mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Specifically: 1. When we convert a function to nonisolated(nonsending), we need to make sure that in the thunk we hop upon return since nonisolated(nonsending) functions are assumed to preserve the caller's isolation. 2. When we convert a function from nonisolated(nonsending), we need to make sure that in the thunk we hop onto the actor that we are passing in as the isolated parameter of the nonisolated(nonsending) function. This ensures that the nonisolated(nonsending) function can assume that it is already on its isolated parameter's actor at function entry. rdar://155905383
3340 lines
146 KiB
C++
3340 lines
146 KiB
C++
//===--- SILGenFunction.h - Function Specific AST lower context -*- C++ -*-===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef SWIFT_SILGEN_SILGENFUNCTION_H
|
|
#define SWIFT_SILGEN_SILGENFUNCTION_H
|
|
|
|
#include "FormalEvaluation.h"
|
|
#include "Initialization.h"
|
|
#include "InitializeDistActorIdentity.h"
|
|
#include "JumpDest.h"
|
|
#include "RValue.h"
|
|
#include "SGFContext.h"
|
|
#include "SILGen.h"
|
|
#include "SILGenBuilder.h"
|
|
#include "swift/AST/AnyFunctionRef.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "swift/Basic/NoDiscard.h"
|
|
#include "swift/Basic/ProfileCounter.h"
|
|
#include "swift/Basic/Statistic.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SIL/SILType.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
|
|
namespace swift {
|
|
|
|
class ParameterList;
|
|
class ProfileCounterRef;
|
|
|
|
namespace Lowering {
|
|
|
|
class ArgumentSource;
|
|
class Condition;
|
|
class Conversion;
|
|
class ConsumableManagedValue;
|
|
class LogicalPathComponent;
|
|
class LValue;
|
|
class ManagedValue;
|
|
class PathComponent;
|
|
class PreparedArguments;
|
|
class RValue;
|
|
class CalleeTypeInfo;
|
|
class ResultPlan;
|
|
using ResultPlanPtr = std::unique_ptr<ResultPlan>;
|
|
class ArgumentScope;
|
|
class Scope;
|
|
class ExecutorBreadcrumb;
|
|
|
|
struct LValueOptions {
|
|
bool IsNonAccessing = false;
|
|
bool TryAddressable = false;
|
|
|
|
/// Derive options for accessing the base of an l-value, given that
|
|
/// applying the derived component might touch the memory.
|
|
LValueOptions forComputedBaseLValue() const {
|
|
auto copy = *this;
|
|
|
|
// Assume we're going to access the base.
|
|
copy.IsNonAccessing = false;
|
|
return copy;
|
|
}
|
|
|
|
/// Derive options for accessing the base of an l-value, given that
|
|
/// applying the derived component will not touch the memory.
|
|
LValueOptions forProjectedBaseLValue() const {
|
|
auto copy = *this;
|
|
return copy;
|
|
}
|
|
|
|
LValueOptions withAddressable(bool addressable) const {
|
|
auto copy = *this;
|
|
copy.TryAddressable = addressable;
|
|
return copy;
|
|
}
|
|
};
|
|
|
|
class PatternMatchContext;
|
|
|
|
/// A formal section of the function. This is a SILGen-only concept,
|
|
/// meant to improve locality. It's only reflected in the generated
|
|
/// SIL implicitly.
|
|
enum class FunctionSection : bool {
|
|
/// The section of the function dedicated to ordinary control flow.
|
|
Ordinary,
|
|
|
|
/// The section of the function dedicated to error-handling and
|
|
/// similar things.
|
|
Postmatter,
|
|
};
|
|
|
|
/// Parameter to \c SILGenFunction::emitCaptures that indicates what the
|
|
/// capture parameters are being emitted for.
|
|
enum class CaptureEmission {
|
|
/// Captures are being emitted for immediate application to a local function.
|
|
ImmediateApplication,
|
|
/// Captures are being emitted for partial application to form a closure
|
|
/// value.
|
|
PartialApplication,
|
|
/// Captures are being emitted for partial application of a local property
|
|
/// wrapper setter for assign_by_wrapper. Captures are guaranteed to not
|
|
/// escape, because assign_by_wrapper will not use the setter if the captured
|
|
/// variable is not initialized.
|
|
AssignByWrapper,
|
|
};
|
|
|
|
/// Different ways in which an l-value can be emitted.
|
|
enum class SGFAccessKind : uint8_t {
|
|
/// The access is a read whose result will be ignored.
|
|
IgnoredRead,
|
|
|
|
/// The access is a read that would prefer the address of a borrowed value.
|
|
/// This should only be used when it is semantically acceptable to borrow
|
|
/// the value, not just because the caller would benefit from a borrowed
|
|
/// value. See shouldEmitSelfAsRValue in SILGenLValue.cpp.
|
|
///
|
|
/// The caller will be calling emitAddressOfLValue or emitLoadOfLValue
|
|
/// on the l-value. The latter may be less efficient than an access
|
|
/// would be if the l-value had been emitted with an owned-read kind.
|
|
BorrowedAddressRead,
|
|
|
|
/// The access is a read that would prefer a loaded borrowed value.
|
|
/// This should only be used when it is semantically acceptable to borrow
|
|
/// the value, not just because the caller would benefit from a borrowed
|
|
/// value. See shouldEmitSelfAsRValue in SILGenLValue.cpp.
|
|
///
|
|
/// There isn't yet a way to emit the access that takes advantage of this.
|
|
BorrowedObjectRead,
|
|
|
|
/// The access is a read that would prefer the address of an owned value.
|
|
///
|
|
/// The caller will be calling emitAddressOfLValue or emitLoadOfLValue
|
|
/// on the l-value.
|
|
OwnedAddressRead,
|
|
|
|
/// The access is a read that would prefer a loaded owned value.
|
|
///
|
|
/// The caller will be calling emitLoadOfLValue on the l-value.
|
|
OwnedObjectRead,
|
|
|
|
/// The access is an assignment (or maybe an initialization).
|
|
///
|
|
/// The caller will be calling emitAssignToLValue on the l-value.
|
|
Write,
|
|
|
|
/// The access is a read-modify-write.
|
|
///
|
|
/// The caller will be calling emitAddressOfLValue on the l-value.
|
|
ReadWrite,
|
|
|
|
/// The access is a consuming operation that would prefer a loaded address
|
|
/// value. The lvalue will subsequently be left in an uninitialized state.
|
|
///
|
|
/// The caller will be calling emitAddressOfLValue and then load from the
|
|
/// l-value.
|
|
OwnedAddressConsume,
|
|
|
|
/// The access is a consuming operation that would prefer a loaded owned
|
|
/// value. The lvalue will subsequently be left in an uninitialized state.
|
|
///
|
|
/// The caller will be calling emitAddressOfLValue and then load from the
|
|
/// l-value.
|
|
OwnedObjectConsume,
|
|
};
|
|
|
|
static inline bool isBorrowAccess(SGFAccessKind kind) {
|
|
switch (kind) {
|
|
case SGFAccessKind::IgnoredRead:
|
|
case SGFAccessKind::BorrowedAddressRead:
|
|
case SGFAccessKind::BorrowedObjectRead:
|
|
return true;
|
|
case SGFAccessKind::OwnedAddressRead:
|
|
case SGFAccessKind::OwnedObjectRead:
|
|
case SGFAccessKind::Write:
|
|
case SGFAccessKind::ReadWrite:
|
|
case SGFAccessKind::OwnedAddressConsume:
|
|
case SGFAccessKind::OwnedObjectConsume:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static inline bool isReadAccess(SGFAccessKind kind) {
|
|
return uint8_t(kind) <= uint8_t(SGFAccessKind::OwnedObjectRead);
|
|
}
|
|
|
|
static inline bool isConsumeAccess(SGFAccessKind kind) {
|
|
switch (kind) {
|
|
case SGFAccessKind::IgnoredRead:
|
|
case SGFAccessKind::BorrowedAddressRead:
|
|
case SGFAccessKind::BorrowedObjectRead:
|
|
case SGFAccessKind::OwnedAddressRead:
|
|
case SGFAccessKind::OwnedObjectRead:
|
|
case SGFAccessKind::Write:
|
|
case SGFAccessKind::ReadWrite:
|
|
return false;
|
|
case SGFAccessKind::OwnedAddressConsume:
|
|
case SGFAccessKind::OwnedObjectConsume:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// Given a read access kind, does it require an owned result?
|
|
static inline bool isReadAccessResultOwned(SGFAccessKind kind) {
|
|
assert(isReadAccess(kind));
|
|
return uint8_t(kind) >= uint8_t(SGFAccessKind::OwnedAddressRead);
|
|
}
|
|
|
|
/// Given a read access kind, does it require an address result?
|
|
static inline bool isReadAccessResultAddress(SGFAccessKind kind) {
|
|
assert(isReadAccess(kind));
|
|
return kind == SGFAccessKind::BorrowedAddressRead ||
|
|
kind == SGFAccessKind::OwnedAddressRead;
|
|
}
|
|
|
|
/// Return an address-preferring version of the given access kind.
|
|
static inline SGFAccessKind getAddressAccessKind(SGFAccessKind kind) {
|
|
switch (kind) {
|
|
case SGFAccessKind::BorrowedObjectRead:
|
|
return SGFAccessKind::BorrowedAddressRead;
|
|
case SGFAccessKind::OwnedObjectRead:
|
|
return SGFAccessKind::OwnedAddressRead;
|
|
case SGFAccessKind::OwnedObjectConsume:
|
|
return SGFAccessKind::OwnedAddressConsume;
|
|
case SGFAccessKind::IgnoredRead:
|
|
case SGFAccessKind::BorrowedAddressRead:
|
|
case SGFAccessKind::OwnedAddressRead:
|
|
case SGFAccessKind::OwnedAddressConsume:
|
|
case SGFAccessKind::Write:
|
|
case SGFAccessKind::ReadWrite:
|
|
return kind;
|
|
}
|
|
llvm_unreachable("bad kind");
|
|
}
|
|
|
|
static inline AccessKind getFormalAccessKind(SGFAccessKind kind) {
|
|
switch (kind) {
|
|
case SGFAccessKind::IgnoredRead:
|
|
case SGFAccessKind::BorrowedAddressRead:
|
|
case SGFAccessKind::BorrowedObjectRead:
|
|
case SGFAccessKind::OwnedAddressRead:
|
|
case SGFAccessKind::OwnedObjectRead:
|
|
return AccessKind::Read;
|
|
case SGFAccessKind::Write:
|
|
return AccessKind::Write;
|
|
|
|
// TODO: Do we need our own AccessKind here?
|
|
case SGFAccessKind::OwnedAddressConsume:
|
|
case SGFAccessKind::OwnedObjectConsume:
|
|
case SGFAccessKind::ReadWrite:
|
|
return AccessKind::ReadWrite;
|
|
}
|
|
llvm_unreachable("bad kind");
|
|
}
|
|
|
|
/// Parameter to \c SILGenFunction::emitAddressOfLValue that indicates
|
|
/// what kind of instrumentation should be emitted when compiling under
|
|
/// Thread Sanitizer.
|
|
enum class TSanKind : bool {
|
|
None = 0,
|
|
|
|
/// Instrument the LValue access as an inout access.
|
|
InoutAccess
|
|
};
|
|
|
|
/// Represents an LValue opened for mutating access.
|
|
///
|
|
/// This is used by LogicalPathComponent::projectAsBase().
|
|
struct MaterializedLValue {
|
|
ManagedValue temporary;
|
|
|
|
// Only set if a callback is required
|
|
CanType origSelfType;
|
|
CanGenericSignature genericSig;
|
|
SILValue callback;
|
|
SILValue callbackStorage;
|
|
|
|
MaterializedLValue() {}
|
|
explicit MaterializedLValue(ManagedValue temporary)
|
|
: temporary(temporary) {}
|
|
MaterializedLValue(ManagedValue temporary,
|
|
CanType origSelfType,
|
|
CanGenericSignature genericSig,
|
|
SILValue callback,
|
|
SILValue callbackStorage)
|
|
: temporary(temporary),
|
|
origSelfType(origSelfType),
|
|
genericSig(genericSig),
|
|
callback(callback),
|
|
callbackStorage(callbackStorage) {}
|
|
};
|
|
|
|
/// The kind of operation under which we are querying a storage reference.
|
|
enum class StorageReferenceOperationKind {
|
|
Borrow,
|
|
Consume
|
|
};
|
|
|
|
/// SILGenFunction - an ASTVisitor for producing SIL from function bodies.
|
|
class LLVM_LIBRARY_VISIBILITY SILGenFunction
|
|
: public ASTVisitor<SILGenFunction>
|
|
{ // style violation because Xcode <rdar://problem/13065676>
|
|
public:
|
|
/// The SILGenModule this function belongs to.
|
|
SILGenModule &SGM;
|
|
|
|
/// The SILFunction being constructed.
|
|
SILFunction &F;
|
|
|
|
/// The SILModuleConventions for this SIL module.
|
|
SILModuleConventions silConv;
|
|
|
|
bool useLoweredAddresses() const { return silConv.useLoweredAddresses(); }
|
|
|
|
/// The DeclContext corresponding to the function currently being emitted.
|
|
DeclContext * const FunctionDC;
|
|
|
|
/// The name of the function currently being emitted, as presented to user
|
|
/// code by #function.
|
|
DeclName MagicFunctionName;
|
|
std::string MagicFunctionString;
|
|
|
|
/// The specialized type context in which the function is being emitted.
|
|
/// Only applies to closures.
|
|
std::optional<FunctionTypeInfo> TypeContext;
|
|
|
|
ASTContext &getASTContext() const { return SGM.M.getASTContext(); }
|
|
|
|
/// The first block in the postmatter section of the function, if
|
|
/// anything has been built there.
|
|
///
|
|
/// (This field must precede B because B's initializer calls
|
|
/// createBasicBlock().)
|
|
SILFunction::iterator StartOfPostmatter;
|
|
|
|
/// The current section of the function that we're emitting code in.
|
|
///
|
|
/// The postmatter section is a part of the function intended for
|
|
/// things like error-handling that don't need to be mixed into the
|
|
/// normal code sequence.
|
|
///
|
|
/// If the current function section is Ordinary, and
|
|
/// StartOfPostmatter does not point to the function end, the current
|
|
/// insertion block should be ordered before that.
|
|
///
|
|
/// If the current function section is Postmatter, StartOfPostmatter
|
|
/// does not point to the function end and the current insertion block is
|
|
/// ordered after that (inclusive).
|
|
///
|
|
/// (This field must precede B because B's initializer calls
|
|
/// createBasicBlock().)
|
|
FunctionSection CurFunctionSection = FunctionSection::Ordinary;
|
|
|
|
/// Does this function require a non-void direct return?
|
|
bool NeedsReturn = false;
|
|
|
|
/// Is emission currently within a formal modification?
|
|
bool isInFormalEvaluationScope() const {
|
|
return FormalEvalContext.isInFormalEvaluationScope();
|
|
}
|
|
|
|
/// Is emission currently within an inout conversion?
|
|
bool InInOutConversionScope = false;
|
|
|
|
/// The SILGenBuilder used to construct the SILFunction. It is what maintains
|
|
/// the notion of the current block being emitted into.
|
|
SILGenBuilder B;
|
|
|
|
struct BreakContinueDest {
|
|
LabeledStmt *Target;
|
|
JumpDest BreakDest;
|
|
JumpDest ContinueDest;
|
|
};
|
|
|
|
std::vector<BreakContinueDest> BreakContinueDestStack;
|
|
std::vector<PatternMatchContext*> SwitchStack;
|
|
|
|
/// Information for a parent SingleValueStmtExpr initialization.
|
|
struct SingleValueStmtInitialization {
|
|
/// The target expressions to be used for initialization.
|
|
SmallPtrSet<Expr *, 4> Exprs;
|
|
SILValue InitializationBuffer;
|
|
|
|
SingleValueStmtInitialization(SILValue buffer)
|
|
: InitializationBuffer(buffer) {}
|
|
};
|
|
|
|
/// A stack of active SingleValueStmtExpr initializations that may be
|
|
/// initialized by the branches of a statement.
|
|
std::vector<SingleValueStmtInitialization> SingleValueStmtInitStack;
|
|
|
|
SourceFile *SF;
|
|
SourceLoc LastSourceLoc;
|
|
using ASTScopeTy = ast_scope::ASTScopeImpl;
|
|
const ASTScopeTy *FnASTScope = nullptr;
|
|
using VarDeclScopeMapTy =
|
|
llvm::SmallDenseMap<ValueDecl *, const ASTScopeTy *, 8>;
|
|
/// The ASTScope each variable declaration belongs to.
|
|
VarDeclScopeMapTy VarDeclScopeMap;
|
|
/// Caches one SILDebugScope for each ASTScope.
|
|
llvm::SmallDenseMap<std::pair<const ASTScopeTy *, const SILDebugScope *>,
|
|
const SILDebugScope *, 16>
|
|
ScopeMap;
|
|
/// Caches one toplevel inline SILDebugScope for each macro BufferID.
|
|
llvm::SmallDenseMap<unsigned, const SILDebugScope *, 16> InlinedScopeMap;
|
|
|
|
/// The cleanup depth and BB for when the operand of a
|
|
/// BindOptionalExpr is a missing value.
|
|
SmallVector<JumpDest, 2> BindOptionalFailureDests;
|
|
|
|
/// The cleanup depth and epilog BB for "return" statements.
|
|
JumpDest ReturnDest = JumpDest::invalid();
|
|
/// The cleanup depth and epilog BB for "fail" statements.
|
|
JumpDest FailDest = JumpDest::invalid();
|
|
|
|
/// The destination for throws. The block will always be in the
|
|
/// postmatter. For a direct error return, it takes a BB argument
|
|
/// of the exception type.
|
|
JumpDest ThrowDest = JumpDest::invalid();
|
|
|
|
/// Support for typed throws.
|
|
SILArgument *IndirectErrorResult = nullptr;
|
|
|
|
/// The destination for coroutine unwinds. The block will always
|
|
/// be in the postmatter.
|
|
JumpDest CoroutineUnwindDest = JumpDest::invalid();
|
|
|
|
/// This records information about the currently active cleanups.
|
|
CleanupManager Cleanups;
|
|
|
|
/// The current context where formal evaluation cleanups are managed.
|
|
FormalEvaluationContext FormalEvalContext;
|
|
|
|
/// VarLoc - representation of an emitted local variable or constant. There
|
|
/// are four scenarios here:
|
|
///
|
|
/// 1) This could be a simple copyable "var" or "let" emitted into an
|
|
/// alloc_box. In this case, 'value' contains a pointer (it is always an
|
|
/// address) to the value, and 'box' contains a pointer to the retain
|
|
/// count for the box.
|
|
/// 2) This could be a simple non-address-only "let" represented directly. In
|
|
/// this case, 'value' is the value of the let and is never of address
|
|
/// type. 'box' is always nil.
|
|
/// 3) This could be an address-only "let" emitted into an alloc_stack, or
|
|
/// passed in from somewhere else that has guaranteed lifetime (e.g. an
|
|
/// incoming argument of 'in_guaranteed' convention). In this case,
|
|
/// 'value' is a pointer to the memory (and thus, its type is always an
|
|
/// address) and the 'box' is nil.
