Files
swift-mirror/lib/AST/GenericEnvironment.cpp
Joe Groff 5ca6ad9d5e SILGen: Emit property descriptors for conditionally Copyable and Escapable types.
Key paths can't reference non-escapable or non-copyable storage declarations,
so we don't need to refer to them resiliently, and can elide their property
descriptors.

However, declarations may still be conditionally Copyable and Escapable, and
if so, then they still need a property descriptor for resilient key path
references. When a property or subscript can be used in a context where it
is fully Copyable and Escapable, emit the property descriptor in a generic
environment constrained by the necessary conditional constraints.

Fixes rdar://151628396.
2025-05-27 20:18:58 -07:00

805 lines
27 KiB
C++

//===--- GenericEnvironment.cpp - GenericEnvironment AST ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the GenericEnvironment class.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/TypeTransform.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Defer.h"
using namespace swift;
size_t GenericEnvironment::numTrailingObjects(
OverloadToken<SubstitutionMap>) const {
switch (getKind()) {
case Kind::Primary:
return 0;
case Kind::OpenedExistential:
case Kind::OpenedElement:
case Kind::Opaque:
return 1;
}
}
size_t GenericEnvironment::numTrailingObjects(
OverloadToken<OpaqueEnvironmentData>) const {
switch (getKind()) {
case Kind::Primary:
case Kind::OpenedExistential:
case Kind::OpenedElement:
return 0;
case Kind::Opaque:
return 1;
}
}
size_t GenericEnvironment::numTrailingObjects(
OverloadToken<OpenedExistentialEnvironmentData>) const {
switch (getKind()) {
case Kind::Primary:
case Kind::Opaque:
case Kind::OpenedElement:
return 0;
case Kind::OpenedExistential:
return 1;
}
}
size_t GenericEnvironment::numTrailingObjects(
OverloadToken<OpenedElementEnvironmentData>) const {
switch (getKind()) {
case Kind::Primary:
case Kind::Opaque:
case Kind::OpenedExistential:
return 0;
case Kind::OpenedElement:
return 1;
}
}
size_t GenericEnvironment::numTrailingObjects(OverloadToken<Type>) const {
return getGenericParams().size()
+ (getKind() == Kind::OpenedElement ? getNumOpenedPackParams() : 0);
}
/// Retrieve the array containing the context types associated with the
/// generic parameters, stored in parallel with the generic parameters of the
/// generic signature.
MutableArrayRef<Type> GenericEnvironment::getContextTypes() {
return MutableArrayRef<Type>(getTrailingObjects<Type>(),
getGenericParams().size());
}
/// Retrieve the array containing the context types associated with the
/// generic parameters, stored in parallel with the generic parameters of the
/// generic signature.
ArrayRef<Type> GenericEnvironment::getContextTypes() const {
return ArrayRef<Type>(getTrailingObjects<Type>(),
getGenericParams().size());
}
unsigned GenericEnvironment::getNumOpenedPackParams() const {
assert(getKind() == Kind::OpenedElement);
return getGenericSignature().getInnermostGenericParams().size();
}
MutableArrayRef<Type> GenericEnvironment::getOpenedPackParams() {
auto begin = getTrailingObjects<Type>() + getGenericParams().size();
return MutableArrayRef<Type>(begin, getNumOpenedPackParams());
}
ArrayRef<Type> GenericEnvironment::getOpenedPackParams() const {
auto begin = getTrailingObjects<Type>() + getGenericParams().size();
return ArrayRef<Type>(begin, getNumOpenedPackParams());
}
ArrayRef<GenericTypeParamType *>
GenericEnvironment::getGenericParams() const {
return getGenericSignature().getGenericParams();
}
SubstitutionMap GenericEnvironment::getOuterSubstitutions() const {
assert(getKind() != Kind::Primary);
return *getTrailingObjects<SubstitutionMap>();
}
OpaqueTypeDecl *GenericEnvironment::getOpaqueTypeDecl() const {
assert(getKind() == Kind::Opaque);
return getTrailingObjects<OpaqueEnvironmentData>()->decl;
}
CanGenericTypeParamType
GenericEnvironment::getOpenedElementShapeClass() const {
assert(getKind() == Kind::OpenedElement);
auto environmentData = getTrailingObjects<OpenedElementEnvironmentData>();
