Files
swift-mirror/lib/AST/ASTPrinter.cpp

3967 lines
117 KiB
C++

//===--- ASTPrinter.cpp - Swift Language AST Printer ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements printing for the Swift ASTs.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ArchetypeBuilder.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/Attr.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/PrintOptions.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/TypeVisitor.h"
#include "swift/AST/TypeWalker.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Fallthrough.h"
#include "swift/Basic/PrimitiveParsing.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Basic/StringExtras.h"
#include "swift/Parse/Lexer.h"
#include "swift/Basic/Defer.h" // Must come after include of Tokens.def.
#include "swift/Config.h"
#include "swift/Sema/IDETypeChecking.h"
#include "swift/Strings.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/Basic/Module.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/SaveAndRestore.h"
#include <algorithm>
using namespace swift;
namespace swift {
std::unique_ptr<llvm::DenseMap<StringRef, Type>>
collectNameTypeMap(Type Ty, const DeclContext *DC) {
std::unique_ptr<llvm::DenseMap<StringRef, Type>> IdMap(
new llvm::DenseMap<StringRef, Type>());
Type BaseTy = Ty->getRValueType();
do {
auto D = BaseTy->getNominalOrBoundGenericNominal();
if (!D || !D->getGenericParams())
continue;
SmallVector<Type, 3> Scrach;
auto Args = BaseTy->getAllGenericArgs(Scrach);
const auto ParamDecls = D->getGenericParams()->getParams();
assert(ParamDecls.size() == Args.size());
// Map type parameter names with their instantiating arguments.
for(unsigned I = 0, N = ParamDecls.size(); I < N; I ++) {
(*IdMap)[ParamDecls[I]->getName().str()] = Args[I];
}
} while ((BaseTy = BaseTy->getSuperclass(nullptr)));
return IdMap;
}
class PrinterArchetypeTransformer {
public:
virtual Type transform(Type Ty) = 0;
virtual StringRef transform(StringRef TypeName) = 0;
virtual ~PrinterArchetypeTransformer() {};
};
class PrinterArchetypeNameTransformer : public PrinterArchetypeTransformer{
Type BaseTy;
llvm::DenseMap<TypeBase *, Type> Cache;
std::unique_ptr<llvm::DenseMap<StringRef, Type>> IdMap;
public:
PrinterArchetypeNameTransformer(Type Ty, const DeclContext *DC) :
BaseTy(Ty->getRValueType()), IdMap(collectNameTypeMap(Ty, DC)){}
StringRef transform(StringRef TypeName) override {
return TypeName;
}
Type transform(Type Ty) override {
return Ty.transform([&](Type Ty) -> Type {
if (Ty->getKind() != TypeKind::Archetype)
return Ty;
// First, we try to find the map from cache.
if (Cache.count(Ty.getPointer()) > 0) {
return Cache[Ty.getPointer()];
}
auto Id = cast<ArchetypeType>(Ty.getPointer())->getName().str();
auto Result = Ty;
// Iterate the IdMap to find the argument type of the given param name.
for (auto It = IdMap->begin(); It != IdMap->end(); ++ It) {
if (Id == It->getFirst()) {
Result = It->getSecond();
break;
}
}
// Put the result into cache.
Cache[Ty.getPointer()] = Result;
return Result;
});
}
};
class ArchetypeSelfTransformer : public PrinterArchetypeTransformer {
Type BaseTy;
DeclContext &DC;
const ASTContext &Ctx;
std::unique_ptr<PrinterArchetypeTransformer> NameTransformer;
llvm::StringMap<Type> Map;
std::vector<std::unique_ptr<std::string>> Buffers;
Type tryNamedArchetypeTransform(Type T) {
if (NameTransformer) {
return NameTransformer->transform(T);
}
return T;
}
StringRef tryNamedArchetypeTransform(StringRef T) {
if (NameTransformer) {
return NameTransformer->transform(T);
}
return T;
}
std::function<Type(Type)> F = [&] (Type Ty) {
auto Original = Ty;
Ty = Ty->getDesugaredType();
if (Ty->getKind() != TypeKind::Archetype)
return Original;
auto ATT = cast<ArchetypeType>(Ty.getPointer());
ArchetypeType *Self = ATT;
std::vector<Identifier> Names;
for(; Self->getParent(); Self = Self->getParent()) {
Names.insert(Names.begin(), Self->getName());
}
if (!Self->getSelfProtocol() || Names.empty())
return tryNamedArchetypeTransform(Ty);
Type Result = checkMemberType(DC, BaseTy, Names);
if (Result)
return Type(Result->getDesugaredType());
else
return tryNamedArchetypeTransform(Ty);
};
public:
ArchetypeSelfTransformer(NominalTypeDecl *NTD):
BaseTy(NTD->getDeclaredTypeInContext()),
DC(*NTD),
Ctx(NTD->getASTContext()) {}
ArchetypeSelfTransformer(Type BaseTy, DeclContext &DC):
BaseTy(BaseTy->getRValueType()), DC(DC), Ctx(DC.getASTContext()),
NameTransformer(new PrinterArchetypeNameTransformer(BaseTy, &DC)){}
Type transform(Type Ty) override {
return Ty.transform(F);
}
Type checkMemberTypeInternal(StringRef TypeName) {
ASTContext &Ctx = DC.getASTContext();
llvm::SmallVector<StringRef, 4> Parts;
TypeName.split(Parts, '.');
std::vector<Identifier> Names;
for (unsigned I = 0; I < Parts.size(); ++ I) {
if (I == 0 && Parts[I] == "Self")
continue;
Names.push_back(Ctx.getIdentifier(Parts[I]));
}
return checkMemberType(DC, BaseTy, Names);
}
StringRef transform(StringRef TypeName) override {
if (auto Result = checkMemberTypeInternal(TypeName)) {
Result = Result->getDesugaredType();
std::unique_ptr<std::string> pBuffer(new std::string);
llvm::raw_string_ostream OS(*pBuffer);
Result.print(OS);
OS.str();
Buffers.push_back(std::move(pBuffer));
return StringRef(*Buffers.back());
}
return tryNamedArchetypeTransform(TypeName);
}
};
struct SynthesizedExtensionAnalyzer::Implementation {
typedef llvm::MapVector<ExtensionDecl*, SynthesizedExtensionInfo> ExtMap;
NominalTypeDecl *Target;
Type BaseType;
DeclContext *DC;
std::unique_ptr<ArchetypeSelfTransformer> pTransform;
bool IncludeUnconditional;
std::unique_ptr<ExtMap> Results;
Implementation(NominalTypeDecl *Target, bool IncludeUnconditional):
Target(Target),
BaseType(Target->getDeclaredTypeInContext()),
DC(Target),
pTransform(new ArchetypeSelfTransformer(Target)),
IncludeUnconditional(IncludeUnconditional),
Results(collectSynthesizedExtensionInfo()) {}
Type checkElementType(StringRef Text) {
assert(Text.find('<') == StringRef::npos && "Not element type.");
assert(Text.find(',') == StringRef::npos && "Not element type.");
if (auto Result = pTransform->checkMemberTypeInternal(Text)) {
return Result;
}
return lookUpTypeInContext(DC, Text);
}
Type parseComplexTypeString(StringRef Text) {
Text = Text.trim();
auto ParamStart = Text.find_first_of('<');
auto ParamEnd = Text.find_last_of('>');
if(StringRef::npos == ParamStart) {
return checkElementType(Text);
}
Type GenericType = checkElementType(StringRef(Text.data(), ParamStart));
if (!GenericType)
return Type();
NominalTypeDecl *NTD = GenericType->getAnyNominal();
if (!NTD || NTD->getInnermostGenericParamTypes().empty())
return GenericType;
StringRef Param = StringRef(Text.data() + ParamStart + 1,
ParamEnd - ParamStart - 1);
std::vector<char> Brackets;
std::vector<Type> Arguments;
unsigned CurrentStart = 0;
for (unsigned I = 0; I < Param.size(); ++ I) {
char C = Param[I];
if (C == '<')
Brackets.push_back(C);
else if (C == '>')
Brackets.pop_back();
else if (C == ',' && Brackets.empty()) {
StringRef ArgString(Param.data() + CurrentStart, I - CurrentStart);
Type Arg = parseComplexTypeString(ArgString);
if (Arg.isNull())
return GenericType;
Arguments.push_back(Arg);
CurrentStart = I + 1;
}
}
// Add the last argument, or the only argument.
StringRef ArgString(Param.data() + CurrentStart,
Param.size() - CurrentStart);
Type Arg = parseComplexTypeString(ArgString);
if (Arg.isNull())
return GenericType;
Arguments.push_back(Arg);
auto GenericParams = NTD->getInnermostGenericParamTypes();
assert(Arguments.size() == GenericParams.size());
TypeSubstitutionMap Map;
for (auto It = GenericParams.begin(); It != GenericParams.end(); ++ It) {
auto Index = std::distance(GenericParams.begin(), It);
Map[(*It)->getCanonicalType()->castTo<SubstitutableType>()] =
Arguments[Index];
}
auto MType = NTD->getInterfaceType().subst(DC->getParentModule(), Map, None);
return MType->getAs<AnyMetatypeType>()->getInstanceType();
}
SynthesizedExtensionInfo isApplicable(ExtensionDecl *Ext) {
SynthesizedExtensionInfo Result;
if (!Ext->isConstrainedExtension()) {
if (IncludeUnconditional)
Result.Ext = Ext;
return Result;
}
assert(Ext->getGenericParams() && "No generic params.");
for (auto Req : Ext->getGenericParams()->getRequirements()){
auto TupleOp = Req.getAsAnalyzedWrittenString();
if (!TupleOp)
continue;
StringRef FirstType = std::get<0>(TupleOp.getValue());
StringRef SecondType = std::get<1>(TupleOp.getValue());
RequirementReprKind Kind = std::get<2>(TupleOp.getValue());
Type First = pTransform->checkMemberTypeInternal(FirstType);
Type Second = lookUpTypeInContext(DC, SecondType);
if (!First)
First = parseComplexTypeString(FirstType);
if (!Second)
Second = parseComplexTypeString(SecondType);
if (First && Second) {
First = First->getDesugaredType();
Second = Second->getDesugaredType();
switch (Kind) {
case RequirementReprKind::TypeConstraint:
if(!canPossiblyConvertTo(First, Second, *DC))
return Result;
else if (isConvertibleTo(First, Second, *DC))
Result.KnownSatisfiedRequirements.push_back(Req.getAsWrittenString());
break;
case RequirementReprKind::SameType:
if (!canPossiblyEqual(First, Second, *DC))
return Result;
else if (isEqual(First, Second, *DC))
Result.KnownSatisfiedRequirements.push_back(Req.getAsWrittenString());
break;
}
}
}
Result.Ext = Ext;
return Result;
}
std::unique_ptr<ExtMap> collectSynthesizedExtensionInfo() {
std::unique_ptr<ExtMap> pMap(new ExtMap());
if (Target->getKind() == DeclKind::Protocol)
return pMap;
std::vector<NominalTypeDecl*> Unhandled;
auto addTypeLocNominal = [&](TypeLoc TL){
if (TL.getType()) {
if (auto D = TL.getType()->getAnyNominal()) {
Unhandled.push_back(D);
}
}
};
for (auto TL : Target->getInherited()) {
addTypeLocNominal(TL);
}
while(!Unhandled.empty()) {
NominalTypeDecl* Back = Unhandled.back();
Unhandled.pop_back();
for (ExtensionDecl *E : Back->getExtensions()) {
if (auto Info = isApplicable(E))
(*pMap)[E] = Info;
for (auto TL : Back->getInherited()) {
addTypeLocNominal(TL);
}
}
}
return pMap;
}
};
SynthesizedExtensionAnalyzer::
SynthesizedExtensionAnalyzer(NominalTypeDecl *Target,
bool IncludeUnconditional):
Impl(*(new Implementation(Target, IncludeUnconditional))) {}
SynthesizedExtensionAnalyzer::~SynthesizedExtensionAnalyzer() {delete &Impl;}
bool SynthesizedExtensionAnalyzer::
isInSynthesizedExtension(const ValueDecl *VD) {
if(auto Ext = dyn_cast_or_null<ExtensionDecl>(VD->getDeclContext()->
getInnermostTypeContext())) {
return Impl.Results->count(Ext) != 0;
}
return false;
}
void SynthesizedExtensionAnalyzer::
forEachSynthesizedExtension(llvm::function_ref<void(ExtensionDecl*)> Fn) {
for (auto It = Impl.Results->begin(); It != Impl.Results->end(); ++ It) {
Fn(It->first);
}
}
bool SynthesizedExtensionAnalyzer::
shouldPrintRequirement(ExtensionDecl *ED, StringRef Req) {
auto Found = Impl.Results->find(ED);
if (Found != Impl.Results->end()) {
std::vector<StringRef> &KnownReqs = Found->second.KnownSatisfiedRequirements;
return KnownReqs.end() == std::find(KnownReqs.begin(), KnownReqs.end(), Req);
}
return true;
}
}
PrintOptions PrintOptions::printTypeInterface(Type T, const DeclContext *DC) {
PrintOptions result = printInterface();
result.TransformContext = std::make_shared<ArchetypeTransformContext>(
new PrinterArchetypeNameTransformer(T, DC), T);
return result;
}
void PrintOptions::setArchetypeTransform(Type T, const DeclContext *DC) {
TransformContext = std::make_shared<ArchetypeTransformContext>(
new PrinterArchetypeNameTransformer(T, DC));
}
void PrintOptions::setArchetypeTransformForQuickHelp(Type T, DeclContext *DC) {
TransformContext = std::make_shared<ArchetypeTransformContext>(
new ArchetypeSelfTransformer(T, *DC));
}
void PrintOptions::
initArchetypeTransformerForSynthesizedExtensions(NominalTypeDecl *D,
SynthesizedExtensionAnalyzer *Analyzer) {
TransformContext = std::make_shared<ArchetypeTransformContext>(
new ArchetypeSelfTransformer(D), D, Analyzer);
}
void PrintOptions::clearArchetypeTransformerForSynthesizedExtensions() {
TransformContext.reset();
}
struct ArchetypeTransformContext::Implementation {
std::shared_ptr<PrinterArchetypeTransformer> Transformer;
// When printing a type interface, this is the type to print.
