Files
swift-mirror/lib/SymbolGraphGen/SymbolGraphASTWalker.cpp
2025-03-31 09:10:58 -06:00

446 lines
16 KiB
C++

//===--- SymbolGraphASTWalker.cpp - Symbol Graph AST Walker ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "clang/AST/DeclObjC.h"
#include "clang/Basic/Module.h"
#include "llvm/ADT/StringSwitch.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ClangModuleLoader.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Module.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/Serialization/SerializedModuleLoader.h"
#include "swift/SymbolGraphGen/SymbolGraphGen.h"
#include "SymbolGraphASTWalker.h"
using namespace swift;
using namespace symbolgraphgen;
namespace {
/// Compare the two \c ModuleDecl instances to see whether they are the same.
///
/// This does a by-name comparison to consider a module's underlying Clang module to be equivalent
/// to the wrapping module of the same name.
///
/// If the `isClangEqual` argument is set to `false`, the modules must also be from the same
/// compiler, i.e. a Swift module and its underlying Clang module would be considered not equal.
bool areModulesEqual(const ModuleDecl *lhs, const ModuleDecl *rhs, bool isClangEqual = true) {
if (lhs->getNameStr() != rhs->getNameStr())
return false;
if (!isClangEqual && (lhs->isNonSwiftModule() != rhs->isNonSwiftModule()))
return false;
return true;
}
bool clangModuleExports(const clang::Module *ClangParent, const clang::Module *CM) {
if (!ClangParent || !CM) return false;
if (ClangParent == CM) return true;
for (auto ClangExport : ClangParent->Exports) {
auto *ExportedModule = ClangExport.getPointer();
if (ClangExport.getInt()) {
if (!ExportedModule && CM->isSubModuleOf(ClangParent)) {
return true;
} else if (ExportedModule && CM->isSubModuleOf(ExportedModule)) {
return true;
}
}
if (ExportedModule && clangModuleExports(ExportedModule, CM)) {
return true;
}
}
if (ClangParent->Exports.empty() && CM->isSubModuleOf(ClangParent)) {
// HACK: In the absence of an explicit export statement, consider any submodule to be exported.
return true;
}
return false;
}
bool underlyingClangModuleExports(const ModuleDecl *ParentModule, const ModuleDecl *M) {
return clangModuleExports(ParentModule->findUnderlyingClangModule(), M->findUnderlyingClangModule());
}
} // anonymous namespace
SymbolGraphASTWalker::SymbolGraphASTWalker(ModuleDecl &M,
const SymbolGraphOptions &Options)
: Options(Options), M(M), MainGraph(*this, M, std::nullopt, Ctx) {}
SymbolGraphASTWalker::SymbolGraphASTWalker(
ModuleDecl &M,
const SmallPtrSet<const ModuleDecl *, 4> ExportedImportedModules,
const llvm::SmallDenseMap<const ModuleDecl *, SmallPtrSet<Decl *, 4>, 4>
QualifiedExportedImports,
const SymbolGraphOptions &Options)
: Options(Options), M(M), ExportedImportedModules(ExportedImportedModules),
QualifiedExportedImports(QualifiedExportedImports),
MainGraph(*this, M, std::nullopt, Ctx) {}
ModuleDecl *SymbolGraphASTWalker::getRealModuleOf(const Decl *D) const {
ModuleDecl *Module = D->getModuleContext();
if (auto *ClangDecl = D->getClangDecl())
if (auto *ClangModule = ClangDecl->getOwningModule())
if (auto *ClangModuleLoader = D->getASTContext().getClangModuleLoader())
if (auto *M = ClangModuleLoader->getWrapperForModule(ClangModule))
Module = M;
return Module;
}
/// Get a "sub" symbol graph for the parent module of a type that
/// the main module `M` is extending.