return environmentData->shapeClass;
}
Type GenericEnvironment::getOpenedExistentialType() const {
assert(getKind() == Kind::OpenedExistential);
return getTrailingObjects<OpenedExistentialEnvironmentData>()->existential;
}
UUID GenericEnvironment::getOpenedExistentialUUID() const {
assert(getKind() == Kind::OpenedExistential);
return getTrailingObjects<OpenedExistentialEnvironmentData>()->uuid;
}
UUID GenericEnvironment::getOpenedElementUUID() const {
assert(getKind() == Kind::OpenedElement);
return getTrailingObjects<OpenedElementEnvironmentData>()->uuid;
}
void GenericEnvironment::forEachPackElementArchetype(
llvm::function_ref<void(ElementArchetypeType *)> function) const {
auto packElements = getGenericSignature().getInnermostGenericParams();
for (auto eltInterfaceType: packElements) {
auto *elementArchetype =
mapTypeIntoContext(eltInterfaceType)->castTo<ElementArchetypeType>();
function(elementArchetype);
}
}
void GenericEnvironment::forEachPackElementGenericTypeParam(
llvm::function_ref<void(GenericTypeParamType *)> function) const {
auto sig = getGenericSignature();
auto shapeClass = getOpenedElementShapeClass();
auto packElements = sig.getInnermostGenericParams();
auto packElementDepth = packElements.front()->getDepth();
// Each parameter pack in the outer generic parameters has
// a corresponding pack element parameter at the innermost
// depth.
for (auto *genericParam : getGenericParams()) {
if (genericParam->getDepth() == packElementDepth)
break;
if (!genericParam->isParameterPack())
continue;
// Only include opened element parameters for packs in the given
// shape equivalence class.
if (!sig->haveSameShape(genericParam, shapeClass))
continue;
function(genericParam);
}
}
void GenericEnvironment::forEachPackElementBinding(
PackElementBindingCallback function) const {
auto sig = getGenericSignature();
auto packElements = sig.getInnermostGenericParams();
auto elementIt = packElements.begin();
forEachPackElementGenericTypeParam([&](auto *genericParam) {
assert(elementIt != packElements.end());
auto *elementArchetype =
mapTypeIntoContext(*elementIt++)->castTo<ElementArchetypeType>();
auto *packSubstitution = maybeApplyOuterContextSubstitutions(genericParam)
->getPackSubstitutionAsPackType();
function(elementArchetype, packSubstitution);
});
assert(elementIt == packElements.end());
}
GenericEnvironment::GenericEnvironment(GenericSignature signature)
: SignatureAndKind(signature, Kind::Primary)
{
// Clear out the memory that holds the context types.
std::uninitialized_fill(getContextTypes().begin(), getContextTypes().end(),
Type());
}
GenericEnvironment::GenericEnvironment(
GenericSignature signature,
Type existential, SubstitutionMap subs, UUID uuid)
: SignatureAndKind(signature, Kind::OpenedExistential)
{
*getTrailingObjects<SubstitutionMap>() = subs;
new (getTrailingObjects<OpenedExistentialEnvironmentData>())
OpenedExistentialEnvironmentData{ existential, uuid };
// Clear out the memory that holds the context types.
std::uninitialized_fill(getContextTypes().begin(), getContextTypes().end(),
Type());
}
GenericEnvironment::GenericEnvironment(
GenericSignature signature, OpaqueTypeDecl *opaque, SubstitutionMap subs)
: SignatureAndKind(signature, Kind::Opaque)
{
*getTrailingObjects<SubstitutionMap>() = subs;
new (getTrailingObjects<OpaqueEnvironmentData>())
OpaqueEnvironmentData{opaque};
// Clear out the memory that holds the context types.
std::uninitialized_fill(getContextTypes().begin(), getContextTypes().end(),
Type());
}
GenericEnvironment::GenericEnvironment(GenericSignature signature,
UUID uuid,
CanGenericTypeParamType shapeClass,
SubstitutionMap outerSubs)
: SignatureAndKind(signature, Kind::OpenedElement)
{
*getTrailingObjects<SubstitutionMap>() = outerSubs;
new (getTrailingObjects<OpenedElementEnvironmentData>())
OpenedElementEnvironmentData{uuid, shapeClass};
// Clear out the memory that holds the context types.
std::uninitialized_fill(getContextTypes().begin(), getContextTypes().end(),
Type());
// Fill in the array of opened pack parameters.