// When synthesizing extensions, this is the target nominal.
llvm::PointerUnion<TypeBase*, NominalTypeDecl*> TypeBaseOrNominal;
SynthesizedExtensionAnalyzer *SynAnalyzer = nullptr;
Implementation(PrinterArchetypeTransformer *Transformer):
Transformer(Transformer) {}
Implementation(PrinterArchetypeTransformer *Transformer, Type T):
Transformer(Transformer), TypeBaseOrNominal(T.getPointer()) {}
Implementation(PrinterArchetypeTransformer *Transformer, NominalTypeDecl* NTD,
SynthesizedExtensionAnalyzer *SynAnalyzer):
Transformer(Transformer), TypeBaseOrNominal(NTD), SynAnalyzer(SynAnalyzer) {}
};
ArchetypeTransformContext::~ArchetypeTransformContext() { delete &Impl; }
ArchetypeTransformContext::ArchetypeTransformContext(
PrinterArchetypeTransformer *Transformer):
Impl(* new Implementation(Transformer)){};
ArchetypeTransformContext::ArchetypeTransformContext(
PrinterArchetypeTransformer *Transformer, Type T):
Impl(* new Implementation(Transformer, T)){};
ArchetypeTransformContext::ArchetypeTransformContext(
PrinterArchetypeTransformer *Transformer, NominalTypeDecl *NTD,
SynthesizedExtensionAnalyzer *SynAnalyzer) :
Impl(* new Implementation(Transformer, NTD, SynAnalyzer)){};
bool ArchetypeTransformContext::
shouldPrintRequirement(ExtensionDecl *ED, StringRef Req) {
if (Impl.SynAnalyzer) {
return Impl.SynAnalyzer->shouldPrintRequirement(ED, Req);
}
return true;
}
NominalTypeDecl *ArchetypeTransformContext::getNominal() {
return Impl.TypeBaseOrNominal.get<NominalTypeDecl*>();
}
Type ArchetypeTransformContext::getTypeBase() {
return Impl.TypeBaseOrNominal.get<TypeBase*>();
}
PrinterArchetypeTransformer*
ArchetypeTransformContext::getTransformer() {
return Impl.Transformer.get();
}
bool ArchetypeTransformContext::isPrintingSynthesizedExtension() {
return !Impl.TypeBaseOrNominal.isNull() &&
Impl.TypeBaseOrNominal.is<NominalTypeDecl*>();
}
bool ArchetypeTransformContext::isPrintingTypeInterface() {
return !Impl.TypeBaseOrNominal.isNull() &&
Impl.TypeBaseOrNominal.is<TypeBase*>();
}
Type ArchetypeTransformContext::transform(Type Input) {
return Impl.Transformer->transform(Input);
}
StringRef ArchetypeTransformContext::transform(StringRef Input) {
return Impl.Transformer->transform(Input);
}
std::string ASTPrinter::sanitizeUtf8(StringRef Text) {
llvm::SmallString<256> Builder;
Builder.reserve(Text.size());
const UTF8* Data = reinterpret_cast<const UTF8*>(Text.begin());
const UTF8* End = reinterpret_cast<const UTF8*>(Text.end());
StringRef Replacement = "\ufffd";
while (Data < End) {
auto Step = getNumBytesForUTF8(*Data);
if (Data + Step > End) {
Builder.append(Replacement);
break;
}
if (isLegalUTF8Sequence(Data, Data + Step)) {
Builder.append(Data, Data + Step);
} else {
// If malformed, add replacement characters.
Builder.append(Replacement);
}
Data += Step;
}
return Builder.str();
}
bool ASTPrinter::printTypeInterface(Type Ty, DeclContext *DC,
llvm::raw_ostream &OS) {
if (!Ty)
return false;
Ty = Ty->getRValueType();
PrintOptions Options = PrintOptions::printTypeInterface(Ty.getPointer(), DC);
if (auto ND = Ty->getNominalOrBoundGenericNominal()) {
llvm::SmallPtrSet<const ExtensionDecl*, 4> AllExts;
for (auto Ext : ND->getExtensions()) {
AllExts.insert(Ext);
}
Options.printExtensionContentAsMembers = [&](const ExtensionDecl *ED) {
return AllExts.count(ED) == 1 && isExtensionApplied(*ND->getDeclContext(), Ty, ED);
};
ND->print(OS, Options);
return true;
}
return false;
}
bool ASTPrinter::printTypeInterface(Type Ty, DeclContext *DC, std::string &Buffer) {
llvm::raw_string_ostream OS(Buffer);
auto Result = printTypeInterface(Ty, DC, OS);
OS.str();
return Result;
}
void ASTPrinter::anchor() {}
void ASTPrinter::printIndent() {
llvm::SmallString<16> Str;
for (unsigned i = 0; i != CurrentIndentation; ++i)
Str += ' ';
printText(Str);
}
void ASTPrinter::printTextImpl(StringRef Text) {
forceNewlines();
printText(Text);
}
void ASTPrinter::printTypeRef(const TypeDecl *TD, Identifier Name) {
PrintNameContext Context = PrintNameContext::Normal;
if (auto GP = dyn_cast<GenericTypeParamDecl>(TD)) {
if (GP->isProtocolSelf())
Context = PrintNameContext::GenericParameter;
}
printName(Name, Context);
}
void ASTPrinter::printModuleRef(ModuleEntity Mod, Identifier Name) {
printName(Name);
}
void ASTPrinter::callPrintDeclPre(const Decl *D) {
forceNewlines();
if (SynthesizeTarget && D->getKind() == DeclKind::Extension)
printSynthesizedExtensionPre(cast<ExtensionDecl>(D), SynthesizeTarget);
else
printDeclPre(D);
}
ASTPrinter &ASTPrinter::operator<<(unsigned long long N) {
llvm::SmallString<32> Str;
llvm::raw_svector_ostream OS(Str);
OS << N;
printTextImpl(OS.str());
return *this;
}
ASTPrinter &ASTPrinter::operator<<(UUID UU) {
llvm::SmallString<UUID::StringBufferSize> Str;
UU.toString(Str);
printTextImpl(Str);
return *this;
}
ASTPrinter &ASTPrinter::operator<<(DeclName name) {
llvm::SmallString<32> str;
llvm::raw_svector_ostream os(str);
name.print(os);
printTextImpl(os.str());
return *this;
}
// FIXME: We need to undef 'defer' when including Tokens.def. It is restored
// below.
#undef defer
ASTPrinter &operator<<(ASTPrinter &printer, tok keyword) {
StringRef name;
switch (keyword) {
#define KEYWORD(KW) case tok::kw_##KW: name = #KW; break;
#define POUND_KEYWORD(KW) case tok::pound_##KW: name = "#"#KW; break;
#include "swift/Parse/Tokens.def"
default:
llvm_unreachable("unexpected keyword kind");
}
printer.printKeyword(name);
return printer;
}
/// Determine whether to escape the given keyword in the given context.
static bool escapeKeywordInContext(StringRef keyword, PrintNameContext context){
switch (context) {
case PrintNameContext::Normal:
case PrintNameContext::Attribute:
return true;
case PrintNameContext::Keyword:
return false;
case PrintNameContext::GenericParameter:
return keyword != "Self";
case PrintNameContext::FunctionParameterExternal:
case PrintNameContext::FunctionParameterLocal:
case PrintNameContext::TupleElement:
return !canBeArgumentLabel(keyword);
}
}
void ASTPrinter::printName(Identifier Name, PrintNameContext Context) {
callPrintNamePre(Context);
if (Name.empty()) {
*this << "_";
printNamePost(Context);
return;
}
bool IsKeyword = llvm::StringSwitch<bool>(Name.str())
#define KEYWORD(KW) \
.Case(#KW, true)
#include "swift/Parse/Tokens.def"
.Default(false);
if (IsKeyword)
IsKeyword = escapeKeywordInContext(Name.str(), Context);
if (IsKeyword)
*this << "`";
*this << Name.str();
if (IsKeyword)
*this << "`";
printNamePost(Context);
}
// FIXME: Restore defer after Tokens.def.
#define defer defer_impl
void StreamPrinter::printText(StringRef Text) {
OS << Text;
}
namespace {
/// \brief AST pretty-printer.
class PrintAST : public ASTVisitor<PrintAST> {
ASTPrinter &Printer;
PrintOptions Options;
unsigned IndentLevel = 0;
friend DeclVisitor<PrintAST>;
/// \brief RAII object that increases the indentation level.
class IndentRAII {
PrintAST &Self;
bool DoIndent;
public:
IndentRAII(PrintAST &self, bool DoIndent = true)
: Self(self), DoIndent(DoIndent) {
if (DoIndent)
Self.IndentLevel += Self.Options.Indent;
}
~IndentRAII() {
if (DoIndent)
Self.IndentLevel -= Self.Options.Indent;
}
};
/// \brief Indent the current number of indentation spaces.
void indent() {
Printer.setIndent(IndentLevel);
}
/// \brief Record the location of this declaration, which is about to
/// be printed, marking the name and signature end locations.
template<typename FnTy>
void recordDeclLoc(Decl *decl, const FnTy &NameFn,
llvm::function_ref<void()> ParamFn = []{}) {
Printer.callPrintDeclLoc(decl);
NameFn();
Printer.printDeclNameEndLoc(decl);
ParamFn();
Printer.printDeclNameOrSignatureEndLoc(decl);
}
void printSourceRange(CharSourceRange Range, ASTContext &Ctx) {
Printer << Ctx.SourceMgr.extractText(Range);
}
void printClangDocumentationComment(const clang::Decl *D) {
const auto &ClangContext = D->getASTContext();
const clang::RawComment *RC = ClangContext.getRawCommentForAnyRedecl(D);
if (!RC)
return;
bool Invalid;
unsigned StartLocCol =
ClangContext.getSourceManager().getSpellingColumnNumber(
RC->getLocStart(), &Invalid);
if (Invalid)
StartLocCol = 0;
unsigned WhitespaceToTrim = StartLocCol ? StartLocCol - 1 : 0;
SmallVector<StringRef, 8> Lines;
StringRef RawText =
RC->getRawText(ClangContext.getSourceManager()).rtrim("\n\r");
trimLeadingWhitespaceFromLines(RawText, WhitespaceToTrim, Lines);
for (auto Line : Lines) {
Printer << ASTPrinter::sanitizeUtf8(Line);
Printer.printNewline();
}
}
void printSwiftDocumentationComment(const Decl *D) {
auto RC = D->getRawComment();
if (RC.isEmpty())
return;
indent();
SmallVector<StringRef, 8> Lines;
for (const auto &SRC : RC.Comments) {
Lines.clear();
StringRef RawText = SRC.RawText.rtrim("\n\r");
unsigned WhitespaceToTrim = SRC.StartColumn - 1;
trimLeadingWhitespaceFromLines(RawText, WhitespaceToTrim, Lines);
for (auto Line : Lines) {
Printer << Line;
Printer.printNewline();
}
}
}
void printDocumentationComment(const Decl *D) {
if (!Options.PrintDocumentationComments)
return;
// Try to print a comment from Clang.
auto MaybeClangNode = D->getClangNode();
if (MaybeClangNode) {
if (auto *CD = MaybeClangNode.getAsDecl())
printClangDocumentationComment(CD);
return;
}
printSwiftDocumentationComment(D);
}
void printStaticKeyword(StaticSpellingKind StaticSpelling) {
switch (StaticSpelling) {
case StaticSpellingKind::None:
llvm_unreachable("should not be called for non-static decls");
case StaticSpellingKind::KeywordStatic:
Printer << tok::kw_static << " ";
break;
case StaticSpellingKind::KeywordClass:
Printer << tok::kw_class << " ";
break;
}
}
void printAccessibility(Accessibility access, StringRef suffix = "") {
switch (access) {
case Accessibility::Private:
Printer << tok::kw_private;
break;
case Accessibility::Internal:
if (!Options.PrintInternalAccessibilityKeyword)
return;
Printer << tok::kw_internal;
break;
case Accessibility::Public:
Printer << tok::kw_public;
break;
}
Printer << suffix << " ";
}
void printAccessibility(const ValueDecl *D) {
if (!Options.PrintAccessibility || !D->hasAccessibility() ||
D->getAttrs().hasAttribute<AccessibilityAttr>())
return;
printAccessibility(D->getFormalAccess());
if (auto storageDecl = dyn_cast<AbstractStorageDecl>(D)) {
if (auto setter = storageDecl->getSetter()) {
Accessibility setterAccess = setter->getFormalAccess();
if (setterAccess != D->getFormalAccess())
printAccessibility(setterAccess, "(set)");
}
}
}
void printTypeLoc(const TypeLoc &TL) {
if (Options.TransformContext && TL.getType()) {
if (auto RT = Options.TransformContext->transform(TL.getType())) {
PrintOptions FreshOptions;
RT.print(Printer, FreshOptions);
return;
}
}
// Print a TypeRepr if instructed to do so by options, or if the type
// is null.
if ((Options.PreferTypeRepr && TL.hasLocation()) ||
TL.getType().isNull()) {
if (auto repr = TL.getTypeRepr())
repr->print(Printer, Options);
return;
}
TL.getType().print(Printer, Options);
}
void printAttributes(const Decl *D);
void printTypedPattern(const TypedPattern *TP);
public:
void printPattern(const Pattern *pattern);
void printGenericParams(GenericParamList *params);
void printWhereClause(ArrayRef<RequirementRepr> requirements);
private:
bool shouldPrint(const Decl *D, bool Notify = false);
bool shouldPrintPattern(const Pattern *P);
void printPatternType(const Pattern *P);
void printAccessors(AbstractStorageDecl *ASD);
void printMembersOfDecl(Decl * NTD, bool needComma = false);
void printMembers(ArrayRef<Decl *> members, bool needComma = false);
void printNominalDeclGenericParams(NominalTypeDecl *decl);
void printInherited(const Decl *decl,
ArrayRef<TypeLoc> inherited,
ArrayRef<ProtocolDecl *> protos,
Type superclass = {},
bool explicitClass = false,
bool PrintAsProtocolComposition = false);
void printInherited(const NominalTypeDecl *decl,
bool explicitClass = false);
void printInherited(const EnumDecl *D);
void printInherited(const ExtensionDecl *decl);
void printInherited(const GenericTypeParamDecl *D);
void printEnumElement(EnumElementDecl *elt);
/// \returns true if anything was printed.
bool printASTNodes(const ArrayRef<ASTNode> &Elements, bool NeedIndent = true);
void printOneParameter(const ParamDecl *param, bool Curried,
bool ArgNameIsAPIByDefault);
void printParameterList(ParameterList *PL, bool isCurried,
std::function<bool(unsigned)> isAPINameByDefault);
/// \brief Print the function parameters in curried or selector style,
/// to match the original function declaration.
void printFunctionParameters(AbstractFunctionDecl *AFD);
#define DECL(Name,Parent) void visit##Name##Decl(Name##Decl *decl);
#define ABSTRACT_DECL(Name, Parent)
#define DECL_RANGE(Name,Start,End)
#include "swift/AST/DeclNodes.def"
#define STMT(Name, Parent) void visit##Name##Stmt(Name##Stmt *stmt);
#include "swift/AST/StmtNodes.def"
void printSynthesizedExtension(NominalTypeDecl* Decl,
ExtensionDecl* ExtDecl);
void printExtension(ExtensionDecl* ExtDecl);
public:
PrintAST(ASTPrinter &Printer, const PrintOptions &Options)
: Printer(Printer), Options(Options) {}
using ASTVisitor::visit;
bool visit(Decl *D) {
if (!shouldPrint(D, true))
return false;
bool Synthesize =
Options.TransformContext &&
Options.TransformContext->isPrintingSynthesizedExtension() &&
D->getKind() == DeclKind::Extension;
if (Synthesize)
Printer.setSynthesizedTarget(Options.TransformContext->getNominal());
// We want to print a newline before doc comments. Swift code already
// handles this, but we need to insert it for clang doc comments when not
// printing other clang comments. Do it now so the printDeclPre callback
// happens after the newline.
