
// If checked bridging is enabled, wrap that continuation again in a
// CheckedContinuation<T, E>
if (checkedBridging) {
auto *checkedContinuationDecl = ctx.getCheckedContinuationDecl();
continuationTy =
BoundGenericType::get(checkedContinuationDecl, /*parent=*/Type(),
{calleeTypeInfo.substResultType, errorTy})
->getCanonicalType();
}
auto blockStorageTy = SILBlockStorageType::get(ctx.TheAnyType);
auto blockStorage = SGF.emitTemporaryAllocation(
loc, SILType::getPrimitiveAddressType(blockStorageTy));
auto continuationAddr = SGF.B.createProjectBlockStorage(loc, blockStorage);
// Stash continuation in a buffer for a block object.
auto conformances =
collectExistentialConformances(continuationTy, ctx.TheAnyType);
// In this case block storage captures `Any` which would be initialized
// with a continuation.
auto underlyingContinuationAddr = SGF.B.createInitExistentialAddr(
loc, continuationAddr, continuationTy,
SGF.getLoweredType(continuationTy), conformances);
if (checkedBridging) {
auto createIntrinsic =
throws ? SGF.SGM.getCreateCheckedThrowingContinuation()
: SGF.SGM.getCreateCheckedContinuation();
auto conformances =
collectExistentialConformances(calleeTypeInfo.substResultType,
ctx.TheAnyType);
auto subs =
SubstitutionMap::get(createIntrinsic->getGenericSignature(),
{calleeTypeInfo.substResultType}, conformances);
InitializationPtr underlyingInit(
new KnownAddressInitialization(underlyingContinuationAddr));
auto continuationMV =
ManagedValue::forRValueWithoutOwnership(wrappedContinuation);
SGF.emitApplyOfLibraryIntrinsic(loc, createIntrinsic, subs,
{continuationMV}, SGFContext())
.forwardInto(SGF, loc, underlyingInit.get());
SGF.enterDestroyCleanup(underlyingContinuationAddr);
} else {
SGF.B.createStore(loc, wrappedContinuation, underlyingContinuationAddr,
StoreOwnershipQualifier::Trivial);
}
return std::make_tuple(blockStorage, blockStorageTy, continuationTy);
}
ManagedValue emitForeignAsyncCompletionHandler(
SILGenFunction &SGF, AbstractionPattern origFormalType, ManagedValue self,
SILLocation loc) override {
// Get the current continuation for the task.
bool throws =
calleeTypeInfo.foreign.async->completionHandlerErrorParamIndex()
.has_value() ||
calleeTypeInfo.foreign.error.has_value();
continuation = SGF.B.createGetAsyncContinuationAddr(loc, resumeBuf,
calleeTypeInfo.substResultType, throws);
std::tie(blockStorage, blockStorageTy, continuationTy) =
emitBlockStorage(SGF, loc, throws);
// Add a merge_isolation_region from the continuation result buffer
// (resumeBuf) onto the block storage so it is in the same region as the
// block storage despite the intervening Sendable continuation wrapping that
// disguises this fact from the region isolation checker.
SGF.B.createMergeIsolationRegion(loc, {blockStorage, resumeBuf});
// Get the block invocation function for the given completion block type.
auto completionHandlerIndex = calleeTypeInfo.foreign.async
->completionHandlerParamIndex();
auto impTy = SGF.getSILType(calleeTypeInfo.substFnType
->getParameters()[completionHandlerIndex],
calleeTypeInfo.substFnType);
bool handlerIsOptional;
CanSILFunctionType impFnTy;
if (auto impObjTy = impTy.getOptionalObjectType()) {
handlerIsOptional = true;
impFnTy = cast<SILFunctionType>(impObjTy.getASTType());
} else {
handlerIsOptional = false;
impFnTy = cast<SILFunctionType>(impTy.getASTType());
}
auto env = SGF.F.getGenericEnvironment();
auto sig = env ? env->getGenericSignature().getCanonicalSignature()
: CanGenericSignature();
SILFunction *impl =
SGF.SGM.getOrCreateForeignAsyncCompletionHandlerImplFunction(
cast<SILFunctionType>(
impFnTy->mapTypeOutOfContext()->getReducedType(sig)),
blockStorageTy->mapTypeOutOfContext()->getReducedType(sig),
continuationTy->mapTypeOutOfContext()->getReducedType(sig),
origFormalType, sig, calleeTypeInfo);
auto impRef = SGF.B.createFunctionRef(loc, impl);
// Initialize the block object for the completion handler.