auto openedPacksBuffer = getOpenedPackParams();
unsigned i = 0;
for (auto param : signature.getGenericParams()) {
if (!param->isParameterPack()) continue;
if (!signature->haveSameShape(param, shapeClass)) continue;
openedPacksBuffer[i++] = param;
}
assert(i == openedPacksBuffer.size());
}
class GenericEnvironment::NestedTypeStorage
: public llvm::DenseMap<CanType, Type> { };
void GenericEnvironment::addMapping(CanType depType, Type contextType) {
if (auto genericParam = dyn_cast<GenericTypeParamType>(depType)) {
GenericParamKey key(genericParam);
// Find the index into the parallel arrays of generic parameters and
// context types.
auto genericParams = getGenericParams();
unsigned index = key.findIndexIn(genericParams);
assert(genericParams[index] == key && "Bad generic parameter");
// Add the mapping from the generic parameter to the context type.
assert(getContextTypes()[index].isNull() ||
getContextTypes()[index]->is<ErrorType>() &&
"Already recoded this mapping");
getContextTypes()[index] = contextType;
} else {
getOrCreateNestedTypeStorage()[depType] = contextType;
}
}
Type GenericEnvironment::getMappingIfPresent(CanType depType) const {
if (auto genericParam = dyn_cast<GenericTypeParamType>(depType)) {
GenericParamKey key(genericParam);
// Find the index into the parallel arrays of generic parameters and
// context types.
auto genericParams = getGenericParams();
unsigned index = key.findIndexIn(genericParams);
assert(genericParams[index] == key && "Bad generic parameter");
return getContextTypes()[index];
} else {
auto &storage = const_cast<GenericEnvironment *>(this)
->getOrCreateNestedTypeStorage();
auto found = storage.find(depType);
if (found != storage.end())
return found->second;
return Type();
}
}
Type
GenericEnvironment::maybeApplyOuterContextSubstitutions(Type type) const {
switch (getKind()) {
case Kind::Primary:
return type;
case Kind::OpenedExistential:
case Kind::OpenedElement:
case Kind::Opaque: {
if (auto subs = getOuterSubstitutions()) {
OuterSubstitutions replacer{subs,
getGenericSignature()->getMaxDepth()};
return type.subst(replacer, replacer);
}
return type;
}
}
}
Type GenericEnvironment::mapTypeIntoContext(GenericEnvironment *env,
Type type) {
assert(!type->hasPrimaryArchetype() && "already have a contextual type");
if (!env) {
assert(!type->hasTypeParameter() &&
"no generic environment provided for type with type parameters");
return type;
}
return env->mapTypeIntoContext(type);
}
Type MapTypeOutOfContext::operator()(SubstitutableType *type) const {
if (isa<PrimaryArchetypeType>(type) ||
isa<PackArchetypeType>(type)) {
return cast<ArchetypeType>(type)->getInterfaceType();
}
return type;
}
Type TypeBase::mapTypeOutOfContext() {
assert(!hasTypeParameter() && "already have an interface type");
return Type(this).subst(MapTypeOutOfContext(),
MakeAbstractConformanceForGenericType(),
SubstFlags::PreservePackExpansionLevel |
SubstFlags::SubstitutePrimaryArchetypes);
}
auto GenericEnvironment::getOrCreateNestedTypeStorage() -> NestedTypeStorage & {
if (nestedTypeStorage)
return *nestedTypeStorage;
nestedTypeStorage = new NestedTypeStorage();
ASTContext &ctx = getGenericParams().front()->getASTContext();
ctx.addCleanup([nestedTypeStorage=this->nestedTypeStorage]() {
delete nestedTypeStorage;
});
return *nestedTypeStorage;
}
Type
GenericEnvironment::getOrCreateArchetypeFromInterfaceType(Type depType) {
auto canType = depType->getCanonicalType();
// Have we seen this exact type parameter before?
if (auto type = getMappingIfPresent(canType))
return type;
auto genericSig = getGenericSignature();
// Reduce it.
auto reducedType = genericSig->getReducedTypeParameter(canType);
// If this type parameter is equivalent to a concrete type,
// map the concrete type into context and cache the result.
if (!reducedType->isTypeParameter()) {
auto result = mapTypeIntoContext(reducedType);
addMapping(canType, result);
return result;
}
auto &ctx = genericSig->getASTContext();
// If the original type parameter was not reduced, see if we have an
// archetype for the reduced type parameter.