if (Options.PrintDocumentationComments &&
!Options.PrintRegularClangComments &&
D->hasClangNode()) {
auto clangNode = D->getClangNode();
auto clangDecl = clangNode.getAsDecl();
if (clangDecl &&
clangDecl->getASTContext().getRawCommentForAnyRedecl(clangDecl)) {
Printer.printNewline();
indent();
}
}
Printer.callPrintDeclPre(D);
ASTVisitor::visit(D);
if (Synthesize) {
Printer.setSynthesizedTarget(nullptr);
Printer.printSynthesizedExtensionPost(
cast<ExtensionDecl>(D), Options.TransformContext->getNominal());
} else {
Printer.callPrintDeclPost(D);
}
return true;
}
};
} // unnamed namespace
static StaticSpellingKind getCorrectStaticSpelling(const Decl *D) {
if (auto *VD = dyn_cast<VarDecl>(D)) {
return VD->getCorrectStaticSpelling();
} else if (auto *PBD = dyn_cast<PatternBindingDecl>(D)) {
return PBD->getCorrectStaticSpelling();
} else if (auto *FD = dyn_cast<FuncDecl>(D)) {
return FD->getCorrectStaticSpelling();
} else {
return StaticSpellingKind::None;
}
}
void PrintAST::printAttributes(const Decl *D) {
if (Options.SkipAttributes)
return;
// Don't print a redundant 'final' if we are printing a 'static' decl.
unsigned originalExcludeAttrCount = Options.ExcludeAttrList.size();
if (Options.PrintImplicitAttrs &&
D->getDeclContext()->getAsClassOrClassExtensionContext() &&
getCorrectStaticSpelling(D) == StaticSpellingKind::KeywordStatic) {
Options.ExcludeAttrList.push_back(DAK_Final);
}
D->getAttrs().print(Printer, Options);
Options.ExcludeAttrList.resize(originalExcludeAttrCount);
}
void PrintAST::printTypedPattern(const TypedPattern *TP) {
printPattern(TP->getSubPattern());
Printer << ": ";
printTypeLoc(TP->getTypeLoc());
}
void PrintAST::printPattern(const Pattern *pattern) {
switch (pattern->getKind()) {
case PatternKind::Any:
Printer << "_";
break;
case PatternKind::Named: {
auto named = cast<NamedPattern>(pattern);
recordDeclLoc(named->getDecl(), [&]{
Printer.printName(named->getBoundName());
});
break;
}
case PatternKind::Paren:
Printer << "(";
printPattern(cast<ParenPattern>(pattern)->getSubPattern());
Printer << ")";
break;
case PatternKind::Tuple: {
Printer << "(";
auto TP = cast<TuplePattern>(pattern);
auto Fields = TP->getElements();
for (unsigned i = 0, e = Fields.size(); i != e; ++i) {
const auto &Elt = Fields[i];
if (i != 0)
Printer << ", ";
printPattern(Elt.getPattern());
}
Printer << ")";
break;
}
case PatternKind::Typed:
printTypedPattern(cast<TypedPattern>(pattern));
break;
case PatternKind::Is: {
auto isa = cast<IsPattern>(pattern);
Printer << tok::kw_is << " ";
isa->getCastTypeLoc().getType().print(Printer, Options);
break;
}
case PatternKind::NominalType: {
auto type = cast<NominalTypePattern>(pattern);
type->getCastTypeLoc().getType().print(Printer, Options);
Printer << "(";
interleave(type->getElements().begin(), type->getElements().end(),
[&](const NominalTypePattern::Element &elt) {
Printer << elt.getPropertyName().str() << ":";
printPattern(elt.getSubPattern());
}, [&] {
Printer << ", ";
});
break;
}
case PatternKind::EnumElement: {
auto elt = cast<EnumElementPattern>(pattern);
// FIXME: Print element expr.
if (elt->hasSubPattern())
printPattern(elt->getSubPattern());
break;
}
case PatternKind::OptionalSome:
printPattern(cast<OptionalSomePattern>(pattern)->getSubPattern());
Printer << '?';
break;
case PatternKind::Bool:
Printer << (cast<BoolPattern>(pattern)->getValue() ? tok::kw_true
: tok::kw_false);
break;
case PatternKind::Expr:
// FIXME: Print expr.
break;
case PatternKind::Var:
if (!Options.SkipIntroducerKeywords)
Printer << (cast<VarPattern>(pattern)->isLet() ? tok::kw_let
: tok::kw_var)
<< " ";
printPattern(cast<VarPattern>(pattern)->getSubPattern());
}
}
void PrintAST::printGenericParams(GenericParamList *Params) {
if (!Params)
return;
Printer << "<";
bool IsFirst = true;
SmallVector<Type, 4> Scrach;
if (Options.TransformContext &&
Options.TransformContext->isPrintingTypeInterface()) {
auto ArgArr = Options.TransformContext->getTypeBase()->
getAllGenericArgs(Scrach);
for (auto Arg : ArgArr) {
if (IsFirst) {
IsFirst = false;
} else {
Printer << ", ";
}
auto NM = Arg->getAnyGeneric();
assert(NM && "Cannot get generic type.");
Printer.callPrintStructurePre(PrintStructureKind::GenericParameter, NM);
Printer << NM->getNameStr(); // FIXME: PrintNameContext::GenericParameter
Printer.printStructurePost(PrintStructureKind::GenericParameter, NM);
}
} else {
for (auto GP : Params->getParams()) {
if (IsFirst) {
IsFirst = false;
} else {
Printer << ", ";
}
Printer.callPrintStructurePre(PrintStructureKind::GenericParameter, GP);
Printer.printName(GP->getName(), PrintNameContext::GenericParameter);
printInherited(GP);
Printer.printStructurePost(PrintStructureKind::GenericParameter, GP);
}
printWhereClause(Params->getRequirements());
}
Printer << ">";
}
void PrintAST::printWhereClause(ArrayRef<RequirementRepr> requirements) {
if (requirements.empty())
return;
std::vector<std::tuple<StringRef, StringRef, RequirementReprKind>> Elements;
llvm::SmallString<64> Output;
bool Handled = true;
for (auto &req : requirements) {
if (req.isInvalid())
continue;
auto TupleOp = req.getAsAnalyzedWrittenString();
if (TupleOp.hasValue()) {
auto Tuple = TupleOp.getValue();
auto FirstType = std::get<0>(Tuple);
auto SecondType = std::get<1>(Tuple);
auto Kind = std::get<2>(Tuple);
if (Options.TransformContext) {
FirstType = Options.TransformContext->transform(FirstType);
SecondType = Options.TransformContext->transform(SecondType);
}
if (FirstType == SecondType)
continue;
Elements.push_back(std::make_tuple(FirstType, SecondType, Kind));
} else {
Handled = false;
break;
}
}
if (Handled) {
bool First = true;
for (auto &E : Elements) {
if (First) {
Printer << " " << tok::kw_where << " ";
First = false;
} else {
Printer << ", ";
}
Printer.callPrintStructurePre(PrintStructureKind::GenericRequirement);
Printer << std::get<0>(E);
Printer << (RequirementReprKind::SameType == std::get<2>(E) ? " == " :
" : ");
Printer << std::get<1>(E);
Printer.printStructurePost(PrintStructureKind::GenericRequirement);
}
return;
}
bool isFirst = true;
for (auto &req : requirements) {
if (req.isInvalid())
continue;
if (isFirst) {
Printer << " " << tok::kw_where << " ";
isFirst = false;
} else {
Printer << ", ";
}
Printer.callPrintStructurePre(PrintStructureKind::GenericRequirement);
defer {
Printer.printStructurePost(PrintStructureKind::GenericRequirement);
};
switch (req.getKind()) {
case RequirementReprKind::TypeConstraint:
printTypeLoc(req.getSubjectLoc());
Printer << " : ";
printTypeLoc(req.getConstraintLoc());
break;
case RequirementReprKind::SameType:
printTypeLoc(req.getFirstTypeLoc());
Printer << " == ";
printTypeLoc(req.getSecondTypeLoc());
break;
}
}
}
bool swift::shouldPrintPattern(const Pattern *P, PrintOptions &Options) {
bool ShouldPrint = false;
P->forEachVariable([&](VarDecl *VD) {
ShouldPrint |= shouldPrint(VD, Options);
});
return ShouldPrint;
}
bool PrintAST::shouldPrintPattern(const Pattern *P) {
return swift::shouldPrintPattern(P, Options);
}
void PrintAST::printPatternType(const Pattern *P) {
if (P->hasType()) {
Type T = P->getType();
if (Options.TransformContext) {
T = Options.TransformContext->transform(T);
}
Printer << ": ";
T.print(Printer, Options);
}
}
bool swift::shouldPrint(const Decl *D, PrintOptions &Options) {
if (auto *ED= dyn_cast<ExtensionDecl>(D)) {
if (Options.printExtensionContentAsMembers(ED))
return false;
}
if (Options.SkipDeinit && isa<DestructorDecl>(D)) {
return false;
}
if (Options.SkipImports && isa<ImportDecl>(D)) {
return false;
}
if (Options.SkipImplicit && D->isImplicit())
return false;
if (Options.SkipUnavailable &&
D->getAttrs().isUnavailable(D->getASTContext()))
return false;
if (Options.ExplodeEnumCaseDecls) {
if (isa<EnumElementDecl>(D))
return true;
if (isa<EnumCaseDecl>(D))
return false;
} else if (auto *EED = dyn_cast<EnumElementDecl>(D)) {
// Enum elements are printed as part of the EnumCaseDecl, unless they were
// imported without source info.
return !EED->getSourceRange().isValid();
}
// Skip declarations that are not accessible.
if (auto *VD = dyn_cast<ValueDecl>(D)) {
if (Options.AccessibilityFilter > Accessibility::Private &&
VD->hasAccessibility() &&
VD->getFormalAccess() < Options.AccessibilityFilter)
return false;
}
if (Options.SkipPrivateStdlibDecls &&
D->isPrivateStdlibDecl(
/*whitelistProtocols=*/!Options.SkipUnderscoredStdlibProtocols))
return false;
if (Options.SkipEmptyExtensionDecls && isa<ExtensionDecl>(D)) {
auto Ext = cast<ExtensionDecl>(D);
// If the extension doesn't add protocols or has no members that we should
// print then skip printing it.
if (Ext->getLocalProtocols().empty()) {
bool HasMemberToPrint = false;
for (auto Member : Ext->getMembers()) {
if (shouldPrint(Member, Options)) {
HasMemberToPrint = true;
break;
}
}
if (!HasMemberToPrint)
return false;
}
}
// If asked to skip overrides and witnesses, do so.
if (Options.SkipOverrides) {
if (auto *VD = dyn_cast<ValueDecl>(D)) {
if (VD->getOverriddenDecl()) return false;
if (!VD->getSatisfiedProtocolRequirements().empty()) return false;
}
}
// We need to handle PatternBindingDecl as a special case here because its
// attributes can only be retrieved from the inside VarDecls.
if (auto *PD = dyn_cast<PatternBindingDecl>(D)) {
auto ShouldPrint = false;
for (auto entry : PD->getPatternList()) {
ShouldPrint |= shouldPrintPattern(entry.getPattern(), Options);
if (ShouldPrint)
return true;
}
return false;
}
return true;
}
bool PrintAST::shouldPrint(const Decl *D, bool Notify) {
auto Result = swift::shouldPrint(D, Options);
if (!Result && Notify)
Printer.callAvoidPrintDeclPost(D);
return Result;
}
static bool isAccessorAssumedNonMutating(FuncDecl *accessor) {
switch (accessor->getAccessorKind()) {
case AccessorKind::IsGetter:
case AccessorKind::IsAddressor:
return true;
case AccessorKind::IsSetter:
case AccessorKind::IsWillSet:
case AccessorKind::IsDidSet:
case AccessorKind::IsMaterializeForSet:
case AccessorKind::IsMutableAddressor:
return false;
case AccessorKind::NotAccessor:
llvm_unreachable("not an addressor!");
}
llvm_unreachable("bad addressor kind");
}
static StringRef getAddressorLabel(FuncDecl *addressor) {
switch (addressor->getAddressorKind()) {
case AddressorKind::NotAddressor:
llvm_unreachable("addressor claims not to be an addressor");
case AddressorKind::Unsafe:
return "unsafeAddress";
case AddressorKind::Owning:
return "addressWithOwner";
case AddressorKind::NativeOwning:
return "addressWithNativeOwner";
case AddressorKind::NativePinning:
return "addressWithPinnedNativeOwner";
}
llvm_unreachable("bad addressor kind");
}
static StringRef getMutableAddressorLabel(FuncDecl *addressor) {
switch (addressor->getAddressorKind()) {
case AddressorKind::NotAddressor:
llvm_unreachable("addressor claims not to be an addressor");
case AddressorKind::Unsafe:
return "unsafeMutableAddress";
case AddressorKind::Owning:
return "mutableAddressWithOwner";
case AddressorKind::NativeOwning:
return "mutableAddressWithNativeOwner";
case AddressorKind::NativePinning:
return "mutableAddressWithPinnedNativeOwner";
}
llvm_unreachable("bad addressor kind");
}
void PrintAST::printAccessors(AbstractStorageDecl *ASD) {
if (isa<VarDecl>(ASD) && !Options.PrintPropertyAccessors)
return;
auto storageKind = ASD->getStorageKind();
// Never print anything for stored properties.
if (storageKind == AbstractStorageDecl::Stored)
return;
// Treat StoredWithTrivialAccessors the same as Stored unless
// we're printing for SIL, in which case we want to distinguish it
// from a pure stored property.
if (storageKind == AbstractStorageDecl::StoredWithTrivialAccessors) {
if (!Options.PrintForSIL) return;
// Don't print an accessor for a let; the parser can't handle it.
if (isa<VarDecl>(ASD) && cast<VarDecl>(ASD)->isLet())
return;
}
// We sometimes want to print the accessors abstractly
// instead of listing out how they're actually implemented.
bool inProtocol = isa<ProtocolDecl>(ASD->getDeclContext());
if (inProtocol ||
(Options.AbstractAccessors && !Options.FunctionDefinitions)) {
bool mutatingGetter = ASD->getGetter() && ASD->isGetterMutating();
bool settable = ASD->isSettable(nullptr);
bool nonmutatingSetter = false;
if (settable && ASD->isSetterNonMutating() && ASD->isInstanceMember() &&
!ASD->getDeclContext()->getDeclaredTypeInContext()
->hasReferenceSemantics())
nonmutatingSetter = true;
// We're about to print something like this:
// { mutating? get (nonmutating? set)? }
// But don't print "{ get set }" if we don't have to.
if (!inProtocol && !Options.PrintGetSetOnRWProperties &&
settable && !mutatingGetter && !nonmutatingSetter) {
return;
}
Printer << " {";
if (mutatingGetter) {
Printer << " ";
Printer.printKeyword("mutating");
}
Printer << " ";
Printer.printKeyword("get");
if (settable) {
if (nonmutatingSetter) {
Printer << " ";
Printer.printKeyword("nonmutating");
}
Printer << " ";
Printer.printKeyword("set");
}
Printer << " }";
return;
}
// Honor !Options.PrintGetSetOnRWProperties in the only remaining
// case where we could end up printing { get set }.
if (storageKind == AbstractStorageDecl::StoredWithTrivialAccessors ||
storageKind == AbstractStorageDecl::Computed) {
if (!Options.PrintGetSetOnRWProperties &&
!Options.FunctionDefinitions &&
ASD->getSetter() &&
!ASD->getGetter()->isMutating() &&
!ASD->getSetter()->isExplicitNonMutating()) {
return;
}
}
// Otherwise, print all the concrete defining accessors.
bool PrintAccessorBody = Options.FunctionDefinitions;
auto PrintAccessor = [&](FuncDecl *Accessor, StringRef Label) {
if (!Accessor)
return;
if (!PrintAccessorBody) {
if (isAccessorAssumedNonMutating(Accessor)) {
if (Accessor->isMutating()) {
Printer << " ";
Printer.printKeyword("mutating");
}
} else {
if (Accessor->isExplicitNonMutating()) {
Printer << " ";
Printer.printKeyword("nonmutating");
}
}
Printer << " ";
Printer.printKeyword(Label); // Contextual keyword get, set, ...
