mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
from the witness tables for their associations rather than passing them separately. This drastically reduces the number of physical arguments required to invoke a generic function with a complex protocol hierarchy. It's also an important step towards allowing recursive protocol constraints. However, it may cause some performance problems in generic code that we'll have to figure out ways to remediate. There are still a few places in IRGen that rely on recursive eager expansion of associated types and protocol witnesses. For example, passing generic arguments requires us to map from a dependent type back to an index into the all-dependent-types list in order to find the right Substitution; that's something we'll need to fix more generally. Specific to IRGen, there are still a few abstractions like NecessaryBindings that use recursive expansion and are therefore probably extremely expensive under this patch; I intend to fix those up in follow-ups to the greatest extent possible. There are also still a few things that could be made lazier about type fulfillment; for example, we eagerly project the dynamic type metadata of class parameters rather than waiting for the first place we actually need to do so. We should be able to be lazier about that, at least when the parameter is @guaranteed. Technical notes follow. Most of the basic infrastructure I set up for this over the last few months stood up, although there were some unanticipated complexities: The first is that the all-dependent-types list still does not reliably contain all the dependent types in the minimized signature, even with my last patch, because the primary type parameters aren't necessarily representatives. It is, unfortunately, important to give the witness marker to the primary type parameter because otherwise substitution won't be able to replace that parameter at all. There are better representations for all of that, but it's not something I wanted to condition this patch on; therefore, we have to do a significantly more expensive check in order to figure out a dependent type's index in the all-dependent-types list. The second is that the ability to add requirements to associated types in protocol refinements means that we have to find the *right* associatedtype declaration in order to find the associated witness table. There seems to be relatively poor AST support for this operation; maybe I just missed it. The third complexity (so far) is that the association between an archetype and its parent isn't particularly more important than any other association it has. We need to be able to recover witness tables linked with *all* of the associations that lead to an archetype. This is, again, not particularly well-supported by the AST, and we may run into problems here when we eliminate recursive associated type expansion in signatures. Finally, it's a known fault that this potentially leaves debug info in a bit of a mess, since we won't have any informaton for a type parameter unless we actually needed it somewhere.
561 lines
23 KiB
C++
561 lines
23 KiB
C++
//===--- IRGenFunction.h - IR Generation for Swift Functions ----*- C++ -*-===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the structure used to generate the IR body of a
|
|
// function.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef SWIFT_IRGEN_IRGENFUNCTION_H
|
|
#define SWIFT_IRGEN_IRGENFUNCTION_H
|
|
|
|
#include "swift/Basic/LLVM.h"
|
|
#include "swift/AST/Type.h"
|
|
#include "swift/SIL/SILLocation.h"
|
|
#include "swift/SIL/SILType.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "IRBuilder.h"
|
|
#include "LocalTypeDataKind.h"
|
|
#include "DominancePoint.h"
|
|
|
|
namespace llvm {
|
|
class AllocaInst;
|
|
class CallSite;
|
|
class Constant;
|
|
class Function;
|
|
}
|
|
|
|
namespace swift {
|
|
class ArchetypeType;
|
|
class AssociatedTypeDecl;
|
|
class ClassDecl;
|
|
class ConstructorDecl;
|
|
class Decl;
|
|
class ExtensionDecl;
|
|
class FuncDecl;
|
|
class EnumElementDecl;
|
|
class EnumType;
|
|
class Pattern;
|
|
class PatternBindingDecl;
|
|
class SILDebugScope;
|
|
class SILType;
|
|
class SourceLoc;
|
|
class StructType;
|
|
class Substitution;
|
|
class ValueDecl;
|
|
class VarDecl;
|
|
|
|
namespace irgen {
|
|
class Explosion;
|
|
class FunctionRef;
|
|
class HeapLayout;
|
|
class HeapNonFixedOffsets;
|
|
class IRGenModule;
|
|
class LinkEntity;
|
|
class LocalTypeDataCache;
|
|
class Scope;
|
|
class TypeInfo;
|
|
enum class ValueWitness : unsigned;
|
|
enum class ReferenceCounting : unsigned char;
|
|
|
|
/// IRGenFunction - Primary class for emitting LLVM instructions for a
|
|
/// specific function.