SILValue block = SGF.B.createInitBlockStorageHeader(loc, blockStorage,
impRef, SILType::getPrimitiveObjectType(impFnTy),
SGF.getForwardingSubstitutionMap());
// If our block is Sendable, we have lost the connection in between self and
// blockStorage. We need to restore that connection by using a merge
// isolation region.
if (self && block->getType().isSendable(&SGF.F)) {
SGF.B.createMergeIsolationRegion(loc, {self.getValue(), blockStorage});
}
// Wrap it in optional if the callee expects it.
if (handlerIsOptional) {
block = SGF.B.createOptionalSome(loc, block, impTy);
}
// We don't need to manage the block because it's still on the stack. We
// know we won't escape it locally so the callee can be responsible for
// _Block_copy-ing it.
//
// InitBlockStorageHeader always has Unowned ownership.
return ManagedValue::forUnownedObjectValue(block);
}
void deferExecutorBreadcrumb(ExecutorBreadcrumb &&crumb) override {
assert(!breadcrumb.needsEmit() && "overwriting an existing breadcrumb?");
breadcrumb = std::move(crumb);
}
RValue finish(SILGenFunction &SGF, SILLocation loc,
ArrayRef<ManagedValue> &directResults,
SILValue bridgedForeignError) override {
// There should be no direct results from the call.
assert(directResults.empty());
auto &ctx = SGF.getASTContext();
// Await the continuation we handed off to the completion handler.
SILBasicBlock *resumeBlock = SGF.createBasicBlock();
SILBasicBlock *errorBlock = nullptr;
bool throws =
calleeTypeInfo.foreign.async->completionHandlerErrorParamIndex()
.has_value() ||
calleeTypeInfo.foreign.error.has_value();
if (throws) {
errorBlock = SGF.createBasicBlock(FunctionSection::Postmatter);
}
auto *awaitBB = SGF.B.getInsertionBB();
if (bridgedForeignError) {
// Avoid a critical edge from the block which branches to the await and
// foreign error blocks to the await block (to which the error block will
// be made to branch in a moment) by introducing a trampoline which will
// branch to the await block.
awaitBB = SGF.createBasicBlock();
SGF.B.createBranch(loc, awaitBB);
// Finish emitting the foreign error block:
// (1) fulfill the unsafe continuation with the foreign error
// (2) branch to the await block
{
// First, fulfill the continuation with the foreign error.
// Currently, that block's code looks something like
// %foreignError = ... : $*Optional<NSError>
// %converter = function_ref _convertNSErrorToError(_:)
// %error = apply %converter(%foreignError)
// [... insert here ...]
// destroy_value %error
// destroy_value %foreignError
// Insert code to fulfill it after the native %error is defined. That
// code should load UnsafeContinuation (or CheckedContinuation
// depending on mode) and then pass that together with (a copy of) the
// error to _resume{Unsafe, Checked}ThrowingContinuationWithError.
// [foreign_error_block_with_foreign_async_convention]
SGF.B.setInsertionPoint(
++bridgedForeignError->getDefiningInstruction()->getIterator());
bool checkedBridging = ctx.LangOpts.UseCheckedAsyncObjCBridging;
// Load unsafe or checked continuation from the block storage
// and call _resume{Unsafe, Checked}ThrowingContinuationWithError.