} else {
Printer.printNewline();
IndentRAII IndentMore(*this);
indent();
visit(Accessor);
}
};
auto PrintAddressor = [&](FuncDecl *accessor) {
if (!accessor) return;
PrintAccessor(accessor, getAddressorLabel(accessor));
};
auto PrintMutableAddressor = [&](FuncDecl *accessor) {
if (!accessor) return;
PrintAccessor(accessor, getMutableAddressorLabel(accessor));
};
Printer << " {";
switch (storageKind) {
case AbstractStorageDecl::Stored:
llvm_unreachable("filtered out above!");
case AbstractStorageDecl::StoredWithTrivialAccessors:
case AbstractStorageDecl::Computed:
PrintAccessor(ASD->getGetter(), "get");
PrintAccessor(ASD->getSetter(), "set");
break;
case AbstractStorageDecl::StoredWithObservers:
case AbstractStorageDecl::InheritedWithObservers:
PrintAccessor(ASD->getWillSetFunc(), "willSet");
PrintAccessor(ASD->getDidSetFunc(), "didSet");
break;
case AbstractStorageDecl::Addressed:
case AbstractStorageDecl::AddressedWithTrivialAccessors:
case AbstractStorageDecl::AddressedWithObservers:
PrintAddressor(ASD->getAddressor());
PrintMutableAddressor(ASD->getMutableAddressor());
if (ASD->hasObservers()) {
PrintAccessor(ASD->getWillSetFunc(), "willSet");
PrintAccessor(ASD->getDidSetFunc(), "didSet");
}
break;
case AbstractStorageDecl::ComputedWithMutableAddress:
PrintAccessor(ASD->getGetter(), "get");
PrintMutableAddressor(ASD->getMutableAddressor());
break;
}
if (PrintAccessorBody) {
Printer.printNewline();
indent();
} else
Printer << " ";
Printer << "}";
}
void PrintAST::printMembersOfDecl(Decl *D, bool needComma) {
llvm::SmallVector<Decl *, 3> Members;
auto AddDeclFunc = [&](DeclRange Range) {
for (auto RD : Range)
Members.push_back(RD);
};
if (auto Ext = dyn_cast<ExtensionDecl>(D)) {
AddDeclFunc(Ext->getMembers());
} else if (auto NTD = dyn_cast<NominalTypeDecl>(D)) {
AddDeclFunc(NTD->getMembers());
for (auto Ext : NTD->getExtensions()) {
if (Options.printExtensionContentAsMembers(Ext))
AddDeclFunc(Ext->getMembers());
}
}
printMembers(Members, needComma);
}
void PrintAST::printMembers(ArrayRef<Decl *> members, bool needComma) {
Printer << " {";
Printer.printNewline();
{
IndentRAII indentMore(*this);
for (auto i = members.begin(), iEnd = members.end(); i != iEnd; ++i) {
auto member = *i;
if (!shouldPrint(member, true))
continue;
if (!member->shouldPrintInContext(Options))
continue;
if (Options.EmptyLineBetweenMembers)
Printer.printNewline();
indent();
visit(member);
if (needComma && std::next(i) != iEnd)
Printer << ",";
Printer.printNewline();
}
}
indent();
Printer << "}";
}
void PrintAST::printNominalDeclGenericParams(NominalTypeDecl *decl) {
if (auto gp = decl->getGenericParams()) {
if (!isa<ProtocolDecl>(decl)) {
// For a protocol extension, print only the where clause; the
// generic parameter list is implicit. For other nominal types,
// print the generic parameters.
if (decl->getAsProtocolOrProtocolExtensionContext())
printWhereClause(gp->getRequirements());
else
printGenericParams(gp);
}
}
}
void PrintAST::printInherited(const Decl *decl,
ArrayRef<TypeLoc> inherited,
ArrayRef<ProtocolDecl *> protos,
Type superclass,
bool explicitClass,
bool PrintAsProtocolComposition) {
if (inherited.empty() && superclass.isNull() && !explicitClass) {
if (protos.empty())
return;
// If only conforms to AnyObject protocol, nothing to print.
if (protos.size() == 1) {
if (protos.front()->isSpecificProtocol(KnownProtocolKind::AnyObject))
return;
}
}
if (inherited.empty()) {
bool PrintedColon = false;
bool PrintedInherited = false;
if (explicitClass) {
Printer << " : " << tok::kw_class;
PrintedInherited = true;
} else if (superclass) {
bool ShouldPrintSuper = true;
if (auto NTD = superclass->getAnyNominal()) {
ShouldPrintSuper = shouldPrint(NTD);
}
if (ShouldPrintSuper) {
Printer << " : ";
superclass.print(Printer, Options);
PrintedInherited = true;
}
}
bool UseProtocolCompositionSyntax =
PrintAsProtocolComposition && protos.size() > 1;
if (UseProtocolCompositionSyntax) {
Printer << " : " << tok::kw_protocol << "<";
PrintedColon = true;
}
for (auto Proto : protos) {
if (!shouldPrint(Proto))
continue;
if (Proto->isSpecificProtocol(KnownProtocolKind::AnyObject))
continue;
if (auto Enum = dyn_cast<EnumDecl>(decl)) {
// Conformance to RawRepresentable is implied by having a raw type.
if (Enum->hasRawType()
&& Proto->isSpecificProtocol(KnownProtocolKind::RawRepresentable))
continue;
// Conformance to Equatable and Hashable is implied by being a "simple"
// no-payload enum.
if (Enum->hasOnlyCasesWithoutAssociatedValues()
&& (Proto->isSpecificProtocol(KnownProtocolKind::Equatable)
|| Proto->isSpecificProtocol(KnownProtocolKind::Hashable)))
continue;
}
if (PrintedInherited)
Printer << ", ";
else if (!PrintedColon)
Printer << " : ";
Proto->getDeclaredType()->print(Printer, Options);
PrintedInherited = true;
PrintedColon = true;
}
if (UseProtocolCompositionSyntax)
Printer << ">";
} else {
SmallVector<TypeLoc, 6> TypesToPrint;
for (auto TL : inherited) {
if (auto Ty = TL.getType()) {
if (auto NTD = Ty->getAnyNominal())
if (!shouldPrint(NTD))
continue;
}
TypesToPrint.push_back(TL);
}
if (TypesToPrint.empty())
return;
Printer << " : ";
if (explicitClass)
Printer << " " << tok::kw_class << ", ";
interleave(TypesToPrint, [&](TypeLoc TL) {
printTypeLoc(TL);
}, [&]() {
Printer << ", ";
});
}
}
void PrintAST::printInherited(const NominalTypeDecl *decl,
bool explicitClass) {
printInherited(decl, decl->getInherited(), { }, nullptr, explicitClass);
}
void PrintAST::printInherited(const EnumDecl *decl) {
printInherited(decl, decl->getInherited(), { });
}
void PrintAST::printInherited(const ExtensionDecl *decl) {
printInherited(decl, decl->getInherited(), { });
}
void PrintAST::printInherited(const GenericTypeParamDecl *D) {
printInherited(D, D->getInherited(), { });
}
static void getModuleEntities(const clang::Module *ClangMod,
SmallVectorImpl<ModuleEntity> &ModuleEnts) {
if (!ClangMod)
return;
getModuleEntities(ClangMod->Parent, ModuleEnts);
ModuleEnts.push_back(ClangMod);
}
static void getModuleEntities(ImportDecl *Import,
SmallVectorImpl<ModuleEntity> &ModuleEnts) {
if (auto *ClangMod = Import->getClangModule()) {
getModuleEntities(ClangMod, ModuleEnts);
return;
}
auto Mod = Import->getModule();
if (!Mod)
return;
if (auto *ClangMod = Mod->findUnderlyingClangModule()) {
getModuleEntities(ClangMod, ModuleEnts);
} else {
ModuleEnts.push_back(Mod);
}
}
void PrintAST::visitImportDecl(ImportDecl *decl) {
printAttributes(decl);
Printer << tok::kw_import << " ";
switch (decl->getImportKind()) {
case ImportKind::Module:
break;
case ImportKind::Type:
Printer << tok::kw_typealias << " ";
break;
case ImportKind::Struct:
Printer << tok::kw_struct << " ";
break;
case ImportKind::Class:
Printer << tok::kw_class << " ";
break;
case ImportKind::Enum:
Printer << tok::kw_enum << " ";
break;
case ImportKind::Protocol:
Printer << tok::kw_protocol << " ";
break;
case ImportKind::Var:
Printer << tok::kw_var << " ";
break;
case ImportKind::Func:
Printer << tok::kw_func << " ";
break;
}
SmallVector<ModuleEntity, 4> ModuleEnts;
getModuleEntities(decl, ModuleEnts);
ArrayRef<ModuleEntity> Mods = ModuleEnts;
interleave(decl->getFullAccessPath(),
[&](const ImportDecl::AccessPathElement &Elem) {
if (!Mods.empty()) {
Printer.printModuleRef(Mods.front(), Elem.first);
Mods = Mods.slice(1);
} else {
Printer << Elem.first.str();
}
},
[&] { Printer << "."; });
}
static void printExtendedTypeName(Type ExtendedType, ASTPrinter &Printer,
PrintOptions Options) {
auto Nominal = ExtendedType->getAnyNominal();
assert(Nominal && "extension of non-nominal type");
if (auto ct = ExtendedType->getAs<ClassType>()) {
if (auto ParentType = ct->getParent()) {
ParentType.print(Printer, Options);
Printer << ".";
}
}
if (auto st = ExtendedType->getAs<StructType>()) {
if (auto ParentType = st->getParent()) {
ParentType.print(Printer, Options);
Printer << ".";
}
}
// Respect alias type.
if (ExtendedType->getKind() == TypeKind::NameAlias) {
ExtendedType.print(Printer, Options);
return;
}
Printer.printTypeRef(Nominal, Nominal->getName());
}
void PrintAST::
printSynthesizedExtension(NominalTypeDecl* Decl, ExtensionDecl *ExtDecl) {
Printer << "/// Synthesized extension from " <<
ExtDecl->getExtendedType()->getAnyNominal()->getName().str() << "\n";
printDocumentationComment(ExtDecl);
printAttributes(ExtDecl);
Printer << tok::kw_extension << " ";
printExtendedTypeName(Decl->getDeclaredType(), Printer, Options);
printInherited(ExtDecl);
if (auto *GPs = ExtDecl->getGenericParams()) {
std::vector<RequirementRepr> ReqsToPrint;
for (auto Req : GPs->getRequirements()) {
if (Options.TransformContext->shouldPrintRequirement(ExtDecl,
Req.getAsWrittenString()))
ReqsToPrint.push_back(Req);
}
printWhereClause(ReqsToPrint);
}
if (Options.TypeDefinitions) {
printMembersOfDecl(ExtDecl);
}
}
void PrintAST::printExtension(ExtensionDecl* decl) {
printDocumentationComment(decl);
printAttributes(decl);
Printer << "extension ";
recordDeclLoc(decl, [&]{
// We cannot extend sugared types.
Type extendedType = decl->getExtendedType();
NominalTypeDecl *nominal = extendedType ? extendedType->getAnyNominal() : nullptr;
if (!nominal) {
// Fallback to TypeRepr.
printTypeLoc(decl->getExtendedTypeLoc());
return;
}
printExtendedTypeName(extendedType, Printer, Options);
});
printInherited(decl);
if (auto *GPs = decl->getGenericParams()) {
printWhereClause(GPs->getRequirements());
}
if (Options.TypeDefinitions) {
printMembersOfDecl(decl);
}
}
void PrintAST::visitExtensionDecl(ExtensionDecl *decl) {
if (Options.TransformContext &&
Options.TransformContext->isPrintingSynthesizedExtension())
printSynthesizedExtension(Options.TransformContext->getNominal(), decl);
else
printExtension(decl);
}
void PrintAST::visitPatternBindingDecl(PatternBindingDecl *decl) {
// FIXME: We're not printing proper "{ get set }" annotations in pattern
// binding decls. As a hack, scan the decl to find out if any of the
// variables are immutable, and if so, we print as 'let'. This allows us to
// handle the 'let x = 4' case properly at least.
const VarDecl *anyVar = nullptr;
for (auto entry : decl->getPatternList()) {
entry.getPattern()->forEachVariable([&](VarDecl *V) {
anyVar = V;
});
if (anyVar) break;
}
if (anyVar)
printDocumentationComment(anyVar);
if (decl->isStatic())
printStaticKeyword(decl->getCorrectStaticSpelling());
// FIXME: PatternBindingDecls don't have attributes themselves, so just assume
// the variables all have the same attributes. This isn't exactly true
// after type-checking, but it's close enough for now.
if (anyVar) {
printAttributes(anyVar);
printAccessibility(anyVar);
Printer << (anyVar->isSettable(anyVar->getDeclContext()) ? "var " : "let ");
} else {
Printer << "let ";
}
bool isFirst = true;
for (auto entry : decl->getPatternList()) {
if (!shouldPrintPattern(entry.getPattern()))
continue;
if (isFirst)
isFirst = false;
else
Printer << ", ";
printPattern(entry.getPattern());
// We also try to print type for named patterns, e.g. var Field = 10;
// and tuple patterns, e.g. var (T1, T2) = (10, 10)
if (isa<NamedPattern>(entry.getPattern()) ||
isa<TuplePattern>(entry.getPattern())) {
printPatternType(entry.getPattern());
}
if (Options.VarInitializers) {
// FIXME: Implement once we can pretty-print expressions.