|
|
class IRGenFunction {
|
|
public:
|
|
IRGenModule &IGM;
|
|
IRBuilder Builder;
|
|
|
|
llvm::Function *CurFn;
|
|
|
|
IRGenFunction(IRGenModule &IGM, llvm::Function *fn,
|
|
const SILDebugScope *DbgScope = nullptr,
|
|
Optional<SILLocation> DbgLoc = None);
|
|
~IRGenFunction();
|
|
|
|
void unimplemented(SourceLoc Loc, StringRef Message);
|
|
|
|
friend class Scope;
|
|
|
|
//--- Function prologue and epilogue -------------------------------------------
|
|
public:
|
|
Explosion collectParameters();
|
|
void emitScalarReturn(SILType resultTy, Explosion &scalars);
|
|
void emitScalarReturn(llvm::Type *resultTy, Explosion &scalars);
|
|
|
|
void emitBBForReturn();
|
|
bool emitBranchToReturnBB();
|
|
|
|
/// Return the error result slot, given an error type. There's
|
|
/// always only one error type.
|
|
Address getErrorResultSlot(SILType errorType);
|
|
|
|
/// Return the error result slot provided by the caller.
|
|
Address getCallerErrorResultSlot();
|
|
|
|
/// Set the error result slot.
|
|
void setErrorResultSlot(llvm::Value *address);
|
|
|
|
private:
|
|
void emitPrologue();
|
|
void emitEpilogue();
|
|
|
|
Address ReturnSlot;
|
|
llvm::BasicBlock *ReturnBB;
|
|
llvm::Value *ErrorResultSlot = nullptr;
|
|
|
|
//--- Helper methods -----------------------------------------------------------
|
|
public:
|
|
Address createAlloca(llvm::Type *ty, Alignment align,
|
|
const llvm::Twine &name);
|
|
Address createFixedSizeBufferAlloca(const llvm::Twine &name);
|
|
|
|
llvm::BasicBlock *createBasicBlock(const llvm::Twine &Name);
|
|
const TypeInfo &getTypeInfoForUnlowered(Type subst);
|
|
const TypeInfo &getTypeInfoForUnlowered(AbstractionPattern orig, Type subst);
|
|
const TypeInfo &getTypeInfoForUnlowered(AbstractionPattern orig,
|
|
CanType subst);
|
|
const TypeInfo &getTypeInfoForLowered(CanType T);
|
|
const TypeInfo &getTypeInfo(SILType T);
|
|
void emitMemCpy(llvm::Value *dest, llvm::Value *src,
|
|
Size size, Alignment align);
|
|
void emitMemCpy(llvm::Value *dest, llvm::Value *src,
|
|
llvm::Value *size, Alignment align);
|
|
void emitMemCpy(Address dest, Address src, Size size);
|
|
void emitMemCpy(Address dest, Address src, llvm::Value *size);
|
|
|
|
llvm::Value *emitByteOffsetGEP(llvm::Value *base, llvm::Value *offset,
|
|
llvm::Type *objectType,
|
|
const llvm::Twine &name = "");
|
|
Address emitByteOffsetGEP(llvm::Value *base, llvm::Value *offset,
|
|
const TypeInfo &type,
|
|
const llvm::Twine &name = "");
|
|
|
|
llvm::Value *emitAllocObjectCall(llvm::Value *metadata, llvm::Value *size,
|
|
llvm::Value *alignMask,
|
|
const llvm::Twine &name = "");
|
|
llvm::Value *emitInitStackObjectCall(llvm::Value *metadata,
|
|
llvm::Value *object,
|
|
const llvm::Twine &name = "");
|
|
llvm::Value *emitVerifyEndOfLifetimeCall(llvm::Value *object,
|
|
const llvm::Twine &name = "");
|
|
llvm::Value *emitAllocRawCall(llvm::Value *size, llvm::Value *alignMask,
|
|
const llvm::Twine &name ="");
|
|
void emitDeallocRawCall(llvm::Value *pointer, llvm::Value *size,
|
|
llvm::Value *alignMask);
|
|
|
|
void emitAllocBoxCall(llvm::Value *typeMetadata,
|
|
llvm::Value *&box,
|
|
llvm::Value *&valueAddress);
|
|
|
|
void emitDeallocBoxCall(llvm::Value *box, llvm::Value *typeMetadata);
|
|
|
|
llvm::Value *emitProjectBoxCall(llvm::Value *box, llvm::Value *typeMetadata);
|
|
|
|
// Emit a reference to the canonical type metadata record for the given AST
|
|
// type. This can be used to identify the type at runtime. For types with
|
|
// abstraction difference, the metadata contains the layout information for
|
|
// values in the maximally-abstracted representation of the type; this is
|
|
// correct for all uses of reabstractable values in opaque contexts.
