Files
swift-mirror/lib/AST/Availability.cpp
Jordan Rose 5e0f4b704d [AST] Introduce AvailabilityContext to wrap VersionRange.
This is the beginning of the extension of the availability model
introduced in Swift 2.0 to support two interesting things: inlineable
code and binary frameworks not tied to an OS. The former is critical
to having a stable standard library that isn't shipped with a client app.

(For more information on both of these, see docs/LibraryEvolution.rst.)

The existing availability model enforces that API is not used unless
the developer has already guaranteed its existence. We want to reuse
this logic for these new purposes. Additionally, certain queries about
the AST are dependent on this type of information as well, e.g. "can I
assume this enum will not grow any additional cases?" If the enum comes
from the module being compiled, the answer is usually "yes", but not if
the code asking the question may be inlined into another binary!

(This latter purpose is currently served by ResilienceExpansion down at
the SIL level; my goal is to replace ResilienceExpansion with
AvailabilityContext. It's a bit heavier but would also allow additional
optimization in the future.)

This commit does not change any logic; it only wraps existing uses of
VersionRange in AvailabilityContext if they're not strictly referring to
the OS version.
2016-02-02 17:41:29 -08:00

206 lines
7.0 KiB
C++

//===--- Availability.cpp - Swift Availability Structures -----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines data structures for API availability.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/AST.h"
#include "swift/AST/Attr.h"
#include "swift/AST/Availability.h"
#include "swift/AST/PlatformKind.h"
#include "swift/AST/TypeWalker.h"
using namespace swift;
namespace {
/// The inferred availability required to access a group of declarations
/// on a single platform.
struct InferredAvailability {
UnconditionalAvailabilityKind Unconditional
= UnconditionalAvailabilityKind::None;
Optional<clang::VersionTuple> Introduced;
Optional<clang::VersionTuple> Deprecated;
Optional<clang::VersionTuple> Obsoleted;
};
/// The type of a function that merges two version tuples.
typedef const clang::VersionTuple &(*MergeFunction)(
const clang::VersionTuple &, const clang::VersionTuple &);
} // end anonymous namespace
/// Apply a merge function to two optional versions, returning the result
/// in Inferred.
static void
mergeIntoInferredVersion(const Optional<clang::VersionTuple> &Version,
Optional<clang::VersionTuple> &Inferred,
MergeFunction Merge) {
if (Version.hasValue()) {
if (Inferred.hasValue()) {
Inferred = Merge(Inferred.getValue(), Version.getValue());
} else {
Inferred = Version;
}
}
}
/// Merge an attribute's availability with an existing inferred availability
/// so that the new inferred availability is at least as available as
/// the attribute requires.
static void mergeWithInferredAvailability(const AvailableAttr *Attr,
InferredAvailability &Inferred) {
Inferred.Unconditional
= static_cast<UnconditionalAvailabilityKind>(
std::max(static_cast<unsigned>(Inferred.Unconditional),
static_cast<unsigned>(Attr->getUnconditionalAvailability())));
// The merge of two introduction versions is the maximum of the two versions.
mergeIntoInferredVersion(Attr->Introduced, Inferred.Introduced, std::max);
// The merge of deprecated and obsoleted versions takes the minimum.
mergeIntoInferredVersion(Attr->Deprecated, Inferred.Deprecated, std::min);
mergeIntoInferredVersion(Attr->Obsoleted, Inferred.Obsoleted, std::min);
}
/// Create an implicit availability attribute for the given platform
/// and with the inferred availability.
static AvailableAttr *
createAvailableAttr(PlatformKind Platform,
const InferredAvailability &Inferred,