}
}
}
void PrintAST::visitTopLevelCodeDecl(TopLevelCodeDecl *decl) {
printASTNodes(decl->getBody()->getElements(), /*NeedIndent=*/false);
}
void PrintAST::visitIfConfigDecl(IfConfigDecl *ICD) {
// FIXME: Pretty print #if decls
}
void PrintAST::visitTypeAliasDecl(TypeAliasDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
printAccessibility(decl);
if (!Options.SkipIntroducerKeywords)
Printer << tok::kw_typealias << " ";
recordDeclLoc(decl,
[&]{
Printer.printName(decl->getName());
}, [&]{ // Signature
printGenericParams(decl->getGenericParams());
});
bool ShouldPrint = true;
Type Ty;
if (decl->hasUnderlyingType())
Ty = decl->getUnderlyingType();
// If the underlying type is private, don't print it.
if (Options.SkipPrivateStdlibDecls && Ty && Ty.isPrivateStdlibType())
ShouldPrint = false;
if (ShouldPrint) {
Printer << " = ";
printTypeLoc(decl->getUnderlyingTypeLoc());
}
}
void PrintAST::visitGenericTypeParamDecl(GenericTypeParamDecl *decl) {
recordDeclLoc(decl, [&] {
Printer.printName(decl->getName(), PrintNameContext::GenericParameter);
});
printInherited(decl, decl->getInherited(), { });
}
void PrintAST::visitAssociatedTypeDecl(AssociatedTypeDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
if (!Options.SkipIntroducerKeywords)
Printer << tok::kw_associatedtype << " ";
recordDeclLoc(decl,
[&]{
Printer.printName(decl->getName());
});
printInherited(decl, decl->getInherited(), { });
if (!decl->getDefaultDefinitionLoc().isNull()) {
Printer << " = ";
decl->getDefaultDefinitionLoc().getType().print(Printer, Options);
}
}
void PrintAST::visitEnumDecl(EnumDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
printAccessibility(decl);
if (Options.PrintOriginalSourceText && decl->getStartLoc().isValid()) {
ASTContext &Ctx = decl->getASTContext();
printSourceRange(CharSourceRange(Ctx.SourceMgr, decl->getStartLoc(),
decl->getBraces().Start.getAdvancedLoc(-1)), Ctx);
} else {
if (!Options.SkipIntroducerKeywords)
Printer << tok::kw_enum << " ";
recordDeclLoc(decl,
[&]{
Printer.printName(decl->getName());
}, [&]{ // Signature
printNominalDeclGenericParams(decl);
});
printInherited(decl);
}
if (Options.TypeDefinitions) {
printMembersOfDecl(decl);
}
}
void PrintAST::visitStructDecl(StructDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
printAccessibility(decl);
if (Options.PrintOriginalSourceText && decl->getStartLoc().isValid()) {
ASTContext &Ctx = decl->getASTContext();
printSourceRange(CharSourceRange(Ctx.SourceMgr, decl->getStartLoc(),
decl->getBraces().Start.getAdvancedLoc(-1)), Ctx);
} else {
if (!Options.SkipIntroducerKeywords)
Printer << tok::kw_struct << " ";
recordDeclLoc(decl,
[&]{
Printer.printName(decl->getName());
}, [&]{ // Signature
printNominalDeclGenericParams(decl);
});
printInherited(decl);
}
if (Options.TypeDefinitions) {
printMembersOfDecl(decl);
}
}
void PrintAST::visitClassDecl(ClassDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
printAccessibility(decl);
if (Options.PrintOriginalSourceText && decl->getStartLoc().isValid()) {
ASTContext &Ctx = decl->getASTContext();
printSourceRange(CharSourceRange(Ctx.SourceMgr, decl->getStartLoc(),
decl->getBraces().Start.getAdvancedLoc(-1)), Ctx);
} else {
if (!Options.SkipIntroducerKeywords)
Printer << tok::kw_class << " ";
recordDeclLoc(decl,
[&]{
Printer.printName(decl->getName());
}, [&]{ // Signature
printNominalDeclGenericParams(decl);
});
printInherited(decl);
}
if (Options.TypeDefinitions) {
printMembersOfDecl(decl);
}
}
void PrintAST::visitProtocolDecl(ProtocolDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
printAccessibility(decl);
if (Options.PrintOriginalSourceText && decl->getStartLoc().isValid()) {
ASTContext &Ctx = decl->getASTContext();
printSourceRange(CharSourceRange(Ctx.SourceMgr, decl->getStartLoc(),
decl->getBraces().Start.getAdvancedLoc(-1)), Ctx);
} else {
if (!Options.SkipIntroducerKeywords)
Printer << tok::kw_protocol << " ";
recordDeclLoc(decl,
[&]{
Printer.printName(decl->getName());
}, [&]{ // Signature
printNominalDeclGenericParams(decl);
});
// Figure out whether we need an explicit 'class' in the inheritance.
bool explicitClass = false;
if (decl->requiresClass() && !decl->isObjC()) {
bool inheritsRequiresClass = false;
for (auto proto : decl->getLocalProtocols(
ConformanceLookupKind::OnlyExplicit)) {
if (proto->requiresClass()) {
inheritsRequiresClass = true;
break;
}
}
if (!inheritsRequiresClass)
explicitClass = true;
}
printInherited(decl, explicitClass);
}
if (Options.TypeDefinitions) {
printMembersOfDecl(decl);
}
}
static bool isStructOrClassContext(DeclContext *dc) {
if (auto ctx = dc->getDeclaredTypeInContext())
return ctx->getClassOrBoundGenericClass() ||
ctx->getStructOrBoundGenericStruct();
return false;
}
void PrintAST::visitVarDecl(VarDecl *decl) {
printDocumentationComment(decl);
// Print @sil_stored when the attribute is not already
// on, decl has storage and it is on a class.
if (Options.PrintForSIL && decl->hasStorage() &&
isStructOrClassContext(decl->getDeclContext()) &&
!decl->getAttrs().hasAttribute<SILStoredAttr>())
Printer << "@sil_stored ";
printAttributes(decl);
printAccessibility(decl);
if (!Options.SkipIntroducerKeywords) {
if (decl->isStatic())
printStaticKeyword(decl->getCorrectStaticSpelling());
Printer << (decl->isLet() ? tok::kw_let : tok::kw_var) << " ";
}
recordDeclLoc(decl,
[&]{
Printer.printName(decl->getName());
});
if (decl->hasType()) {
Printer << ": ";
// Use the non-repr external type, but reuse the TypeLoc printing code.
printTypeLoc(TypeLoc::withoutLoc(decl->getType()));
}
printAccessors(decl);
}
void PrintAST::visitParamDecl(ParamDecl *decl) {
return visitVarDecl(decl);
}
void PrintAST::printOneParameter(const ParamDecl *param, bool Curried,
bool ArgNameIsAPIByDefault) {
Printer.callPrintStructurePre(PrintStructureKind::FunctionParameter, param);
defer {
Printer.printStructurePost(PrintStructureKind::FunctionParameter, param);
};
auto printArgName = [&]() {
// Print argument name.
auto ArgName = param->getArgumentName();
auto BodyName = param->getName();
switch (Options.ArgAndParamPrinting) {
case PrintOptions::ArgAndParamPrintingMode::ArgumentOnly:
Printer.printName(ArgName, PrintNameContext::FunctionParameterExternal);
if (!ArgNameIsAPIByDefault && !ArgName.empty())
Printer << " _";
break;
case PrintOptions::ArgAndParamPrintingMode::MatchSource:
if (ArgName == BodyName && ArgNameIsAPIByDefault) {
Printer.printName(ArgName, PrintNameContext::FunctionParameterExternal);
break;
}
if (ArgName.empty() && !ArgNameIsAPIByDefault) {
Printer.printName(BodyName, PrintNameContext::FunctionParameterLocal);
break;
}
SWIFT_FALLTHROUGH;
case PrintOptions::ArgAndParamPrintingMode::BothAlways:
Printer.printName(ArgName, PrintNameContext::FunctionParameterExternal);
Printer << " ";
Printer.printName(BodyName, PrintNameContext::FunctionParameterLocal);
break;
}
Printer << ": ";
};
auto TheTypeLoc = param->getTypeLoc();
// If the parameter is autoclosure, or noescape, print it. This is stored
// on the type of the decl, not on the typerepr.
if (param->hasType()) {
auto bodyCanType = param->getType()->getCanonicalType();
if (auto patternType = dyn_cast<AnyFunctionType>(bodyCanType)) {
switch (patternType->isAutoClosure()*2 + patternType->isNoEscape()) {
case 0: break; // neither.
case 1: Printer << "@noescape "; break;
case 2: Printer << "@autoclosure(escaping) "; break;
case 3: Printer << "@autoclosure "; break;
}
}
}
printArgName();
if (!TheTypeLoc.getTypeRepr() && param->hasType())
TheTypeLoc = TypeLoc::withoutLoc(param->getType());
auto ContainsFunc = [&] (DeclAttrKind Kind) {
return Options.ExcludeAttrList.end() != std::find(Options.ExcludeAttrList.
begin(), Options.ExcludeAttrList.end(), Kind);
};
auto RemoveFunc = [&] (DeclAttrKind Kind) {
Options.ExcludeAttrList.erase(std::find(Options.ExcludeAttrList.begin(),
Options.ExcludeAttrList.end(), Kind));
};
// Since we have already printed @noescape and @autoclosure, we exclude them
// when printing the type.
auto hasNoEscape = ContainsFunc(DAK_NoEscape);
auto hasAutoClosure = ContainsFunc(DAK_AutoClosure);
if (!hasNoEscape)
Options.ExcludeAttrList.push_back(DAK_NoEscape);
if (!hasAutoClosure)
Options.ExcludeAttrList.push_back(DAK_AutoClosure);
// If the parameter is variadic, we will print the "..." after it, but we have
// to strip off the added array type.
if (param->isVariadic() && TheTypeLoc.getType()) {
if (auto *BGT = TheTypeLoc.getType()->getAs<BoundGenericType>())
TheTypeLoc.setType(BGT->getGenericArgs()[0]);
}
printTypeLoc(TheTypeLoc);
if (param->isVariadic())
Printer << "...";
// After printing the type, we need to restore what the option used to be.
if (!hasNoEscape)
RemoveFunc(DAK_NoEscape);
if (!hasAutoClosure)
RemoveFunc(DAK_AutoClosure);
if (Options.PrintDefaultParameterPlaceholder &&
param->isDefaultArgument()) {
Printer << " = ";
auto defaultArgStr
= getDefaultArgumentSpelling(param->getDefaultArgumentKind());
if (defaultArgStr.empty())
Printer << tok::kw_default;
else
Printer << defaultArgStr;
}
}
void PrintAST::printParameterList(ParameterList *PL, bool isCurried,
std::function<bool(unsigned)> isAPINameByDefault) {
Printer << "(";
for (unsigned i = 0, e = PL->size(); i != e; ++i) {
if (i > 0)
Printer << ", ";
printOneParameter(PL->get(i), isCurried, isAPINameByDefault(i));
}
Printer << ")";
}
void PrintAST::printFunctionParameters(AbstractFunctionDecl *AFD) {
auto BodyParams = AFD->getParameterLists();
// Skip over the implicit 'self'.
if (AFD->getImplicitSelfDecl())
BodyParams = BodyParams.slice(1);
for (unsigned CurrPattern = 0, NumPatterns = BodyParams.size();
CurrPattern != NumPatterns; ++CurrPattern) {
printParameterList(BodyParams[CurrPattern], /*Curried=*/CurrPattern > 0,
[&](unsigned argNo)->bool {
return CurrPattern > 0 || AFD->argumentNameIsAPIByDefault(argNo);
});
}
if (AFD->isBodyThrowing()) {
if (AFD->getAttrs().hasAttribute<RethrowsAttr>())
Printer << " " << tok::kw_rethrows;
else
Printer << " " << tok::kw_throws;
}
}
bool PrintAST::printASTNodes(const ArrayRef<ASTNode> &Elements,
bool NeedIndent) {
IndentRAII IndentMore(*this, NeedIndent);
bool PrintedSomething = false;
for (auto element : Elements) {
PrintedSomething = true;
Printer.printNewline();
indent();
if (auto decl = element.dyn_cast<Decl*>()) {
if (decl->shouldPrintInContext(Options))
visit(decl);
} else if (auto stmt = element.dyn_cast<Stmt*>()) {
visit(stmt);
} else {
// FIXME: print expression
// visit(element.get<Expr*>());
}
}
return PrintedSomething;
}
void PrintAST::visitFuncDecl(FuncDecl *decl) {
if (decl->isAccessor()) {
printDocumentationComment(decl);
printAttributes(decl);
switch (auto kind = decl->getAccessorKind()) {
case AccessorKind::NotAccessor: break;
case AccessorKind::IsGetter:
case AccessorKind::IsAddressor:
recordDeclLoc(decl,
[&]{
if (decl->isMutating())
Printer << "mutating ";
Printer << (kind == AccessorKind::IsGetter
? "get" : getAddressorLabel(decl));
});
Printer << " {";
break;
case AccessorKind::IsDidSet:
case AccessorKind::IsMaterializeForSet:
case AccessorKind::IsMutableAddressor:
recordDeclLoc(decl,
[&]{
if (decl->isExplicitNonMutating())
Printer << "nonmutating ";
Printer << (kind == AccessorKind::IsDidSet ? "didSet" :
kind == AccessorKind::IsMaterializeForSet
? "materializeForSet"
: getMutableAddressorLabel(decl));
});
Printer << " {";
break;
case AccessorKind::IsSetter:
case AccessorKind::IsWillSet:
recordDeclLoc(decl,
[&]{
if (decl->isExplicitNonMutating())
Printer << "nonmutating ";
Printer << (decl->isSetter() ? "set" : "willSet");
auto params = decl->getParameterLists().back();
if (params->size() != 0 && !params->get(0)->isImplicit()) {
auto Name = params->get(0)->getName();
if (!Name.empty()) {
Printer << "(";
Printer.printName(Name);
Printer << ")";
}
}
});
Printer << " {";
}
if (Options.FunctionDefinitions && decl->getBody()) {
if (printASTNodes(decl->getBody()->getElements())) {
Printer.printNewline();
indent();
}
}
Printer << "}";
} else {
printDocumentationComment(decl);
printAttributes(decl);
printAccessibility(decl);
if (Options.PrintOriginalSourceText && decl->getStartLoc().isValid()) {
ASTContext &Ctx = decl->getASTContext();
SourceLoc StartLoc = decl->getStartLoc();
SourceLoc EndLoc;
if (!decl->getBodyResultTypeLoc().isNull()) {
EndLoc = decl->getBodyResultTypeLoc().getSourceRange().End;
} else {
EndLoc = decl->getSignatureSourceRange().End;
}
CharSourceRange Range =
Lexer::getCharSourceRangeFromSourceRange(Ctx.SourceMgr,
SourceRange(StartLoc, EndLoc));
printSourceRange(Range, Ctx);
} else {
if (!Options.SkipIntroducerKeywords) {
if (decl->isStatic() && !decl->isOperator())
printStaticKeyword(decl->getCorrectStaticSpelling());
if (decl->isMutating() && !decl->getAttrs().hasAttribute<MutatingAttr>()) {
Printer.printKeyword("mutating");
Printer << " ";
}
Printer << tok::kw_func << " ";
}
recordDeclLoc(decl,
[&]{ // Name
if (!decl->hasName())
Printer << "<anonymous>";
else
Printer.printName(decl->getName());
}, [&] { // Parameters
if (decl->isGeneric()) {
printGenericParams(decl->getGenericParams());
}
printFunctionParameters(decl);
});
auto &Context = decl->getASTContext();
Type ResultTy = decl->getResultType();
if (ResultTy && !ResultTy->isEqual(TupleType::getEmpty(Context))) {
Printer << " -> ";
// Use the non-repr external type, but reuse the TypeLoc printing code.