|
|
llvm::Value *emitTypeMetadataRef(CanType type);
|
|
|
|
// Emit a reference to a type layout record for the given type. The referenced
|
|
// data is enough to lay out an aggregate containing a value of the type, but
|
|
// can't uniquely represent the type or perform value witness operations on
|
|
// it.
|
|
llvm::Value *emitTypeLayoutRef(SILType type);
|
|
|
|
// Emit a reference to a metadata object that can be used for layout, but
|
|
// cannot be used to identify a type. This will produce a layout appropriate
|
|
// to the abstraction level of the given type. It may be able to avoid runtime
|
|
// calls if there is a standard metadata object with the correct layout for
|
|
// the type.
|
|
//
|
|
// TODO: It might be better to return just a value witness table reference
|
|
// here, since for some types it's easier to get a shared reference to one
|
|
// than a metadata reference, and it would be more type-safe.
|
|
llvm::Value *emitTypeMetadataRefForLayout(SILType type);
|
|
|
|
llvm::Value *emitValueWitnessTableRef(CanType type);
|
|
llvm::Value *emitValueWitnessTableRefForLayout(SILType type);
|
|
llvm::Value *emitValueWitnessTableRefForMetadata(llvm::Value *metadata);
|
|
|
|
llvm::Value *emitValueWitness(CanType type, ValueWitness index);
|
|
llvm::Value *emitValueWitnessForLayout(SILType type, ValueWitness index);
|
|
|
|
/// Emit a load of a reference to the given Objective-C selector.
|
|
llvm::Value *emitObjCSelectorRefLoad(StringRef selector);
|
|
|
|
/// Return the SILDebugScope for this function.
|
|
const SILDebugScope *getDebugScope() const { return DbgScope; }
|
|
llvm::Value *coerceValue(llvm::Value *value, llvm::Type *toTy,
|
|
const llvm::DataLayout &);
|
|
|
|
/// Mark a load as invariant.
|
|
void setInvariantLoad(llvm::LoadInst *load);
|
|
/// Mark a load as dereferenceable to `size` bytes.
|
|
void setDereferenceableLoad(llvm::LoadInst *load, unsigned size);
|
|
|
|
private:
|
|
llvm::Instruction *AllocaIP;
|
|
const SILDebugScope *DbgScope;
|
|
|
|
//--- Reference-counting methods -----------------------------------------------
|
|
public:
|
|
llvm::Value *emitUnmanagedAlloc(const HeapLayout &layout,
|
|
const llvm::Twine &name,
|
|
const HeapNonFixedOffsets *offsets = 0);
|
|
|
|
// Functions that don't care about the reference-counting style.