|
|
/// 4) This could be a noncopyable "var" or "let" emitted into an
|
|
/// alloc_box. In this case, 'value' is nil and the 'box' contains the box
|
|
/// itself. The user must always reproject from the box and insert an
|
|
/// access marker/must_must_check as appropriate.
|
|
///
|
|
/// Generally, code shouldn't be written to enumerate these four cases, it
|
|
/// should just handle the case of "box or not" or "address or not", depending
|
|
/// on what the code cares about.
|
|
struct VarLoc {
|
|
/// value - the value of the variable, or the address the variable is
|
|
/// stored at (if "value.getType().isAddress()" is true).
|
|
///
|
|
/// It may be invalid if we are supposed to lazily project out an address
|
|
/// from a box.
|
|
SILValue value;
|
|
|
|
/// box - This is the retainable box for something emitted to an alloc_box.
|
|
/// It may be invalid if no box was made for the value (e.g., because it was
|
|
/// an inout value, or constant emitted to an alloc_stack).
|
|
SILValue box;
|
|
|
|
/// What kind of access enforcement should be used to access the variable,
|
|
/// or `Unknown` if it's known to be immutable.
|
|
SILAccessEnforcement access;
|
|
|
|
/// A structure used for bookkeeping the on-demand formation and cleanup
|
|
/// of an addressable representation for an immutable value binding.
|
|
struct AddressableBuffer {
|
|
struct State {
|
|
// If the value needs to be reabstracted to provide an addressable
|
|
// representation, this SILValue owns the reabstracted representation.
|
|
SILValue reabstraction = SILValue();
|
|
// The stack allocation for the addressable representation.
|
|
SILValue allocStack = SILValue();
|
|
// The initiation of the in-memory borrow.
|
|
SILValue storeBorrow = SILValue();
|
|
|
|
State(SILValue reabstraction,
|
|
SILValue allocStack,
|
|
SILValue storeBorrow)
|
|
: reabstraction(reabstraction), allocStack(allocStack),
|
|
storeBorrow(storeBorrow)
|
|
{}
|
|
};
|
|
|
|
llvm::PointerUnion<State *, VarDecl*> stateOrAlias = (State*)nullptr;
|
|
|
|
// If the variable cleanup is triggered before the addressable
|
|
// representation is demanded, but the addressable representation
|
|
// gets demanded later, we save the insertion points where the
|
|
// representation would be cleaned up so we can backfill them.
|
|
llvm::SmallVector<SILInstruction*, 1> cleanupPoints;
|
|
|
|
AddressableBuffer() = default;
|
|
|
|
AddressableBuffer(VarDecl *original)
|
|
: stateOrAlias(original)
|
|
{
|
|
}
|
|
|
|
AddressableBuffer(AddressableBuffer &&other)
|
|
: stateOrAlias(other.stateOrAlias)
|
|
{
|
|
other.stateOrAlias = (State*)nullptr;
|
|
cleanupPoints.swap(other.cleanupPoints);
|
|
}
|
|
|
|
AddressableBuffer &operator=(AddressableBuffer &&other) {
|
|
if (auto state = stateOrAlias.dyn_cast<State*>()) {
|
|
delete state;
|
|
}
|
|
stateOrAlias = other.stateOrAlias;
|
|
cleanupPoints.swap(other.cleanupPoints);
|
|
return *this;
|
|
}
|
|
|
|
State *getState() {
|
|
ASSERT(!stateOrAlias.is<VarDecl*>()
|
|
&& "must get state from original AddressableBuffer");
|
|
return stateOrAlias.dyn_cast<State*>();
|
|
}
|
|
|
|
~AddressableBuffer();
|
|
};
|
|
AddressableBuffer addressableBuffer;
|
|
|
|
VarLoc() = default;
|
|
|
|
VarLoc(SILValue value, SILAccessEnforcement access,
|
|
SILValue box = SILValue())
|
|
: value(value), box(box), access(access)
|
|
{}
|
|
};
|
|
|
|
/// VarLocs - Entries in this map are generated when a PatternBindingDecl is
|
|
/// emitted. The map is queried to produce the lvalue for a DeclRefExpr to
|
|
/// a local variable.
|
|
llvm::DenseMap<ValueDecl*, VarLoc> VarLocs;
|
|
|
|
VarLoc::AddressableBuffer *getAddressableBufferInfo(ValueDecl *vd);
|
|
|
|
// Represents an addressable buffer that has been allocated but not yet used.
|
|
struct PreparedAddressableBuffer {
|
|
llvm::PointerUnion<SILInstruction *, VarDecl *> insertPointOrAlias
|
|
= (SILInstruction*)nullptr;
|
|
|
|
PreparedAddressableBuffer() = default;
|
|
|
|
PreparedAddressableBuffer(SILInstruction *insertPoint)
|
|
: insertPointOrAlias(insertPoint)
|
|
{
|
|
ASSERT(insertPoint && "null insertion point provided");
|
|
}
|
|
|
|
PreparedAddressableBuffer(VarDecl *alias)
|
|
: insertPointOrAlias(alias)
|
|
{
|
|
ASSERT(alias && "null alias provided");
|
|
}
|
|
|
|
PreparedAddressableBuffer(PreparedAddressableBuffer &&other)
|
|
: insertPointOrAlias(other.insertPointOrAlias)
|
|
{
|
|
other.insertPointOrAlias = (SILInstruction*)nullptr;
|
|
}
|
|
|
|
PreparedAddressableBuffer &operator=(PreparedAddressableBuffer &&other) {
|
|
insertPointOrAlias = other.insertPointOrAlias;
|
|
other.insertPointOrAlias = nullptr;
|
|
return *this;
|
|
}
|
|
|
|
SILInstruction *getInsertPoint() const {
|
|
return insertPointOrAlias.dyn_cast<SILInstruction*>();
|
|
}
|
|
|
|
VarDecl *getOriginalForAlias() const {
|
|
return insertPointOrAlias.dyn_cast<VarDecl*>();
|
|
}
|
|
|
|
~PreparedAddressableBuffer() {
|
|
if (auto insertPoint = getInsertPoint()) {
|
|
// Remove the insertion point if it went unused.
|
|
insertPoint->eraseFromParent();
|
|
}
|
|
}
|
|
};
|
|
llvm::DenseMap<VarDecl *, PreparedAddressableBuffer> AddressableBuffers;
|
|
|
|
/// Establish the scope for the addressable buffer that might be allocated
|
|
/// for a local variable binding.
|
|
///
|
|
/// This must be enclosed within the scope of the value binding for the
|
|
/// variable, and cover the scope in which the variable can be referenced.
|
|
void enterLocalVariableAddressableBufferScope(VarDecl *decl);
|
|
|
|
/// Get a stable address which is suitable for forming dependent pointers
|
|
/// if possible.
|
|
SILValue getLocalVariableAddressableBuffer(VarDecl *decl,
|
|
SILLocation loc,
|
|
ValueOwnership ownership);
|
|
|
|
/// The local auxiliary declarations for the parameters of this function that
|
|
/// need to be emitted inside the next brace statement.
|
|
llvm::SmallVector<VarDecl *, 2> LocalAuxiliaryDecls;
|
|
|
|
/// The mappings between instance properties referenced by this init
|
|
/// accessor (via initializes/accesses attributes) and and argument
|
|
/// declarations synthesized to access them in the body.
|
|
llvm::DenseMap<VarDecl *, ParamDecl *> InitAccessorArgumentMappings;
|
|
|
|
// Context information for tracking an `async let` child task.
|
|
struct AsyncLetChildTask {
|
|
SILValue asyncLet; // RawPointer to the async let state
|
|
SILValue resultBuf; // RawPointer to the result buffer
|
|
bool isThrowing; // true if task can throw
|
|
};
|
|
|
|
/// Mapping from each async let clause to the AsyncLet repr that contains the
|
|
/// AsyncTask that will produce the initializer value for that clause and a
|
|
/// Boolean value indicating whether the task can throw.
|
|
llvm::SmallDenseMap<std::pair<PatternBindingDecl *, unsigned>,
|
|
AsyncLetChildTask>
|
|
AsyncLetChildTasks;
|
|
|
|
/// Indicates whether this function is a distributed actor's designated
|
|
/// initializer, providing the needed clean-up to emit an identity
|
|
/// assignment after initializing the actorSystem property.
|
|
std::optional<InitializeDistActorIdentity> DistActorCtorContext;
|
|
|
|
/// When rebinding 'self' during an initializer delegation, we have to be
|
|
/// careful to preserve the object at 1 retain count during the delegation
|
|
/// because of assumptions in framework code. This enum tracks the state of
|
|
/// 'self' during the delegation.
|
|
enum SelfInitDelegationStates {
|
|
// 'self' is a normal variable.
|
|
NormalSelf,
|
|
|
|
/// 'self' needs to be shared borrowed next time self is used.
|
|
///
|
|
/// At this point we do not know if:
|
|
///
|
|
/// 1. 'self' is used at all. In such a case, the borrow scope for self will
|
|
/// end before the delegating init call and we will overwrite the value
|
|
/// in
|
|
/// the self box.
|
|
///
|
|
/// 2. If there is a consuming self use, will self be borrowed in an
|
|
/// exclusive manner or a shared manner. If we need to perform an
|
|
/// exclusive borrow, we will transition to WillExclusiveBorrowSelf in
|
|
/// SILGenApply.
|
|
WillSharedBorrowSelf,
|
|
|
|
/// 'self' needs to be exclusively borrowed next time self is used.
|
|
///
|
|
/// We only advance to this state in SILGenApply when we know that we are
|
|
/// going to be passing self to a delegating initializer that will consume
|
|
/// it. We will always evaluate self before any other uses of self in the
|
|
/// self.init call, so we know that we will never move from
|
|
/// WillExclusiveBorrowSelf to WillSharedBorrowSelf.
|
|
///
|
|
/// Once we are in this point, all other uses of self must be borrows until
|
|
/// we use self in the delegating init call. All of the borrow scopes /must/
|
|
/// end before the delegating init call.
|
|
WillExclusiveBorrowSelf,
|
|
|
|
/// 'self' was shared borrowed to compute the self argument of the
|
|
/// delegating init call.
|
|
///
|
|
/// This means that the delegating init uses a metatype or the like as its
|
|
/// self argument instead of 'self'. Thus we are able to perform a shared
|
|
/// borrow of self to compute that value and end the shared borrow scope
|
|
/// before the delegating initializer apply.
|
|
DidSharedBorrowSelf,
|
|
|
|
// 'self' was exclusively borrowed for the delegating init call. All further
|
|
// uses of self until the actual delegating init must be done via shared
|
|
// borrows that end strictly before the delegating init call.
|
|
DidExclusiveBorrowSelf,
|
|
};
|
|
SelfInitDelegationStates SelfInitDelegationState = NormalSelf;
|
|
ManagedValue InitDelegationSelf;
|
|
SILValue InitDelegationSelfBox;
|
|
std::optional<SILLocation> InitDelegationLoc;
|
|
ManagedValue SuperInitDelegationSelf;
|
|
|
|
RValue emitRValueForSelfInDelegationInit(SILLocation loc, CanType refType,
|
|
SILValue result, SGFContext C);
|
|
|
|
/// A version of emitRValueForSelfInDelegationInit that uses formal evaluation
|
|
/// operations instead of normal scoped operations.
|
|
RValue emitFormalEvaluationRValueForSelfInDelegationInit(SILLocation loc,
|
|
CanType refType,
|
|
SILValue addr,
|
|
SGFContext C);
|
|
/// The metatype argument to an allocating constructor, if we're emitting one.
|
|
SILValue AllocatorMetatype;
|
|
|
|
class ExpectedExecutorStorage {
|
|
static ValueBase *invalid() {
|
|
return reinterpret_cast<ValueBase*>(uintptr_t(0));
|
|
}
|
|
static ValueBase *unnecessary() {
|
|
return reinterpret_cast<ValueBase*>(uintptr_t(1));
|
|
}
|
|
static ValueBase *lazy() {
|
|
return reinterpret_cast<ValueBase*>(uintptr_t(2));
|
|
}
|
|
|
|
ValueBase *Value;
|
|
|
|
public:
|
|
ExpectedExecutorStorage() : Value(invalid()) {}
|
|
|
|
bool isValid() const { return Value != invalid(); }
|
|
|
|
bool isNecessary() const {
|
|
assert(isValid());
|
|
return Value != unnecessary();
|
|
}
|
|
void setUnnecessary() {
|
|
assert(Value == invalid());
|
|
Value = unnecessary();
|
|
}
|
|
|
|
bool isEager() const {
|
|
assert(Value != invalid() && Value != unnecessary());
|
|
return Value != lazy();
|
|
}
|
|
SILValue getEager() const {
|
|
assert(isEager());
|
|
return Value;
|
|
}
|
|
void set(SILValue value) {
|
|
assert(Value == invalid());
|
|
assert(value != nullptr);
|
|
Value = value;
|
|
}
|
|
|
|
void setLazy() {
|
|
assert(Value == invalid());
|
|
Value = lazy();
|
|
}
|
|
};
|
|
|
|
/// If set, the current function is an async function which is formally
|
|
/// isolated to the given executor, and hop_to_executor instructions must
|
|
/// be inserted at the begin of the function and after all suspension
|
|
/// points.
|
|
ExpectedExecutorStorage ExpectedExecutor;
|
|
|
|
struct ActivePackExpansion {
|
|
GenericEnvironment *OpenedElementEnv;
|
|
SILValue ExpansionIndex;
|
|
|
|
/// Mapping from temporary pack expressions to their values. These
|
|
/// are evaluated once, with their elements projected in a dynamic
|
|
/// pack loop.
|
|
llvm::SmallDenseMap<MaterializePackExpr *, SILValue>
|
|
MaterializedPacks;
|
|
|
|
ActivePackExpansion(GenericEnvironment *OpenedElementEnv)
|
|
: OpenedElementEnv(OpenedElementEnv) {}
|
|
};
|
|
|
|
/// The innermost active pack expansion.
|
|
ActivePackExpansion *InnermostPackExpansion = nullptr;
|
|
|
|
ActivePackExpansion *getInnermostPackExpansion() const {
|
|
assert(InnermostPackExpansion && "not inside a pack expansion!");
|
|
return InnermostPackExpansion;
|
|
}
|
|
|
|
/// True if 'return' without an operand or falling off the end of the current
|
|
/// function is valid.
|
|
bool allowsVoidReturn() const { return ReturnDest.getBlock()->args_empty(); }
|
|
|
|
/// Emit code to increment a counter for profiling.
|
|
void emitProfilerIncrement(ASTNode Node);
|
|
|
|
/// Emit code to increment a counter for profiling.
|
|
void emitProfilerIncrement(ProfileCounterRef Ref);
|
|
|
|
/// Load the profiled execution count corresponding to \p Node, if one is
|
|
/// available.
|
|
ProfileCounter loadProfilerCount(ASTNode Node) const;
|
|
|
|
/// Get the PGO node's parent.
|
|
std::optional<ASTNode> getPGOParent(ASTNode Node) const;
|
|
|
|
/// Tracer object for counting SIL (and other events) caused by this instance.
|
|
FrontendStatsTracer StatsTracer;
|
|
|
|
SILGenFunction(SILGenModule &SGM, SILFunction &F, DeclContext *DC,
|
|
bool IsEmittingTopLevelCode = false);
|
|
~SILGenFunction();
|
|
|
|
/// Return a stable reference to the current cleanup.
|
|
CleanupsDepth getCleanupsDepth() const {
|
|
return Cleanups.getCleanupsDepth();
|
|
}
|
|
CleanupHandle getTopCleanup() const {
|
|
return Cleanups.getTopCleanup();
|
|
}
|
|
|
|
SILFunction &getFunction() { return F; }
|
|
const SILFunction &getFunction() const { return F; }
|
|
SILModule &getModule() { return F.getModule(); }
|
|
SILGenBuilder &getBuilder() { return B; }
|
|
const SILOptions &getOptions() { return getModule().getOptions(); }
|
|
|
|
// Returns the type expansion context for types in this function.
|
|
TypeExpansionContext getTypeExpansionContext() const {
|
|
return TypeExpansionContext(getFunction());
|
|
}
|
|
|
|
const TypeLowering &getTypeLowering(AbstractionPattern orig, Type subst) {
|
|
return F.getTypeLowering(orig, subst);
|
|
}
|
|
const TypeLowering &getTypeLowering(Type t) {
|
|
return F.getTypeLowering(t);
|
|
}
|
|
CanSILFunctionType getSILFunctionType(TypeExpansionContext context,
|
|
AbstractionPattern orig,
|
|
CanFunctionType substFnType) {
|
|
return SGM.Types.getSILFunctionType(context, orig, substFnType);
|
|
}
|
|
SILType getLoweredType(AbstractionPattern orig,
|
|
Type subst) {
|
|
return F.getLoweredType(orig, subst);
|
|
}
|
|
SILType getLoweredType(Type t) {
|
|
return F.getLoweredType(t);
|
|
}
|
|
SILType getLoweredType(AbstractionPattern orig, Type subst,
|
|
SILValueCategory category) {
|
|
return SILType::getPrimitiveType(F.getLoweredRValueType(orig, subst),
|
|
category);
|
|
}
|
|
SILType getLoweredType(Type t, SILValueCategory category) {
|
|
return SILType::getPrimitiveType(F.getLoweredRValueType(t), category);
|
|
}
|
|
CanType getLoweredRValueType(AbstractionPattern orig,
|
|
Type subst) {
|
|
return F.getLoweredRValueType(orig, subst);
|
|
}
|
|
CanType getLoweredRValueType(Type t) {
|
|
return F.getLoweredRValueType(t);
|
|
}
|
|
SILType getLoweredTypeForFunctionArgument(Type t) {
|
|
auto typeForConv =
|
|
SGM.Types.getLoweredType(t, TypeExpansionContext::minimal());
|
|
return getLoweredType(t).getCategoryType(typeForConv.getCategory());
|
|
}
|
|
|
|
SILType getLoweredLoadableType(Type t) {
|
|
return F.getLoweredLoadableType(t);
|
|
}
|
|
const TypeLowering &getTypeLowering(SILType type) {
|
|
return F.getTypeLowering(type);
|
|
}
|
|
|
|
SILType getSILInterfaceType(SILParameterInfo param) const {
|
|
return silConv.getSILType(param, CanSILFunctionType(),
|
|
getTypeExpansionContext());
|
|
}
|
|
SILType getSILInterfaceType(SILResultInfo result) const {
|
|
return silConv.getSILType(result, CanSILFunctionType(),
|
|
getTypeExpansionContext());
|
|
}
|
|
|
|
SILType getSILType(SILParameterInfo param, CanSILFunctionType fnTy) const {
|
|
return silConv.getSILType(param, fnTy, getTypeExpansionContext());
|
|
}
|
|
SILType getSILType(SILResultInfo result, CanSILFunctionType fnTy) const {
|
|
return silConv.getSILType(result, fnTy, getTypeExpansionContext());
|
|
}
|
|
|
|
SILType getSILTypeInContext(SILResultInfo result, CanSILFunctionType fnTy) {
|
|
auto t = F.mapTypeIntoContext(getSILType(result, fnTy));
|
|
return getTypeLowering(t).getLoweredType().getCategoryType(t.getCategory());
|
|
}
|
|
|
|
SILType getSILTypeInContext(SILParameterInfo param, CanSILFunctionType fnTy) {
|
|
auto t = F.mapTypeIntoContext(getSILType(param, fnTy));
|
|
return getTypeLowering(t).getLoweredType().getCategoryType(t.getCategory());
|
|
}
|
|
|
|
const SILConstantInfo &getConstantInfo(TypeExpansionContext context,
|
|
SILDeclRef constant) {
|
|
return SGM.Types.getConstantInfo(context, constant);
|
|
}
|
|
|
|
/// Return the normal local type-lowering information for the given
|
|
/// formal function type without any special abstraction pattern applied.