Printer.callPrintStructurePre(PrintStructureKind::FunctionReturnType);
printTypeLoc(TypeLoc::withoutLoc(ResultTy));
Printer.printStructurePost(PrintStructureKind::FunctionReturnType);
}
}
if (!Options.FunctionDefinitions || !decl->getBody()) {
return;
}
Printer << " ";
visit(decl->getBody());
}
}
void PrintAST::printEnumElement(EnumElementDecl *elt) {
recordDeclLoc(elt,
[&]{
Printer.printName(elt->getName());
});
if (elt->hasArgumentType()) {
Type Ty = elt->getArgumentType();
if (!Options.SkipPrivateStdlibDecls || !Ty.isPrivateStdlibType())
Ty.print(Printer, Options);
}
auto *raw = elt->getRawValueExpr();
if (!Options.EnumRawValues || !raw || raw->isImplicit())
return;
// Print the explicit raw value expression.
Printer << " = ";
switch (raw->getKind()) {
case ExprKind::IntegerLiteral:
case ExprKind::FloatLiteral: {
auto *numLiteral = cast<NumberLiteralExpr>(raw);
Printer.callPrintStructurePre(PrintStructureKind::NumberLiteral);
if (numLiteral->isNegative())
Printer << "-";
Printer << numLiteral->getDigitsText();
Printer.printStructurePost(PrintStructureKind::NumberLiteral);
break;
}
case ExprKind::StringLiteral:
Printer.callPrintStructurePre(PrintStructureKind::StringLiteral);
Printer << "\"" << cast<StringLiteralExpr>(raw)->getValue() << "\"";
Printer.printStructurePost(PrintStructureKind::StringLiteral);
break;
default:
break; // Incorrect raw value; skip it for error recovery.
}
}
void PrintAST::visitEnumCaseDecl(EnumCaseDecl *decl) {
auto elems = decl->getElements();
if (!elems.empty()) {
// Documentation comments over the case are attached to the enum elements.
printDocumentationComment(elems[0]);
}
printAttributes(decl);
Printer << tok::kw_case << " ";
interleave(elems.begin(), elems.end(),
[&](EnumElementDecl *elt) {
printEnumElement(elt);
},
[&] { Printer << ", "; });
}
void PrintAST::visitEnumElementDecl(EnumElementDecl *decl) {
printDocumentationComment(decl);
// In cases where there is no parent EnumCaseDecl (such as imported or
// deserialized elements), print the element independently.
printAttributes(decl);
Printer << tok::kw_case << " ";
printEnumElement(decl);
}
void PrintAST::visitSubscriptDecl(SubscriptDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
printAccessibility(decl);
recordDeclLoc(decl, [&]{
Printer << "subscript";
}, [&] { // Parameters
printParameterList(decl->getIndices(), /*Curried=*/false,
/*isAPINameByDefault*/[](unsigned)->bool{return false;});
});
Printer << " -> ";
Printer.callPrintStructurePre(PrintStructureKind::FunctionReturnType);
printTypeLoc(decl->getElementTypeLoc());
Printer.printStructurePost(PrintStructureKind::FunctionReturnType);
printAccessors(decl);
}
void PrintAST::visitConstructorDecl(ConstructorDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
printAccessibility(decl);
if ((decl->getInitKind() == CtorInitializerKind::Convenience ||
decl->getInitKind() == CtorInitializerKind::ConvenienceFactory) &&
!decl->getAttrs().hasAttribute<ConvenienceAttr>()) {
Printer.printKeyword("convenience");
Printer << " ";
} else if (decl->getInitKind() == CtorInitializerKind::Factory) {
Printer << "/*not inherited*/ ";
}
recordDeclLoc(decl,
[&]{
Printer << "init";
}, [&] { // Signature
switch (decl->getFailability()) {
case OTK_None:
break;
case OTK_Optional:
Printer << "?";
break;
case OTK_ImplicitlyUnwrappedOptional:
Printer << "!";
break;
}
if (decl->isGeneric())
printGenericParams(decl->getGenericParams());
printFunctionParameters(decl);
});
if (!Options.FunctionDefinitions || !decl->getBody()) {
return;
}
Printer << " ";
visit(decl->getBody());
}
void PrintAST::visitDestructorDecl(DestructorDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
recordDeclLoc(decl,
[&]{
Printer << "deinit";
});
if (!Options.FunctionDefinitions || !decl->getBody()) {
return;
}
Printer << " ";
visit(decl->getBody());
}
void PrintAST::visitInfixOperatorDecl(InfixOperatorDecl *decl) {
Printer.printKeyword("infix");
Printer << " " << tok::kw_operator << " ";
recordDeclLoc(decl,
[&]{
Printer.printName(decl->getName());
});
Printer << " {";
Printer.printNewline();
{
IndentRAII indentMore(*this);
if (!decl->isAssociativityImplicit()) {
indent();
Printer.printKeyword("associativity");
Printer << " ";
switch (decl->getAssociativity()) {
case Associativity::None:
Printer.printKeyword("none");
break;
case Associativity::Left:
Printer.printKeyword("left");
break;
case Associativity::Right:
Printer.printKeyword("right");
break;
}
Printer.printNewline();
}
if (!decl->isPrecedenceImplicit()) {
indent();
Printer.printKeyword("precedence");
Printer << " " << decl->getPrecedence();
Printer.printNewline();
}
if (!decl->isAssignmentImplicit()) {
indent();
if (decl->isAssignment())
Printer.printKeyword("assignment");
else
Printer << "/* not assignment */";
Printer.printNewline();
}
}
indent();
Printer << "}";
}
void PrintAST::visitPrefixOperatorDecl(PrefixOperatorDecl *decl) {
Printer.printKeyword("prefix");
Printer << " " << tok::kw_operator << " ";
recordDeclLoc(decl,
[&]{
Printer.printName(decl->getName());
});
Printer << " {";
Printer.printNewline();
Printer << "}";
}
void PrintAST::visitPostfixOperatorDecl(PostfixOperatorDecl *decl) {
Printer.printKeyword("postfix");
Printer << " " << tok::kw_operator << " ";
recordDeclLoc(decl,
[&]{
Printer.printName(decl->getName());
});
Printer << " {";
Printer.printNewline();
Printer << "}";
}
void PrintAST::visitModuleDecl(ModuleDecl *decl) { }
void PrintAST::visitBraceStmt(BraceStmt *stmt) {
Printer << "{";
printASTNodes(stmt->getElements());
Printer.printNewline();
indent();
Printer << "}";
}
void PrintAST::visitReturnStmt(ReturnStmt *stmt) {
Printer << tok::kw_return;
if (stmt->hasResult()) {
Printer << " ";
// FIXME: print expression.
}
}
void PrintAST::visitThrowStmt(ThrowStmt *stmt) {
Printer << tok::kw_throw << " ";
// FIXME: print expression.
}
void PrintAST::visitDeferStmt(DeferStmt *stmt) {
Printer << tok::kw_defer << " ";
visit(stmt->getBodyAsWritten());
}
void PrintAST::visitIfStmt(IfStmt *stmt) {
Printer << tok::kw_if << " ";
// FIXME: print condition
Printer << " ";
visit(stmt->getThenStmt());
if (auto elseStmt = stmt->getElseStmt()) {
Printer << " " << tok::kw_else << " ";
visit(elseStmt);
}
}
void PrintAST::visitGuardStmt(GuardStmt *stmt) {
Printer << tok::kw_guard << " ";
// FIXME: print condition
Printer << " ";
visit(stmt->getBody());
}
void PrintAST::visitIfConfigStmt(IfConfigStmt *stmt) {
if (!Options.PrintIfConfig)
return;
for (auto &Clause : stmt->getClauses()) {
if (&Clause == &*stmt->getClauses().begin())
Printer << tok::pound_if << " "; // FIXME: print condition
else if (Clause.Cond)
Printer << tok::pound_elseif << ""; // FIXME: print condition
else
Printer << tok::pound_else;
Printer.printNewline();
if (printASTNodes(Clause.Elements)) {
Printer.printNewline();
indent();
}
}
Printer.printNewline();
Printer << tok::pound_endif;
}
void PrintAST::visitWhileStmt(WhileStmt *stmt) {
Printer << tok::kw_while << " ";
// FIXME: print condition
Printer << " ";
visit(stmt->getBody());
}
void PrintAST::visitRepeatWhileStmt(RepeatWhileStmt *stmt) {
Printer << tok::kw_do << " ";
visit(stmt->getBody());
Printer << " " << tok::kw_while << " ";
// FIXME: print condition
}
void PrintAST::visitDoStmt(DoStmt *stmt) {
Printer << tok::kw_do << " ";
visit(stmt->getBody());
}
void PrintAST::visitDoCatchStmt(DoCatchStmt *stmt) {
Printer << tok::kw_do << " ";
visit(stmt->getBody());
for (auto clause : stmt->getCatches()) {
visitCatchStmt(clause);
}
}
void PrintAST::visitCatchStmt(CatchStmt *stmt) {
Printer << tok::kw_catch << " ";
printPattern(stmt->getErrorPattern());
if (auto guard = stmt->getGuardExpr()) {
Printer << " " << tok::kw_where << " ";
// FIXME: print guard expression
(void) guard;
}
Printer << ' ';
visit(stmt->getBody());
}
void PrintAST::visitForStmt(ForStmt *stmt) {
Printer << tok::kw_for << " (";
// FIXME: print initializer
Printer << "; ";
if (stmt->getCond().isNonNull()) {
// FIXME: print cond
}
Printer << "; ";
// FIXME: print increment
Printer << ") ";
visit(stmt->getBody());
}
void PrintAST::visitForEachStmt(ForEachStmt *stmt) {
Printer << tok::kw_for << " ";
printPattern(stmt->getPattern());
Printer << " " << tok::kw_in << " ";
// FIXME: print container
Printer << " ";
visit(stmt->getBody());
}
void PrintAST::visitBreakStmt(BreakStmt *stmt) {
Printer << tok::kw_break;
}
void PrintAST::visitContinueStmt(ContinueStmt *stmt) {
Printer << tok::kw_continue;
}
void PrintAST::visitFallthroughStmt(FallthroughStmt *stmt) {
Printer << tok::kw_fallthrough;
}
void PrintAST::visitSwitchStmt(SwitchStmt *stmt) {
Printer << tok::kw_switch << " ";
// FIXME: print subject
Printer << "{";
Printer.printNewline();
for (CaseStmt *C : stmt->getCases()) {
visit(C);
}
Printer.printNewline();
indent();
Printer << "}";
}
void PrintAST::visitCaseStmt(CaseStmt *CS) {
if (CS->isDefault()) {
Printer << tok::kw_default;
} else {
auto PrintCaseLabelItem = [&](const CaseLabelItem &CLI) {
if (auto *P = CLI.getPattern())
printPattern(P);
if (CLI.getGuardExpr()) {
Printer << " " << tok::kw_where << " ";
// FIXME: print guard expr
}
};
Printer << tok::kw_case << " ";
interleave(CS->getCaseLabelItems(), PrintCaseLabelItem,
[&] { Printer << ", "; });
}
Printer << ":";
Printer.printNewline();
printASTNodes((cast<BraceStmt>(CS->getBody())->getElements()));
}
void PrintAST::visitFailStmt(FailStmt *stmt) {
Printer << tok::kw_return << " " << tok::kw_nil;
}
void Decl::print(raw_ostream &os) const {
PrintOptions options;
options.FunctionDefinitions = true;
options.TypeDefinitions = true;
options.VarInitializers = true;
print(os, options);
}
void Decl::print(raw_ostream &OS, const PrintOptions &Opts) const {
StreamPrinter Printer(OS);
print(Printer, Opts);
}
bool Decl::print(ASTPrinter &Printer, const PrintOptions &Opts) const {
PrintAST printer(Printer, Opts);
return printer.visit(const_cast<Decl *>(this));
}
bool Decl::shouldPrintInContext(const PrintOptions &PO) const {
// Skip getters/setters. They are part of the variable or subscript.
if (isa<FuncDecl>(this) && cast<FuncDecl>(this)->isAccessor())
return false;
if (PO.ExplodePatternBindingDecls) {
if (isa<VarDecl>(this))
return true;
if (isa<PatternBindingDecl>(this))
return false;
} else {
// Try to preserve the PatternBindingDecl structure.
// Skip stored variables, unless they came from a Clang module.
// Stored variables in Swift source will be picked up by the
// PatternBindingDecl.
if (auto *VD = dyn_cast<VarDecl>(this)) {
if (!VD->hasClangNode() && VD->hasStorage() &&
VD->getStorageKind() != VarDecl::StoredWithObservers)
return false;
}
// Skip pattern bindings that consist of just one computed variable.
if (auto pbd = dyn_cast<PatternBindingDecl>(this)) {
if (pbd->getPatternList().size() == 1) {
auto pattern =
pbd->getPatternList()[0].getPattern()->getSemanticsProvidingPattern();
if (auto named = dyn_cast<NamedPattern>(pattern)) {
auto StorageKind = named->getDecl()->getStorageKind();
if (StorageKind == VarDecl::Computed ||
StorageKind == VarDecl::StoredWithObservers)
return false;
}
}
}
}
if (isa<IfConfigDecl>(this)) {
return PO.PrintIfConfig;
}
// Print everything else.
return true;
}
void Pattern::print(llvm::raw_ostream &OS, const PrintOptions &Options) const {
StreamPrinter StreamPrinter(OS);
PrintAST Printer(StreamPrinter, Options);
Printer.printPattern(this);
}
//===----------------------------------------------------------------------===//
// Type Printing
//===----------------------------------------------------------------------===//
namespace {
class TypePrinter : public TypeVisitor<TypePrinter> {
using super = TypeVisitor;
ASTPrinter &Printer;
const PrintOptions &Options;
Optional<std::vector<GenericParamList *>> UnwrappedGenericParams;
void printDeclContext(DeclContext *DC) {
switch (DC->getContextKind()) {
case DeclContextKind::Module: {
Module *M = cast<Module>(DC);
if (auto Parent = M->getParent())
printDeclContext(Parent);
Printer.printModuleRef(M, M->getName());
return;
}
case DeclContextKind::FileUnit:
printDeclContext(DC->getParent());
return;
case DeclContextKind::AbstractClosureExpr:
// FIXME: print closures somehow.
return;
case DeclContextKind::GenericTypeDecl:
visit(cast<GenericTypeDecl>(DC)->getType());
return;
case DeclContextKind::ExtensionDecl:
visit(cast<ExtensionDecl>(DC)->getExtendedType());
return;
case DeclContextKind::Initializer:
case DeclContextKind::TopLevelCodeDecl:
case DeclContextKind::SerializedLocal:
llvm_unreachable("bad decl context");
case DeclContextKind::AbstractFunctionDecl:
visit(cast<AbstractFunctionDecl>(DC)->getType());
return;
case DeclContextKind::SubscriptDecl:
visit(cast<SubscriptDecl>(DC)->getType());
return;
}
}
void printGenericArgs(ArrayRef<Type> Args) {
if (Args.empty())
return;
Printer << "<";
bool First = true;
for (Type Arg : Args) {
if (First)
First = false;
else
Printer << ", ";
visit(Arg);
}
Printer << ">";
}
static bool isSimple(Type type) {
switch (type->getKind()) {
case TypeKind::Function:
case TypeKind::PolymorphicFunction:
case TypeKind::GenericFunction:
return false;
case TypeKind::Metatype:
case TypeKind::ExistentialMetatype:
return !cast<AnyMetatypeType>(type.getPointer())->hasRepresentation();
case TypeKind::Archetype: {
auto arch = type->getAs<ArchetypeType>();
return !arch->isOpenedExistential();
}
default:
return true;
}
}
/// Helper function for printing a type that is embedded within a larger type.