SILValue continuationAddr =
SGF.B.createProjectBlockStorage(loc, blockStorage);
ManagedValue continuation;
{
FormalEvaluationScope scope(SGF);
auto underlyingValueTy =
ExistentialArchetypeType::get(ctx.TheAnyType);
auto underlyingValueAddr = SGF.emitOpenExistential(
loc, ManagedValue::forTrivialAddressRValue(continuationAddr),
SGF.getLoweredType(underlyingValueTy), AccessKind::Read);
continuation = SGF.B.createUncheckedAddrCast(
loc, underlyingValueAddr,
SILType::getPrimitiveAddressType(continuationTy));
// If we are calling the unsafe variant, we always pass the value in
// registers.
if (!checkedBridging)
continuation = SGF.B.createLoadTrivial(loc, continuation);
}
auto mappedOutContinuationTy =
continuationTy->mapTypeOutOfContext()->getCanonicalType();
auto resumeType =
cast<BoundGenericType>(mappedOutContinuationTy).getGenericArgs()[0];
auto errorIntrinsic =
checkedBridging
? SGF.SGM.getResumeCheckedThrowingContinuationWithError()
: SGF.SGM.getResumeUnsafeThrowingContinuationWithError();
Type replacementTypes[] = {
SGF.F.mapTypeIntoContext(resumeType)->getCanonicalType()};
auto subs = SubstitutionMap::get(errorIntrinsic->getGenericSignature(),
replacementTypes,
LookUpConformanceInModule());
SGF.emitApplyOfLibraryIntrinsic(
loc, errorIntrinsic, subs,
{continuation,
SGF.B.copyOwnedObjectRValue(loc, bridgedForeignError,
ManagedValue::ScopeKind::Lexical)},
SGFContext());
// Second, emit a branch from the end of the foreign error block to the
// await block, to await the continuation which was just fulfilled.
SGF.B.setInsertionPoint(
bridgedForeignError->getDefiningInstruction()->getParent());
SGF.B.createBranch(loc, awaitBB);
}
SGF.B.emitBlock(awaitBB);
}
SGF.B.createAwaitAsyncContinuation(loc, continuation, resumeBlock, errorBlock);
// Propagate an error if we have one.
if (errorBlock) {
SGF.B.emitBlock(errorBlock);
breadcrumb.emit(SGF, loc);
Scope errorScope(SGF, loc);
auto errorTy = ctx.getErrorExistentialType();
auto errorVal = SGF.B.createTermResult(
SILType::getPrimitiveObjectType(errorTy), OwnershipKind::Owned);
SGF.emitThrow(loc, errorVal, true);
}
SGF.B.emitBlock(resumeBlock);
breadcrumb.emit(SGF, loc);
// The incoming value is the maximally-abstracted result type of the
// continuation. Move it out of the resume buffer and reabstract it if
// necessary.
auto resumeResult =
SGF.emitLoad(loc, resumeBuf, AbstractionPattern::getOpaque(),
calleeTypeInfo.substResultType,
SGF.getTypeLowering(calleeTypeInfo.substResultType),
SGFContext(), IsTake);
return RValue(SGF, loc, calleeTypeInfo.substResultType, resumeResult);
}
};
class ForeignErrorInitializationPlan final : public ResultPlan {
SILLocation loc;
LValue lvalue;
ResultPlanPtr subPlan;
ManagedValue managedErrorTemp;
CanType unwrappedPtrType;
PointerTypeKind ptrKind;
bool isOptional;
CanType errorPtrType;
public:
ForeignErrorInitializationPlan(SILGenFunction &SGF, SILLocation loc,
const CalleeTypeInfo &calleeTypeInfo,
ResultPlanPtr &&subPlan)
: loc(loc), subPlan(std::move(subPlan)) {
unsigned errorParamIndex =
calleeTypeInfo.foreign.error->getErrorParameterIndex();
auto substFnType = calleeTypeInfo.substFnType;
SILParameterInfo errorParameter =
substFnType->getParameters()[errorParamIndex];
// We assume that there's no interesting reabstraction here beyond a layer
// of optional.