|
|
/// This matches the type that `emitRValue` etc. are expected to produce
|
|
/// without any contextual overrides.
|
|
FunctionTypeInfo getFunctionTypeInfo(CanAnyFunctionType fnType);
|
|
|
|
/// A helper method that calls getFunctionTypeInfo that also marks global
|
|
/// actor-isolated async closures that are not sendable as sendable.
|
|
FunctionTypeInfo getClosureTypeInfo(AbstractClosureExpr *expr);
|
|
|
|
bool isEmittingTopLevelCode() { return IsEmittingTopLevelCode; }
|
|
void stopEmittingTopLevelCode() { IsEmittingTopLevelCode = false; }
|
|
|
|
/// Can the generated code reference \c decl safely?
|
|
///
|
|
/// Checks that the module defining \c decl is as visible to clients as the
|
|
/// code referencing it, preventing an inlinable function to reference an
|
|
/// implementation-only dependency and similar. This applies similar checks
|
|
/// as the exportability checker does to source code for decls referenced by
|
|
/// generated code.
|
|
bool referenceAllowed(ValueDecl *decl);
|
|
|
|
std::optional<SILAccessEnforcement>
|
|
getStaticEnforcement(VarDecl *var = nullptr);
|
|
std::optional<SILAccessEnforcement>
|
|
getDynamicEnforcement(VarDecl *var = nullptr);
|
|
std::optional<SILAccessEnforcement>
|
|
getUnknownEnforcement(VarDecl *var = nullptr);
|
|
|
|
SourceManager &getSourceManager() { return SGM.M.getASTContext().SourceMgr; }
|
|
std::string getMagicFileIDString(SourceLoc loc);
|
|
StringRef getMagicFilePathString(SourceLoc loc);
|
|
StringRef getMagicFunctionString();
|
|
|
|
SILDebugLocation
|
|
getSILDebugLocation(SILBuilder &B, SILLocation Loc,
|
|
std::optional<SILLocation> CurDebugLocOverride,
|
|
bool ForMetaInstruction);
|
|
|
|
const SILDebugScope *getScopeOrNull(SILLocation Loc,
|
|
bool ForMetaInstruction = false);
|
|
|
|
private:
|
|
bool IsEmittingTopLevelCode;
|
|
|
|
const SILDebugScope *getOrCreateScope(SourceLoc SLoc);
|
|
const SILDebugScope *getMacroScope(SourceLoc SLoc);
|
|
const SILDebugScope *
|
|
getOrCreateScope(const ast_scope::ASTScopeImpl *ASTScope,
|
|
const SILDebugScope *FnScope,
|
|
const SILDebugScope *InlinedAt = nullptr);
|
|
|
|
public:
|
|
/// Enter the debug scope for \p Loc, creating it if necessary.
|
|
///
|
|
/// \param isBindingScope If true, this is a scope for the bindings introduced
|
|
/// by a let expression. This scope ends when the next innermost BraceStmt
|
|
/// ends.
|
|
void enterDebugScope(SILLocation Loc, bool isBindingScope = false);
|
|
|
|
/// Return to the previous debug scope.
|
|
void leaveDebugScope();
|
|
|
|
std::unique_ptr<Initialization>
|
|
prepareIndirectResultInit(SILLocation loc,
|
|
AbstractionPattern origResultType,
|
|
CanType formalResultType,
|
|
SmallVectorImpl<SILValue> &directResultsBuffer,
|
|
SmallVectorImpl<CleanupHandle> &cleanups);
|
|
|
|
/// Check to see if an initalization for a SingleValueStmtExpr is active, and
|
|
/// if the provided expression is for one of its branches. If so, returns the
|
|
/// initialization to use for the expression. Otherwise returns \c nullptr.
|
|
std::unique_ptr<Initialization> getSingleValueStmtInit(Expr *E);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Entry points for codegen
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Generates code for a FuncDecl.
|
|
void emitFunction(FuncDecl *fd);
|
|
/// Emits code for a ClosureExpr.
|
|
void emitClosure(AbstractClosureExpr *ce);
|
|
|
|
/// Generates code for a class destroying destructor. This
|
|
/// emits the body code from the DestructorDecl, calls the base class
|
|
/// destructor, then implicitly releases the elements of the class.
|
|
void emitDestroyingDestructor(DestructorDecl *dd);
|
|
|
|
/// Generates code for an artificial top-level function that starts an
|
|
/// application based on a main type and optionally a main type.
|
|
void emitArtificialTopLevel(Decl *mainDecl);
|
|
|
|
/// Generate code for calling the given main function.
|
|
void emitCallToMain(FuncDecl *mainDecl);
|
|
|
|
/// Generate code into @main for starting the async main on the main thread.
|
|
void emitAsyncMainThreadStart(SILDeclRef entryPoint);
|
|
|
|
/// Generates code for class/move only deallocating destructor. This calls the
|
|
/// destroying destructor and then deallocates 'self'.
|
|
void emitDeallocatingDestructor(DestructorDecl *dd, bool isIsolated);
|
|
|
|
/// Generates code for a class (isolated-)deallocating destructor. This
|
|
/// calls the destroying destructor and then deallocates 'self'.
|
|
void emitDeallocatingClassDestructor(DestructorDecl *dd, bool isIsolated);
|
|
|
|
/// Generates code for the deinit of the move only type and destroys all of
|
|
/// the fields.
|
|
void emitDeallocatingMoveOnlyDestructor(DestructorDecl *dd);
|
|
|
|
/// Generates code for a class deallocating destructor that switches executor
|
|
/// and calls isolated deallocating destuctor on the right executor.
|
|
void emitIsolatingDestructor(DestructorDecl *dd);
|
|
|
|
/// Whether we are inside a constructor whose hops are injected by
|
|
/// definite initialization.
|
|
bool isCtorWithHopsInjectedByDefiniteInit();
|
|
|
|
/// Generates code for a struct constructor.
|
|
/// This allocates the new 'self' value, emits the
|
|
/// body code, then returns the final initialized 'self'.
|
|
void emitValueConstructor(ConstructorDecl *ctor);
|
|
/// Generates code for an enum case constructor.
|
|
/// This allocates the new 'self' value, injects the enum case,
|
|
/// then returns the final initialized 'self'.
|
|
void emitEnumConstructor(EnumElementDecl *element);
|
|
/// Generates code for a class constructor's
|
|
/// allocating entry point. This allocates the new 'self' value, passes it to
|
|
/// the initializer entry point, then returns the initialized 'self'.
|
|
void emitClassConstructorAllocator(ConstructorDecl *ctor);
|
|
/// Generates code for a class constructor's
|
|
/// initializing entry point. This takes 'self' and the constructor arguments
|
|
/// as parameters and executes the constructor body to initialize 'self'.
|
|
void emitClassConstructorInitializer(ConstructorDecl *ctor);
|
|
/// Generates code to initialize instance variables from their
|
|
/// initializers.
|
|
///
|
|
/// \param dc The DeclContext containing the current function.
|
|
/// \param selfDecl The 'self' declaration within the current function.
|
|
/// \param nominal The type whose members are being initialized.
|
|
void emitMemberInitializers(DeclContext *dc, VarDecl *selfDecl,
|
|
NominalTypeDecl *nominal);
|
|
|
|
/// Generates code to initialize stored property from its
|
|
/// initializer.
|
|
///
|
|
/// \param dc The DeclContext containing the current function.
|
|
/// \param selfDecl The 'self' declaration within the current function.
|
|
/// \param field The stored property that has to be initialized.
|
|
/// \param substitutions The substitutions to apply to initializer and setter.
|
|
void emitMemberInitializer(DeclContext *dc, VarDecl *selfDecl,
|
|
PatternBindingDecl *field,
|
|
SubstitutionMap substitutions);
|
|
|
|
void emitMemberInitializationViaInitAccessor(DeclContext *dc,
|
|
VarDecl *selfDecl,
|
|
PatternBindingDecl *member,
|
|
SubstitutionMap subs);
|
|
|
|
/// Emit a method that initializes the ivars of a class.
|
|
void emitIVarInitializer(SILDeclRef ivarInitializer);
|
|
|
|
/// Emit a method that destroys the ivars of a class.
|
|
void emitIVarDestroyer(SILDeclRef ivarDestroyer);
|
|
|
|
/// Generates code for the given init accessor represented by AccessorDecl.
|
|
/// This emits the body code and replaces all `self.<property>` references
|
|
/// with either argument (if property appears in `acesses` list`) or result
|
|
/// value assignment.
|
|
void emitInitAccessor(AccessorDecl *accessor);
|
|
|
|
/// Generates code to emit the given setter reference to the given base value.
|
|
SILValue emitApplyOfSetterToBase(SILLocation loc, SILDeclRef setter,
|
|
ManagedValue base,
|
|
SubstitutionMap substitutions);
|
|
|
|
/// Emit `assign_or_init` instruction that is going to either initialize
|
|
/// or assign the given value to the given field.
|
|
///
|
|
/// \param loc The location to use for the instruction.
|
|
/// \param selfValue The 'self' value.
|
|
/// \param field The field to assign or initialize.
|
|
/// \param newValue the value to assign/initialize the field with.
|
|
/// \param substitutions The substitutions to apply to initializer and setter.
|
|
void emitAssignOrInit(SILLocation loc, ManagedValue selfValue, VarDecl *field,
|
|
ManagedValue newValue, SubstitutionMap substitutions);
|
|
|
|
/// Generates code to destroy the instance variables of a class.
|
|
///
|
|
/// \param selfValue The 'self' value.
|
|
/// \param cd The class declaration whose members are being destroyed.
|
|
void emitClassMemberDestruction(ManagedValue selfValue, ClassDecl *cd,
|
|
CleanupLocation cleanupLoc);
|
|
|
|
/// Generates code to destroy the instance variables of a move only non-class
|
|
/// nominal type.
|
|
///
|
|
/// \param selfValue The 'self' value.
|
|
/// \param nd The nominal declaration whose members are being destroyed.
|
|
void emitMoveOnlyMemberDestruction(SILValue selfValue, NominalTypeDecl *nd,
|
|
CleanupLocation cleanupLoc);
|
|
|
|
/// Generates code to destroy linearly recursive data structures, without
|
|
/// building up the call stack.
|
|
///
|
|
/// E.x.: In the following we want to deinit next without recursing into next.
|
|
///
|
|
/// class Node<A> {
|
|
/// let value: A
|
|
/// let next: Node<A>?
|
|
/// }
|
|
///
|
|
/// \param selfValue The 'self' value.
|
|
/// \param cd The class declaration whose members are being destroyed.
|
|
/// \param recursiveLink The property that forms the recursive structure.
|
|
void emitRecursiveChainDestruction(ManagedValue selfValue,
|
|
ClassDecl *cd,
|
|
VarDecl* recursiveLink,
|
|
CleanupLocation cleanupLoc);
|
|
|
|
/// Generates a thunk from a foreign function to the native Swift convention.
|
|
void emitForeignToNativeThunk(SILDeclRef thunk);
|
|
/// Generates a thunk from a native function to foreign conventions.
|
|
void emitNativeToForeignThunk(SILDeclRef thunk);
|
|
/// Generates a stub that launches a detached task for running the NativeToForeignThunk of an
|
|
/// async native method.
|
|
///
|
|
/// Returns the SILFunction created for the closure implementation function that is enqueued on the
|
|
/// new task.
|
|
SILFunction *emitNativeAsyncToForeignThunk(SILDeclRef thunk);
|
|
|
|
/// Generates a thunk that contains a runtime precondition that
|
|
/// the given function is called on the expected executor.
|
|
ManagedValue emitActorIsolationErasureThunk(SILLocation loc,
|
|
ManagedValue func,
|
|
CanAnyFunctionType isolatedType,
|
|
CanAnyFunctionType nonIsolatedType);
|
|
|
|
ManagedValue emitExtractFunctionIsolation(SILLocation loc,
|
|
ArgumentSource &&fnSource,
|
|
SGFContext C);
|
|
|
|
ManagedValue emitDistributedActorAsAnyActor(SILLocation loc,
|
|
SubstitutionMap distributedActorSubs,
|
|
ManagedValue actor);
|
|
|
|
/// Generate a nullary function that returns the given value.
|
|
/// If \p emitProfilerIncrement is set, emit a profiler increment for
|
|
/// \p value.
|
|
void emitGeneratorFunction(SILDeclRef function, Expr *value,
|
|
bool emitProfilerIncrement = false);
|
|
|
|
/// Generate a nullary function that returns the value of the given variable's
|
|
/// expression initializer.
|
|
void emitGeneratorFunction(SILDeclRef function, VarDecl *var);
|
|
|
|
/// Generate a nullary function that has the given result interface type and
|
|
/// body.
|
|
void emitGeneratorFunction(
|
|
SILDeclRef function, Type resultInterfaceType, BraceStmt *body);
|
|
|
|
/// Generate an ObjC-compatible destructor (-dealloc).
|
|
void emitObjCDestructor(SILDeclRef dtor);
|
|
|
|
/// Generate code to obtain the address of the given global variable.
|
|
ManagedValue emitGlobalVariableRef(SILLocation loc, VarDecl *var,
|
|
std::optional<ActorIsolation> actorIso);
|
|
|
|
void emitMarkFunctionEscapeForTopLevelCodeGlobals(SILLocation Loc,
|
|
CaptureInfo CaptureInfo);
|
|
|
|
/// Generate a lazy global initializer.
|
|
void emitLazyGlobalInitializer(PatternBindingDecl *binding,
|
|
unsigned pbdEntry);
|
|
|
|
/// Generate a global accessor, using the given initializer token and
|
|
/// function
|
|
void emitGlobalAccessor(VarDecl *global,
|
|
SILGlobalVariable *onceToken,
|
|
SILFunction *onceFunc);
|
|
|
|
/// Generate a protocol witness entry point, invoking 'witness' at the
|
|
/// abstraction level of 'requirement'.
|
|
///
|
|
/// This is used for both concrete witness thunks and default witness
|
|
/// thunks.
|
|
///
|
|
/// \param isPreconcurrency If the conformance is marked as `@preconcurrency`
|
|
/// instead of a hop (when entering isolation) emit a dynamic check to make
|
|
/// sure that witness has been unsed in the expected context.
|
|
void emitProtocolWitness(AbstractionPattern reqtOrigTy,
|
|
CanAnyFunctionType reqtSubstTy,
|
|
SILDeclRef requirement, SubstitutionMap reqtSubs,
|
|
SILDeclRef witness, SubstitutionMap witnessSubs,
|
|
IsFreeFunctionWitness_t isFree,
|
|
bool isSelfConformance, bool isPreconcurrency,
|
|
std::optional<ActorIsolation> enterIsolation);
|
|
|
|
/// Generates subscript or method arguments for keypath. This function handles
|
|
/// lowering of all arguments or index expressions including default
|
|
/// arguments.
|
|
///
|
|
/// \returns Lowered index arguments.
|
|
/// \param decl - The subscript or method decl whose arguments are being
|
|
/// lowered.
|
|
/// \param subs - Used to get subscript or method function type and to
|
|
/// substitute generic args.
|
|
/// \param argList - The argument list of the
|
|
/// subscript or method.
|
|
SmallVector<ManagedValue, 4> emitKeyPathOperands(SILLocation loc,
|
|
ValueDecl *decl,
|
|
SubstitutionMap subs,
|
|
ArgumentList *argList);
|
|
|
|
/// Convert a block to a native function with a thunk.
|
|
ManagedValue emitBlockToFunc(SILLocation loc,
|
|
ManagedValue block,
|
|
CanAnyFunctionType blockTy,
|
|
CanAnyFunctionType funcTy,
|
|
CanSILFunctionType loweredFuncTy);
|
|
|
|
/// Convert a native function to a block with a thunk.
|
|
ManagedValue emitFuncToBlock(SILLocation loc,
|
|
ManagedValue block,
|
|
CanAnyFunctionType funcTy,
|
|
CanAnyFunctionType blockTy,
|
|
CanSILFunctionType loweredBlockTy);
|
|
|
|
/// Thunk with the signature of a base class method calling a derived class
|
|
/// method.
|
|
///
|
|
/// \param inputOrigType Abstraction pattern of base class method
|
|
/// \param inputSubstType Formal AST type of base class method
|
|
/// \param outputSubstType Formal AST type of derived class method
|
|
/// \param baseLessVisibleThanDerived If true, the thunk does a
|
|
/// double dispatch to the derived method's vtable entry, so that if
|
|
/// the derived method has an override that cannot access the base,
|
|
/// calls to the base dispatch to the correct method.
|
|
void emitVTableThunk(SILDeclRef base,
|
|
SILDeclRef derived,
|
|
SILFunction *implFn,
|
|
AbstractionPattern inputOrigType,
|
|
CanAnyFunctionType inputSubstType,
|
|
CanAnyFunctionType outputSubstType,
|
|
bool baseLessVisibleThanDerived);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Control flow
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// emitCondition - Emit a boolean expression as a control-flow condition.
|
|
///
|
|
/// \param E - The expression to be evaluated as a condition.
|
|
/// \param invertValue - true if this routine should invert the value before
|
|
/// testing true/false.
|
|
/// \param contArgs - the types of the arguments to the continuation BB.
|
|
/// Matching argument values must be passed to exitTrue and exitFalse
|
|
/// of the resulting Condition object.
|
|
/// \param NumTrueTaken - The number of times the condition evaluates to true.
|
|
/// \param NumFalseTaken - The number of times the condition evaluates to
|
|
/// false.
|
|
///
|
|
/// If `contArgs` is nonempty, then both Condition::exitTrue() and
|
|
/// Condition::exitFalse() must be called.
|
|
Condition emitCondition(Expr *E, bool invertValue = false,
|
|
ArrayRef<SILType> contArgs = {},
|
|
ProfileCounter NumTrueTaken = ProfileCounter(),
|
|
ProfileCounter NumFalseTaken = ProfileCounter());
|
|
|
|
Condition emitCondition(SILValue V, SILLocation Loc, bool invertValue = false,
|
|
ArrayRef<SILType> contArgs = {},
|
|
ProfileCounter NumTrueTaken = ProfileCounter(),
|
|
ProfileCounter NumFalseTaken = ProfileCounter());
|
|
|
|
/// Create a new basic block.
|
|
///
|
|
/// The block can be explicitly placed after a particular block.
|
|
/// Otherwise, if the current insertion point is valid, it will be
|
|
/// placed immediately after it. Otherwise, it will be placed at the
|
|
/// end of the current function section.