if (canType != reducedType) {
if (auto type = getMappingIfPresent(reducedType)) {
// Cache the result.
addMapping(canType, type);
return type;
}
}
// Otherwise, we're going to create a new archetype. Look up its
// requirements.
auto requirements = genericSig->getLocalRequirements(reducedType);
Type result;
auto sugaredType = genericSig->getSugaredType(reducedType);
auto rootGP = reducedType->getRootGenericParam();
switch (getKind()) {
case Kind::Primary:
if (rootGP->isParameterPack()) {
result = PackArchetypeType::get(ctx, this, sugaredType,
requirements.packShape,
requirements.protos,
requirements.superclass,
requirements.layout);
} else {
result = PrimaryArchetypeType::getNew(ctx, this, sugaredType,
requirements.protos,
requirements.superclass,
requirements.layout);
}
break;
case Kind::Opaque: {
// If the anchor type isn't rooted in a generic parameter that
// represents an opaque declaration, then apply the outer substitutions.
// It would be incorrect to build an opaque type archetype here.
if (rootGP->getDepth() < genericSig->getMaxDepth()) {
result = maybeApplyOuterContextSubstitutions(reducedType);
break;
}
result = OpaqueTypeArchetypeType::getNew(this, sugaredType,
requirements.protos,
requirements.superclass,
requirements.layout);
break;
}
case Kind::OpenedExistential: {
if (rootGP->getDepth() < genericSig->getMaxDepth()) {
result = maybeApplyOuterContextSubstitutions(reducedType);
break;
}
// FIXME: The existential layout's protocols might differ from the
// canonicalized set of protocols determined by the generic signature.
// Before NestedArchetypeType was removed, we used the former when
// building a root ExistentialArchetypeType, and the latter when building
// nested archetypes.
// For compatibility, continue using the existential layout's version when
// the interface type is a generic parameter. We should align these at
// some point.
if (isa<GenericTypeParamType>(reducedType)) {
auto layout = getOpenedExistentialType()->getExistentialLayout();
SmallVector<ProtocolDecl *, 2> protos;
for (auto proto : layout.getProtocols())
protos.push_back(proto);
result = ExistentialArchetypeType::getNew(this, sugaredType, protos,
requirements.superclass,
requirements.layout);
} else {
result = ExistentialArchetypeType::getNew(this, sugaredType,
requirements.protos,
requirements.superclass,
requirements.layout);
}
break;
}
case Kind::OpenedElement: {
if (rootGP->getDepth() < genericSig->getMaxDepth()) {
result = maybeApplyOuterContextSubstitutions(reducedType);
break;
}
result = ElementArchetypeType::getNew(this, sugaredType,
requirements.protos,
requirements.superclass,
requirements.layout);
break;
}
}
// Cache the result.
addMapping(canType, result);
if (canType != reducedType)
addMapping(reducedType, result);
return result;
}
Type QueryInterfaceTypeSubstitutions::operator()(SubstitutableType *type) const{
auto gp = type->castTo<GenericTypeParamType>();
// Find the index into the parallel arrays of generic parameters and
// context types.
auto genericParams = self->getGenericParams();
GenericParamKey key(gp);
// Make sure that this generic parameter is from this environment and
// return substitution failure if not.
unsigned index = key.findIndexIn(genericParams);
if (index == genericParams.size())
return Type();
// If the context type isn't already known, lazily create it.