SymbolGraph *SymbolGraphASTWalker::getModuleSymbolGraph(const Decl *D) {
auto *M = getRealModuleOf(D);
const auto *DC = D->getDeclContext();
SmallVector<const NominalTypeDecl *, 2> ParentTypes = {};
const Decl *ExtendedNominal = nullptr;
while (DC) {
if (const auto *NTD = dyn_cast_or_null<NominalTypeDecl>(DC->getAsDecl())) {
DC = NTD->getDeclContext();
M = getRealModuleOf(NTD);
ParentTypes.push_back(NTD);
} else if (const auto *Ext = dyn_cast_or_null<ExtensionDecl>(DC->getAsDecl())) {
DC = Ext->getExtendedNominal()->getDeclContext();
M = getRealModuleOf(Ext->getExtendedNominal());
if (!ExtendedNominal)
ExtendedNominal = Ext->getExtendedNominal();
} else {
DC = nullptr;
}
}
auto moduleIsMainGraph = [&](const ModuleDecl *M) {
if (areModulesEqual(&this->M, M)) {
return true;
} else if (MainGraph.DeclaringModule.has_value() &&
areModulesEqual(MainGraph.DeclaringModule.value(), M)) {
// Cross-import overlay modules already appear as "extensions" of their declaring module; we
// should put actual extensions of that module into the main graph
return true;
}
// Check the module and decl separately since the extension could be from a different module
// than the decl itself.
if (isExportedImportedModule(M)) {
return true;
}
return false;
};
if (moduleIsMainGraph(M) || isQualifiedExportedImport(D))
return &MainGraph;
// If this type is the child of a type which was re-exported in a qualified export, use the main graph.
if (llvm::any_of(ParentTypes, [&](const NominalTypeDecl *NTD){ return isQualifiedExportedImport(NTD); })) {
return &MainGraph;
}
// As a shorthand when dealing with Clang submodules, use their top-level module's graph if the
// submodule is ultimately exported from its top-level module.
auto *TopLevelModule = M->getTopLevelModule();
if (TopLevelModule != M && underlyingClangModuleExports(TopLevelModule, M))
M = TopLevelModule;
if (moduleIsMainGraph(M))
return &MainGraph;
auto Found = ExtendedModuleGraphs.find(M->getNameStr());
if (Found != ExtendedModuleGraphs.end()) {
return Found->getValue();
}
auto *Memory = Ctx.allocate(sizeof(SymbolGraph), alignof(SymbolGraph));
auto *SG = new (Memory)
SymbolGraph(*this, MainGraph.M, std::optional<ModuleDecl *>(M), Ctx);
ExtendedModuleGraphs.insert({M->getNameStr(), SG});
return SG;
}
static bool isUnavailableOrObsoletedOnPlatform(const Decl *D) {
if (const auto Avail = D->getUnavailableAttr()) {
if (Avail->getPlatform() != PlatformKind::none)
return true;
}
return false;
}
bool SymbolGraphASTWalker::walkToDeclPre(Decl *D, CharSourceRange Range) {
if (SynthesizedChildrenBaseDecl && D == SynthesizedChildrenBaseDecl)
return true;
if (isUnavailableOrObsoletedOnPlatform(D)) {
return false;
}
switch (D->getKind()) {
// We'll record nodes for the following kinds of declarations.
case swift::DeclKind::Class:
case swift::DeclKind::Struct:
case swift::DeclKind::Enum:
case swift::DeclKind::EnumElement:
case swift::DeclKind::Protocol:
case swift::DeclKind::Constructor:
case swift::DeclKind::Func:
case swift::DeclKind::Var:
case swift::DeclKind::Subscript:
case swift::DeclKind::TypeAlias:
case swift::DeclKind::AssociatedType:
case swift::DeclKind::Extension:
case swift::DeclKind::Macro:
break;
// We'll descend into everything else.
default:
return true;
}
auto SG = getModuleSymbolGraph(D);
// If this is an extension, let's check that it implies some new conformances,
// potentially with generic requirements.
if (const auto *Extension = dyn_cast<ExtensionDecl>(D)) {
const auto *ExtendedNominal = Extension->getExtendedNominal();
auto ExtendedSG = getModuleSymbolGraph(ExtendedNominal);
// Ignore effectively private decls.
if (ExtendedSG->isImplicitlyPrivate(Extension)) {
return false;
}
if (SG->isUnconditionallyUnavailableOnAllPlatforms(Extension)) {
return false;
}
if (isUnavailableOrObsoletedOnPlatform(ExtendedNominal)) {
return false;
}
// We only treat extensions to external types as extensions. Extensions to
// local types are directly associated with the extended nominal.
auto const shouldBeRecordedAsExtension =
this->shouldBeRecordedAsExtension(Extension);
Symbol Source = shouldBeRecordedAsExtension
? Symbol(ExtendedSG, Extension, nullptr)
: Symbol(ExtendedSG, ExtendedNominal, nullptr);
// The extended nominal is recorded elsewhere for local types.
if (shouldBeRecordedAsExtension) {
ExtendedSG->recordNode(Source);
// Next to the extension symbol itself, we also introduce a relationship
// between the extension symbol and the extended nominal.