|
|
///
|
|
/// Because basic blocks are generally constructed with an insertion
|
|
/// point active, users should be aware that this behavior leads to
|
|
/// an emergent LIFO ordering: if code generation requires multiple
|
|
/// blocks, the second block created will be positioned before the
|
|
/// first block. (This is clearly desirable behavior when blocks
|
|
/// are created by different emissions; it's just a little
|
|
/// counter-intuitive within a single emission.)
|
|
SILBasicBlock *createBasicBlock();
|
|
SILBasicBlock *createBasicBlock(llvm::StringRef debugName);
|
|
SILBasicBlock *createBasicBlockAfter(SILBasicBlock *afterBB);
|
|
SILBasicBlock *createBasicBlockBefore(SILBasicBlock *beforeBB);
|
|
|
|
/// Create a new basic block at the end of the given function
|
|
/// section.
|
|
SILBasicBlock *createBasicBlock(FunctionSection section);
|
|
|
|
SILBasicBlock *createBasicBlockAndBranch(SILLocation loc,
|
|
SILBasicBlock *destBB);
|
|
|
|
/// Erase a basic block that was speculatively created and turned
|
|
/// out to be unneeded.
|
|
///
|
|
/// This should be called instead of eraseFromParent() in order to
|
|
/// keep SILGen's internal bookkeeping consistent.
|
|
///
|
|
/// The block should be empty and have no predecessors.
|
|
void eraseBasicBlock(SILBasicBlock *block);
|
|
|
|
void mergeCleanupBlocks();
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Concurrency
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Generates code to obtain the executor for the given actor isolation,
|
|
/// as-needed, and emits a \c hop_to_executor to that executor.
|
|
///
|
|
/// \returns an \c ExecutorBreadcrumb that saves the information necessary to hop
|
|
/// back to what was previously the current executor after the actor-isolated
|
|
/// region ends. Invoke \c emit on the breadcrumb to
|
|
/// restore the previously-active executor.
|
|
ExecutorBreadcrumb
|
|
emitHopToTargetActor(SILLocation loc, std::optional<ActorIsolation> actorIso,
|
|
std::optional<ManagedValue> actorSelf);
|
|
|
|
/// Emit a cleanup for a hop back to a target actor.
|
|
///
|
|
/// Used to ensure that along error paths and normal scope exit paths we hop
|
|
/// back automatically.
|
|
CleanupHandle emitScopedHopToTargetActor(SILLocation loc, SILValue actor);
|
|
|
|
/// Emit a hop to the target executor, returning a breadcrumb with enough
|
|
/// enough information to hop back.
|
|
///
|
|
/// This hop instruction may take into account current tasks' executor
|
|
/// preference.
|
|
ExecutorBreadcrumb emitHopToTargetExecutor(SILLocation loc,
|
|
SILValue executor);
|
|
|
|
/// Generate a hop directly to a dynamic actor instance. This can only be done
|
|
/// inside an async actor-independent function. No hop-back is expected.
|
|
void emitHopToActorValue(SILLocation loc, ManagedValue actor);
|
|
|
|
/// Return true if the function being emitted is an async function
|
|
/// that unsafely inherits its executor.
|
|
bool unsafelyInheritsExecutor();
|
|
|
|
/// Set the given global actor as the isolation for this function
|
|
/// (generally a thunk) and hop to it.
|
|
void emitPrologGlobalActorHop(SILLocation loc, Type globalActor);
|
|
|
|
/// Emit the executor for the given actor isolation.
|
|
std::optional<SILValue> emitExecutor(SILLocation loc,
|
|
ActorIsolation isolation,
|
|
std::optional<ManagedValue> maybeSelf);
|
|
|
|
/// Emit a precondition check to ensure that the function is executing in
|
|
/// the expected isolation context.
|
|
void
|
|
emitPreconditionCheckExpectedExecutor(SILLocation loc,
|
|
ActorIsolation isolation,
|
|
std::optional<ManagedValue> actorSelf);
|
|
|
|
/// Emit a precondition check to ensure that the function is executing in
|
|
/// the expected isolation context.
|
|
void emitPreconditionCheckExpectedExecutor(
|
|
SILLocation loc, SILValue executor);
|
|
|
|
/// Emit the expected executor value at the current position.
|
|
/// Returns a reference of some actor type, possibly optional,
|
|
/// possibly borrowed.
|
|
ManagedValue emitExpectedExecutor(SILLocation loc);
|
|
|
|
/// Emit a "hoppable" reference to the executor value for the generic
|
|
/// (concurrent) executor.
|
|
SILValue emitGenericExecutor(SILLocation loc);
|
|
|
|
/// Emit the opaque isolation value for a non-isolated context
|
|
/// (`Optional<any Actor>.none`).
|
|
ManagedValue emitNonIsolatedIsolation(SILLocation loc);
|
|
|
|
/// Emit a "hoppable" reference to an actor's executor given a
|
|
/// reference to the actor.
|
|
SILValue emitLoadActorExecutor(SILLocation loc, ManagedValue actor);
|
|
|
|
/// Transform an actor reference into an opaque isolation value.
|
|
/// This supports optional actor references.
|
|
/// The actor reference must be +1.
|
|
ManagedValue emitActorInstanceIsolation(SILLocation loc,
|
|
ManagedValue actor,
|
|
CanType actorType);
|
|
|
|
/// Emit a "hoppable" reference to the executor value for the MainActor
|
|
/// global executor.
|
|
SILValue emitMainExecutor(SILLocation loc);
|
|
|
|
/// Emits a "hoppable" reference to the executor for the shared instance
|
|
/// of \p globalActor based on the type.
|
|
SILValue emitLoadGlobalActorExecutor(Type globalActor);
|
|
|
|
/// Call `.shared` on the given global actor type.
|
|
///
|
|
/// Returns the value of the property and the formal instance type.
|
|
std::pair<ManagedValue, CanType>
|
|
emitLoadOfGlobalActorShared(SILLocation loc, CanType globalActorType);
|
|
|
|
/// Emit a reference to the given global actor as an opaque isolation.
|
|
ManagedValue emitGlobalActorIsolation(SILLocation loc,
|
|
CanType globalActorType);
|
|
|
|
/// Emit a "hoppable" reference to an executor for the opaque isolation
|
|
/// stored in an @isolated(any) function value.
|
|
SILValue emitLoadErasedExecutor(SILLocation loc, ManagedValue fn);
|
|
|
|
/// Load the opaque isolation value from an @isolated(any) function
|
|
/// value.
|
|
ManagedValue emitLoadErasedIsolation(SILLocation loc, ManagedValue fn);
|
|
|
|
/// Emit the opaque isolation value for a function value with the given
|
|
/// formal type isolation.
|
|
ManagedValue emitFunctionTypeIsolation(SILLocation loc,
|
|
FunctionTypeIsolation isolation,
|
|
ManagedValue fn);
|
|
|
|
/// Emit the opaque isolation value for a concrete closure,
|
|
/// given its captures.
|
|
ManagedValue emitClosureIsolation(SILLocation loc, SILDeclRef constant,
|
|
ArrayRef<ManagedValue> captures);
|
|
|
|
/// Emit the opaque isolation value for the current point of a function
|
|
/// with flow-sensitive isolation.
|
|
ManagedValue emitFlowSensitiveSelfIsolation(SILLocation loc,
|
|
ActorIsolation isolation);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Memory management
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Emit debug info for the artificial error inout argument.
|
|
void emitErrorArgument(SILLocation Loc, unsigned ArgNo);
|
|
|
|
/// emitProlog - Generates prolog code to allocate and clean up mutable
|
|
/// storage for closure captures and local arguments.
|
|
void
|
|
emitProlog(DeclContext *DC, CaptureInfo captureInfo, ParameterList *paramList,
|
|
ParamDecl *selfParam, Type resultType,
|
|
std::optional<Type> errorType, SourceLoc throwsLoc);
|
|
/// A simpler version of emitProlog
|
|
/// \returns the number of variables in paramPatterns.
|
|
uint16_t emitBasicProlog(
|
|
DeclContext *DC, ParameterList *paramList, ParamDecl *selfParam,
|
|
Type resultType, std::optional<Type> errorType, SourceLoc throwsLoc,
|
|
unsigned numIgnoredTrailingParameters);
|
|
|
|
/// Set up the ExpectedExecutor field for the current function and emit
|
|
/// whatever hops or assertions are locally expected.
|
|
void emitExpectedExecutorProlog();
|
|
void emitConstructorExpectedExecutorProlog();
|
|
|
|
/// Create SILArguments in the entry block that bind a single value
|
|
/// of the given parameter suitably for being forwarded.
|
|
void bindParameterForForwarding(ParamDecl *param,
|
|
SmallVectorImpl<SILValue> ¶meters);
|
|
|
|
/// Create SILArguments in the entry block that bind all the values
|
|
/// of the given parameter list suitably for being forwarded.
|
|
void bindParametersForForwarding(const ParameterList *params,
|
|
SmallVectorImpl<SILValue> ¶meters);
|
|
|
|
/// Create (but do not emit) the epilog branch, and save the
|
|
/// current cleanups depth as the destination for return statement branches.
|
|
///
|
|
/// \param dc The declaration context whose generic signature to use for
|
|
/// interpreting interface types.
|
|
/// \param directResultType If given a value, the epilog block will be
|
|
/// created with arguments for each direct result of this
|
|
/// function, corresponding to the formal return type.
|
|
/// \param errorType If not None, create an error epilog block with the given
|
|
/// thrown error type.
|
|
/// \param L The SILLocation which should be associated with
|
|
/// cleanup instructions.
|
|
void prepareEpilog(
|
|
DeclContext *dc, std::optional<Type> directResultType,
|
|
std::optional<Type> errorType, CleanupLocation L);
|
|
void prepareRethrowEpilog(DeclContext *dc,
|
|
AbstractionPattern origErrorType,
|
|
Type errorType, CleanupLocation l);
|
|
void prepareCoroutineUnwindEpilog(CleanupLocation l);
|
|
|
|
/// Branch to and emit the epilog basic block. This will fuse
|
|
/// the epilog to the current basic block if the epilog bb has no predecessor.
|
|
/// The insertion point will be moved into the epilog block if it is
|
|
/// reachable.
|
|
///
|
|
/// \param TopLevelLoc The location of the top level AST node for which we are
|
|
/// constructing the epilog, such as a AbstractClosureExpr.
|
|
/// \returns None if the epilog block is unreachable. Otherwise, returns
|
|
/// the epilog block's return value argument, or a null SILValue if
|
|
/// the epilog doesn't take a return value. Also returns the location
|
|
/// of the return instruction if the epilog block is supposed to host
|
|
/// the ReturnLocation (This happens in case the predecessor block is
|
|
/// merged with the epilog block.)
|
|
std::pair<std::optional<SILValue>, SILLocation>
|
|
emitEpilogBB(SILLocation TopLevelLoc);
|
|
|
|
/// Emits a standard epilog which runs top-level cleanups then returns
|
|
/// the function return value, if any. This can be customized by clients, who
|
|
/// set UsesCustomEpilog to true, and optionally inject their own code into
|
|
/// the epilog block before calling this. If they do this, their code is run
|
|
/// before the top-level cleanups, and the epilog block to continue is
|
|
/// returned as the insertion point of this function. They must provide the
|
|
/// final exit sequence for the block as well.
|
|
///
|
|
/// \param TopLevelLoc The location of the top-level expression during whose
|
|
/// evaluation the epilog is being produced, for example, the
|
|
/// AbstractClosureExpr.
|
|
/// \param UsesCustomEpilog True if the client wants to manage its own epilog
|
|
/// logic.
|
|
SILLocation emitEpilog(SILLocation TopLevelLoc,bool UsesCustomEpilog = false);
|
|
|
|
/// Emits the standard rethrow epilog using a Swift error result.
|
|
void emitRethrowEpilog(SILLocation topLevelLoc);
|
|
|
|
/// Emits the coroutine-unwind epilog.
|
|
void emitCoroutineUnwindEpilog(SILLocation topLevelLoc);
|
|
|
|
/// emitSelfDecl - Emit a SILArgument for 'self', register it in varlocs, set
|
|
/// up debug info, etc. This returns the 'self' value.
|
|
///
|
|
/// This is intended to only be used for destructors.
|
|
SILValue emitSelfDeclForDestructor(VarDecl *selfDecl);
|
|
|
|
/// Emits a temporary allocation that will be deallocated automatically at the
|
|
/// end of the current scope. Returns the address of the allocation.
|
|
///
|
|
/// \p isLexical if set to true, this is a temporary that we are using for a
|
|
/// local let that we need to mark with the lexical flag.
|
|
SILValue emitTemporaryAllocation(
|
|
SILLocation loc, SILType ty,
|
|
HasDynamicLifetime_t hasDynamicLifetime = DoesNotHaveDynamicLifetime,
|
|
IsLexical_t isLexical = IsNotLexical,
|
|
IsFromVarDecl_t isFromVarDecl = IsNotFromVarDecl,
|
|
bool generateDebugInfo = true);
|
|
|
|
/// Emits a temporary allocation for a pack that will be deallocated
|
|
/// automatically at the end of the current scope. Returns the address
|
|
/// of the allocation.
|
|
SILValue emitTemporaryPackAllocation(SILLocation loc, SILType packTy);
|
|
|
|
/// Prepares a buffer to receive the result of an expression, either using the
|
|
/// 'emit into' initialization buffer if available, or allocating a temporary
|
|
/// allocation if not.
|
|
///
|
|
/// The caller should call manageBufferForExprResult at the instant
|
|
/// that the buffer has been initialized.
|
|
SILValue getBufferForExprResult(SILLocation loc, SILType ty, SGFContext C);
|
|
|
|
/// Flag that the buffer for an expression result has been properly
|
|
/// initialized.
|
|
///
|
|
/// Returns an empty value if the buffer was taken from the context.
|
|
ManagedValue manageBufferForExprResult(SILValue buffer,
|
|
const TypeLowering &bufferTL,
|
|
SGFContext C);
|
|
|
|
/// Tries to emit an argument referring to an addressable parameter as the
|
|
/// stable address of the parameter.
|
|
///
|
|
/// Returns a null ManagedValue if the argument is not a parameter reference,
|
|
/// the referenced parameter is not addressable, or the requested
|
|
/// \c ownership is not compatible with the parameter's ownership. \c arg
|
|
/// is consumed only if the operation succeeds.
|
|
ManagedValue tryEmitAddressableParameterAsAddress(ArgumentSource &&arg,
|
|
ValueOwnership ownership);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Type conversions for expr emission and thunks
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
ManagedValue emitInjectEnum(SILLocation loc,
|
|
MutableArrayRef<ArgumentSource> payload,
|
|
SILType enumTy,
|
|
EnumElementDecl *element,
|
|
SGFContext C);
|
|
|
|
ManagedValue emitInjectOptional(SILLocation loc,
|
|
const TypeLowering &expectedTL,
|
|
SGFContext ctxt,
|
|
llvm::function_ref<ManagedValue(SGFContext)> generator);
|
|
|
|
/// Initialize a memory location with an optional value.
|
|
///
|
|
/// \param loc The location to use for the resulting optional.
|
|
/// \param value The value to inject into an optional.
|
|
/// \param dest The uninitialized memory in which to store the result value.
|
|
/// \param optTL Type lowering information for the optional to create.
|
|
void emitInjectOptionalValueInto(SILLocation loc,
|
|
ArgumentSource &&value,
|
|
SILValue dest,
|
|
const TypeLowering &optTL);
|
|
|
|
/// Initialize a memory location with an optional "nothing"
|
|
/// value.
|
|
///
|
|
/// \param loc The location to use for the resulting optional.
|
|
/// \param dest The uninitialized memory in which to store the result value.
|
|
/// \param optTL Type lowering information for the optional to create.
|
|
void emitInjectOptionalNothingInto(SILLocation loc,
|
|
SILValue dest,
|
|
const TypeLowering &optTL);
|
|
|
|
/// Return a value for an optional ".None" of the specified type. This only
|
|
/// works for loadable enum types.
|
|
SILValue getOptionalNoneValue(SILLocation loc, const TypeLowering &optTL);
|
|
|
|
/// Return a value for an optional ".Some(x)" of the specified type. This only
|
|
/// works for loadable enum types.
|
|
ManagedValue getOptionalSomeValue(SILLocation loc, ManagedValue value,
|
|
const TypeLowering &optTL);
|
|
|
|
|
|
struct SourceLocArgs {
|
|
ManagedValue filenameStartPointer,
|
|
filenameLength,
|
|
filenameIsAscii,
|
|
line,
|
|
column;
|
|
};
|
|
|
|
/// Emit raw lowered arguments for a runtime diagnostic to report the given
|
|
/// source location:
|
|
/// - The first three arguments are the components necessary to construct
|
|
/// a StaticString for the filename: start pointer, length, and
|
|
/// "is ascii" bit.
|
|
/// - The fourth argument is the line number.
|
|
SourceLocArgs
|
|
emitSourceLocationArgs(SourceLoc loc, SILLocation emitLoc);
|
|
|
|
/// Emit a 'String' literal for the passed 'text'.
|
|
///
|
|
/// See also: 'emitLiteral' which works with various types of literals,
|
|
/// however requires an expression to base the creation on.
|
|
ManagedValue
|
|
emitStringLiteral(SILLocation loc,
|
|
StringRef text,
|
|
StringLiteralExpr::Encoding encoding = StringLiteralExpr::Encoding::UTF8,
|
|
SGFContext ctx = SGFContext());
|
|
|
|
/// Emit a call to the library intrinsic _doesOptionalHaveValue.
|
|
///
|
|
/// The result is a Builtin.Int1.
|
|
SILValue emitDoesOptionalHaveValue(SILLocation loc, SILValue addrOrValue);
|
|
|
|
/// Emit a switch_enum to call the library intrinsic
|
|
/// _diagnoseUnexpectedNilOptional if the optional has no value. Return the
|
|
/// MangedValue resulting from the success case.
|
|
ManagedValue emitPreconditionOptionalHasValue(SILLocation loc,
|
|
ManagedValue optional,
|
|
bool isImplicitUnwrap);
|
|
|
|
/// Emit a call to the library intrinsic _getOptionalValue
|
|
/// given the address of the optional, which checks that an optional contains
|
|
/// some value and either returns the value or traps if there is none.
|
|
ManagedValue emitCheckedGetOptionalValueFrom(SILLocation loc,
|
|
ManagedValue addr,
|
|
bool isImplicitUnwrap,
|
|
const TypeLowering &optTL,
|
|
SGFContext C);
|
|
|
|
/// Extract the value from an optional, which must be known to contain
|
|
/// a value.
|
|
ManagedValue emitUncheckedGetOptionalValueFrom(SILLocation loc,
|
|
ManagedValue addrOrValue,
|
|
const TypeLowering &optTL,
|
|
SGFContext C = SGFContext());
|
|
|
|
typedef llvm::function_ref<ManagedValue(SILGenFunction &SGF,
|
|
SILLocation loc,
|
|
ManagedValue input,
|
|
SILType loweredResultTy,
|
|
SGFContext context)> ValueTransformRef;
|
|
|
|
/// Emit a transformation on the value of an optional type.