if (auto contextType = self->getContextTypes()[index])
return contextType;
return const_cast<GenericEnvironment *>(self)
->getOrCreateArchetypeFromInterfaceType(gp);
}
namespace {
struct MapTypeIntoContext: TypeTransform<MapTypeIntoContext> {
GenericEnvironment *env;
explicit MapTypeIntoContext(GenericEnvironment *env, ASTContext &ctx)
: TypeTransform(ctx), env(env) {}
std::optional<Type> transform(TypeBase *type, TypePosition pos) {
if (!type->hasTypeParameter())
return Type(type);
return std::nullopt;
}
Type transformGenericTypeParamType(GenericTypeParamType *param,
TypePosition pos) {
return env->getOrCreateArchetypeFromInterfaceType(param);
}
Type transformDependentMemberType(DependentMemberType *dependent,
TypePosition pos) {
return env->getOrCreateArchetypeFromInterfaceType(dependent);
}
CanType transformSILField(CanType fieldTy, TypePosition pos) {
return fieldTy;
}
};
}
Type GenericEnvironment::mapTypeIntoContext(Type type) const {
assert(!type->hasPrimaryArchetype() && "already have a contextual type");
if (!type->hasTypeParameter())
return type;
return MapTypeIntoContext(const_cast<GenericEnvironment *>(this),
type->getASTContext())
.doIt(type, TypePosition::Invariant);
}
Type GenericEnvironment::mapTypeIntoContext(GenericTypeParamType *type) const {
return const_cast<GenericEnvironment *>(this)
->getOrCreateArchetypeFromInterfaceType(type);
}
namespace {
struct FindElementArchetypeForOpenedPackParam {
ArrayRef<Type> openedPacks;
ArrayRef<GenericTypeParamType *> packElementParams;
const GenericEnvironment *env;
FindElementArchetypeForOpenedPackParam(const GenericEnvironment *env,
ArrayRef<Type> openedPacks)
: openedPacks(openedPacks),
packElementParams(env->getGenericSignature().getInnermostGenericParams()),
env(env) {}
Type getInterfaceType(Type interfaceType) const {
if (auto member = interfaceType->getAs<DependentMemberType>()) {
return DependentMemberType::get(getInterfaceType(member->getBase()),
member->getAssocType());
}
assert(interfaceType->is<GenericTypeParamType>());
for (auto i : indices(openedPacks)) {
if (openedPacks[i]->isEqual(interfaceType))
return packElementParams[i];
}
llvm_unreachable("parameter was not an opened pack parameter");
}
Type operator()(Type interfaceType) const {
return env->mapTypeIntoContext(getInterfaceType(interfaceType));
}
};
}
/// So this expects a type written with the archetypes of the original generic
/// environment, not 'this', the opened element environment, because it is the
/// original PackArchetypes that become ElementArchetypes. Also this function
/// does not apply outer substitutions, which might not be what you expect.
Type
GenericEnvironment::mapContextualPackTypeIntoElementContext(Type type) const {
assert(getKind() == Kind::OpenedElement);
assert(!type->hasTypeParameter() && "expected contextual type");
if (!type->hasPackArchetype()) return type;
auto sig = getGenericSignature();
auto shapeClass = getOpenedElementShapeClass();
FindElementArchetypeForOpenedPackParam
findElementArchetype(this, getOpenedPackParams());
return type.transformTypeParameterPacks(
[&](SubstitutableType *ty) -> std::optional<Type> {
if (auto *packArchetype = dyn_cast<PackArchetypeType>(ty)) {
auto interfaceType = packArchetype->getInterfaceType();
if (sig->haveSameShape(interfaceType, shapeClass))
return Type(findElementArchetype(interfaceType));
}
return std::nullopt;
});
}
CanType
GenericEnvironment::mapContextualPackTypeIntoElementContext(CanType type) const {
return CanType(mapContextualPackTypeIntoElementContext(Type(type)));
}
/// Unlike mapContextualPackTypeIntoElementContext(), this also applies outer
/// substitutions, so it behaves like mapTypeIntoContext() in that respect.
Type
GenericEnvironment::mapPackTypeIntoElementContext(Type type) const {
assert(getKind() == Kind::OpenedElement);
assert(!type->hasPackArchetype());
if (!type->hasParameterPack()) return type;
// Get a contextual type in the original generic environment, not the
// substituted one, which is what mapContextualPackTypeIntoElementContext()
// expects.
auto contextualType = getOuterSubstitutions()
.getGenericSignature().getGenericEnvironment()->mapTypeIntoContext(type);
contextualType = mapContextualPackTypeIntoElementContext(contextualType);
return maybeApplyOuterContextSubstitutions(contextualType);
}
Type
GenericEnvironment::mapElementTypeIntoPackContext(Type type) const {
assert(getKind() == Kind::Primary);
// We need to pass in an archetype to get the shape class from its
// generic environment.
assert(type->hasElementArchetype());
GenericEnvironment *elementEnv = nullptr;
// Map element archetypes to interface types in the element generic
// environment's signature.