|
|
void emitFixLifetime(llvm::Value *value);
|
|
|
|
// Routines that are generic over the reference-counting style:
|
|
// - strong references
|
|
void emitStrongRetain(llvm::Value *value, ReferenceCounting refcounting);
|
|
void emitStrongRelease(llvm::Value *value, ReferenceCounting refcounting);
|
|
llvm::Value *emitLoadRefcountedPtr(Address addr, ReferenceCounting style);
|
|
|
|
// - unowned references
|
|
void emitUnownedRetain(llvm::Value *value, ReferenceCounting style);
|
|
void emitUnownedRelease(llvm::Value *value, ReferenceCounting style);
|
|
void emitStrongRetainUnowned(llvm::Value *value, ReferenceCounting style);
|
|
void emitStrongRetainAndUnownedRelease(llvm::Value *value,
|
|
ReferenceCounting style);
|
|
void emitUnownedInit(llvm::Value *val, Address dest, ReferenceCounting style);
|
|
void emitUnownedAssign(llvm::Value *value, Address dest,
|
|
ReferenceCounting style);
|
|
void emitUnownedCopyInit(Address destAddr, Address srcAddr,
|
|
ReferenceCounting style);
|
|
void emitUnownedTakeInit(Address destAddr, Address srcAddr,
|
|
ReferenceCounting style);
|
|
void emitUnownedCopyAssign(Address destAddr, Address srcAddr,
|
|
ReferenceCounting style);
|
|
void emitUnownedTakeAssign(Address destAddr, Address srcAddr,
|
|
ReferenceCounting style);
|
|
llvm::Value *emitUnownedLoadStrong(Address src, llvm::Type *resultType,
|
|
ReferenceCounting style);
|
|
llvm::Value *emitUnownedTakeStrong(Address src, llvm::Type *resultType,
|
|
ReferenceCounting style);
|
|
void emitUnownedDestroy(Address addr, ReferenceCounting style);
|
|
llvm::Value *getUnownedExtraInhabitantIndex(Address src,
|
|
ReferenceCounting style);
|
|
void storeUnownedExtraInhabitant(llvm::Value *index, Address dest,
|
|
ReferenceCounting style);
|
|
|
|
// - weak references
|
|
void emitWeakInit(llvm::Value *ref, Address dest, ReferenceCounting style);
|
|
void emitWeakAssign(llvm::Value *ref, Address dest, ReferenceCounting style);
|
|
void emitWeakCopyInit(Address destAddr, Address srcAddr,
|
|
ReferenceCounting style);
|
|
void emitWeakTakeInit(Address destAddr, Address srcAddr,
|
|
ReferenceCounting style);
|
|
void emitWeakCopyAssign(Address destAddr, Address srcAddr,
|
|
ReferenceCounting style);
|
|
void emitWeakTakeAssign(Address destAddr, Address srcAddr,
|
|
ReferenceCounting style);
|
|
llvm::Value *emitWeakLoadStrong(Address src, llvm::Type *resultType,
|
|
ReferenceCounting style);
|
|
llvm::Value *emitWeakTakeStrong(Address src, llvm::Type *resultType,
|
|
ReferenceCounting style);
|
|
void emitWeakDestroy(Address addr, ReferenceCounting style);
|
|
|
|
// Routines for the Swift native reference-counting style.
|
|
// - strong references
|
|
void emitNativeStrongAssign(llvm::Value *value, Address addr);
|
|
void emitNativeStrongInit(llvm::Value *value, Address addr);
|
|
void emitNativeStrongRetain(llvm::Value *value);
|
|
void emitNativeStrongRelease(llvm::Value *value);
|
|
// - unowned references
|
|
void emitNativeUnownedRetain(llvm::Value *value);
|
|
void emitNativeUnownedRelease(llvm::Value *value);
|
|
void emitNativeStrongRetainUnowned(llvm::Value *value);
|
|
void emitNativeStrongRetainAndUnownedRelease(llvm::Value *value);
|
|
void emitNativeUnownedInit(llvm::Value *val, Address dest);
|
|
void emitNativeUnownedAssign(llvm::Value *value, Address dest);
|
|
void emitNativeUnownedCopyInit(Address destAddr, Address srcAddr);
|
|
void emitNativeUnownedTakeInit(Address destAddr, Address srcAddr);
|
|
void emitNativeUnownedCopyAssign(Address destAddr, Address srcAddr);
|
|
void emitNativeUnownedTakeAssign(Address destAddr, Address srcAddr);
|
|
llvm::Value *emitNativeUnownedLoadStrong(Address src, llvm::Type *resultType);
|
|
llvm::Value *emitNativeUnownedTakeStrong(Address src, llvm::Type *resultType);
|
|
void emitNativeUnownedDestroy(Address addr);
|
|
|
|
// - weak references
|
|
void emitNativeWeakInit(llvm::Value *value, Address dest);
|
|
void emitNativeWeakAssign(llvm::Value *value, Address dest);
|
|
llvm::Value *emitNativeWeakLoadStrong(Address src, llvm::Type *type);
|
|
llvm::Value *emitNativeWeakTakeStrong(Address src, llvm::Type *type);
|
|
void emitNativeWeakDestroy(Address addr);
|
|
void emitNativeWeakCopyInit(Address destAddr, Address srcAddr);
|
|
void emitNativeWeakTakeInit(Address destAddr, Address srcAddr);
|
|
void emitNativeWeakCopyAssign(Address destAddr, Address srcAddr);
|
|
void emitNativeWeakTakeAssign(Address destAddr, Address srcAddr);
|
|
// - other operations
|
|
llvm::Value *emitNativeTryPin(llvm::Value *object);
|
|
void emitNativeUnpin(llvm::Value *handle);
|
|
|
|
// Routines for the ObjC reference-counting style.