|
|
ManagedValue emitOptionalToOptional(SILLocation loc,
|
|
ManagedValue input,
|
|
SILType loweredResultTy,
|
|
ValueTransformRef transform,
|
|
SGFContext C = SGFContext());
|
|
|
|
ManagedValue emitOptionalSome(SILLocation loc, SILType optionalTy,
|
|
ValueProducerRef injector,
|
|
SGFContext C = SGFContext());
|
|
|
|
/// Emit a reinterpret-cast from one pointer type to another, using a library
|
|
/// intrinsic.
|
|
RValue emitPointerToPointer(SILLocation loc,
|
|
ManagedValue input,
|
|
CanType inputTy,
|
|
CanType outputTy,
|
|
SGFContext C = SGFContext());
|
|
|
|
ManagedValue emitClassMetatypeToObject(SILLocation loc,
|
|
ManagedValue v,
|
|
SILType resultTy);
|
|
|
|
ManagedValue emitExistentialMetatypeToObject(SILLocation loc,
|
|
ManagedValue v,
|
|
SILType resultTy);
|
|
|
|
ManagedValue emitProtocolMetatypeToObject(SILLocation loc,
|
|
CanType inputTy,
|
|
SILType resultTy);
|
|
|
|
ManagedValue manageOpaqueValue(ManagedValue value,
|
|
SILLocation loc,
|
|
SGFContext C);
|
|
|
|
/// Open up the given existential value and project its payload.
|
|
///
|
|
/// \param existentialValue The existential value.
|
|
/// \param loweredOpenedType The lowered type of the projection, which in
|
|
/// practice will be the openedArchetype, possibly wrapped in a metatype.
|
|
ManagedValue emitOpenExistential(SILLocation loc,
|
|
ManagedValue existentialValue,
|
|
SILType loweredOpenedType,
|
|
AccessKind accessKind);
|
|
|
|
/// Wrap the given value in an existential container.
|
|
///
|
|
/// \param concreteFormalType AST type of value.
|
|
/// \param concreteTL Type lowering of value.
|
|
/// \param existentialTL Type lowering of existential type.
|
|
/// \param F Function reference to emit the existential contents with the
|
|
/// given context.
|
|
ManagedValue emitExistentialErasure(
|
|
SILLocation loc,
|
|
CanType concreteFormalType,
|
|
const TypeLowering &concreteTL,
|
|
const TypeLowering &existentialTL,
|
|
ArrayRef<ProtocolConformanceRef> conformances,
|
|
SGFContext C,
|
|
llvm::function_ref<ManagedValue (SGFContext)> F,
|
|
bool allowEmbeddedNSError = true);
|
|
|
|
/// Transform a value of concrete or existential type into an
|
|
/// existential type. The input and existential types must be
|
|
/// different.
|
|
ManagedValue emitTransformExistential(
|
|
SILLocation loc,
|
|
ManagedValue input,
|
|
CanType inputType,
|
|
CanType existentialType,
|
|
SGFContext C = SGFContext());
|
|
|
|
RValue emitCollectionConversion(SILLocation loc,
|
|
FuncDecl *fn,
|
|
CanType fromCollection,
|
|
CanType toCollection,
|
|
ManagedValue mv,
|
|
SGFContext C);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Recursive entry points
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
using ASTVisitorType::visit;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Statements
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
void visit(Stmt *S) = delete;
|
|
|
|
void emitStmt(Stmt *S);
|
|
|
|
void emitBreakOutOf(SILLocation loc, Stmt *S);
|
|
|
|
void emitCatchDispatch(DoCatchStmt *S, ManagedValue exn,
|
|
ArrayRef<CaseStmt *> clauses,
|
|
JumpDest catchFallthroughDest);
|
|
|
|
/// Emit code for the throw expr. If \p emitWillThrow is set then emit a
|
|
/// call to swift_willThrow, that will allow the debugger to place a
|
|
/// breakpoint on throw sites.
|
|
void emitThrow(SILLocation loc, ManagedValue exn, bool emitWillThrow = false);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Patterns
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
void emitStmtCondition(StmtCondition Cond, JumpDest FalseDest, SILLocation loc,
|
|
ProfileCounter NumTrueTaken = ProfileCounter(),
|
|
ProfileCounter NumFalseTaken = ProfileCounter());
|
|
|
|
void emitConditionalPBD(PatternBindingDecl *PBD, SILBasicBlock *FailBB);
|
|
|
|
void usingImplicitVariablesForPattern(Pattern *pattern, CaseStmt *stmt,
|
|
const llvm::function_ref<void(void)> &f);
|
|
void emitSwitchStmt(SwitchStmt *S);
|
|
void emitSwitchFallthrough(FallthroughStmt *S);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Expressions
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
RValue visit(Expr *E) = delete;
|
|
|
|
/// Generate SIL for the given expression, storing the final result into the
|
|
/// specified Initialization buffer(s). This avoids an allocation and copy if
|
|
/// the result would be allocated into temporary memory normally.
|
|
/// The location defaults to \c E.
|
|
void emitExprInto(Expr *E, Initialization *I,
|
|
std::optional<SILLocation> L = std::nullopt);
|
|
|
|
/// Emit the given expression as an r-value.
|
|
RValue emitRValue(Expr *E, SGFContext C = SGFContext());
|
|
|
|
/// Given an expression, find the subexpression that can be emitted as a borrow formal access, if
|
|
/// any.
|
|
Expr *findStorageReferenceExprForMoveOnly(Expr *argExpr,
|
|
StorageReferenceOperationKind kind);
|
|
Expr *findStorageReferenceExprForBorrowExpr(Expr *argExpr);
|
|
|
|
/// Emit the given expression as a +1 r-value.
|
|
///
|
|
/// *NOTE* This creates the +1 r-value and then pushes that +1 r-value through
|
|
/// a scope. So all temporaries resulting will be cleaned up.
|
|
///
|
|
/// *NOTE* +0 vs +1 is ignored by this function. The only reason to use the
|
|
/// SGFContext argument is to pass in an initialization.
|
|
RValue emitPlusOneRValue(Expr *E, SGFContext C = SGFContext());
|
|
|
|
/// Emit the given expression as a +0 r-value.
|
|
///
|
|
/// *NOTE* This does not scope the creation of the +0 r-value. The reason why
|
|
/// this is done is that +0 r-values can not be pushed through scopes.
|
|
RValue emitPlusZeroRValue(Expr *E);
|
|
|
|
/// Emit the given expression as an r-value with the given conversion
|
|
/// context. This may be more efficient --- and, in some cases,
|
|
/// semantically different --- than emitting the expression and then
|
|
/// converting the result.
|
|
///
|
|
/// \param C a context into which to emit the converted result
|
|
ManagedValue emitConvertedRValue(Expr *E, const Conversion &conversion,
|
|
SGFContext C = SGFContext());
|
|
ManagedValue emitConvertedRValue(SILLocation loc,
|
|
const Conversion &conversion,
|
|
SGFContext C,
|
|
ValueProducerRef produceValue);
|
|
|
|
/// Call the produceValue function and convert the result to the given
|
|
/// original abstraction pattern.
|
|
///
|
|
/// The SGFContext provided to the produceValue function includes the
|
|
/// conversion, if it's non-trivial, and thus permits it to be peepholed
|
|
/// and combined with other conversions. This can result in substantially
|
|
/// more efficient code than just emitting the value and reabstracting
|
|
/// it afterwards.
|
|
///
|
|
/// If the provided SGFContext includes an initialization, the result
|
|
/// will always be ManagedValue::forInContext().
|
|
ManagedValue emitAsOrig(SILLocation loc, AbstractionPattern origType,
|
|
CanType substType, SILType expectedTy,
|
|
SGFContext C,
|
|
ValueProducerRef produceValue);
|
|
|
|
/// Emit the given expression as an r-value that follows the
|
|
/// abstraction patterns of the original type.
|
|
ManagedValue emitRValueAsOrig(Expr *E, AbstractionPattern origPattern,
|
|
const TypeLowering &origTL,
|
|
SGFContext C = SGFContext());
|
|
|
|
/// Emit an r-value into temporary memory and return the managed address.
|
|
ManagedValue
|
|
emitMaterializedRValueAsOrig(Expr *E, AbstractionPattern origPattern);
|
|
|
|
/// Emit the given expression, ignoring its result.
|
|
void emitIgnoredExpr(Expr *E);
|
|
|
|
/// Emit the given expression as an r-value, then (if it is a tuple), combine
|
|
/// it together into a single ManagedValue.
|
|
ManagedValue emitRValueAsSingleValue(Expr *E, SGFContext C = SGFContext());
|
|
|
|
/// Emit 'undef' in a particular formal type.
|
|
ManagedValue emitUndef(Type type);
|
|
ManagedValue emitUndef(SILType type);
|
|
RValue emitUndefRValue(SILLocation loc, Type type);
|
|
|
|
std::pair<ManagedValue, SILValue>
|
|
emitUninitializedArrayAllocation(Type ArrayTy,
|
|
SILValue Length,
|
|
SILLocation Loc);
|
|
|
|
CleanupHandle enterDeallocateUninitializedArrayCleanup(SILValue array);
|
|
void emitUninitializedArrayDeallocation(SILLocation loc, SILValue array);
|
|
ManagedValue emitUninitializedArrayFinalization(SILLocation loc,
|
|
ManagedValue array);
|
|
|
|
/// Emit a cleanup for an owned value that should be written back at end of
|
|
/// scope if the value is not forwarded.
|
|
CleanupHandle enterOwnedValueWritebackCleanup(SILLocation loc,
|
|
SILValue address,
|
|
SILValue newValue);
|
|
|
|
SILValue emitConversionToSemanticRValue(SILLocation loc, SILValue value,
|
|
const TypeLowering &valueTL);
|
|
|
|
ManagedValue emitConversionToSemanticRValue(SILLocation loc,
|
|
ManagedValue value,
|
|
const TypeLowering &valueTL);
|
|
|
|
/// Emit the empty tuple value by emitting
|
|
SILValue emitEmptyTuple(SILLocation loc);
|
|
/// "Emit" an RValue representing an empty tuple.
|
|
RValue emitEmptyTupleRValue(SILLocation loc, SGFContext C);
|
|
|
|
/// Returns a reference to a constant in global context. For local func decls
|
|
/// this returns the function constant with unapplied closure context.
|
|
SILValue emitGlobalFunctionRef(SILLocation loc, SILDeclRef constant) {
|
|
return emitGlobalFunctionRef(
|
|
loc, constant, getConstantInfo(getTypeExpansionContext(), constant));
|
|
}
|
|
SILValue
|
|
emitGlobalFunctionRef(SILLocation loc, SILDeclRef constant,
|
|
SILConstantInfo constantInfo,
|
|
bool callPreviousDynamicReplaceableImpl = false);
|
|
|
|
/// Returns a reference to a function value that dynamically dispatches
|
|
/// the function in a runtime-modifiable way.
|
|
ManagedValue emitDynamicMethodRef(SILLocation loc, SILDeclRef constant,
|
|
CanSILFunctionType constantTy);
|
|
|
|
/// Returns a reference to a vtable-dispatched method.
|
|
SILValue emitClassMethodRef(SILLocation loc, SILValue selfPtr,
|
|
SILDeclRef constant,
|
|
CanSILFunctionType constantTy);
|
|
|
|
/// Given that a variable is a local stored variable, return its address.
|
|
ManagedValue emitAddressOfLocalVarDecl(SILLocation loc, VarDecl *var,
|
|
CanType formalRValueType,
|
|
SGFAccessKind accessKind);
|
|
|
|
// FIXME: demote this to private state.
|
|
ManagedValue maybeEmitValueOfLocalVarDecl(
|
|
VarDecl *var, AccessKind accessKind);
|
|
|
|
/// Produce an RValue for a reference to the specified declaration,
|
|
/// with the given type and in response to the specified expression. Try to
|
|
/// emit into the specified SGFContext to avoid copies (when provided).
|
|
RValue emitRValueForDecl(SILLocation loc, ConcreteDeclRef decl, Type ty,
|
|
AccessSemantics semantics,
|
|
SGFContext C = SGFContext());
|
|
|
|
/// Produce a singular RValue for a load from the specified property.
|
|
///
|
|
/// This is designed to work with RValue ManagedValue bases that are either +0
|
|
/// or +1.
|
|
///
|
|
/// \arg isBaseGuaranteed This should /only/ be set to true if we know that
|
|
/// the base value will stay alive as long as the returned RValue implying
|
|
/// that it is safe to load/use values as +0.
|
|
RValue emitRValueForStorageLoad(SILLocation loc,
|
|
ManagedValue base,
|
|
CanType baseFormalType,
|
|
bool isSuper, AbstractStorageDecl *storage,
|
|
PreparedArguments &&indices,
|
|
SubstitutionMap substitutions,
|
|
AccessSemantics semantics, Type propTy,
|
|
SGFContext C,
|
|
bool isBaseGuaranteed = false);
|
|
|
|
void emitCaptures(SILLocation loc,
|
|
SILDeclRef closure,
|
|
CaptureEmission purpose,
|
|
SmallVectorImpl<ManagedValue> &captures);
|
|
|
|
/// Produce a reference to a function, which may be a local function
|
|
/// with captures. If the function is generic, substitutions must be
|
|
/// given. The result is re-abstracted to the given expected type.
|
|
ManagedValue emitClosureValue(SILLocation loc,
|
|
SILDeclRef function,
|
|
const FunctionTypeInfo &typeContext,
|
|
SubstitutionMap subs);
|
|
|
|
/// Get substituted type for a given interface type, optionally apply a
|
|
/// substitution map if provided.
|
|
CanFunctionType prepareStorageType(ValueDecl *decl, SubstitutionMap subs);
|
|
|
|
/// Evaluate and associate arguments with their expressions.
|
|
PreparedArguments prepareIndices(SILLocation loc, CanFunctionType substFnType,
|
|
AccessStrategy strategy,
|
|
ArgumentList *argList);
|
|
|
|
ArgumentSource prepareAccessorBaseArg(SILLocation loc, ManagedValue base,
|
|
CanType baseFormalType,
|
|
SILDeclRef accessor);
|
|
ArgumentSource prepareAccessorBaseArgForFormalAccess(SILLocation loc,
|
|
ManagedValue base,
|
|
CanType baseFormalType,
|
|
SILDeclRef accessor);
|
|
|
|
RValue emitGetAccessor(
|
|
SILLocation loc, SILDeclRef getter, SubstitutionMap substitutions,
|
|
ArgumentSource &&optionalSelfValue, bool isSuper,
|
|
bool isDirectAccessorUse, PreparedArguments &&optionalSubscripts,
|
|
SGFContext C, bool isOnSelfParameter,
|
|
std::optional<ActorIsolation> implicitActorHopTarget = std::nullopt);
|
|
|
|
void emitSetAccessor(SILLocation loc, SILDeclRef setter,
|
|
SubstitutionMap substitutions,
|
|
ArgumentSource &&optionalSelfValue,
|
|
bool isSuper, bool isDirectAccessorUse,
|
|
PreparedArguments &&optionalSubscripts,
|
|
ArgumentSource &&value,
|
|
bool isOnSelfParameter);
|
|
|
|
RValue emitRValueForKeyPathMethod(SILLocation loc, ManagedValue base,
|
|
CanType baseFormalType,
|
|
AbstractFunctionDecl *method, Type methodTy,
|
|
PreparedArguments &&methodArgs,
|
|
SubstitutionMap subs, SGFContext C);
|
|
|
|
RValue emitUnappliedKeyPathMethod(SILLocation loc, ManagedValue base,
|
|
CanType baseType,
|
|
AbstractFunctionDecl *method, Type methodTy,
|
|
PreparedArguments &&methodArgs,
|
|
SubstitutionMap subs, SGFContext C);
|
|
|
|
ManagedValue emitAsyncLetStart(SILLocation loc,
|
|
SILValue taskOptions,
|
|
AbstractClosureExpr *asyncLetEntryPoint,
|
|
SILValue resultBuf);
|
|
|
|
void emitFinishAsyncLet(SILLocation loc, SILValue asyncLet, SILValue resultBuf);
|
|
|
|
ManagedValue emitReadAsyncLetBinding(SILLocation loc, VarDecl *var);
|
|
|
|
ManagedValue emitCancelAsyncTask(SILLocation loc, SILValue task);
|
|
|
|
ManagedValue emitCreateAsyncMainTask(SILLocation loc, SubstitutionMap subs,
|
|
ManagedValue flags,
|
|
ManagedValue mainFunctionRef);
|
|
|
|
bool maybeEmitMaterializeForSetThunk(ProtocolConformanceRef conformance,
|
|
SILLinkage linkage,
|
|
Type selfInterfaceType, Type selfType,
|
|
GenericEnvironment *genericEnv,
|
|
AccessorDecl *requirement,
|
|
AccessorDecl *witness,
|
|
SubstitutionMap witnessSubs);
|
|
|
|
ManagedValue emitAddressorAccessor(
|
|
SILLocation loc, SILDeclRef addressor, SubstitutionMap substitutions,
|
|
ArgumentSource &&optionalSelfValue, bool isSuper,
|
|
bool isDirectAccessorUse,
|
|
PreparedArguments &&optionalSubscripts,
|
|
SILType addressType, bool isOnSelfParameter);
|
|
|
|
bool canUnwindAccessorDeclRef(SILDeclRef accessorRef);
|
|
CleanupHandle emitCoroutineAccessor(SILLocation loc, SILDeclRef accessor,
|
|
SubstitutionMap substitutions,
|
|
ArgumentSource &&optionalSelfValue,
|
|
bool isSuper, bool isDirectAccessorUse,
|
|
PreparedArguments &&optionalSubscripts,
|
|
SmallVectorImpl<ManagedValue> &yields,
|
|
bool isOnSelfParameter);
|
|
|
|
RValue emitApplyConversionFunction(SILLocation loc,
|
|
Expr *funcExpr,
|
|
Type resultType,
|
|
RValue &&operand);
|
|
|
|
ManagedValue emitManagedCopy(SILLocation loc, SILValue v);
|
|
ManagedValue emitManagedCopy(SILLocation loc, SILValue v,
|
|
const TypeLowering &lowering);
|
|
|
|
ManagedValue emitManagedFormalEvaluationCopy(SILLocation loc, SILValue v);
|
|
ManagedValue emitManagedFormalEvaluationCopy(SILLocation loc, SILValue v,
|
|
const TypeLowering &lowering);
|
|
|
|
ManagedValue emitManagedLoadCopy(SILLocation loc, SILValue v);
|
|
ManagedValue emitManagedLoadCopy(SILLocation loc, SILValue v,
|
|
const TypeLowering &lowering);
|
|
|
|
ManagedValue emitManagedStoreBorrow(SILLocation loc, SILValue v,
|
|
SILValue addr);
|
|
ManagedValue emitManagedStoreBorrow(SILLocation loc, SILValue v,
|
|
SILValue addr,
|
|
const TypeLowering &lowering);
|
|
|
|
ManagedValue emitManagedLoadBorrow(SILLocation loc, SILValue v);
|
|
ManagedValue emitManagedLoadBorrow(SILLocation loc, SILValue v,
|
|
const TypeLowering &lowering);
|
|
|
|
ManagedValue emitManagedBeginBorrow(SILLocation loc, SILValue v,
|
|
const TypeLowering &lowering);
|
|
ManagedValue emitManagedBeginBorrow(SILLocation loc, SILValue v);
|
|
|
|
ManagedValue
|
|
emitManagedBorrowedRValueWithCleanup(SILValue borrowedValue,
|
|
const TypeLowering &lowering);
|
|
ManagedValue emitManagedBorrowedRValueWithCleanup(SILValue borrowedValue);
|
|
|
|
ManagedValue emitManagedBorrowedRValueWithCleanup(SILValue original,
|
|
SILValue borrowedValue);
|
|
ManagedValue emitManagedBorrowedRValueWithCleanup(
|
|
SILValue original, SILValue borrowedValue, const TypeLowering &lowering);
|
|
ManagedValue emitManagedBorrowedArgumentWithCleanup(SILPhiArgument *arg);
|
|
ManagedValue emitFormalEvaluationManagedBorrowedRValueWithCleanup(
|
|
SILLocation loc, SILValue original, SILValue borrowedValue);
|
|
ManagedValue emitFormalEvaluationManagedBorrowedRValueWithCleanup(
|
|
SILLocation loc, SILValue original, SILValue borrowedValue,
|
|
const TypeLowering &lowering);
|
|
|
|
ManagedValue emitFormalEvaluationManagedBeginBorrow(SILLocation loc,
|
|
SILValue v);
|
|
ManagedValue
|
|
emitFormalEvaluationManagedBeginBorrow(SILLocation loc, SILValue v,
|
|
const TypeLowering &lowering);
|
|
|
|
ManagedValue emitFormalEvaluationManagedStoreBorrow(SILLocation loc,
|
|
SILValue v,
|
|
SILValue addr);
|
|
|
|
ManagedValue emitManagedRValueWithCleanup(SILValue v);
|
|
ManagedValue emitManagedRValueWithCleanup(SILValue v,
|
|
const TypeLowering &lowering);
|
|
|
|
ManagedValue emitManagedBufferWithCleanup(SILValue addr);
|
|
ManagedValue emitManagedBufferWithCleanup(SILValue addr,
|
|
const TypeLowering &lowering);
|
|
|
|
ManagedValue emitManagedPackWithCleanup(SILValue addr,
|
|
CanPackType formalPackType
|
|
= CanPackType());
|
|
|
|
ManagedValue emitFormalAccessManagedRValueWithCleanup(SILLocation loc,
|
|
SILValue value);
|
|
ManagedValue emitFormalAccessManagedBufferWithCleanup(SILLocation loc,
|
|
SILValue addr);
|
|
|
|
void emitSemanticLoadInto(SILLocation loc, SILValue src,
|
|
const TypeLowering &srcLowering,
|
|
SILValue dest,
|
|
const TypeLowering &destLowering,
|
|
IsTake_t isTake, IsInitialization_t isInit);
|
|
|
|
SILValue emitSemanticLoad(SILLocation loc, SILValue src,
|
|
const TypeLowering &srcLowering,
|
|
const TypeLowering &rvalueLowering,
|
|
IsTake_t isTake);
|
|
|
|
void emitSemanticStore(SILLocation loc, SILValue value,
|
|
SILValue dest, const TypeLowering &destTL,
|
|
IsInitialization_t isInit);
|
|
|
|
SILValue emitConversionFromSemanticValue(SILLocation loc,
|
|
SILValue semanticValue,
|
|
SILType storageType);
|
|
|
|
SILValue emitUnwrapIntegerResult(SILLocation loc, SILValue value);
|
|
SILValue emitWrapIntegerLiteral(SILLocation loc, SILType ty,
|
|
unsigned value);
|
|
/// Load an r-value out of the given address. This does not handle
|
|
/// reabstraction or bridging. If that is needed, use the other emit load
|
|
/// entry point.