///
/// This is necessary whenever the inner type may not normally be represented
/// as a 'type-simple' production in the type grammar.
void printWithParensIfNotSimple(Type T) {
if (T.isNull()) {
visit(T);
return;
}
if (!isSimple(T)) {
Printer << "(";
visit(T);
Printer << ")";
} else {
visit(T);
}
}
void printGenericParams(GenericParamList *Params) {
PrintAST(Printer, Options).printGenericParams(Params);
}
template <typename T>
void printModuleContext(T *Ty) {
Module *Mod = Ty->getDecl()->getModuleContext();
Printer.printModuleRef(Mod, Mod->getName());
Printer << ".";
}
template <typename T>
void printTypeDeclName(T *Ty) {
TypeDecl *TD = Ty->getDecl();
Printer.printTypeRef(TD, TD->getName());
}
// FIXME: we should have a callback that would tell us
// whether it's kosher to print a module name or not
bool isLLDBExpressionModule(Module *M) {
if (!M)
return false;
return M->getName().str().startswith(LLDB_EXPRESSIONS_MODULE_NAME_PREFIX);
}
bool shouldPrintFullyQualified(TypeBase *T) {
if (Options.FullyQualifiedTypes)
return true;
if (!Options.FullyQualifiedTypesIfAmbiguous)
return false;
Decl *D = T->getAnyGeneric();
// If we cannot find the declaration, be extra careful and print
// the type qualified.
if (!D)
return true;
Module *M = D->getDeclContext()->getParentModule();
// Don't print qualifiers for types from the standard library.
if (M->isStdlibModule() ||
M->getName() == M->getASTContext().Id_ObjectiveC ||
M->isSystemModule() ||
isLLDBExpressionModule(M))
return false;
// Don't print qualifiers for imported types.
for (auto File : M->getFiles()) {
if (File->getKind() == FileUnitKind::ClangModule)
return false;
}
return true;
}
public:
TypePrinter(ASTPrinter &Printer, const PrintOptions &PO)
: Printer(Printer), Options(PO) {}
void visit(Type T) {
Printer.printTypePre(TypeLoc::withoutLoc(T));
defer { Printer.printTypePost(TypeLoc::withoutLoc(T)); };
// If we have an alternate name for this type, use it.
if (Options.AlternativeTypeNames) {
auto found = Options.AlternativeTypeNames->find(T.getCanonicalTypeOrNull());
if (found != Options.AlternativeTypeNames->end()) {
Printer << found->second.str();
return;
}
}
super::visit(T);
}
void visitErrorType(ErrorType *T) {
Printer << "<<error type>>";
}
void visitUnresolvedType(UnresolvedType *T) {
if (T->getASTContext().LangOpts.DebugConstraintSolver)
Printer << "<<unresolvedtype>>";
else
Printer << "_";
}
void visitBuiltinRawPointerType(BuiltinRawPointerType *T) {
Printer << "Builtin.RawPointer";
}
void visitBuiltinNativeObjectType(BuiltinNativeObjectType *T) {
Printer << "Builtin.NativeObject";
}
void visitBuiltinUnknownObjectType(BuiltinUnknownObjectType *T) {
Printer << "Builtin.UnknownObject";
}
void visitBuiltinBridgeObjectType(BuiltinBridgeObjectType *T) {
Printer << "Builtin.BridgeObject";
}
void visitBuiltinUnsafeValueBufferType(BuiltinUnsafeValueBufferType *T) {
Printer << "Builtin.UnsafeValueBuffer";
}
void visitBuiltinVectorType(BuiltinVectorType *T) {
llvm::SmallString<32> UnderlyingStrVec;
StringRef UnderlyingStr;
{
// FIXME: Ugly hack: remove the .Builtin from the element type.
{
llvm::raw_svector_ostream UnderlyingOS(UnderlyingStrVec);
T->getElementType().print(UnderlyingOS);
}
if (UnderlyingStrVec.startswith("Builtin."))
UnderlyingStr = UnderlyingStrVec.substr(8);
else
UnderlyingStr = UnderlyingStrVec;
}
Printer << "Builtin.Vec" << T->getNumElements() << "x" << UnderlyingStr;
}
void visitBuiltinIntegerType(BuiltinIntegerType *T) {
auto width = T->getWidth();
if (width.isFixedWidth()) {
Printer << "Builtin.Int" << width.getFixedWidth();
} else if (width.isPointerWidth()) {
Printer << "Builtin.Word";
} else {
llvm_unreachable("impossible bit width");
}
}
void visitBuiltinFloatType(BuiltinFloatType *T) {
switch (T->getFPKind()) {
case BuiltinFloatType::IEEE16: Printer << "Builtin.FPIEEE16"; return;
case BuiltinFloatType::IEEE32: Printer << "Builtin.FPIEEE32"; return;
case BuiltinFloatType::IEEE64: Printer << "Builtin.FPIEEE64"; return;
case BuiltinFloatType::IEEE80: Printer << "Builtin.FPIEEE80"; return;
case BuiltinFloatType::IEEE128: Printer << "Builtin.FPIEEE128"; return;
case BuiltinFloatType::PPC128: Printer << "Builtin.FPPPC128"; return;
}
}
void visitNameAliasType(NameAliasType *T) {
if (Options.PrintForSIL) {
visit(T->getSinglyDesugaredType());
return;
}
if (shouldPrintFullyQualified(T)) {
if (auto ParentDC = T->getDecl()->getDeclContext()) {
printDeclContext(ParentDC);
Printer << ".";
}
}
printTypeDeclName(T);
}
void visitParenType(ParenType *T) {
Printer << "(";
visit(T->getUnderlyingType());
Printer << ")";
}
void visitTupleType(TupleType *T) {
Printer << "(";
auto Fields = T->getElements();
for (unsigned i = 0, e = Fields.size(); i != e; ++i) {
if (i)
Printer << ", ";
const TupleTypeElt &TD = Fields[i];
Type EltType = TD.getType();
Printer.callPrintStructurePre(PrintStructureKind::TupleElement);
defer { Printer.printStructurePost(PrintStructureKind::TupleElement); };
if (TD.hasName()) {
Printer.printName(TD.getName(), PrintNameContext::TupleElement);
Printer << ": ";
}
if (TD.isVararg()) {
visit(TD.getVarargBaseTy());
Printer << "...";
} else
visit(EltType);
}
Printer << ")";
}
void visitUnboundGenericType(UnboundGenericType *T) {
if (auto ParentType = T->getParent()) {
visit(ParentType);
Printer << ".";
} else if (shouldPrintFullyQualified(T)) {
printModuleContext(T);
}
printTypeDeclName(T);
}
void visitBoundGenericType(BoundGenericType *T) {
if (Options.SynthesizeSugarOnTypes) {
auto *NT = T->getDecl();
auto &Ctx = T->getASTContext();
if (NT == Ctx.getArrayDecl()) {
Printer << "[";
visit(T->getGenericArgs()[0]);
Printer << "]";
return;
}
if (NT == Ctx.getDictionaryDecl()) {
Printer << "[";
visit(T->getGenericArgs()[0]);
Printer << " : ";
visit(T->getGenericArgs()[1]);
Printer << "]";
return;
}
if (NT == Ctx.getOptionalDecl()) {
printWithParensIfNotSimple(T->getGenericArgs()[0]);
Printer << "?";
return;
}
if (NT == Ctx.getImplicitlyUnwrappedOptionalDecl()) {
printWithParensIfNotSimple(T->getGenericArgs()[0]);
Printer << "!";
return;
}
}
if (auto ParentType = T->getParent()) {
visit(ParentType);
Printer << ".";
} else if (shouldPrintFullyQualified(T)) {
printModuleContext(T);
}
printTypeDeclName(T);
printGenericArgs(T->getGenericArgs());
}
void visitEnumType(EnumType *T) {
if (auto ParentType = T->getParent()) {
visit(ParentType);
Printer << ".";
} else if (shouldPrintFullyQualified(T)) {
printModuleContext(T);
}
printTypeDeclName(T);
}
void visitStructType(StructType *T) {
if (auto ParentType = T->getParent()) {
visit(ParentType);
Printer << ".";
} else if (shouldPrintFullyQualified(T)) {
printModuleContext(T);
}
printTypeDeclName(T);
}
void visitClassType(ClassType *T) {
if (auto ParentType = T->getParent()) {
visit(ParentType);
Printer << ".";
} else if (shouldPrintFullyQualified(T)) {
printModuleContext(T);
}
printTypeDeclName(T);
}
void visitAnyMetatypeType(AnyMetatypeType *T) {
if (T->hasRepresentation()) {
switch (T->getRepresentation()) {
case MetatypeRepresentation::Thin: Printer << "@thin "; break;
case MetatypeRepresentation::Thick: Printer << "@thick "; break;
case MetatypeRepresentation::ObjC: Printer << "@objc_metatype "; break;
}
}
printWithParensIfNotSimple(T->getInstanceType());
// We spell normal metatypes of existential types as .Protocol.
if (isa<MetatypeType>(T) &&
// Special case AssociatedTypeType's here, since they may not be fully
// set up within the type checker (preventing getCanonicalType from
// working), and we want type printing to always work even in malformed
// programs half way through the type checker.
!isa<AssociatedTypeType>(T->getInstanceType().getPointer()) &&
T->getInstanceType()->isAnyExistentialType()) {
Printer << ".Protocol";
} else {
Printer << ".Type";
}
}
void visitModuleType(ModuleType *T) {
Printer << "module<";
Printer.printModuleRef(T->getModule(), T->getModule()->getName());
Printer << ">";
}
void visitDynamicSelfType(DynamicSelfType *T) {
Printer << "Self";
}
void printFunctionExtInfo(AnyFunctionType::ExtInfo info) {
if(Options.SkipAttributes)
return;
auto IsAttrExcluded = [&](DeclAttrKind Kind) {
return Options.ExcludeAttrList.end() != std::find(Options.ExcludeAttrList.
begin(), Options.ExcludeAttrList.end(), Kind);
};
if (info.isAutoClosure() && !IsAttrExcluded(DAK_AutoClosure))
Printer << "@autoclosure ";
else if (info.isNoEscape() && !IsAttrExcluded(DAK_NoEscape))
// autoclosure implies noescape.
Printer << "@noescape ";
if (Options.PrintFunctionRepresentationAttrs) {
// TODO: coalesce into a single convention attribute.
switch (info.getSILRepresentation()) {
case SILFunctionType::Representation::Thick:
break;
case SILFunctionType::Representation::Thin:
Printer << "@convention(thin) ";
break;
case SILFunctionType::Representation::Block:
Printer << "@convention(block) ";
break;
case SILFunctionType::Representation::CFunctionPointer:
Printer << "@convention(c) ";
break;
case SILFunctionType::Representation::Method:
Printer << "@convention(method) ";
break;
case SILFunctionType::Representation::ObjCMethod:
Printer << "@convention(objc_method) ";
break;
case SILFunctionType::Representation::WitnessMethod:
Printer << "@convention(witness_method) ";
break;
}
}
if (info.isNoReturn())
Printer << "@noreturn ";
}
void printFunctionExtInfo(SILFunctionType::ExtInfo info) {
if(Options.SkipAttributes)
return;
if (Options.PrintFunctionRepresentationAttrs) {
// TODO: coalesce into a single convention attribute.
switch (info.getRepresentation()) {
case SILFunctionType::Representation::Thick:
break;
case SILFunctionType::Representation::Thin:
Printer << "@convention(thin) ";
break;
case SILFunctionType::Representation::Block:
Printer << "@convention(block) ";
break;
case SILFunctionType::Representation::CFunctionPointer:
Printer << "@convention(c) ";
break;
case SILFunctionType::Representation::Method:
Printer << "@convention(method) ";
break;
case SILFunctionType::Representation::ObjCMethod:
Printer << "@convention(objc_method) ";
break;
case SILFunctionType::Representation::WitnessMethod:
Printer << "@convention(witness_method) ";
break;
}
}
if (info.isNoReturn())
Printer << "@noreturn ";
}
void visitFunctionType(FunctionType *T) {
Printer.callPrintStructurePre(PrintStructureKind::FunctionType);
defer { Printer.printStructurePost(PrintStructureKind::FunctionType); };
printFunctionExtInfo(T->getExtInfo());
printWithParensIfNotSimple(T->getInput());
if (T->throws())
Printer << " " << tok::kw_throws;
Printer << " -> ";
Printer.callPrintStructurePre(PrintStructureKind::FunctionReturnType);
T->getResult().print(Printer, Options);
Printer.printStructurePost(PrintStructureKind::FunctionReturnType);
}
void visitPolymorphicFunctionType(PolymorphicFunctionType *T) {
Printer.callPrintStructurePre(PrintStructureKind::FunctionType);
defer { Printer.printStructurePost(PrintStructureKind::FunctionType); };
printFunctionExtInfo(T->getExtInfo());
printGenericParams(&T->getGenericParams());
Printer << " ";
printWithParensIfNotSimple(T->getInput());
if (T->throws())
Printer << " " << tok::kw_throws;
Printer << " -> ";
Printer.callPrintStructurePre(PrintStructureKind::FunctionReturnType);
T->getResult().print(Printer, Options);
Printer.printStructurePost(PrintStructureKind::FunctionReturnType);
}
/// If we can't find the depth of a type, return ErrorDepth.
const unsigned ErrorDepth = ~0U;
/// A helper function to return the depth of a type.
unsigned getDepthOfType(Type ty) {
if (auto paramTy = ty->getAs<GenericTypeParamType>())
return paramTy->getDepth();
if (auto depMemTy = dyn_cast<DependentMemberType>(ty->getCanonicalType())) {
CanType rootTy;
do {
rootTy = depMemTy.getBase();
} while ((depMemTy = dyn_cast<DependentMemberType>(rootTy)));
if (auto rootParamTy = dyn_cast<GenericTypeParamType>(rootTy))
return rootParamTy->getDepth();
return ErrorDepth;
}
return ErrorDepth;
}
/// A helper function to return the depth of a requirement.
unsigned getDepthOfRequirement(const Requirement &req) {
switch (req.getKind()) {
case RequirementKind::Conformance:
case RequirementKind::Superclass:
case RequirementKind::WitnessMarker:
return getDepthOfType(req.getFirstType());
case RequirementKind::SameType: {
// Return the max valid depth of firstType and secondType.
unsigned firstDepth = getDepthOfType(req.getFirstType());
unsigned secondDepth = getDepthOfType(req.getSecondType());
unsigned maxDepth;
if (firstDepth == ErrorDepth && secondDepth != ErrorDepth)
maxDepth = secondDepth;
else if (firstDepth != ErrorDepth && secondDepth == ErrorDepth)
maxDepth = firstDepth;
else
maxDepth = std::max(firstDepth, secondDepth);
return maxDepth;
}
}
llvm_unreachable("bad RequirementKind");
}
void printGenericSignature(ArrayRef<GenericTypeParamType *> genericParams,
ArrayRef<Requirement> requirements) {
if (!Options.PrintInSILBody) {
printSingleDepthOfGenericSignature(genericParams, requirements);
return;
}
// In order to recover the nested GenericParamLists, we divide genericParams
// and requirements according to depth.
unsigned paramIdx = 0, numParam = genericParams.size();
while (paramIdx < numParam) {
unsigned depth = genericParams[paramIdx]->getDepth();
// Move index to genericParams.
unsigned lastParamIdx = paramIdx;
do {
lastParamIdx++;
} while (lastParamIdx < numParam &&
genericParams[lastParamIdx]->getDepth() == depth);
// Collect requirements for this level.