|
|
void emitObjCStrongRetain(llvm::Value *value);
|
|
llvm::Value *emitObjCRetainCall(llvm::Value *value);
|
|
llvm::Value *emitObjCAutoreleaseCall(llvm::Value *value);
|
|
void emitObjCStrongRelease(llvm::Value *value);
|
|
|
|
llvm::Value *emitBlockCopyCall(llvm::Value *value);
|
|
void emitBlockRelease(llvm::Value *value);
|
|
|
|
// Routines for an unknown reference-counting style (meaning,
|
|
// dynamically something compatible with either the ObjC or Swift styles).
|
|
// - strong references
|
|
void emitUnknownStrongRetain(llvm::Value *value);
|
|
void emitUnknownStrongRelease(llvm::Value *value);
|
|
// - unowned references
|
|
void emitUnknownUnownedInit(llvm::Value *val, Address dest);
|
|
void emitUnknownUnownedAssign(llvm::Value *value, Address dest);
|
|
void emitUnknownUnownedCopyInit(Address destAddr, Address srcAddr);
|
|
void emitUnknownUnownedTakeInit(Address destAddr, Address srcAddr);
|
|
void emitUnknownUnownedCopyAssign(Address destAddr, Address srcAddr);
|
|
void emitUnknownUnownedTakeAssign(Address destAddr, Address srcAddr);
|
|
llvm::Value *emitUnknownUnownedLoadStrong(Address src, llvm::Type *resultTy);
|
|
llvm::Value *emitUnknownUnownedTakeStrong(Address src, llvm::Type *resultTy);
|
|
void emitUnknownUnownedDestroy(Address addr);
|
|
// - weak references
|
|
void emitUnknownWeakDestroy(Address addr);
|
|
void emitUnknownWeakCopyInit(Address destAddr, Address srcAddr);
|
|
void emitUnknownWeakTakeInit(Address destAddr, Address srcAddr);
|
|
void emitUnknownWeakCopyAssign(Address destAddr, Address srcAddr);
|
|
void emitUnknownWeakTakeAssign(Address destAddr, Address srcAddr);
|
|
void emitUnknownWeakInit(llvm::Value *value, Address dest);
|
|
void emitUnknownWeakAssign(llvm::Value *value, Address dest);
|
|
llvm::Value *emitUnknownWeakLoadStrong(Address src, llvm::Type *type);
|
|
llvm::Value *emitUnknownWeakTakeStrong(Address src, llvm::Type *type);
|
|
|
|
// Routines for the Builtin.NativeObject reference-counting style.
|
|
void emitBridgeStrongRetain(llvm::Value *value);
|
|
void emitBridgeStrongRelease(llvm::Value *value);
|
|
|
|
// Routines for the ErrorType reference-counting style.
|
|
void emitErrorStrongRetain(llvm::Value *value);
|
|
void emitErrorStrongRelease(llvm::Value *value);
|
|
|
|
llvm::Value *emitIsUniqueCall(llvm::Value *value, SourceLoc loc,
|
|
bool isNonNull, bool checkPinned);
|
|
|
|
//--- Expression emission ------------------------------------------------------
|
|
public:
|
|
void emitFakeExplosion(const TypeInfo &type, Explosion &explosion);
|
|
|
|
//--- Declaration emission -----------------------------------------------------
|
|
public:
|
|
|
|
void bindArchetype(ArchetypeType *type,
|
|
llvm::Value *metadata,
|
|
ArrayRef<llvm::Value*> wtables);
|
|
|
|
struct ArchetypeAccessPath {
|
|
CanArchetypeType BaseType;
|
|
AssociatedTypeDecl *Association;
|
|
};
|
|
|
|
/// Register an additional access path to the given archetype besides
|
|
/// (if applicable) just drilling down from its parent.
|
|
///
|
|
/// This is necessary when an archetype gains conformances from an
|
|
/// associated type that it's been constrained to be equal to
|
|
/// but which is not simply its parent.