|
|
///
|
|
/// \param rvalueTL - the type lowering for the type-of-rvalue
|
|
/// of the address
|
|
/// \param isAddrGuaranteed - true if the value in this address
|
|
/// is guaranteed to be valid for the duration of the current
|
|
/// evaluation (see SGFContext::AllowGuaranteedPlusZero)
|
|
ManagedValue emitLoad(SILLocation loc, SILValue addr,
|
|
const TypeLowering &rvalueTL,
|
|
SGFContext C, IsTake_t isTake,
|
|
bool isAddrGuaranteed = false);
|
|
|
|
/// Load an r-value out of the given address handling re-abstraction and
|
|
/// bridging if required.
|
|
///
|
|
/// \param rvalueTL - the type lowering for the type-of-rvalue
|
|
/// of the address
|
|
/// \param isAddrGuaranteed - true if the value in this address
|
|
/// is guaranteed to be valid for the duration of the current
|
|
/// evaluation (see SGFContext::AllowGuaranteedPlusZero)
|
|
ManagedValue emitLoad(SILLocation loc, SILValue addr,
|
|
AbstractionPattern origFormalType,
|
|
CanType substFormalType,
|
|
const TypeLowering &rvalueTL,
|
|
SGFContext C, IsTake_t isTake,
|
|
bool isAddrGuaranteed = false);
|
|
|
|
ManagedValue emitFormalAccessLoad(SILLocation loc, SILValue addr,
|
|
const TypeLowering &rvalueTL, SGFContext C,
|
|
IsTake_t isTake,
|
|
bool isAddrGuaranteed = false);
|
|
|
|
void emitAssignToLValue(SILLocation loc, ArgumentSource &&src, LValue &&dest);
|
|
void emitAssignToLValue(SILLocation loc, RValue &&src, LValue &&dest);
|
|
void emitAssignLValueToLValue(SILLocation loc,
|
|
LValue &&src, LValue &&dest);
|
|
void emitCopyLValueInto(SILLocation loc, LValue &&src,
|
|
Initialization *dest);
|
|
|
|
/// Emit an assignment to the variables in the destination pattern, given
|
|
/// an rvalue source that has the same type as the pattern.
|
|
void emitAssignToPatternVars(
|
|
SILLocation loc, Pattern *destPattern, RValue &&src);
|
|
|
|
ManagedValue emitAddressOfLValue(SILLocation loc, LValue &&src,
|
|
TSanKind tsanKind = TSanKind::None);
|
|
ManagedValue emitBorrowedLValue(SILLocation loc, LValue &&src,
|
|
TSanKind tsanKind = TSanKind::None);
|
|
ManagedValue emitConsumedLValue(SILLocation loc, LValue &&src,
|
|
TSanKind tsanKind = TSanKind::None);
|
|
LValue emitOpenExistentialLValue(SILLocation loc,
|
|
LValue &&existentialLV,
|
|
CanArchetypeType openedArchetype,
|
|
CanType formalRValueType,
|
|
SGFAccessKind accessKind);
|
|
|
|
RValue emitLoadOfLValue(SILLocation loc, LValue &&src, SGFContext C,
|
|
bool isBaseLValueGuaranteed = false);
|
|
PathComponent &&
|
|
drillToLastComponent(SILLocation loc,
|
|
LValue &&lv,
|
|
ManagedValue &addr,
|
|
TSanKind tsanKind = TSanKind::None);
|
|
|
|
/// Emit a reference to a method from within another method of the type.
|
|
std::tuple<ManagedValue, SILType>
|
|
emitSiblingMethodRef(SILLocation loc,
|
|
SILValue selfValue,
|
|
SILDeclRef methodConstant,
|
|
SubstitutionMap subMap);
|
|
|
|
SILValue emitMetatypeOfValue(SILLocation loc, Expr *baseExpr);
|
|
|
|
void emitReturnExpr(SILLocation loc, Expr *ret);
|
|
|
|
void emitYield(SILLocation loc, MutableArrayRef<ArgumentSource> yieldValues,
|
|
ArrayRef<AbstractionPattern> origTypes,
|
|
JumpDest unwindDest);
|
|
void emitRawYield(SILLocation loc, ArrayRef<ManagedValue> yieldArgs,
|
|
JumpDest unwindDest, bool isUniqueYield);
|
|
|
|
RValue emitAnyHashableErasure(SILLocation loc,
|
|
ManagedValue value,
|
|
Type type,
|
|
ProtocolConformanceRef conformance,
|
|
SGFContext C);
|
|
|
|
/// Turn a consumable managed value into a +1 managed value.
|
|
ManagedValue getManagedValue(SILLocation loc,
|
|
ConsumableManagedValue value);
|
|
|
|
/// Do the initial work common to all emissions of a pack
|
|
/// expansion expression. This is a placeholder meant to mark
|
|
/// places that will need to support any sort of future feature
|
|
/// where e.g. certain `each` operands need to be evaluated once
|
|
/// for the entire expansion.
|
|
void prepareToEmitPackExpansionExpr(PackExpansionExpr *E);
|
|
|
|
//
|
|
// Helpers for emitting ApplyExpr chains.
|
|
//
|
|
|
|
RValue emitApplyExpr(ApplyExpr *e, SGFContext c);
|
|
|
|
/// Emit a function application, assuming that the arguments have been
|
|
/// lowered appropriately for the abstraction level but that the
|
|
/// result does need to be turned back into something matching a
|
|
/// formal type.
|
|
RValue emitApply(ResultPlanPtr &&resultPlan, ArgumentScope &&argScope,
|
|
SILLocation loc, ManagedValue fn, SubstitutionMap subs,
|
|
ArrayRef<ManagedValue> args,
|
|
const CalleeTypeInfo &calleeTypeInfo, ApplyOptions options,
|
|
SGFContext evalContext,
|
|
std::optional<ActorIsolation> implicitActorHopTarget);
|
|
|
|
RValue emitApplyOfDefaultArgGenerator(SILLocation loc,
|
|
ConcreteDeclRef defaultArgsOwner,
|
|
unsigned destIndex,
|
|
CanType resultType,
|
|
bool implicitlyAsync,
|
|
SGFContext C = SGFContext());
|
|
|
|
RValue emitApplyOfStoredPropertyInitializer(
|
|
SILLocation loc,
|
|
VarDecl *anchoringVar,
|
|
SubstitutionMap subs,
|
|
CanType resultType,
|
|
AbstractionPattern origResultType,
|
|
SGFContext C);
|
|
|
|
RValue emitApplyOfPropertyWrapperBackingInitializer(
|
|
SILLocation loc,
|
|
VarDecl *var,
|
|
SubstitutionMap subs,
|
|
RValue &&originalValue,
|
|
SILDeclRef::Kind initKind = SILDeclRef::Kind::PropertyWrapperBackingInitializer,
|
|
SGFContext C = SGFContext());
|
|
|
|
/// A convenience method for emitApply that just handles monomorphic
|
|
/// applications.
|
|
RValue emitMonomorphicApply(
|
|
SILLocation loc, ManagedValue fn, ArrayRef<ManagedValue> args,
|
|
CanType foreignResultType, CanType nativeResultType, ApplyOptions options,
|
|
std::optional<SILFunctionTypeRepresentation> overrideRep,
|
|
const std::optional<ForeignErrorConvention> &foreignError,
|
|
SGFContext ctx = SGFContext());
|
|
|
|
RValue emitApplyOfLibraryIntrinsic(SILLocation loc,
|
|
FuncDecl *fn,
|
|
SubstitutionMap subMap,
|
|
ArrayRef<ManagedValue> args,
|
|
SGFContext ctx);
|
|
|
|
RValue emitApplyOfLibraryIntrinsic(SILLocation loc, SILDeclRef declRef,
|
|
SubstitutionMap subMap,
|
|
ArrayRef<ManagedValue> args,
|
|
SGFContext ctx);
|
|
|
|
/// Emits a call to the `_diagnoseUnavailableCodeReached()` function in the
|
|
/// standard library.
|
|
void emitApplyOfUnavailableCodeReached();
|
|
|
|
RValue emitApplyAllocatingInitializer(SILLocation loc, ConcreteDeclRef init,
|
|
PreparedArguments &&args, Type overriddenSelfType,
|
|
SGFContext ctx);
|
|
|
|
CleanupHandle emitBeginApply(SILLocation loc, ManagedValue fn, bool canUnwind,
|
|
SubstitutionMap subs,
|
|
ArrayRef<ManagedValue> args,
|
|
CanSILFunctionType substFnType,
|
|
ApplyOptions options,
|
|
SmallVectorImpl<ManagedValue> &yields);
|
|
|
|
SILValue emitApplyWithRethrow(SILLocation loc, SILValue fn,
|
|
SILType substFnType,
|
|
SubstitutionMap subs,
|
|
ArrayRef<SILValue> args);
|
|
|
|
std::tuple<MultipleValueInstructionResult *, CleanupHandle, SILValue,
|
|
CleanupHandle>
|
|
emitBeginApplyWithRethrow(SILLocation loc, SILValue fn, SILType substFnType,
|
|
bool canUnwind, SubstitutionMap subs,
|
|
ArrayRef<SILValue> args,
|
|
SmallVectorImpl<SILValue> &yields);
|
|
void emitEndApplyWithRethrow(SILLocation loc,
|
|
MultipleValueInstructionResult *token,
|
|
SILValue allocation);
|
|
|
|
ManagedValue emitExtractFunctionIsolation(SILLocation loc,
|
|
ArgumentSource &&fnValue);
|
|
|
|
/// Emit a literal that applies the various initializers.
|
|
RValue emitLiteral(LiteralExpr *literal, SGFContext C);
|
|
|
|
SILBasicBlock *getTryApplyErrorDest(SILLocation loc,
|
|
CanSILFunctionType fnTy,
|
|
ExecutorBreadcrumb prevExecutor,
|
|
SILResultInfo errorResult,
|
|
SILValue indirectErrorAddr,
|
|
bool isSuppressed);
|
|
|
|
/// Emit a dynamic member reference.
|
|
RValue emitDynamicMemberRef(SILLocation loc, SILValue operand,
|
|
ConcreteDeclRef memberRef, CanType refTy,
|
|
SGFContext C);
|
|
|
|
/// Emit a dynamic subscript getter application.
|
|
RValue emitDynamicSubscriptGetterApply(SILLocation loc, SILValue operand,
|
|
ConcreteDeclRef subscriptRef,
|
|
PreparedArguments &&indexArgs,
|
|
CanType resultTy, SGFContext C);
|
|
|
|
/// Open up the given existential expression and emit its
|
|
/// subexpression in a caller-specified manner.
|
|
///
|
|
/// \param e The expression.
|
|
///
|
|
/// \param emitSubExpr A function to call to emit the subexpression
|
|
/// (which will be passed in).
|
|
void emitOpenExistentialExprImpl(OpenExistentialExpr *e,
|
|
llvm::function_ref<void(Expr *)> emitSubExpr);
|
|
|
|
/// Open up the given existential expression and emit its
|
|
/// subexpression in a caller-specified manner.
|
|
///
|
|
/// \param e The expression.
|
|
///
|
|
/// \param emitSubExpr A function to call to emit the subexpression
|
|
/// (which will be passed in).
|
|
template<typename R, typename F>
|
|
R emitOpenExistentialExpr(OpenExistentialExpr *e, F emitSubExpr) {
|
|
std::optional<R> result;
|
|
emitOpenExistentialExprImpl(e,
|
|
[&](Expr *subExpr) {
|
|
result.emplace(emitSubExpr(subExpr));
|
|
});
|
|
return std::move(*result);
|
|
}
|
|
|
|
/// Open up the given existential expression and emit its
|
|
/// subexpression in a caller-specified manner.
|
|
///
|
|
/// \param e The expression.
|
|
///
|
|
/// \param emitSubExpr A function to call to emit the subexpression
|
|
/// (which will be passed in).
|
|
template<typename F>
|
|
void emitOpenExistentialExpr(OpenExistentialExpr *e, F emitSubExpr) {
|
|
emitOpenExistentialExprImpl(e, emitSubExpr);
|
|
}
|
|
|
|
/// Mapping from OpaqueValueExpr/PackElementExpr to their values.
|
|
llvm::SmallDenseMap<Expr *, ManagedValue> OpaqueValues;
|
|
|
|
/// A mapping from opaque value expressions to the open-existential
|
|
/// expression that determines them, used while lowering lvalues.
|
|
llvm::SmallDenseMap<OpaqueValueExpr *, OpenExistentialExpr *>
|
|
OpaqueValueExprs;
|
|
|
|
/// RAII object that introduces a temporary binding for an opaque value.
|
|
///
|
|
/// Each time the opaque value expression is referenced, it will be
|
|
/// retained/released separately. When this RAII object goes out of
|
|
/// scope, the value will be destroyed if requested.
|
|
class OpaqueValueRAII {
|
|
SILGenFunction &Self;
|
|
OpaqueValueExpr *OpaqueValue;
|
|
|
|
OpaqueValueRAII(const OpaqueValueRAII &) = delete;
|
|
OpaqueValueRAII &operator=(const OpaqueValueRAII &) = delete;
|
|
|
|
public:
|
|
OpaqueValueRAII(SILGenFunction &self, OpaqueValueExpr *opaqueValue,
|
|
ManagedValue value)
|
|
: Self(self), OpaqueValue(opaqueValue) {
|
|
assert(Self.OpaqueValues.count(OpaqueValue) == 0 &&
|
|
"Opaque value already has a binding");
|
|
Self.OpaqueValues[OpaqueValue] = value;
|
|
}
|
|
|
|
~OpaqueValueRAII();
|
|
};
|
|
|
|
/// Emit a conditional checked cast branch. Does not
|
|
/// re-abstract the argument to the success branch. Terminates the
|
|
/// current BB.
|
|
///
|
|
/// \param loc The AST location associated with the operation.
|
|
/// \param src The abstract value to cast.
|
|
/// \param sourceType The formal source type.
|
|
/// \param targetType The formal target type.
|
|
/// \param C Information about the result of the cast.
|
|
/// \param handleTrue A callback to invoke with the result of the cast
|
|
/// in the success path. The current BB should be
|
|
/// terminated.
|
|
/// \param handleFalse A callback to invoke in the failure path. The
|
|
/// current BB should be terminated.
|
|
void emitCheckedCastBranch(
|
|
SILLocation loc, ConsumableManagedValue src, Type sourceType,
|
|
CanType targetType, SGFContext C,
|
|
llvm::function_ref<void(ManagedValue)> handleTrue,
|
|
llvm::function_ref<void(std::optional<ManagedValue>)> handleFalse,
|
|
ProfileCounter TrueCount = ProfileCounter(),
|
|
ProfileCounter FalseCount = ProfileCounter());
|
|
|
|
/// Emit a conditional checked cast branch, starting from an
|
|
/// expression. Terminates the current BB.
|
|
///
|
|
/// \param loc The AST location associated with the operation.
|
|
/// \param src An expression which will generate the value to cast.
|
|
/// \param targetType The formal target type.
|
|
/// \param C Information about the result of the cast.
|
|
/// \param handleTrue A callback to invoke with the result of the cast
|
|
/// in the success path. The current BB should be
|
|
/// terminated.
|
|
/// \param handleFalse A callback to invoke in the failure path. The
|
|
/// current BB should be terminated.
|
|
void emitCheckedCastBranch(
|
|
SILLocation loc, Expr *src, Type targetType, SGFContext C,
|
|
llvm::function_ref<void(ManagedValue)> handleTrue,
|
|
llvm::function_ref<void(std::optional<ManagedValue>)> handleFalse,
|
|
ProfileCounter TrueCount = ProfileCounter(),
|
|
ProfileCounter FalseCount = ProfileCounter());
|
|
|
|
/// Emit the control flow for an optional 'bind' operation, branching to the
|
|
/// active failure destination if the optional value addressed by optionalAddr
|
|
/// is nil, and leaving the insertion point on the success branch.