ASTContext &Context) {
clang::VersionTuple Introduced =
Inferred.Introduced.getValueOr(clang::VersionTuple());
clang::VersionTuple Deprecated =
Inferred.Deprecated.getValueOr(clang::VersionTuple());
clang::VersionTuple Obsoleted =
Inferred.Obsoleted.getValueOr(clang::VersionTuple());
return new (Context) AvailableAttr(
SourceLoc(), SourceRange(), Platform,
/*Message=*/StringRef(),
/*Rename=*/StringRef(), Introduced, Deprecated, Obsoleted,
Inferred.Unconditional, /*Implicit=*/true);
}
void AvailabilityInference::applyInferredAvailableAttrs(
Decl *ToDecl, ArrayRef<const Decl *> InferredFromDecls,
ASTContext &Context) {
// Iterate over the declarations and infer required availability on
// a per-platform basis.
std::map<PlatformKind, InferredAvailability> Inferred;
for (const Decl *D : InferredFromDecls) {
for (const DeclAttribute *Attr : D->getAttrs()) {
auto *AvAttr = dyn_cast<AvailableAttr>(Attr);
if (!AvAttr || AvAttr->isInvalid())
continue;
mergeWithInferredAvailability(AvAttr, Inferred[AvAttr->Platform]);
}
}
// Create an availability attribute for each observed platform and add
// to ToDecl.
DeclAttributes &Attrs = ToDecl->getAttrs();
for (auto &Pair : Inferred) {
auto *Attr = createAvailableAttr(Pair.first, Pair.second, Context);
Attrs.add(Attr);
}
}
Optional<AvailabilityContext>
AvailabilityInference::annotatedAvailableRange(const Decl *D, ASTContext &Ctx) {
Optional<AvailabilityContext> AnnotatedRange;
for (auto Attr : D->getAttrs()) {
auto *AvailAttr = dyn_cast<AvailableAttr>(Attr);
if (AvailAttr == nullptr || !AvailAttr->Introduced.hasValue() ||
!AvailAttr->isActivePlatform(Ctx)) {
continue;
}
AvailabilityContext AttrRange{
VersionRange::allGTE(AvailAttr->Introduced.getValue())};
// If we have multiple introduction versions, we will conservatively
// assume the worst case scenario. We may want to be more precise here
// in the future or emit a diagnostic.
if (AnnotatedRange.hasValue()) {
AnnotatedRange.getValue().intersectWith(AttrRange);
} else {
AnnotatedRange = AttrRange;
}
}
return AnnotatedRange;
}
AvailabilityContext AvailabilityInference::availableRange(const Decl *D,
ASTContext &Ctx) {
Optional<AvailabilityContext> AnnotatedRange =
annotatedAvailableRange(D, Ctx);
if (AnnotatedRange.hasValue()) {
return AnnotatedRange.getValue();
}
// Unlike other declarations, extensions can be used without referring to them
// by name (they don't have one) in the source. For this reason, when checking
// the available range of a declaration we also need to check to see if it is
// immediately contained in an extension and use the extension's availability
// if the declaration does not have an explicit @available attribute
// itself. This check relies on the fact that we cannot have nested
// extensions.
DeclContext *DC = D->getDeclContext();
if (auto *ED = dyn_cast<ExtensionDecl>(DC)) {
AnnotatedRange = annotatedAvailableRange(ED, Ctx);
if (AnnotatedRange.hasValue()) {
return AnnotatedRange.getValue();
}
}
// Treat unannotated declarations as always available.
return AvailabilityContext::alwaysAvailable();
}
namespace {
/// Infers the availability required to access a type.
class AvailabilityInferenceTypeWalker : public TypeWalker {
public:
ASTContext &AC;
AvailabilityContext AvailabilityInfo = AvailabilityContext::alwaysAvailable();
AvailabilityInferenceTypeWalker(ASTContext &AC) : AC(AC) {}
virtual Action walkToTypePre(Type ty) {
if (auto *nominalDecl = ty.getCanonicalTypeOrNull().getAnyNominal()) {
AvailabilityInfo.intersectWith(
AvailabilityInference::availableRange(nominalDecl, AC));
}
return Action::Continue;
}
};
};
AvailabilityContext AvailabilityInference::inferForType(Type t) {
AvailabilityInferenceTypeWalker walker(t->getASTContext());
t.walk(walker);
return walker.AvailabilityInfo;
}