errorPtrType = errorParameter.getArgumentType(
SGF.SGM.M, substFnType, SGF.getTypeExpansionContext());
unwrappedPtrType = errorPtrType;
Type unwrapped = errorPtrType->getOptionalObjectType();
isOptional = (bool) unwrapped;
if (unwrapped)
unwrappedPtrType = unwrapped->getCanonicalType();
auto errorType =
CanType(unwrappedPtrType->getAnyPointerElementType(ptrKind));
// In cases when from swift, we call objc imported methods written like so:
//
// (1) - (BOOL)submit:(NSError *_Nonnull __autoreleasing *_Nullable)errorOut;
//
// the clang importer will successfully import the given method as having a
// non-null NSError. This doesn't follow the normal convention where we
// expect the NSError to be Optional<NSError>. In order to preserve source
// compatibility, we want to allow SILGen to handle this behavior. Luckily
// in this case, NSError and Optional<NSError> are layout compatible, so we
// can just pass in the Optional<NSError> and everything works.
if (auto nsErrorTy = SGF.getASTContext().getNSErrorType()->getCanonicalType()) {
if (errorType == nsErrorTy) {
errorType = errorType.wrapInOptionalType();
}
}
auto &errorTL = SGF.getTypeLowering(errorType);
// Allocate a temporary.
// It's flagged with "hasDynamicLifetime" because it's not possible to
// statically verify the lifetime of the value.
SILValue errorTemp = SGF.emitTemporaryAllocation(
loc, errorTL.getLoweredType(), HasDynamicLifetime);
// Nil-initialize it.
SGF.emitInjectOptionalNothingInto(loc, errorTemp, errorTL);
// Enter a cleanup to destroy the value there.
managedErrorTemp = SGF.emitManagedBufferWithCleanup(errorTemp, errorTL);
// Create the appropriate pointer type.
lvalue = LValue::forAddress(SGFAccessKind::ReadWrite,
ManagedValue::forLValue(errorTemp),
/*TODO: enforcement*/ std::nullopt,
AbstractionPattern(errorType), errorType);
}
void deferExecutorBreadcrumb(ExecutorBreadcrumb &&breadcrumb) override {
subPlan->deferExecutorBreadcrumb(std::move(breadcrumb));
}
RValue finish(SILGenFunction &SGF, SILLocation loc,
ArrayRef<ManagedValue> &directResults,
SILValue bridgedForeignError) override {
return subPlan->finish(SGF, loc, directResults, bridgedForeignError);
}
void
gatherIndirectResultAddrs(SILGenFunction &SGF, SILLocation loc,
SmallVectorImpl<SILValue> &outList) const override {
subPlan->gatherIndirectResultAddrs(SGF, loc, outList);
}
ManagedValue emitForeignAsyncCompletionHandler(
SILGenFunction &SGF, AbstractionPattern origFormalType, ManagedValue self,
SILLocation loc) override {
return subPlan->emitForeignAsyncCompletionHandler(SGF, origFormalType, self,
loc);
}
std::optional<std::pair<ManagedValue, ManagedValue>>
emitForeignErrorArgument(SILGenFunction &SGF, SILLocation loc) override {
SILGenFunction::PointerAccessInfo pointerInfo = {
unwrappedPtrType, ptrKind, SGFAccessKind::ReadWrite
};
auto pointerValue =
SGF.emitLValueToPointer(loc, std::move(lvalue), pointerInfo);
// Wrap up in an Optional if called for.
if (isOptional) {
auto &optTL = SGF.getTypeLowering(errorPtrType);
pointerValue = SGF.getOptionalSomeValue(loc, pointerValue, optTL);
}
return std::make_pair(managedErrorTemp, pointerValue);
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Result Plan Builder
//===----------------------------------------------------------------------===//
/// Build a result plan for the results of an apply.
///
/// If the initialization is non-null, the result plan will emit into it.
ResultPlanPtr ResultPlanBuilder::buildTopLevelResult(Initialization *init,
SILLocation loc) {
// First check if we have a foreign error and/or async convention.
if (auto foreignError = calleeTypeInfo.foreign.error) {
// Handle the foreign error first.