|
|
///
|
|
/// NOTE: This operation does consume the managed value.
|
|
ManagedValue emitBindOptional(SILLocation loc,
|
|
ManagedValue optionalAddrOrValue,
|
|
unsigned depth);
|
|
|
|
void emitOptionalEvaluation(SILLocation loc, Type optionalType,
|
|
SmallVectorImpl<ManagedValue> &results,
|
|
SGFContext C,
|
|
llvm::function_ref<void(SmallVectorImpl<ManagedValue> &,
|
|
SGFContext primaryC)>
|
|
generateNormalResults);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Bridging thunks
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Convert a native Swift value to a value that can be passed as an argument
|
|
/// to or returned as the result of a function with the given calling
|
|
/// convention.
|
|
ManagedValue emitNativeToBridgedValue(SILLocation loc, ManagedValue v,
|
|
CanType nativeType,
|
|
CanType bridgedType,
|
|
SILType loweredBridgedType,
|
|
SGFContext C = SGFContext());
|
|
|
|
/// Convert a value received as the result or argument of a function with
|
|
/// the given calling convention to a native Swift value of the given type.
|
|
ManagedValue emitBridgedToNativeValue(SILLocation loc, ManagedValue v,
|
|
CanType bridgedType,
|
|
CanType nativeType,
|
|
SILType loweredNativeType,
|
|
SGFContext C = SGFContext(),
|
|
bool isCallResult = false);
|
|
|
|
/// Convert a bridged error type to the native Swift Error
|
|
/// representation. The value may be optional.
|
|
ManagedValue emitBridgedToNativeError(SILLocation loc, ManagedValue v);
|
|
|
|
/// Convert a value in the native Swift Error representation to
|
|
/// a bridged error type representation.
|
|
ManagedValue emitNativeToBridgedError(SILLocation loc, ManagedValue v,
|
|
CanType nativeType,
|
|
CanType bridgedType);
|
|
|
|
SILValue emitBridgeErrorForForeignError(SILLocation loc,
|
|
SILValue nativeError,
|
|
SILType bridgedResultType,
|
|
SILValue foreignErrorSlot,
|
|
const ForeignErrorConvention &foreignError);
|
|
|
|
SILValue
|
|
emitBridgeReturnValueForForeignError(SILLocation loc,
|
|
SILValue result,
|
|
CanType formalNativeType,
|
|
CanType formalBridgedType,
|
|
SILType bridgedType,
|
|
SILValue foreignErrorSlot,
|
|
const ForeignErrorConvention &foreignError);
|
|
|
|
SILValue
|
|
emitForeignErrorBlock(SILLocation loc, SILBasicBlock *errorBB,
|
|
std::optional<ManagedValue> errorSlot,
|
|
std::optional<ForeignAsyncConvention> foreignAsync);
|
|
|
|
SILValue
|
|
emitForeignErrorCheck(SILLocation loc,
|
|
SmallVectorImpl<ManagedValue> &directResults,
|
|
ManagedValue errorSlot, bool suppressErrorCheck,
|
|
const ForeignErrorConvention &foreignError,
|
|
std::optional<ForeignAsyncConvention> foreignAsync);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Re-abstraction thunks
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Convert a value with the abstraction patterns of the original type
|
|
/// to a value with the abstraction patterns of the substituted type.
|
|
ManagedValue emitOrigToSubstValue(SILLocation loc, ManagedValue input,
|
|
AbstractionPattern origType,
|
|
CanType substType,
|
|
SGFContext ctx = SGFContext());
|
|
ManagedValue emitOrigToSubstValue(SILLocation loc, ManagedValue input,
|
|
AbstractionPattern origType,
|
|
CanType substType,
|
|
SILType loweredResultTy,
|
|
SGFContext ctx = SGFContext());
|
|
RValue emitOrigToSubstValue(SILLocation loc, RValue &&input,
|
|
AbstractionPattern origType,
|
|
CanType substType,
|
|
SGFContext ctx = SGFContext());
|
|
RValue emitOrigToSubstValue(SILLocation loc, RValue &&input,
|
|
AbstractionPattern origType,
|
|
CanType substType,
|
|
SILType loweredResultTy,
|
|
SGFContext ctx = SGFContext());
|
|
|
|
/// Convert a value with the abstraction patterns of the substituted
|
|
/// type to a value with the abstraction patterns of the original type.
|
|
ManagedValue emitSubstToOrigValue(SILLocation loc, ManagedValue input,
|
|
AbstractionPattern origType,
|
|
CanType substType,
|
|
SGFContext ctx = SGFContext());
|
|
RValue emitSubstToOrigValue(SILLocation loc, RValue &&input,
|
|
AbstractionPattern origType,
|
|
CanType substType,
|
|
SGFContext ctx = SGFContext());
|
|
ManagedValue emitSubstToOrigValue(SILLocation loc, ManagedValue input,
|
|
AbstractionPattern origType,
|
|
CanType substType,
|
|
SILType loweredResultTy,
|
|
SGFContext ctx = SGFContext());
|
|
RValue emitSubstToOrigValue(SILLocation loc, RValue &&input,
|
|
AbstractionPattern origType,
|
|
CanType substType,
|
|
SILType loweredResultTy,
|
|
SGFContext ctx = SGFContext());
|
|
|
|
/// Transform the AST-level types in the function signature without an
|
|
/// abstraction or representation change.
|
|
ManagedValue emitTransformedValue(SILLocation loc, ManagedValue input,
|
|
CanType inputType,
|
|
CanType outputType,
|
|
SGFContext ctx = SGFContext());
|
|
|
|
/// Most general form of the above.
|
|
ManagedValue emitTransformedValue(SILLocation loc, ManagedValue input,
|
|
AbstractionPattern inputOrigType,
|
|
CanType inputSubstType,
|
|
AbstractionPattern outputOrigType,
|
|
CanType outputSubstType,
|
|
SILType loweredResultTy,
|
|
SGFContext ctx = SGFContext());
|
|
RValue emitTransformedValue(SILLocation loc, RValue &&input,
|
|
AbstractionPattern inputOrigType,
|
|
CanType inputSubstType,
|
|
AbstractionPattern outputOrigType,
|
|
CanType outputSubstType,
|
|
SILType loweredResultTy,
|
|
SGFContext ctx = SGFContext());
|
|
|
|
enum class ThunkGenFlag {
|
|
None,
|
|
|
|
/// Set if the thunk has an implicit isolated parameter.
|
|
///
|
|
/// The implication is that we shouldn't forward that parameter into the
|
|
/// callee as a normal parameter (if the callee has an implicit param, we
|
|
/// handle it through a different code path).
|
|
ThunkHasImplicitIsolatedParam = 0x1,
|
|
|
|
/// Set if the callee has an implicit isolated parameter that we need to
|
|
/// find the appropriate value for when we call it from the thunk.
|
|
CalleeHasImplicitIsolatedParam = 0x2,
|
|
};
|
|
using ThunkGenOptions = OptionSet<ThunkGenFlag>;
|
|
|
|
/// Used for emitting SILArguments of bare functions, such as thunks.
|
|
void collectThunkParams(
|
|
SILLocation loc, SmallVectorImpl<ManagedValue> ¶ms,
|
|
SmallVectorImpl<ManagedValue> *indirectResultParams = nullptr,
|
|
SmallVectorImpl<ManagedValue> *indirectErrorParams = nullptr,
|
|
ManagedValue *implicitIsolationParam = nullptr);
|
|
|
|
/// Build the type of a function transformation thunk.
|
|
CanSILFunctionType buildThunkType(CanSILFunctionType &sourceType,
|
|
CanSILFunctionType &expectedType,
|
|
CanType &inputSubstType,
|
|
CanType &outputSubstType,
|
|
GenericEnvironment *&genericEnv,
|
|
SubstitutionMap &interfaceSubs,
|
|
CanType &dynamicSelfType,
|
|
bool withoutActuallyEscaping=false);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// NoEscaping to Escaping closure thunk
|
|
//===--------------------------------------------------------------------===//
|
|
ManagedValue
|
|
createWithoutActuallyEscapingClosure(SILLocation loc,
|
|
ManagedValue noEscapingFunctionValue,
|
|
SILType escapingFnTy);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Differentiation thunks
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Get or create a thunk for reabstracting and self-reordering
|
|
/// differentials/pullbacks returned by user-defined JVP/VJP functions, and
|
|
/// apply it to the given differential/pullback.
|
|
///
|
|
/// If `reorderSelf` is true, reorder self so that it appears as:
|
|
/// - The last parameter, for differentials.
|
|
/// - The last result, for pullbacks.
|
|
ManagedValue getThunkedAutoDiffLinearMap(ManagedValue linearMap,
|
|
AutoDiffLinearMapKind linearMapKind,
|
|
CanSILFunctionType fromType,
|
|
CanSILFunctionType toType,
|
|
bool reorderSelf);
|
|
|
|
/// Emit conversion from T.TangentVector to Optional<T>.TangentVector.
|
|
ManagedValue
|
|
emitTangentVectorToOptionalTangentVector(SILLocation loc,
|
|
ManagedValue input,
|
|
CanType wrappedType, // `T`
|
|
CanType inputType, // `T.TangentVector`
|
|
CanType outputType, // `Optional<T>.TangentVector`
|
|
SGFContext ctxt);
|
|
|
|
/// Emit conversion from Optional<T>.TangentVector to T.TangentVector.
|
|
ManagedValue
|
|
emitOptionalTangentVectorToTangentVector(SILLocation loc,
|
|
ManagedValue input,
|
|
CanType wrappedType, // `T`
|
|
CanType inputType, // `Optional<T>.TangentVector`
|
|
CanType outputType, // `T.TangentVector`
|
|
SGFContext ctxt);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Availability
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Emit an `if #available` query, returning the resulting boolean test value.
|
|
SILValue emitIfAvailableQuery(SILLocation loc, PoundAvailableInfo *info);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Back Deployment thunks
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Invokes an original function if it is available at runtime. Otherwise,
|
|
/// invokes a fallback copy of the function emitted into the client.
|
|
void emitBackDeploymentThunk(SILDeclRef thunk);
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
// Distributed Actors
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
/// Determine if the target `func` should be replaced with a
|
|
/// 'distributed thunk'.
|
|
///
|
|
/// This only applies to distributed functions when calls are made cross-actor
|
|
/// isolation. One notable exception is a distributed thunk calling the "real
|
|
/// underlying method", in which case (to avoid the thunk calling into itself,
|
|
/// the real method must be called).
|
|
///
|
|
/// Witness calls which may need to be replaced with a distributed thunk call
|
|
/// happen either when the target type is generic, or if we are inside an
|
|
/// extension on a protocol. This method checks if we are in a context
|
|
/// where we should be calling the distributed thunk of the `func` or not.
|
|
/// Notably, if we are inside a distributed thunk already and are trying to
|
|
/// apply distributed method calls, all those must be to the "real" method,
|
|
/// because the thunks' responsibility is to call the real method, so this
|
|
/// replacement cannot be applied (or we'd recursively keep calling the same
|
|
/// thunk via witness).
|
|
///
|
|
/// In situations which do not use a witness call, distributed methods are always
|
|
/// invoked Direct, and never ClassMethod, because distributed are effectively
|
|
/// final.
|
|
///
|
|
/// \param func the target func that we are trying to "apply"
|
|
/// \return true when the function should be considered for replacement
|
|
/// with distributed thunk when applying it
|
|
bool
|
|
shouldReplaceConstantForApplyWithDistributedThunk(FuncDecl *func) const;
|
|
|
|
/// Initializes the implicit stored properties of a distributed actor that correspond to
|
|
/// its transport and identity.
|
|
void emitDistributedActorImplicitPropertyInits(
|
|
ConstructorDecl *ctor, ManagedValue selfArg);
|
|
|
|
/// Initializes just the implicit identity property of a distributed actor.
|
|
/// \param selfVal a value corresponding to the actor's self
|
|
/// \param actorSystemVal a value corresponding to the actorSystem, to be used
|
|
/// to invoke its \p assignIdentity method.
|
|
void emitDistActorIdentityInit(ConstructorDecl *ctor,
|
|
SILLocation loc,
|
|
SILValue selfVal,
|
|
SILValue actorSystemVal);
|
|
|
|
/// Given a function representing a distributed actor factory, emits the
|
|
/// corresponding SIL function for it.
|
|
void emitDistributedActorFactory(FuncDecl *fd); // TODO(distributed): this is the "resolve"
|
|
|
|
void emitDistributedIfRemoteBranch(SILLocation Loc, SILValue selfValue,
|
|
Type selfTy, SILBasicBlock *isRemoteBB,
|
|
SILBasicBlock *isLocalBB);
|
|
|
|
/// Notify transport that actor has initialized successfully,
|
|
/// and is ready to receive messages.
|
|
void emitDistributedActorReady(
|
|
SILLocation loc, ConstructorDecl *ctor, ManagedValue actorSelf);
|
|
|
|
/// For a distributed actor, emits code to invoke the system's
|
|
/// resignID function.
|
|
///
|
|
/// Specifically, this code emits SIL that performs the call
|
|
///
|
|
/// \verbatim
|
|
/// self.actorSystem.resignID(self.id)
|
|
/// \endverbatim
|
|
///
|
|
/// using the current builder's state as the injection point.
|
|
///
|
|
/// \param actorDecl the declaration corresponding to the actor
|
|
/// \param actorSelf the SIL value representing the distributed actor instance
|
|
void emitDistributedActorSystemResignIDCall(SILLocation loc,
|
|
ClassDecl *actorDecl, ManagedValue actorSelf);
|
|
|
|
/// Emits check for remote actor and a branch that implements deallocating
|
|
/// deinit for remote proxy. Calls \p emitLocalDeinit to generate branch for
|
|
/// local actor.
|
|
void
|
|
emitDistributedRemoteActorDeinit(SILValue selfValue, DestructorDecl *dd,
|
|
bool isIsolated,
|
|
llvm::function_ref<void()> emitLocalDeinit);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Declarations
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
void visitDecl(Decl *D) {
|
|
llvm_unreachable("Not yet implemented");
|
|
}
|
|
|
|
// Emitted as part of its storage.
|
|
void visitAccessorDecl(AccessorDecl *D) {}
|
|
|
|
void visitFuncDecl(FuncDecl *D);
|
|
/// \param generateDebugInfo Pattern bindings inside of capture list
|
|
/// expressions should not introduce new variables into the debug info.
|
|
void visitPatternBindingDecl(PatternBindingDecl *D,
|
|
bool generateDebugInfo = true);
|
|
|
|
void emitPatternBinding(PatternBindingDecl *D, unsigned entry,
|
|
bool generateDebugInfo);
|
|
|
|
std::unique_ptr<Initialization>
|
|
emitPatternBindingInitialization(Pattern *P, JumpDest failureDest,
|
|
bool generateDebugInfo = true);
|
|
|
|
void visitNominalTypeDecl(NominalTypeDecl *D) {
|
|
// No lowering support needed.
|
|
}
|
|
|
|
void visitTypeAliasDecl(TypeAliasDecl *D) {
|
|
// No lowering support needed.
|
|
}
|
|
|
|
void visitGenericTypeParamDecl(GenericTypeParamDecl *D) {
|
|
// No lowering support needed.
|
|
}
|
|
void visitAssociatedTypeDecl(AssociatedTypeDecl *D) {
|
|
// No lowering support needed.
|
|
}
|
|
|
|
void visitVarDecl(VarDecl *D);
|
|
|
|
void visitMacroExpansionDecl(MacroExpansionDecl *D);
|
|
|
|
/// Emit an Initialization for a 'var' or 'let' decl in a pattern.
|
|
std::unique_ptr<Initialization>
|
|
emitInitializationForVarDecl(VarDecl *vd, bool immutable,
|
|
bool generateDebugInfo = true);
|
|
|
|
/// Emit the allocation for a local variable, provides an Initialization
|
|
/// that can be used to initialize it, and registers cleanups in the active
|
|
/// scope.
|
|
/// \param ArgNo optionally describes this function argument's
|
|
/// position for debug info.
|
|
std::unique_ptr<Initialization> emitLocalVariableWithCleanup(
|
|
VarDecl *D, std::optional<MarkUninitializedInst::Kind> kind,
|
|
unsigned ArgNo = 0, bool generateDebugInfo = true);
|
|
|
|
/// Emit the allocation for a local temporary, provides an
|
|
/// Initialization that can be used to initialize it, and registers
|
|
/// cleanups in the active scope.
|
|
///
|
|
/// The initialization is guaranteed to be a single buffer.
|
|
std::unique_ptr<TemporaryInitialization>
|
|
emitTemporary(SILLocation loc, const TypeLowering &tempTL);
|
|
|
|
/// Emit the allocation for a local temporary, provides an
|
|
/// Initialization that can be used to initialize it, and registers
|
|
/// cleanups in the current active formal evaluation scope.
|
|
///
|
|
/// The initialization is guaranteed to be a single buffer.
|
|
std::unique_ptr<TemporaryInitialization>
|
|
emitFormalAccessTemporary(SILLocation loc, const TypeLowering &tempTL);
|
|
|
|
/// Provides an Initialization that can be used to initialize an already-
|
|
/// allocated temporary, and registers cleanups in the active scope.
|
|
///
|
|
/// The initialization is guaranteed to be a single buffer.
|
|
std::unique_ptr<TemporaryInitialization>
|
|
useBufferAsTemporary(SILValue addr, const TypeLowering &tempTL);
|
|
|
|
/// Enter a currently-dormant cleanup to destroy the value in the
|
|
/// given address.
|
|
CleanupHandle enterDormantTemporaryCleanup(SILValue temp,
|
|
const TypeLowering &tempTL);
|
|
|
|
CleanupHandle enterDeallocBoxCleanup(SILValue box);
|
|
|
|
/// Enter a currently-dormant cleanup to destroy the value in the
|
|
/// given address.
|
|
CleanupHandle
|
|
enterDormantFormalAccessTemporaryCleanup(SILValue temp, SILLocation loc,
|
|
const TypeLowering &tempTL);
|
|
|
|
/// Destroy and deallocate an initialized local variable.
|
|
void destroyLocalVariable(SILLocation L, VarDecl *D);
|
|
|
|
/// Destroy the class member.
|
|
void destroyClassMember(SILLocation L, ManagedValue selfValue, VarDecl *D);
|
|
|
|
/// Destroy the default actor implementation.
|
|
void emitDestroyDefaultActor(CleanupLocation cleanupLoc, SILValue selfValue);
|
|
|
|
/// Enter a cleanup to deallocate a stack variable.
|
|
CleanupHandle enterDeallocStackCleanup(SILValue address);
|
|
|
|
/// Enter a cleanup to deallocate a pack.
|
|
CleanupHandle enterDeallocPackCleanup(SILValue address);
|
|
|
|
/// Enter a cleanup to emit a ReleaseValue/DestroyAddr of the specified value.
|
|
CleanupHandle enterDestroyCleanup(SILValue valueOrAddr);
|
|
|
|
/// Enter a cleanup to destroy all of the values in the given pack.