type = type.subst(
[&](SubstitutableType *type) -> Type {
auto *archetype = cast<ArchetypeType>(type);
if (isa<ExistentialArchetypeType>(archetype))
return archetype;
if (isa<ElementArchetypeType>(archetype)) {
assert(!elementEnv ||
elementEnv == archetype->getGenericEnvironment());
elementEnv = archetype->getGenericEnvironment();
}
return archetype->getInterfaceType();
},
MakeAbstractConformanceForGenericType(),
SubstFlags::PreservePackExpansionLevel |
SubstFlags::SubstitutePrimaryArchetypes |
SubstFlags::SubstituteLocalArchetypes);
auto shapeClass = elementEnv->getOpenedElementShapeClass();
llvm::SmallVector<GenericTypeParamType *, 2> members;
auto elementDepth = elementEnv->getGenericSignature()->getMaxDepth();
auto sig = getGenericSignature();
for (auto *genericParam : sig.getGenericParams()) {
if (!genericParam->isParameterPack())
continue;
if (!sig->haveSameShape(genericParam, shapeClass))
continue;
members.push_back(genericParam);
}
// Map element interface types to pack archetypes.
QueryInterfaceTypeSubstitutions mapIntoContext(this);
return type.subst(
[&](SubstitutableType *type) {
auto *genericParam = cast<GenericTypeParamType>(type);
if (genericParam->getDepth() == elementDepth) {
genericParam = members[genericParam->getIndex()];
assert(genericParam->isParameterPack());
}
return mapIntoContext(genericParam);
},
LookUpConformanceInModule(),
SubstFlags::PreservePackExpansionLevel);
}
namespace {
/// A function suitable for use as a \c TypeSubstitutionFn that produces
/// correct forwarding substitutions for a generic environment.
///
/// This differs from QueryInterfaceTypeSubstitutions only in that it
/// always produces PackTypes for pack parameters.
class BuildForwardingSubstitutions {
QueryInterfaceTypeSubstitutions Query;
public:
BuildForwardingSubstitutions(const GenericEnvironment *self)
: Query(self) { }
Type operator()(SubstitutableType *type) const;
};
} // end anonymous namespace
Type BuildForwardingSubstitutions::operator()(SubstitutableType *type) const {
if (auto resultType = Query(type)) {
auto param = cast<GenericTypeParamType>(type);
if (!param->isParameterPack())
return resultType;
if (resultType->is<PackType>())
return resultType;
return PackType::getSingletonPackExpansion(resultType);
}
return Type();
}
SubstitutionMap
GenericEnvironment::getForwardingSubstitutionMap() const {
auto genericSig = getGenericSignature();
return SubstitutionMap::get(genericSig,
BuildForwardingSubstitutions(this),
MakeAbstractConformanceForGenericType());
}
std::pair<Type, ProtocolConformanceRef>
GenericEnvironment::mapConformanceRefIntoContext(GenericEnvironment *genericEnv,
Type conformingType,
ProtocolConformanceRef conformance) {
if (!genericEnv)
return {conformingType, conformance};
return genericEnv->mapConformanceRefIntoContext(conformingType, conformance);
}
std::pair<Type, ProtocolConformanceRef>
GenericEnvironment::mapConformanceRefIntoContext(
Type conformingInterfaceType,
ProtocolConformanceRef conformance) const {
auto contextConformance = conformance.subst(conformingInterfaceType,
QueryInterfaceTypeSubstitutions(this),
LookUpConformanceInModule());
auto contextType = mapTypeIntoContext(conformingInterfaceType);
return {contextType, contextConformance};
}
OpenedElementContext
OpenedElementContext::createForContextualExpansion(ASTContext &ctx,
CanPackExpansionType expansionType) {
assert(!expansionType->hasTypeParameter() &&
"must be given a contextual type");
// Get the outer generic signature and environment.
auto countArchetype = cast<ArchetypeType>(expansionType.getCountType());
auto *genericEnv = countArchetype->getGenericEnvironment();
auto subMap = genericEnv->getForwardingSubstitutionMap();
auto countType = cast<GenericTypeParamType>(
countArchetype->getInterfaceType()->getCanonicalType());
auto genericSig = genericEnv->getGenericSignature().getCanonicalSignature();
// Create an opened element signature and environment.
auto elementSig = ctx.getOpenedElementSignature(
genericSig, countType);
auto *elementEnv = GenericEnvironment::forOpenedElement(
elementSig, UUID::fromTime(), countType, subMap);
return {elementEnv, elementSig};
}