ExtendedSG->recordEdge(Source,
Symbol(ExtendedSG, ExtendedNominal, nullptr),
RelationshipKind::ExtensionTo());
}
// If there are some protocol conformances on this extension, we'll
// grab them for some new conformsTo relationships.
if (!Extension->getInherited().empty()) {
// We want to add conformsTo relationships for all protocols implicitly
// implied by those explicitly stated on the extension.
//
// We start by collecting the conformances declared on the extension with
// `getLocalConformances`. From there, we inspect each protocol for any
// other protocols it inherits (whether stated explicitly or via a
// composed protocol type alias) with `getInheritedProtocols`. Each new
// protocol is added to `UnexpandedProtocols` until there are no new
// protocols to add. At that point, all direct and indirect conformances
// are stored in `Protocols`.
SmallPtrSet<const ProtocolDecl *, 4> Protocols;
SmallVector<const ProtocolDecl *, 4> UnexpandedProtocols;
// Start the process with the conformances stated
// explicitly on the extension.
for (const auto *Conformance : Extension->getLocalConformances()) {
UnexpandedProtocols.push_back(Conformance->getProtocol());
}
// "Recursively" expand the unexpanded list and populate
// the expanded `Protocols` list (in an iterative manner).
while (!UnexpandedProtocols.empty()) {
const auto *Proto = UnexpandedProtocols.pop_back_val();
if (!Protocols.contains(Proto)) {
for (const auto *InheritedProtocol : Proto->getInheritedProtocols()) {
UnexpandedProtocols.push_back(InheritedProtocol);
}
Protocols.insert(Proto);
}
}
// Record the expanded list of protocols.
for (const auto *Proto : Protocols) {
Symbol Target(&MainGraph, Proto, nullptr);
ExtendedSG->recordEdge(Source, Target, RelationshipKind::ConformsTo(),
Extension);
}
// We also might establish some synthesized members because we
// extended an external type.
if (ExtendedNominal->getModuleContext() != &M) {
ExtendedSG->recordConformanceSynthesizedMemberRelationships(Source);
}
}
// Continue looking into the extension.
return true;
}
auto *VD = cast<ValueDecl>(D);
if (!BaseDecl && !SG->canIncludeDeclAsNode(VD)) {
return false;
}
// If this symbol extends a type from another module, record it in that
// module's symbol graph, which will be emitted separately.
if (const auto *Extension
= dyn_cast_or_null<ExtensionDecl>(VD->getDeclContext())) {
if (const auto *ExtendedNominal = Extension->getExtendedNominal()) {
auto ExtendedModule = ExtendedNominal->getModuleContext();
auto ExtendedSG = getModuleSymbolGraph(ExtendedNominal);
if (!isOurModule(ExtendedModule)) {
ExtendedSG->recordNode(Symbol(ExtendedSG, VD, nullptr));
return true;
}
}
}
// Clang decls that are inherited from protocols get the USR of the protocol
// symbol, regardless of which class it's actually appearing on. To prevent
// multiple of these symbols colliding with each other, treat them as
// synthesized symbols and use their parent type as the base type.
if (VD->isImplicit() && VD->hasClangNode() &&
VD->getClangNode().getAsDecl()) {
if (const auto *Parent =
dyn_cast_or_null<NominalTypeDecl>(VD->getDeclContext())) {
SG->recordNode(Symbol(SG, VD, Parent));
return true;
}
}
// If this is a Clang typedef of an underlying type that is being hidden (e.g. `typedef struct
// _MyStruct { ... } MyStruct`) then copy in the child symbols from the underlying type to the
// type alias.