|
|
CleanupHandle enterDestroyPackCleanup(SILValue addr,
|
|
CanPackType formalPackType);
|
|
|
|
/// Enter a cleanup to destroy the preceding values in a pack-expansion
|
|
/// component of a pack.
|
|
///
|
|
/// \param limitWithinComponent - if non-null, the number of elements
|
|
/// to destroy in the pack expansion component; defaults to the
|
|
/// dynamic length of the expansion component
|
|
CleanupHandle enterPartialDestroyPackCleanup(SILValue addr,
|
|
CanPackType formalPackType,
|
|
unsigned componentIndex,
|
|
SILValue limitWithinComponent);
|
|
|
|
/// Enter a cleanup to destroy the following values in a
|
|
/// pack-expansion component of a pack. Note that this only destroys
|
|
/// the values *in that specific component*, not all the other values
|
|
/// in the pack.
|
|
///
|
|
/// \param currentIndexWithinComponent - the current index in the
|
|
/// pack expansion component; any elements in the component that
|
|
/// *follow* this component will be destroyed. If nil, all the
|
|
/// elements in the component will be destroyed
|
|
CleanupHandle
|
|
enterPartialDestroyRemainingPackCleanup(SILValue addr,
|
|
CanPackType formalPackType,
|
|
unsigned componentIndex,
|
|
SILValue currentIndexWithinComponent);
|
|
|
|
/// Enter a cleanup to destroy all of the components in a pack starting
|
|
/// at a particular component index.
|
|
CleanupHandle
|
|
enterDestroyRemainingPackComponentsCleanup(SILValue addr,
|
|
CanPackType formalPackType,
|
|
unsigned componentIndex);
|
|
|
|
/// Enter a cleanup to destroy the preceding components of a pack,
|
|
/// leading up to (but not including) a particular component index.
|
|
CleanupHandle
|
|
enterDestroyPrecedingPackComponentsCleanup(SILValue addr,
|
|
CanPackType formalPackType,
|
|
unsigned componentIndex);
|
|
|
|
/// Enter a cleanup to destroy the preceding values in a pack-expansion
|
|
/// component of a tuple.
|
|
///
|
|
/// \param limitWithinComponent - if non-null, the number of elements
|
|
/// to destroy in the pack expansion component; defaults to the
|
|
/// dynamic length of the expansion component
|
|
CleanupHandle enterPartialDestroyTupleCleanup(SILValue addr,
|
|
CanPackType inducedPackType,
|
|
unsigned componentIndex,
|
|
SILValue limitWithinComponent);
|
|
|
|
/// Enter a cleanup to destroy the following values in a
|
|
/// pack-expansion component of a tuple. Note that this only destroys
|
|
/// the values *in that specific component*, not all the other values
|
|
/// in the tuple.
|
|
///
|
|
/// \param currentIndexWithinComponent - the current index in the
|
|
/// pack expansion component; any elements in the component that
|
|
/// *follow* this component will be destroyed. If nil, all the
|
|
/// elements in the component will be destroyed
|
|
CleanupHandle
|
|
enterPartialDestroyRemainingTupleCleanup(SILValue addr,
|
|
CanPackType inducedPackType,
|
|
unsigned componentIndex,
|
|
SILValue currentIndexWithinComponent);
|
|
|
|
/// Enter a cleanup to destroy all of the components in a tuple starting
|
|
/// at a particular component index.
|
|
CleanupHandle
|
|
enterDestroyRemainingTupleElementsCleanup(SILValue addr,
|
|
CanPackType inducedPackType,
|
|
unsigned componentIndex);
|
|
|
|
/// Copy the elements of a pack, which must consist of a single pack expansion,
|
|
/// into a tuple value having the same pack expansion and its sole element type.
|
|
void copyPackElementsToTuple(SILLocation loc, SILValue tupleAddr, SILValue pack,
|
|
CanPackType formalPackType);
|
|
|
|
/// Initialize a pack with the addresses of the elements of a tuple, which must
|
|
/// consist of a single pack expansion.
|
|
void projectTupleElementsToPack(SILLocation loc, SILValue tupleAddr, SILValue pack,
|
|
CanPackType formalPackType);
|
|
|
|
/// Return an owned managed value for \p value that is cleaned up using an end_lifetime instruction.
|
|
///
|
|
/// The end_lifetime cleanup is not placed into the ManagedValue itself and
|
|
/// thus can not be forwarded. This means that the ManagedValue is treated
|
|
/// as a +0 value. This means that the owned value will be copied by SILGen
|
|
/// if it is ever needed as a +1 value (meaning any time that the value
|
|
/// escapes).
|
|
///
|
|
/// DISCUSSION: end_lifetime ends the lifetime of an owned value in OSSA
|
|
/// without resulting in a destroy being emitted. This cleanup should only
|
|
/// be used for owned values that do not need to be destroyed if they do not
|
|
/// escape the current call frame but need to be copied if they escape.
|
|
ManagedValue emitManagedRValueWithEndLifetimeCleanup(SILValue value);
|
|
|
|
/// Enter a cleanup to emit a DeinitExistentialAddr or DeinitExistentialBox
|
|
/// of the specified value.
|
|
CleanupHandle enterDeinitExistentialCleanup(CleanupState state,
|
|
SILValue addr,
|
|
CanType concreteFormalType,
|
|
ExistentialRepresentation repr);
|
|
|
|
/// Enter a cleanup to cancel the given task.
|
|
CleanupHandle enterCancelAsyncTaskCleanup(SILValue task);
|
|
|
|
// Enter a cleanup to cancel and destroy an AsyncLet as it leaves the scope.
|
|
CleanupHandle enterAsyncLetCleanup(SILValue alet, SILValue resultBuf);
|
|
|
|
/// Evaluate an Expr as an lvalue.
|
|
LValue emitLValue(Expr *E, SGFAccessKind accessKind,
|
|
LValueOptions options = LValueOptions());
|
|
|
|
RValue emitRValueForNonMemberVarDecl(SILLocation loc,
|
|
ConcreteDeclRef declRef,
|
|
CanType formalRValueType,
|
|
AccessSemantics semantics,
|
|
SGFContext C);
|
|
|
|
/// Emit an lvalue that directly refers to the given instance variable
|
|
/// (without going through getters or setters).
|
|
LValue emitPropertyLValue(SILLocation loc, ManagedValue base,
|
|
CanType baseFormalType, VarDecl *var,
|
|
LValueOptions options,
|
|
SGFAccessKind accessKind,
|
|
AccessSemantics semantics);
|
|
|
|
struct PointerAccessInfo {
|
|
CanType PointerType;
|
|
PointerTypeKind PointerKind;
|
|
SGFAccessKind AccessKind;
|
|
};
|
|
|
|
PointerAccessInfo getPointerAccessInfo(Type pointerType);
|
|
ManagedValue emitLValueToPointer(SILLocation loc, LValue &&lvalue,
|
|
PointerAccessInfo accessInfo);
|
|
|
|
struct ArrayAccessInfo {
|
|
Type PointerType;
|
|
Type ArrayType;
|
|
SGFAccessKind AccessKind;
|
|
};
|
|
ArrayAccessInfo getArrayAccessInfo(Type pointerType, Type arrayType);
|
|
std::pair<ManagedValue,ManagedValue>
|
|
emitArrayToPointer(SILLocation loc, LValue &&lvalue,
|
|
ArrayAccessInfo accessInfo);
|
|
|
|
std::pair<ManagedValue,ManagedValue>
|
|
emitArrayToPointer(SILLocation loc, ManagedValue arrayValue,
|
|
ArrayAccessInfo accessInfo);
|
|
|
|
std::pair<ManagedValue,ManagedValue>
|
|
emitStringToPointer(SILLocation loc, ManagedValue stringValue,
|
|
Type pointerType);
|
|
|
|
class ForceTryEmission {
|
|
SILGenFunction &SGF;
|
|
ForceTryExpr *Loc;
|
|
JumpDest OldThrowDest;
|
|
|
|
public:
|
|
ForceTryEmission(SILGenFunction &SGF, ForceTryExpr *loc);
|
|
|
|
ForceTryEmission(const ForceTryEmission &) = delete;
|
|
ForceTryEmission &operator=(const ForceTryEmission &) = delete;
|
|
|
|
void finish();
|
|
|
|
~ForceTryEmission() {
|
|
if (Loc) finish();
|
|
}
|
|
};
|
|
|
|
/// Return forwarding substitutions for the archetypes in the current
|
|
/// function.
|
|
SubstitutionMap getForwardingSubstitutionMap();
|
|
|
|
/// Get the _Pointer protocol used for pointer argument operations.
|
|
ProtocolDecl *getPointerProtocol();
|
|
|
|
/// Returns the SILDeclRef to use for references to the given accessor.
|
|
SILDeclRef getAccessorDeclRef(AccessorDecl *accessor) {
|
|
return SGM.getFuncDeclRef(accessor, F.getResilienceExpansion());
|
|
}
|
|
|
|
/// Given a lowered pack expansion type, produce a generic environment
|
|
/// sufficient for doing value operations on it and map the type into
|
|
/// the environment.
|
|
std::pair<GenericEnvironment*, SILType>
|
|
createOpenedElementValueEnvironment(SILType packExpansionTy);
|
|
|
|
GenericEnvironment *
|
|
createOpenedElementValueEnvironment(ArrayRef<SILType> packExpansionTys,
|
|
ArrayRef<SILType*> eltTys);
|
|
GenericEnvironment *
|
|
createOpenedElementValueEnvironment(ArrayRef<SILType> packExpansionTys,
|
|
ArrayRef<SILType*> eltTys,
|
|
ArrayRef<CanType> formalPackExpansionTys,
|
|
ArrayRef<CanType*> formalEltTys);
|
|
|
|
/// Emit a dynamic loop over a single pack-expansion component of a pack.
|
|
///
|
|
/// \param formalPackType - a pack type with the right shape for the
|
|
/// overall pack being iterated over
|
|
/// \param componentIndex - the index of the pack expansion component
|
|
/// within the formal pack type
|
|
/// \param startingAfterIndexWithinComponent - the index prior to the
|
|
/// first index within the component to dynamically visit; if null,
|
|
/// visitation will start at 0
|
|
/// \param limitWithinComponent - the number of elements in a prefix of
|
|
/// the expansion component to dynamically visit; if null, all elements
|
|
/// will be visited
|
|
/// \param openedElementEnv - a set of opened element archetypes to bind
|
|
/// within the loop; can be null to bind no elements
|
|
/// \param reverse - if true, iterate the elements in reverse order,
|
|
/// starting at index limitWithinComponent - 1
|
|
/// \param emitBody - a function that will be called to emit the body of
|
|
/// the loop. It's okay if this has paths that exit the body of the loop,
|
|
/// but it should leave the insertion point set at the end.
|
|
///
|
|
/// The first parameter is the current index within the expansion
|
|
/// component, a value of type Builtin.Word. The second parameter is
|
|
/// that index as a pack indexing instruction that indexes into packs
|
|
/// with the shape of the pack expasion. The third parameter is the
|
|
/// current pack index within the overall pack, a pack indexing instruction
|
|
/// that indexes into packs with the shape of formalPackType.
|
|
///
|
|
/// This function will be called within a cleanups scope and with
|
|
/// InnermostPackExpansion set up properly for the context.
|
|
void emitDynamicPackLoop(
|
|
SILLocation loc, CanPackType formalPackType, unsigned componentIndex,
|
|
SILValue startingAfterIndexWithinComponent, SILValue limitWithinComponent,
|
|
GenericEnvironment *openedElementEnv, bool reverse,
|
|
llvm::function_ref<void(SILValue indexWithinComponent,
|
|
SILValue packExpansionIndex, SILValue packIndex)>
|
|
emitBody,
|
|
SILBasicBlock *loopLatch = nullptr);
|
|
|
|
/// A convenience version of dynamic pack loop that visits an entire
|
|
/// pack expansion component in forward order.
|
|
void emitDynamicPackLoop(
|
|
SILLocation loc, CanPackType formalPackType, unsigned componentIndex,
|
|
GenericEnvironment *openedElementEnv,
|
|
llvm::function_ref<void(SILValue indexWithinComponent,
|
|
SILValue packExpansionIndex, SILValue packIndex)>
|
|
emitBody,
|
|
SILBasicBlock *loopLatch = nullptr);
|
|
|
|
/// Emit a transform on each element of a pack-expansion component
|
|
/// of a pack, write the result into a pack-expansion component of
|
|
/// another pack.
|
|
///
|
|
/// \param inputPackAddr - the address of the input pack; the cleanup
|
|
/// on this pack should be a cleanup for just the pack component,
|
|
/// not for the entire pack
|
|
ManagedValue emitPackTransform(SILLocation loc,
|
|
ManagedValue inputPackAddr,
|
|
CanPackType inputFormalPackType,
|
|
unsigned inputComponentIndex,
|
|
SILValue outputPackAddr,
|
|
CanPackType outputFormalPackType,
|
|
unsigned outputComponentIndex,
|
|
bool isSimpleProjection,
|
|
bool outputIsPlusOne,
|
|
llvm::function_ref<ManagedValue(ManagedValue input,
|
|
SILType outputTy,
|
|
SGFContext context)> emitBody);
|
|
|
|
/// Emit a loop which destroys a prefix of a pack expansion component
|
|
/// of a pack value.
|
|
///
|
|
/// \param packAddr - the address of the overall pack value
|
|
/// \param formalPackType - a pack type with the same shape as the
|
|
/// overall pack value
|
|
/// \param componentIndex - the index of the pack expansion component
|
|
/// within the formal pack type
|
|
/// \param limitWithinComponent - the number of elements in a prefix of
|
|
/// the expansion component to destroy; if null, all elements in the
|
|
/// component will be destroyed
|
|
void emitPartialDestroyPack(SILLocation loc,
|
|
SILValue packAddr,
|
|
CanPackType formalPackType,
|
|
unsigned componentIndex,
|
|
SILValue limitWithinComponent);
|
|
|
|
/// Emit a loop which destroys all the elements of a pack value.
|
|
///
|
|
/// \param packAddr - the address of the overall pack value
|
|
/// \param formalPackType - a pack type with the same shape as the
|
|
/// overall pack value
|
|
void emitDestroyPack(SILLocation loc,
|
|
SILValue packAddr,
|
|
CanPackType formalPackType,
|
|
unsigned beginIndex,
|
|
unsigned endIndex);
|
|
|
|
/// Emit instructions to destroy a suffix of a tuple value.
|
|
///
|
|
/// \param tupleAddr - the address of the overall tuple value
|
|
/// \param inducedPackType - a pack type with the same shape as the
|
|
/// element types of the overall tuple value; can be null if the
|
|
/// tuple type doesn't contain pack expansions
|
|
/// \param componentIndex - the index of the first component to
|
|
/// destroy in the tuple
|
|
void emitDestroyRemainingTupleElements(SILLocation loc,
|
|
SILValue tupleAddr,
|
|
CanPackType inducedPackType,
|
|
unsigned componentIndex);
|
|
|
|
/// Emit a loop which destroys a prefix of a pack expansion component
|
|
/// of a tuple value.
|
|
///
|
|
/// \param tupleAddr - the address of the overall tuple value
|
|
/// \param inducedPackType - a pack type with the same shape as the
|
|
/// element types of the overall tuple value
|
|
/// \param componentIndex - the index of the pack expansion component
|
|
/// within the tuple
|
|
/// \param limitWithinComponent - the number of elements in a prefix of
|
|
/// the expansion component to destroy; if null, all elements in the
|
|
/// component will be destroyed
|
|
void emitPartialDestroyTuple(SILLocation loc,
|
|
SILValue tupleAddr,
|
|
CanPackType inducedPackType,
|
|
unsigned componentIndex,
|
|
SILValue limitWithinComponent);
|
|
|
|
/// Emit a loop which destroys a suffix of a pack expansion component
|
|
/// of a tuple value.
|
|
///
|
|
/// \param tupleAddr - the address of the overall tuple value
|
|
/// \param inducedPackType - a pack type with the same shape as the
|
|
/// element types of the overall tuple value
|
|
/// \param componentIndex - the index of the pack expansion component
|
|
/// within the tuple
|
|
/// \param currentIndexWithinComponent - the current index in the
|
|
/// pack expansion component; all elements *following* this index will
|
|
/// be destroyed
|
|
void emitPartialDestroyRemainingTuple(SILLocation loc,
|
|
SILValue tupleAddr,
|
|
CanPackType inducedPackType,
|
|
unsigned componentIndex,
|
|
SILValue currentIndexWithinComponent);
|
|
|
|
/// Emit a loop which destroys a suffix of a pack expansion component
|
|
/// of a pack value.
|
|
///
|
|
/// \param packAddr - the address of the overall pack value
|
|
/// \param formalPackType - a pack type with the same shape as the
|
|
/// component types of the overall pack value
|
|
/// \param componentIndex - the index of the pack expansion component
|
|
/// within the pack
|
|
/// \param currentIndexWithinComponent - the current index in the
|
|
/// pack expansion component; all elements *following* this index will
|
|
/// be destroyed
|
|
void emitPartialDestroyRemainingPack(SILLocation loc,
|
|
SILValue packAddr,
|
|
CanPackType formalPackType,
|
|
unsigned componentIndex,
|
|
SILValue currentIndexWithinComponent);
|
|
|
|
/// If context is init accessor, find a mapping between the given type
|
|
/// property and argument declaration synthesized for it.
|
|
ParamDecl *isMappedToInitAccessorArgument(VarDecl *property);
|
|
};
|
|
|
|
|
|
/// A utility class for saving and restoring the insertion point.
|
|
class SILGenSavedInsertionPoint {
|
|
SILGenFunction &SGF;
|
|
SILBasicBlock *SavedIP;
|
|
FunctionSection SavedSection;
|
|
public:
|
|
SILGenSavedInsertionPoint(
|
|
SILGenFunction &SGF, SILBasicBlock *newIP,
|
|
std::optional<FunctionSection> optSection = std::nullopt)
|
|
: SGF(SGF), SavedIP(SGF.B.getInsertionBB()),
|
|
SavedSection(SGF.CurFunctionSection) {
|
|
FunctionSection section = (optSection ? *optSection : SavedSection);
|
|
assert((section != FunctionSection::Postmatter ||
|
|
SGF.StartOfPostmatter != SGF.F.end()) &&
|
|
"trying to move to postmatter without a registered start "
|
|
"of postmatter?");
|
|
|
|
SGF.B.setInsertionPoint(newIP);
|
|
SGF.CurFunctionSection = section;
|
|
}
|
|
|
|
SILGenSavedInsertionPoint(const SILGenSavedInsertionPoint &) = delete;
|
|
SILGenSavedInsertionPoint &
|
|
operator=(const SILGenSavedInsertionPoint &) = delete;
|
|
|
|
~SILGenSavedInsertionPoint() {
|
|
if (SavedIP) {
|
|
SGF.B.setInsertionPoint(SavedIP);
|
|
} else {
|
|
SGF.B.clearInsertionPoint();
|
|
}
|
|
SGF.CurFunctionSection = SavedSection;
|
|
}
|
|
};
|
|
|
|
} // end namespace Lowering
|
|
} // end namespace swift
|
|
|
|
#endif
|