//
// The plan needs to be built using the formal result type after foreign-error
// adjustment.
switch (foreignError->getKind()) {
// These conventions make the formal result type ().
case ForeignErrorConvention::ZeroResult:
case ForeignErrorConvention::NonZeroResult:
assert(calleeTypeInfo.substResultType->isVoid() ||
calleeTypeInfo.foreign.async);
allResults.clear();
break;
// These conventions leave the formal result alone.
case ForeignErrorConvention::ZeroPreservedResult:
case ForeignErrorConvention::NonNilError:
break;
// This convention changes the formal result to the optional object type; we
// need to make our own make SILResultInfo array.
case ForeignErrorConvention::NilResult: {
assert(allResults.size() == 1);
auto substFnTy = calleeTypeInfo.substFnType;
CanType objectType = allResults[0]
.getReturnValueType(SGF.SGM.M, substFnTy,
SGF.getTypeExpansionContext())
.getOptionalObjectType();
SILResultInfo optResult = allResults[0].getWithInterfaceType(objectType);
allResults.clear();
allResults.push_back(optResult);
break;
}
}
ResultPlanPtr subPlan;
if (auto foreignAsync = calleeTypeInfo.foreign.async) {
subPlan = ResultPlanPtr(
new ForeignAsyncInitializationPlan(SGF, loc, calleeTypeInfo));
} else {
subPlan = build(init, calleeTypeInfo.origResultType.value(),
calleeTypeInfo.substResultType);
}
return ResultPlanPtr(new ForeignErrorInitializationPlan(
SGF, loc, calleeTypeInfo, std::move(subPlan)));
} else if (auto foreignAsync = calleeTypeInfo.foreign.async) {
// Create a result plan that gets the result schema from the completion
// handler callback's arguments.
return ResultPlanPtr(
new ForeignAsyncInitializationPlan(SGF, loc, calleeTypeInfo));
} else {
// Otherwise, we can just call build.
return build(init, calleeTypeInfo.origResultType.value(),
calleeTypeInfo.substResultType);
}
}
/// Build a result plan for the results of an apply.
///
/// If the initialization is non-null, the result plan will emit into it.
ResultPlanPtr ResultPlanBuilder::build(Initialization *init,
AbstractionPattern origType,
CanType substType) {
// Destructure original tuples.
if (origType.isTuple()) {
return buildForTuple(init, origType, substType);
}
assert(!origType.isPackExpansion() &&
"should've been handled when destructuring tuples");
// Otherwise, grab the next result.
auto result = allResults.pop_back_val();
return buildForScalar(init, origType, substType, result);
}
ResultPlanPtr ResultPlanBuilder::buildForScalar(Initialization *init,
AbstractionPattern origType,
CanType substType,
SILResultInfo result) {
auto calleeTy = calleeTypeInfo.substFnType;
// If the result is indirect, and we have an address to emit into, and
// there are no abstraction differences, then just do it.
if (init && init->canPerformInPlaceInitialization() &&
SGF.silConv.isSILIndirect(result) &&
!SGF.getLoweredType(substType).getAddressType().hasAbstractionDifference(
calleeTypeInfo.getOverrideRep(),
result.getSILStorageType(SGF.SGM.M, calleeTy,
SGF.getTypeExpansionContext()))) {
return ResultPlanPtr(new InPlaceInitializationResultPlan(init));
}
// Otherwise, we need to:
// - get the value, either directly or indirectly
// - possibly reabstract it
// - store it to the destination
// We could break this down into different ResultPlan implementations,
// but it's easier not to.
// If the result type involves an indirectly-returned opened existential,
// then we need to evaluate the arguments first in order to have access to
// the opened Self type. A special result plan defers allocating the stack
// slot to the point the call is emitted.
if (result
.getReturnValueType(SGF.SGM.M, calleeTy,
SGF.getTypeExpansionContext())
->hasOpenedExistential() &&
SGF.silConv.isSILIndirect(result)) {
return ResultPlanPtr(
new IndirectOpenedSelfResultPlan(SGF, origType, substType));
}
// Create a temporary if the result is indirect.
std::unique_ptr<TemporaryInitialization> temporary;
if (SGF.silConv.isSILIndirect(result)) {
auto &resultTL = SGF.getTypeLowering(result.getReturnValueType(
SGF.SGM.M, calleeTy, SGF.getTypeExpansionContext()));
SILLocation tmpLoc(loc);
tmpLoc.markAutoGenerated();
temporary = SGF.emitTemporary(tmpLoc, resultTL);
}
return ResultPlanPtr(new ScalarResultPlan(
std::move(temporary), origType, substType, init,
calleeTypeInfo.getOverrideRep()));
}
ResultPlanPtr ResultPlanBuilder::buildForPackExpansion(
std::optional<ArrayRef<Initialization *>> inits,
AbstractionPattern origExpansionType, CanTupleEltTypeArrayRef substTypes) {
assert(!inits || inits->size() == substTypes.size());
// Pack expansions in the original result type always turn into
// a single @pack_out result.
auto result = allResults.pop_back_val();
assert(result.isPack());
auto packTy =
result.getSILStorageType(SGF.SGM.M, calleeTypeInfo.substFnType,
SGF.getTypeExpansionContext());
assert(packTy.castTo<SILPackType>()->getNumElements() == substTypes.size());
// TODO: try to just forward a single pack
// Allocate a pack to serve as the element.
auto packAddr =
SGF.emitTemporaryPackAllocation(loc, packTy.getObjectType());
return ResultPlanPtr(new PackExpansionResultPlan(*this, packAddr, inits,
origExpansionType, substTypes));
}
ResultPlanPtr
ResultPlanBuilder::buildPackExpansionIntoPack(SILValue packAddr,
CanPackType formalPackType,
unsigned componentIndex,
Initialization *init,
AbstractionPattern origPatternType) {
assert(init && init->canPerformPackExpansionInitialization());
// Create an opened-element environment sufficient for working with
// values of the pack expansion type.
auto packTy = packAddr->getType().castTo<SILPackType>();
auto result = SGF.createOpenedElementValueEnvironment(
packTy->getSILElementType(componentIndex));
auto openedEnv = result.first;
auto eltTy = result.second;
// This code would be much easier to write, and more efficient
// dynamically, if we could form packs by pack-applying a coroutine.
// Instead, we have to initialize a tuple if we don't fall into the
// (narrow but important) special case where we can just forward
// addresses into the pack.
// If the expansion addresses can just be forwarded into the pack,
// we can emit a dynamic loop to do that now.
if (init->canPerformInPlacePackInitialization(openedEnv, eltTy)) {
SGF.emitDynamicPackLoop(loc, formalPackType, componentIndex, openedEnv,
[&](SILValue indexWithinComponent,
SILValue expansionPackIndex,
SILValue packIndex) {
auto eltAddr =
init->getAddressForInPlacePackInitialization(SGF, loc, eltTy);
SGF.B.createPackElementSet(loc, eltAddr, packIndex, packAddr);
});
// The result plan just needs to finish the initialization when
// it's finished.
return ResultPlanPtr(new InPlaceInitializationResultPlan(init));
}
// Otherwise, make a tuple temporary and write the element addresses
// into the pack.
auto tupleTy = CanTupleType(TupleType::get(
{packTy->getElementType(componentIndex)}, SGF.getASTContext()));
auto tupleAddr = SGF.emitTemporaryAllocation(loc,
SILType::getPrimitiveObjectType(tupleTy));
SGF.emitDynamicPackLoop(loc, formalPackType, componentIndex, openedEnv,
[&](SILValue indexWithinComponent,
SILValue expansionPackIndex,
SILValue packIndex) {
auto eltAddr = SGF.B.createTuplePackElementAddr(loc, expansionPackIndex,
tupleAddr, eltTy);
SGF.B.createPackElementSet(loc, eltAddr, packIndex, packAddr);
});
// The result plan will write into `init` during finish().