if (const auto *TD = dyn_cast_or_null<TypeAliasDecl>(VD)) {
const auto InnerType = TD->getUnderlyingType();
if (NominalTypeDecl *NTD = InnerType->getAnyNominal()) {
// Only fold typedefs together if the inner type is from our module and it
// otherwise isn't being shown
if (isOurModule(NTD->getModuleContext()) &&
!SG->canIncludeDeclAsNode(NTD)) {
// We specifically only want to look for underlying types that are "embedded" in the typedef
// definition, so let's pull out the Clang decl and check for that
if (NTD->hasClangNode()) {
if (const auto *ClangDecl = NTD->getClangNode().getAsDecl()) {
if (const auto *ClangTagDecl = dyn_cast<clang::TagDecl>(ClangDecl)) {
if (ClangTagDecl->isEmbeddedInDeclarator()) {
PublicPrivateTypeAliases.insert_or_assign(NTD, TD);
synthesizeChildSymbols(NTD, TD);
}
}
}
}
}
}
}
// Otherwise, record this in the main module `M`'s symbol graph.
SG->recordNode(Symbol(SG, VD, BaseDecl));
return true;
}
bool SymbolGraphASTWalker::isConsideredExportedImported(const Decl *D) const {
// Check to see if this decl is an extension of something else that was re-exported.
// Do this first in case there's a chain of extensions that leads somewhere that's not a re-export.
// FIXME: this considers synthesized members of extensions to be valid
const auto *DC = D->getDeclContext();
const Decl *ExtendedNominal = nullptr;
while (DC && !ExtendedNominal) {
if (const auto *ED = dyn_cast_or_null<ExtensionDecl>(DC->getAsDecl())) {
ExtendedNominal = ED->getExtendedNominal();
} else {
DC = DC->getParent();
}
}
if (ExtendedNominal && isConsideredExportedImported(ExtendedNominal)) {
return true;
}
// Check to see if the decl is a child symbol of another decl that was re-exported.
DC = D->getDeclContext();
if (DC) {
if (const auto *VD = dyn_cast_or_null<ValueDecl>(DC->getAsDecl())) {
if (isConsideredExportedImported(VD))
return true;
}
}
// Check the decl itself to see if it was directly re-exported.
if (isFromExportedImportedModule(D) || isQualifiedExportedImport(D))
return true;
// If none of the other checks passed, this wasn't from a re-export.
return false;
}
bool SymbolGraphASTWalker::isFromExportedImportedModule(const Decl* D, bool countUnderlyingClangModule) const {
auto *M = getRealModuleOf(D);
return isQualifiedExportedImport(D) || isExportedImportedModule(M, countUnderlyingClangModule);
}
bool SymbolGraphASTWalker::isQualifiedExportedImport(const Decl *D) const {
return llvm::any_of(QualifiedExportedImports, [&D](const auto &QI) {
return QI.getSecond().contains(D);
});
}
bool SymbolGraphASTWalker::isExportedImportedModule(const ModuleDecl *M, bool countUnderlyingClangModule) const {
return llvm::any_of(ExportedImportedModules, [&M, countUnderlyingClangModule](const auto *MD) {
return areModulesEqual(M, MD->getModuleContext(), /*isClangEqual*/countUnderlyingClangModule);
});
}
bool SymbolGraphASTWalker::isOurModule(const ModuleDecl *M) const {
return areModulesEqual(M, &this->M) || isExportedImportedModule(M);
}
bool SymbolGraphASTWalker::shouldBeRecordedAsExtension(
const ExtensionDecl *ED) const {
return Options.EmitExtensionBlockSymbols &&
!areModulesEqual(ED->getModuleContext(),
ED->getExtendedNominal()->getModuleContext()) &&
!isExportedImportedModule(
ED->getExtendedNominal()->getModuleContext());
}
bool SymbolGraphASTWalker::synthesizeChildSymbols(Decl *D,
const ValueDecl *BD) {
BaseDecl = BD;
SynthesizedChildrenBaseDecl = D;
SWIFT_DEFER {
BaseDecl = nullptr;
SynthesizedChildrenBaseDecl = nullptr;
};
return walk(D);
}