Files
swift-mirror/stdlib/public/Platform/tgmath.swift.gyb
Ian Anderson 15345ef2d5 [CMake][Darwin] Remove support for building the SDK overlays on Apple platforms
The SDK overlays have been provided in the Apple SDKs for many years, and the interface and implementation has diverged in more recent years such that trying to build the Swift version no longer works. Remove all of the dead code.

rdar://151889154
2025-05-23 23:38:08 -07:00

348 lines
9.4 KiB
Swift

//===--- tgmath.swift.gyb -------------------------------------*- swift -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SwiftShims
// Generic functions implementable directly on FloatingPoint.
@_transparent
@available(swift, deprecated: 4.2/*, obsoleted: 5.1*/, renamed: "abs")
public func fabs<T: FloatingPoint>(_ x: T) -> T {
return x.magnitude
}
@_transparent
public func sqrt<T: FloatingPoint>(_ x: T) -> T {
return x.squareRoot()
}
@_transparent
public func fma<T: FloatingPoint>(_ x: T, _ y: T, _ z: T) -> T {
return z.addingProduct(x, y)
}
@_transparent
public func remainder<T: FloatingPoint>(_ x: T, _ y: T) -> T {
return x.remainder(dividingBy: y)
}
@_transparent
public func fmod<T: FloatingPoint>(_ x: T, _ y: T) -> T {
return x.truncatingRemainder(dividingBy: y)
}
@_transparent
public func ceil<T: FloatingPoint>(_ x: T) -> T {
return x.rounded(.up)
}
@_transparent
public func floor<T: FloatingPoint>(_ x: T) -> T {
return x.rounded(.down)
}
@_transparent
public func round<T: FloatingPoint>(_ x: T) -> T {
return x.rounded()
}
@_transparent
public func trunc<T: FloatingPoint>(_ x: T) -> T {
return x.rounded(.towardZero)
}
@_transparent
public func scalbn<T: FloatingPoint>(_ x: T, _ n : Int) -> T {
return T(sign: .plus, exponent: T.Exponent(n), significand: x)
}
@_transparent
public func modf<T: FloatingPoint>(_ x: T) -> (T, T) {
// inf/NaN: return canonicalized x, fractional part zero.
guard x.isFinite else { return (x+0, 0) }
let integral = trunc(x)
let fractional = x - integral
return (integral, fractional)
}
@_transparent
public func frexp<T: BinaryFloatingPoint>(_ x: T) -> (T, Int) {
guard x.isFinite else { return (x+0, 0) }
guard x != 0 else { return (x, 0) }
// The C stdlib `frexp` uses a different notion of significand / exponent
// than IEEE 754, so we need to adjust them by a factor of two.
return (x.significand / 2, Int(x.exponent + 1))
}
%for T in ['Float','Double']:
@available(swift, deprecated: 4.2, renamed: "scalbn")
@_transparent
public func ldexp(_ x: ${T}, _ n : Int) -> ${T} {
return ${T}(sign: .plus, exponent: n, significand: x)
}
%end
// Floating-point properties that are exposed as functions in the C math
// library. Mark those function names unavailable and direct users to the
// properties instead.
@available(*, unavailable, message: "use the floatingPointClass property.")
public func fpclassify<T: FloatingPoint>(_ value: T) -> Int { fatalError() }
@available(*, unavailable, message: "use the isNormal property.")
public func isnormal<T: FloatingPoint>(_ value: T) -> Bool { fatalError() }
@available(*, unavailable, message: "use the isFinite property.")
public func isfinite<T: FloatingPoint>(_ value: T) -> Bool { fatalError() }
@available(*, unavailable, message: "use the isInfinite property.")
public func isinf<T: FloatingPoint>(_ value: T) -> Bool { fatalError() }
@available(*, unavailable, message: "use the isNaN property.")
public func isnan<T: FloatingPoint>(_ value: T) -> Bool { fatalError() }
@available(*, unavailable, message: "use the sign property.")
public func signbit<T: FloatingPoint>(_ value: T) -> Int { fatalError() }
@available(swift, deprecated: 4.2/*, obsoleted: 5.1*/, message: "use the exponent property.")
public func ilogb<T: BinaryFloatingPoint>(_ x: T) -> Int {
return Int(x.exponent)
}
%{
# Don't need 64-bit (Double/CDouble) overlays. The ordinary C imports work fine.
overlayFloatBits = [32, 80]
allFloatBits = [32, 64, 80]
def floatName(bits):
if bits == 32:
return 'Float'
if bits == 64:
return 'Double'
if bits == 80:
return 'Float80'
def cFloatName(bits):
if bits == 32:
return 'CFloat'
if bits == 64:
return 'CDouble'
if bits == 80:
return 'CLongDouble'
def cFuncSuffix(bits):
if bits == 32:
return 'f'
if bits == 64:
return ''
if bits == 80:
return 'l'
# Each of the following lists is ordered to match math.h
# (T) -> T
# These functions do not have a corresponding LLVM intrinsic
UnaryFunctions = [
'acos', 'asin', 'atan', 'tan',
'acosh', 'asinh', 'atanh', 'cosh', 'sinh', 'tanh',
'expm1',
'log1p', 'logb',
'cbrt', 'erf', 'erfc', 'tgamma',
]