|
|
void addArchetypeAccessPath(CanArchetypeType targetArchetype,
|
|
ArchetypeAccessPath accessPath);
|
|
|
|
ArrayRef<ArchetypeAccessPath>
|
|
getArchetypeAccessPaths(CanArchetypeType targetArchetype);
|
|
|
|
//--- Type emission ------------------------------------------------------------
|
|
public:
|
|
/// Look up a local type data reference, returning null if no entry was
|
|
/// found. This will emit code to materialize the reference if an
|
|
/// "abstract" entry is present.
|
|
llvm::Value *tryGetLocalTypeData(CanType type, LocalTypeDataKind kind) {
|
|
return tryGetLocalTypeData(LocalTypeDataKey{type, kind});
|
|
}
|
|
llvm::Value *tryGetLocalTypeData(LocalTypeDataKey key);
|
|
|
|
/// Look up a local type data reference, returning null if no entry was
|
|
/// found or if the only viable entries are abstract. This will never
|
|
/// emit code.
|
|
llvm::Value *tryGetConcreteLocalTypeData(LocalTypeDataKey key);
|
|
|
|
/// Retrieve a local type data reference which is known to exist.
|
|
llvm::Value *getLocalTypeData(CanType type, LocalTypeDataKind kind);
|
|
|
|
/// Add a local type-metadata reference at a point which definitely
|
|
/// dominates all of its uses.
|
|
void setUnscopedLocalTypeData(CanType type, LocalTypeDataKind kind,
|
|
llvm::Value *data) {
|
|
setUnscopedLocalTypeData(LocalTypeDataKey{type, kind}, data);
|
|
}
|
|
void setUnscopedLocalTypeData(LocalTypeDataKey key, llvm::Value *data);
|
|
|
|
/// Add a local type-metadata reference, valid at the current insertion
|
|
/// point.
|
|
void setScopedLocalTypeData(CanType type, LocalTypeDataKind kind,
|
|
llvm::Value *data) {
|
|
setScopedLocalTypeData(LocalTypeDataKey{type, kind}, data);
|
|
}
|
|
void setScopedLocalTypeData(LocalTypeDataKey key, llvm::Value *data);
|
|
|
|
/// The same as tryGetLocalTypeData, just for the Layout metadata.
|
|
///
|
|
/// We use a separate function name for this to clarify that you should
|
|
/// only ever be looking type metadata for a lowered SILType for the
|
|
/// purposes of local layout (e.g. of a tuple).
|
|
llvm::Value *tryGetLocalTypeDataForLayout(SILType type,
|
|
LocalTypeDataKind kind) {
|
|
return tryGetLocalTypeData(type.getSwiftRValueType(), kind);
|
|
}
|
|
|
|
/// Add a local type-metadata reference, which is valid for the containing
|
|
/// block.
|
|
void setScopedLocalTypeDataForLayout(SILType type, LocalTypeDataKind kind,
|
|
llvm::Value *data) {
|
|
setScopedLocalTypeData(type.getSwiftRValueType(), kind, data);
|
|
}
|
|
|
|
/// Given a concrete type metadata node, add all the local type data
|
|
/// that we can reach from it.
|
|
void bindLocalTypeDataFromTypeMetadata(CanType type, IsExact_t isExact,
|
|
llvm::Value *metadata);
|
|
|
|
void setDominanceResolver(DominanceResolverFunction resolver) {
|
|
assert(DominanceResolver == nullptr);
|
|
DominanceResolver = resolver;
|
|
}
|
|
|
|
bool isActiveDominancePointDominatedBy(DominancePoint point) {
|
|
// If the point is universal, it dominates.
|
|
if (point.isUniversal()) return true;
|
|
|
|
assert(!ActiveDominancePoint.isUniversal() &&
|
|
"active dominance point is universal but there exists a"
|
|
"non-universal point?");
|
|
|
|
// If we don't have a resolver, we're emitting a simple helper
|
|
// function; just assume dominance.
|
|
if (!DominanceResolver) return true;
|
|
|
|
// Otherwise, ask the resolver.
|
|
return DominanceResolver(*this, ActiveDominancePoint, point);
|
|
}
|
|
|
|
/// Is the current dominance point conditional in some way not
|
|
/// tracked by the active dominance point?
|
|
///
|
|
/// This should only be used by the local type data cache code.