// Because of same-type requirements, these aren't well-ordered.
SmallVector<Requirement, 2> requirementsAtDepth;
for (auto reqt : requirements) {
unsigned currentDepth = getDepthOfRequirement(reqt);
// Collect requirements at the current depth.
if (currentDepth == depth)
requirementsAtDepth.push_back(reqt);
// If we're at the bottom-most level, collect depthless requirements.
if (currentDepth == ErrorDepth && lastParamIdx == numParam)
requirementsAtDepth.push_back(reqt);
}
printSingleDepthOfGenericSignature(
genericParams.slice(paramIdx, lastParamIdx - paramIdx),
requirementsAtDepth);
paramIdx = lastParamIdx;
}
}
void printSingleDepthOfGenericSignature(
ArrayRef<GenericTypeParamType *> genericParams,
ArrayRef<Requirement> requirements) {
// Print the generic parameters.
Printer << "<";
bool isFirstParam = true;
for (auto param : genericParams) {
if (isFirstParam)
isFirstParam = false;
else
Printer << ", ";
visit(param);
}
// Print the requirements.
bool isFirstReq = true;
for (const auto &req : requirements) {
if (req.getKind() == RequirementKind::WitnessMarker)
continue;
if (isFirstReq) {
Printer << " " << tok::kw_where << " ";
isFirstReq = false;
} else {
Printer << ", ";
}
visit(req.getFirstType());
switch (req.getKind()) {
case RequirementKind::Conformance:
case RequirementKind::Superclass:
Printer << " : ";
break;
case RequirementKind::SameType:
Printer << " == ";
break;
case RequirementKind::WitnessMarker:
llvm_unreachable("Handled above");
}
visit(req.getSecondType());
}
Printer << ">";
}
void visitGenericFunctionType(GenericFunctionType *T) {
Printer.callPrintStructurePre(PrintStructureKind::FunctionType);
defer { Printer.printStructurePost(PrintStructureKind::FunctionType); };
printFunctionExtInfo(T->getExtInfo());
printGenericSignature(T->getGenericParams(), T->getRequirements());
Printer << " ";
printWithParensIfNotSimple(T->getInput());
if (T->throws())
Printer << " " << tok::kw_throws;
Printer << " -> ";
Printer.callPrintStructurePre(PrintStructureKind::FunctionReturnType);
T->getResult().print(Printer, Options);
Printer.printStructurePost(PrintStructureKind::FunctionReturnType);
}
void printCalleeConvention(ParameterConvention conv) {
switch (conv) {
case ParameterConvention::Direct_Unowned:
return;
case ParameterConvention::Direct_Owned:
Printer << "@callee_owned ";
return;
case ParameterConvention::Direct_Guaranteed:
Printer << "@callee_guaranteed ";
return;
case ParameterConvention::Direct_Deallocating:
// Closures do not have destructors.
llvm_unreachable("callee convention cannot be deallocating");
case ParameterConvention::Indirect_In:
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
case ParameterConvention::Indirect_In_Guaranteed:
llvm_unreachable("callee convention cannot be indirect");
}
llvm_unreachable("bad convention");
}
void visitSILFunctionType(SILFunctionType *T) {
printFunctionExtInfo(T->getExtInfo());
printCalleeConvention(T->getCalleeConvention());
if (auto sig = T->getGenericSignature()) {
printGenericSignature(sig->getGenericParams(), sig->getRequirements());
Printer << " ";
}
Printer << "(";
bool first = true;
for (auto param : T->getParameters()) {
Printer.printSeparator(first, ", ");
param.print(Printer, Options);
}
Printer << ") -> ";
unsigned totalResults =
T->getNumAllResults() + unsigned(T->hasErrorResult());
if (totalResults != 1) Printer << "(";
first = true;
for (auto result : T->getAllResults()) {
Printer.printSeparator(first, ", ");
result.print(Printer, Options);
}
if (T->hasErrorResult()) {
// The error result is implicitly @owned; don't print that.
assert(T->getErrorResult().getConvention() == ResultConvention::Owned);
Printer.printSeparator(first, ", ");
Printer << "@error ";
T->getErrorResult().getType().print(Printer, Options);
}
if (totalResults != 1) Printer << ")";
}
void visitSILBlockStorageType(SILBlockStorageType *T) {
Printer << "@block_storage ";
printWithParensIfNotSimple(T->getCaptureType());
}
void visitSILBoxType(SILBoxType *T) {
Printer << "@box ";
printWithParensIfNotSimple(T->getBoxedType());
}
void visitArraySliceType(ArraySliceType *T) {
Printer << "[";
visit(T->getBaseType());
Printer << "]";
}
void visitDictionaryType(DictionaryType *T) {
Printer << "[";
visit(T->getKeyType());
Printer << " : ";
visit(T->getValueType());
Printer << "]";
}
void visitOptionalType(OptionalType *T) {
printWithParensIfNotSimple(T->getBaseType());
Printer << "?";
}
void visitImplicitlyUnwrappedOptionalType(ImplicitlyUnwrappedOptionalType *T) {
printWithParensIfNotSimple(T->getBaseType());
Printer << "!";
}
void visitProtocolType(ProtocolType *T) {
printTypeDeclName(T);
}
void visitProtocolCompositionType(ProtocolCompositionType *T) {
Printer << tok::kw_protocol << "<";
bool First = true;
for (auto Proto : T->getProtocols()) {
if (First)
First = false;
else
Printer << ", ";
visit(Proto);
}
Printer << ">";
}
void visitLValueType(LValueType *T) {
Printer << "@lvalue ";
visit(T->getObjectType());
}
void visitInOutType(InOutType *T) {
Printer << tok::kw_inout << " ";
visit(T->getObjectType());
}
void visitArchetypeType(ArchetypeType *T) {
if (auto existentialTy = T->getOpenedExistentialType()) {
if (Options.PrintForSIL)
Printer << "@opened(\"" << T->getOpenedExistentialID() << "\") ";
visit(existentialTy);
} else {
if (auto parent = T->getParent()) {
visit(parent);
Printer << ".";
}
if (T->getName().empty())
Printer << "<anonymous>";
else {
PrintNameContext context = PrintNameContext::Normal;
if (T->getSelfProtocol())
context = PrintNameContext::GenericParameter;
Printer.printName(T->getName(), context);
}
}
}
GenericParamList *getGenericParamListAtDepth(unsigned depth) {
assert(Options.ContextGenericParams);
if (!UnwrappedGenericParams) {
std::vector<GenericParamList *> paramLists;
for (auto *params = Options.ContextGenericParams;
params;
params = params->getOuterParameters()) {
paramLists.push_back(params);
}
UnwrappedGenericParams = std::move(paramLists);
}
return UnwrappedGenericParams->rbegin()[depth];
}
void visitGenericTypeParamType(GenericTypeParamType *T) {
// Substitute a context archetype if we have context generic params.
if (Options.ContextGenericParams) {
return visit(getGenericParamListAtDepth(T->getDepth())
->getPrimaryArchetypes()[T->getIndex()]);
}
auto Name = T->getName();
if (Name.empty())
Printer << "<anonymous>";
else {
PrintNameContext context = PrintNameContext::Normal;
if (T->getDecl() && T->getDecl()->isProtocolSelf())
context = PrintNameContext::GenericParameter;
Printer.printName(Name, context);
}
}
void visitAssociatedTypeType(AssociatedTypeType *T) {
auto Name = T->getDecl()->getName();
if (Name.empty())
Printer << "<anonymous>";
else
Printer.printName(Name);
}
void visitSubstitutedType(SubstitutedType *T) {
visit(T->getReplacementType());
}
void visitDependentMemberType(DependentMemberType *T) {
visit(T->getBase());
Printer << ".";
Printer.printName(T->getName());
}
void visitUnownedStorageType(UnownedStorageType *T) {
if (Options.PrintStorageRepresentationAttrs)
Printer << "@sil_unowned ";
visit(T->getReferentType());
}
void visitUnmanagedStorageType(UnmanagedStorageType *T) {
if (Options.PrintStorageRepresentationAttrs)
Printer << "@sil_unmanaged ";
visit(T->getReferentType());
}
void visitWeakStorageType(WeakStorageType *T) {
if (Options.PrintStorageRepresentationAttrs)
Printer << "@sil_weak ";
visit(T->getReferentType());
}
void visitTypeVariableType(TypeVariableType *T) {
if (T->getASTContext().LangOpts.DebugConstraintSolver) {
Printer << "$T" << T->getID();
return;
}
Printer << "_";
}
};
} // unnamed namespace
void Type::print(raw_ostream &OS, const PrintOptions &PO) const {
StreamPrinter Printer(OS);
print(Printer, PO);
}
void Type::print(ASTPrinter &Printer, const PrintOptions &PO) const {
if (isNull())
Printer << "<null>";
else
TypePrinter(Printer, PO).visit(*this);
}
void GenericSignature::print(raw_ostream &OS) const {
StreamPrinter Printer(OS);
TypePrinter(Printer, PrintOptions())
.printGenericSignature(getGenericParams(), getRequirements());
}
void GenericSignature::dump() const {
print(llvm::errs());
llvm::errs() << '\n';
}
std::string GenericSignature::getAsString() const {
std::string result;
llvm::raw_string_ostream out(result);
print(out);
return out.str();
}
static StringRef getStringForParameterConvention(ParameterConvention conv) {
switch (conv) {
case ParameterConvention::Indirect_In: return "@in ";
case ParameterConvention::Indirect_In_Guaranteed: return "@in_guaranteed ";
case ParameterConvention::Indirect_Inout: return "@inout ";
case ParameterConvention::Indirect_InoutAliasable: return "@inout_aliasable ";
case ParameterConvention::Direct_Owned: return "@owned ";
case ParameterConvention::Direct_Unowned: return "";
case ParameterConvention::Direct_Guaranteed: return "@guaranteed ";
case ParameterConvention::Direct_Deallocating: return "@deallocating ";
}
llvm_unreachable("bad parameter convention");
}
StringRef swift::getCheckedCastKindName(CheckedCastKind kind) {
switch (kind) {
case CheckedCastKind::Unresolved:
return "unresolved";
case CheckedCastKind::Coercion:
return "coercion";
case CheckedCastKind::ValueCast:
return "value_cast";
case CheckedCastKind::ArrayDowncast:
return "array_downcast";
case CheckedCastKind::DictionaryDowncast:
return "dictionary_downcast";
case CheckedCastKind::DictionaryDowncastBridged:
return "dictionary_downcast_bridged";
case CheckedCastKind::SetDowncast:
return "set_downcast";
case CheckedCastKind::SetDowncastBridged:
return "set_downcast_bridged";
case CheckedCastKind::BridgeFromObjectiveC:
return "bridge_from_objc";
}
llvm_unreachable("bad checked cast name");
}
void SILParameterInfo::dump() const {
print(llvm::errs());
llvm::errs() << '\n';
}
void SILParameterInfo::print(raw_ostream &OS, const PrintOptions &Opts) const {
StreamPrinter Printer(OS);
print(Printer, Opts);
}
void SILParameterInfo::print(ASTPrinter &Printer,
const PrintOptions &Opts) const {
Printer << getStringForParameterConvention(getConvention());
getType().print(Printer, Opts);
}
static StringRef getStringForResultConvention(ResultConvention conv) {
switch (conv) {
case ResultConvention::Indirect: return "@out ";
case ResultConvention::Owned: return "@owned ";
case ResultConvention::Unowned: return "";
case ResultConvention::UnownedInnerPointer: return "@unowned_inner_pointer ";
case ResultConvention::Autoreleased: return "@autoreleased ";
}
llvm_unreachable("bad result convention");
}
void SILResultInfo::dump() const {
print(llvm::errs());
llvm::errs() << '\n';
}
void SILResultInfo::print(raw_ostream &OS, const PrintOptions &Opts) const {
StreamPrinter Printer(OS);
print(Printer, Opts);
}
void SILResultInfo::print(ASTPrinter &Printer, const PrintOptions &Opts) const {
Printer << getStringForResultConvention(getConvention());
getType().print(Printer, Opts);
}
std::string Type::getString(const PrintOptions &PO) const {
std::string Result;
llvm::raw_string_ostream OS(Result);
print(OS, PO);
return OS.str();
}
std::string TypeBase::getString(const PrintOptions &PO) const {
std::string Result;
llvm::raw_string_ostream OS(Result);
print(OS, PO);
return OS.str();
}
void TypeBase::dumpPrint() const {
print(llvm::errs());
llvm::errs() << '\n';
}
void TypeBase::print(raw_ostream &OS, const PrintOptions &PO) const {
Type(const_cast<TypeBase *>(this)).print(OS, PO);
}
void TypeBase::print(ASTPrinter &Printer, const PrintOptions &PO) const {
Type(const_cast<TypeBase *>(this)).print(Printer, PO);
}
void ProtocolConformance::printName(llvm::raw_ostream &os,
const PrintOptions &PO) const {
if (getKind() == ProtocolConformanceKind::Normal) {
if (PO.PrintForSIL) {
if (auto genericSig = getGenericSignature()) {
StreamPrinter sPrinter(os);
TypePrinter typePrinter(sPrinter, PO);
typePrinter.printGenericSignature(genericSig->getGenericParams(),
genericSig->getRequirements());
os << ' ';
}
} else if (auto gp = getGenericParams()) {
StreamPrinter SPrinter(os);
PrintAST Printer(SPrinter, PO);
Printer.printGenericParams(gp);
os << ' ';
}
}
getType()->print(os, PO);
os << ": ";
switch (getKind()) {
case ProtocolConformanceKind::Normal: {
auto normal = cast<NormalProtocolConformance>(this);
os << normal->getProtocol()->getName()
<< " module " << normal->getDeclContext()->getParentModule()->getName();
break;
}
case ProtocolConformanceKind::Specialized: {
auto spec = cast<SpecializedProtocolConformance>(this);
os << "specialize <";
interleave(spec->getGenericSubstitutions(),
[&](const Substitution &s) { s.print(os, PO); },
[&] { os << ", "; });
os << "> (";
spec->getGenericConformance()->printName(os, PO);
os << ")";
break;
}
case ProtocolConformanceKind::Inherited: {
auto inherited = cast<InheritedProtocolConformance>(this);
os << "inherit (";
inherited->getInheritedConformance()->printName(os, PO);
os << ")";
break;
}
}
}
void Substitution::print(llvm::raw_ostream &os,
const PrintOptions &PO) const {
Replacement->print(os, PO);
}