return ResultPlanPtr(
new PackTransformResultPlan(packAddr, formalPackType,
componentIndex, init, origPatternType,
calleeTypeInfo.getOverrideRep()));
}
ResultPlanPtr
ResultPlanBuilder::buildScalarIntoPack(SILValue packAddr,
CanPackType formalPackType,
unsigned componentIndex,
Initialization *init,
AbstractionPattern origType) {
assert(!origType.isPackExpansion());
auto substType = formalPackType.getElementType(componentIndex);
assert(!isa<PackExpansionType>(substType));
// Fake up an @out result.
auto loweredEltType = packAddr->getType().castTo<SILPackType>()
->getElementType(componentIndex);
SILResultInfo resultInfo(loweredEltType, ResultConvention::Indirect);
// Use the normal scalar emission path to gather an indirect result
// of that type.
auto plan = buildForScalar(init, origType, substType, resultInfo);
// Immediately gather the indirect result.
SmallVector<SILValue, 1> indirectResults;
plan->gatherIndirectResultAddrs(SGF, loc, indirectResults);
assert(indirectResults.size() == 1);
auto eltAddr = indirectResults.front();
// Write that into the pack.
auto packIndex =
SGF.B.createScalarPackIndex(loc, componentIndex, formalPackType);
SGF.B.createPackElementSet(loc, eltAddr, packIndex, packAddr);
return plan;
}
ResultPlanPtr ResultPlanBuilder::buildForTuple(Initialization *init,
AbstractionPattern origType,
CanType substType) {
// If we have an initialization, and we can split the initialization,
// emit directly into the initialization. If the orig tuple vanishes,
// that counts as the initialization being splittable.
if (init) {
bool vanishes = origType.doesTupleVanish();
if (vanishes || init->canSplitIntoTupleElements()) {
return ResultPlanPtr(
new TupleInitializationResultPlan(*this, init, origType, substType,
vanishes));
}
}
auto substTupleType = dyn_cast<TupleType>(substType);
bool substHasPackExpansion =
(substTupleType && substTupleType.containsPackExpansionType());
// Otherwise, if the tuple contains a pack expansion, we'll need to
// initialize a single buffer one way or another: either we're giving
// this to RValue (which wants a single value for tuples with pack
// expansions) or we'll have to call copyOrInitValueInto on init
// (which expects a single value). Create a temporary, build into
// that, and then call the initialization.
//
// We also use this path when we have an init and the type is
// address-only, because we'll need to call copyOrInitValueInto and
// we'll get better code by building that up indirectly. But we don't
// do that if we're not using lowered addresses because we prefer to
// build tuples with scalar operations.
auto &substTL = SGF.getTypeLowering(substType);
assert(substTL.isAddressOnly() || !substHasPackExpansion);
if (substTL.isAddressOnly() &&
(substHasPackExpansion ||
(init != nullptr && SGF.F.getConventions().useLoweredAddresses()))) {
// Create a temporary.
auto temporary = SGF.emitTemporary(loc, substTL);
// Build a sub-plan to emit into the temporary.
auto subplan = buildForTuple(temporary.get(), origType, substType);
// Make a plan to produce the final result from that.
return ResultPlanPtr(new InitValueFromTemporaryResultPlan(
init, substType, std::move(subplan), std::move(temporary)));
}
// If we don't have an initialization, just build the individual
// components.
if (!init) {
return ResultPlanPtr(new TupleRValueResultPlan(*this, origType, substType));
}
// Build a sub-plan that doesn't know about the initialization.
auto subplan = buildForTuple(nullptr, origType, substType);
// Make a plan that calls copyOrInitValueInto.
return ResultPlanPtr(
new InitValueFromRValueResultPlan(init, std::move(subplan)));
}
ResultPlanPtr
ResultPlanBuilder::computeResultPlan(SILGenFunction &SGF,
const CalleeTypeInfo &calleeTypeInfo,
SILLocation loc, SGFContext evalContext) {
ResultPlanBuilder builder(SGF, loc, calleeTypeInfo);
return builder.buildTopLevelResult(evalContext.getEmitInto(), loc);
}