|
|
bool isConditionalDominancePoint() const {
|
|
return ConditionalDominance != nullptr;
|
|
}
|
|
|
|
void registerConditionalLocalTypeDataKey(LocalTypeDataKey key) {
|
|
assert(ConditionalDominance != nullptr &&
|
|
"not in a conditional dominance scope");
|
|
ConditionalDominance->registerConditionalLocalTypeDataKey(key);
|
|
}
|
|
|
|
/// Return the currently-active dominance point.
|
|
DominancePoint getActiveDominancePoint() const {
|
|
return ActiveDominancePoint;
|
|
}
|
|
|
|
/// A RAII object for temporarily changing the dominance of the active
|
|
/// definition point.
|
|
class DominanceScope {
|
|
IRGenFunction &IGF;
|
|
DominancePoint OldDominancePoint;
|
|
public:
|
|
explicit DominanceScope(IRGenFunction &IGF, DominancePoint newPoint)
|
|
: IGF(IGF), OldDominancePoint(IGF.ActiveDominancePoint) {
|
|
IGF.ActiveDominancePoint = newPoint;
|
|
assert(!newPoint.isOrdinary() || IGF.DominanceResolver);
|
|
}
|
|
|
|
DominanceScope(const DominanceScope &other) = delete;
|
|
DominanceScope &operator=(const DominanceScope &other) = delete;
|
|
|
|
~DominanceScope() {
|
|
IGF.ActiveDominancePoint = OldDominancePoint;
|
|
}
|
|
};
|
|
|
|
/// A RAII object for temporarily suppressing type-data caching at the
|
|
/// active definition point. Do this if you're adding local control flow
|
|
/// that isn't modeled by the dominance system.
|
|
class ConditionalDominanceScope {
|
|
IRGenFunction &IGF;
|
|
ConditionalDominanceScope *OldScope;
|
|
SmallVector<LocalTypeDataKey, 2> RegisteredKeys;
|
|
|
|
public:
|
|
explicit ConditionalDominanceScope(IRGenFunction &IGF)
|
|
: IGF(IGF), OldScope(IGF.ConditionalDominance) {
|
|
IGF.ConditionalDominance = this;
|
|
}
|
|
|
|
ConditionalDominanceScope(const ConditionalDominanceScope &other) = delete;
|
|
ConditionalDominanceScope &operator=(const ConditionalDominanceScope &other)
|
|
= delete;
|
|
|
|
void registerConditionalLocalTypeDataKey(LocalTypeDataKey key) {
|
|
RegisteredKeys.push_back(key);
|
|
}
|
|
|
|
~ConditionalDominanceScope();
|
|
};
|
|
|
|
/// The kind of value LocalSelf is.
|
|
enum LocalSelfKind {
|
|
/// An object reference.
|
|
ObjectReference,
|
|
/// A Swift metatype.
|
|
SwiftMetatype,
|
|
/// An ObjC metatype.
|
|
ObjCMetatype,
|
|
};
|
|
|
|
llvm::Value *getLocalSelfMetadata();
|
|
void setLocalSelfMetadata(llvm::Value *value, LocalSelfKind kind);
|
|
|
|
private:
|
|
LocalTypeDataCache &getOrCreateLocalTypeData();
|
|
void destroyLocalTypeData();
|
|
|
|
LocalTypeDataCache *LocalTypeData = nullptr;
|
|
|
|
/// The dominance resolver. This can be set at most once; when it's not
|
|
/// set, this emission must never have a non-null active definition point.
|
|
DominanceResolverFunction DominanceResolver = nullptr;
|
|
DominancePoint ActiveDominancePoint = DominancePoint::universal();
|
|
ConditionalDominanceScope *ConditionalDominance = nullptr;
|
|
|
|
/// The value that satisfies metadata lookups for dynamic Self.
|
|
llvm::Value *LocalSelf = nullptr;
|
|
|
|
LocalSelfKind SelfKind;
|
|
|
|
llvm::DenseMap<CanType, std::vector<ArchetypeAccessPath>>
|
|
ArchetypeAccessPaths;
|
|
};
|
|
|
|
using ConditionalDominanceScope = IRGenFunction::ConditionalDominanceScope;
|
|
|
|
} // end namespace irgen
|
|
} // end namespace swift
|
|
|
|
#endif
|