# These functions have a corresponding LLVM intrinsic
# We call this intrinsic via the Builtin method so keep this list in
# sync with core/BuiltinMath.swift.gyb
UnaryIntrinsicFunctions = [
'cos', 'sin',
'exp', 'exp2',
'log', 'log10', 'log2',
'nearbyint', 'rint',
]
# (T, T) -> T
BinaryFunctions = [
'atan2', 'hypot', 'pow',
'copysign', 'nextafter', 'fdim', 'fmax', 'fmin'
]
# These functions have special implementations.
OtherFunctions = [
'scalbn', 'lgamma', 'remquo', 'nan', 'jn', 'yn'
]
# These functions are imported correctly as-is.
OkayFunctions = ['j0', 'j1', 'y0', 'y1']
# These functions are not supported for various reasons.
UnhandledFunctions = [
'math_errhandling', 'scalbln',
'lrint', 'lround', 'llrint', 'llround', 'nexttoward',
'isgreater', 'isgreaterequal', 'isless', 'islessequal',
'islessgreater', 'isunordered', '__exp10',
'__sincos', '__cospi', '__sinpi', '__tanpi', '__sincospi'
]
def AllFloatTypes():
for bits in allFloatBits:
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits)
def OverlayFloatTypes():
for bits in overlayFloatBits:
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits)
def TypedUnaryFunctions():
for ufunc in UnaryFunctions:
for bits in overlayFloatBits:
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits), ufunc
def TypedUnaryIntrinsicFunctions():
for ufunc in UnaryIntrinsicFunctions:
for bits in allFloatBits:
yield floatName(bits), ufunc
def TypedBinaryFunctions():
for bfunc in BinaryFunctions:
for bits in overlayFloatBits:
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits), bfunc
}%
// Unary functions
// Note these do not have a corresponding LLVM intrinsic
% for T, CT, f, ufunc in TypedUnaryFunctions():
% if T == 'Float80':
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android) || ($Embedded && !os(Linux)))
% end
@_transparent
public func ${ufunc}(_ x: ${T}) -> ${T} {
return ${T}(${ufunc}${f}(${CT}(x)))
}
% if T == 'Float80':
#endif
% end
% end
// FIXME: As of now, we cannot declare 64-bit (Double/CDouble) overlays here.
// Since CoreFoundation also exports libc functions, they will conflict with
// Swift overlays when building Foundation. For now, just like normal
// UnaryFunctions, we define overlays only for OverlayFloatTypes.
% for ufunc in UnaryIntrinsicFunctions:
% for T, CT, f in OverlayFloatTypes():
% if T == 'Float80':
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android) || ($Embedded && !os(Linux)))
% end
@_transparent
public func ${ufunc}(_ x: ${T}) -> ${T} {
return ${T}(${ufunc}${f}(${CT}(x)))
}
% if T == 'Float80':
#endif
% end
% end
% end
// Binary functions
% for T, CT, f, bfunc in TypedBinaryFunctions():
% if T == 'Float80':
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android) || ($Embedded && !os(Linux)))
% end
@_transparent
public func ${bfunc}(_ lhs: ${T}, _ rhs: ${T}) -> ${T} {
return ${T}(${bfunc}${f}(${CT}(lhs), ${CT}(rhs)))
}
% if T == 'Float80':
#endif
% end
% end
% # This is AllFloatTypes not OverlayFloatTypes because of the tuple return.
% for T, CT, f in AllFloatTypes():
% if T == 'Float80':
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android) || os(OpenBSD) || ($Embedded && !os(Linux)))
% else:
// lgamma not available on Windows, apparently?
#if !os(Windows)
% end
@_transparent
public func lgamma(_ x: ${T}) -> (${T}, Int) {
var sign = Int32(0)
let value = lgamma${f}_r(${CT}(x), &sign)
return (${T}(value), Int(sign))
}
#endif
% end
% # This is AllFloatTypes not OverlayFloatTypes because of the tuple return.
% for T, CT, f in AllFloatTypes():
% if T == 'Float80':
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android) || ($Embedded && !os(Linux)))
% end
@_transparent
public func remquo(_ x: ${T}, _ y: ${T}) -> (${T}, Int) {
var quo = Int32(0)
let rem = remquo${f}(${CT}(x), ${CT}(y), &quo)
return (${T}(rem), Int(quo))
}
% if T == 'Float80':
#endif
% end
% end
% for T, CT, f in OverlayFloatTypes():
% if T == 'Float80':
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android) || ($Embedded && !os(Linux)))
% end
@available(swift, deprecated: 4.2/*, obsoleted: 5.1*/, message:
"use ${T}(nan: ${T}.RawSignificand).")
@_transparent
@_unavailableInEmbedded
public func nan(_ tag: String) -> ${T} {
return ${T}(nan${f}(tag))
}
% if T == 'Float80':
#endif
% end
% end
% # These C functions only support double. The overlay fixes the Int parameter.
@_transparent
public func jn(_ n: Int, _ x: Double) -> Double {
#if os(Windows)
return _jn(Int32(n), x)
#else
return jn(Int32(n), x)
#endif
}
@_transparent
public func yn(_ n: Int, _ x: Double) -> Double {
#if os(Windows)
return _yn(Int32(n), x)
#else
return yn(Int32(n), x)
#endif
}
% end
// ${'Local Variables'}:
// eval: (read-only-mode 1)
// End: