mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
676 lines
22 KiB
C++
676 lines
22 KiB
C++
//===--- DeadCodeElimination.cpp - Delete dead code ----------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-dce"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILBasicBlock.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILFunction.h"
|
|
#include "swift/SIL/SILUndef.h"
|
|
#include "swift/SIL/DebugUtils.h"
|
|
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
|
|
#include "swift/SILOptimizer/PassManager/Passes.h"
|
|
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
|
#include "swift/SILOptimizer/Utils/Local.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace swift;
|
|
|
|
STATISTIC(NumBranchesPromoted, "Number of dead branches promoted to jumps");
|
|
STATISTIC(NumDeletedInsts, "Number of instructions deleted");
|
|
|
|
namespace {
|
|
|
|
// Without any complex analysis, does this instruction seem like
|
|
// something that we need to keep?
|
|
// FIXME: Reconcile the similarities between this and
|
|
// isInstructionTriviallyDead.
|
|
static bool seemsUseful(SILInstruction *I) {
|
|
if (I->mayHaveSideEffects())
|
|
return true;
|
|
|
|
if (isa<ReturnInst>(I) || isa<UnreachableInst>(I) || isa<ThrowInst>(I))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// We map from post-dominator tree node to a ControllingInfo struct
|
|
// which contains the post-dominator tree level of this node, along
|
|
// with the direct predecessors that this node is control-dependent
|
|
// on, and the minimum level number of any predecessor in the subtree
|
|
// below this node in the post-dominator tree.
|
|
struct ControllingInfo {
|
|
typedef std::pair<SILBasicBlock *, unsigned> PredInfo;
|
|
|
|
SILBasicBlock *Block;
|
|
// The post-dominator tree level for this node.
|
|
unsigned Level;
|
|
llvm::SmallVector<PredInfo, 2> ControllingPreds;
|
|
unsigned MinTreePredLevel;
|
|
};
|
|
|
|
class DCE : public SILFunctionTransform {
|
|
typedef llvm::DomTreeNodeBase<SILBasicBlock> PostDomTreeNode;
|
|
|
|
llvm::SmallPtrSet<ValueBase *, 16> LiveValues;
|
|
llvm::SmallPtrSet<SILBasicBlock *, 16> LiveBlocks;
|
|
llvm::SmallVector<SILInstruction *, 64> Worklist;
|
|
PostDominanceInfo *PDT;
|
|
llvm::DenseMap<SILBasicBlock *, ControllingInfo> ControllingInfoMap;
|
|
|
|
// Maps instructions which produce a failing condition (like overflow
|
|
// builtins) to the actual cond_fail instructions which handle the failure.
|
|
|
|
// Dependencies which go in the reverse direction. Usually for a pair
|
|
// %1 = inst_a
|
|
// inst_b(%1)
|
|
// the dependency goes from inst_b to inst_a: if inst_b is alive then also
|
|
// inst_a is alive.
|
|
// For some instructions the dependency is exactly the other way round, e.g.
|
|
// %1 = inst_which_can_fail
|
|
// cond_fail(%1)
|
|
// In this case cond_fail is alive only if inst_which_can_fail is alive.
|
|
// The key of this map is the source of the dependency (inst_a), the
|
|
// value is the destination (inst_b).
|
|
llvm::DenseMap<SILInstruction *, SILInstruction *> ReverseDependencies;
|
|
|
|
/// Tracks if the pass changed branches.
|
|
bool BranchesChanged;
|
|
/// Tracks if the pass changed ApplyInsts.
|
|
bool CallsChanged;
|
|
|
|
/// The entry point to the transformation.
|
|
void run() override {
|
|
BranchesChanged = false;
|
|
CallsChanged = false;
|
|
|
|
SILFunction *F = getFunction();
|
|
|
|
auto* DA = PM->getAnalysis<PostDominanceAnalysis>();
|
|
PDT = DA->get(F);
|
|
|
|
// If we have a functions that consists of nothing but a
|
|
// structurally infinite loop like:
|
|
// while true {}
|
|
// we'll have an empty post dominator tree.
|
|
if (!PDT->getRootNode())
|
|
return;
|
|
|
|
DEBUG(F->dump());
|
|
DEBUG(PDT->print(llvm::dbgs()));
|
|
|
|
assert(Worklist.empty() && LiveValues.empty() && LiveBlocks.empty() &&
|
|
ControllingInfoMap.empty() && ReverseDependencies.empty() &&
|
|
"Expected to start with empty data structures!");
|
|
|
|
if (!precomputeControlInfo(*F)) {
|
|
LiveValues.clear();
|
|
LiveBlocks.clear();
|
|
ControllingInfoMap.clear();
|
|
ReverseDependencies.clear();
|
|
return;
|
|
}
|
|
|
|
markLive(*F);
|
|
if (removeDead(*F)) {
|
|
using InvalidationKind = SILAnalysis::InvalidationKind;
|
|
|
|
unsigned Inv = InvalidationKind::Instructions;
|
|
if (CallsChanged) Inv |= (unsigned) InvalidationKind::Calls;
|
|
if (BranchesChanged) Inv |= (unsigned) InvalidationKind::Branches;
|
|
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind(Inv));
|
|
}
|
|
|
|
LiveValues.clear();
|
|
LiveBlocks.clear();
|
|
ControllingInfoMap.clear();
|
|
ReverseDependencies.clear();
|
|
}
|
|
|
|
bool precomputeControlInfo(SILFunction &F);
|
|
void markLive(SILFunction &F);
|
|
void addReverseDependency(SILInstruction *From, SILInstruction *To);
|
|
bool removeDead(SILFunction &F);
|
|
|
|
void computeLevelNumbers(PostDomTreeNode *Node, unsigned Level);
|
|
bool hasInfiniteLoops(SILFunction &F);
|
|
void computePredecessorDependence(SILFunction &F);
|
|
unsigned computeMinPredecessorLevels(PostDomTreeNode *Node);
|
|
void insertControllingInfo(SILBasicBlock *Block, unsigned Level);
|
|
|
|
void markValueLive(ValueBase *V);
|
|
void markTerminatorArgsLive(SILBasicBlock *Pred, SILBasicBlock *Succ,
|
|
size_t ArgIndex);
|
|
void markControllingTerminatorsLive(SILBasicBlock *Block);
|
|
void propagateLiveBlockArgument(SILArgument *Arg);
|
|
void propagateLiveness(SILInstruction *I);
|
|
void collectControllingBlocksInTree(ControllingInfo &QueryInfo,
|
|
PostDomTreeNode *Node,
|
|
llvm::SmallPtrSetImpl<SILBasicBlock *> &Controlling);
|
|
void collectControllingBlocks(SILBasicBlock *Block,
|
|
llvm::SmallPtrSetImpl<SILBasicBlock *> &);
|
|
SILBasicBlock *nearestUsefulPostDominator(SILBasicBlock *Block);
|
|
void replaceBranchWithJump(SILInstruction *Inst, SILBasicBlock *Block);
|
|
|
|
StringRef getName() override { return "Dead Code Elimination"; }
|
|
};
|
|
|
|
// Keep track of the fact that V is live and add it to our worklist
|
|
// so that we can process the values it depends on.
|
|
void DCE::markValueLive(ValueBase *V) {
|
|
if (LiveValues.count(V) || isa<SILUndef>(V))
|
|
return;
|
|
|
|
DEBUG(llvm::dbgs() << "Marking as live:\n");
|
|
DEBUG(V->dump());
|
|
|
|
LiveValues.insert(V);
|
|
|
|
if (auto *Def = dyn_cast<SILInstruction>(V)) {
|
|
markControllingTerminatorsLive(Def->getParent());
|
|
Worklist.push_back(Def);
|
|
return;
|
|
}
|
|
|
|
assert(isa<SILArgument>(V) &&
|
|
"Only expected instructions and arguments!");
|
|
|
|
auto *Arg = cast<SILArgument>(V);
|
|
markControllingTerminatorsLive(Arg->getParent());
|
|
propagateLiveBlockArgument(Arg);
|
|
}
|
|
|
|
/// Gets the producing instruction of a cond_fail condition. Currently these
|
|
/// are overflow builtins but may be extended to other instructions in the
|
|
/// future.
|
|
static SILInstruction *getProducer(CondFailInst *CFI) {
|
|
// Check for the pattern:
|
|
// %1 = builtin "some_operation_with_overflow"
|
|
// %2 = tuple_extract %1
|
|
// %3 = cond_fail %2
|
|
SILValue FailCond = CFI->getOperand();
|
|
if (auto *TEI = dyn_cast<TupleExtractInst>(FailCond)) {
|
|
if (auto *BI = dyn_cast<BuiltinInst>(TEI->getOperand())) {
|
|
return BI;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Determine which instructions from this function we need to keep.
|
|
void DCE::markLive(SILFunction &F) {
|
|
|
|
// Find the initial set of instructions in this function that appear
|
|
// to be live in the sense that they are not trivially something we
|
|
// can delete by examining only that instruction.
|
|
for (auto &BB : F) {
|
|
for (auto &I : BB) {
|
|
if (auto *CFI = dyn_cast<CondFailInst>(&I)) {
|
|
// A cond_fail is only alive if its (identifiable) producer is alive.
|
|
if (SILInstruction *Prod = getProducer(CFI)) {
|
|
addReverseDependency(Prod, CFI);
|
|
} else {
|
|
markValueLive(CFI);
|
|
}
|
|
continue;
|
|
}
|
|
if (auto *FLI = dyn_cast<FixLifetimeInst>(&I)) {
|
|
// A fix_lifetime (with a non-address type) is only alive if it's
|
|
// definition is alive.
|
|
SILValue Op = FLI->getOperand();
|
|
auto *OpInst = dyn_cast<SILInstruction>(Op);
|
|
if (OpInst && !Op->getType().isAddress()) {
|
|
addReverseDependency(OpInst, FLI);
|
|
} else {
|
|
markValueLive(FLI);
|
|
}
|
|
continue;
|
|
}
|
|
if (seemsUseful(&I))
|
|
markValueLive(&I);
|
|
}
|
|
}
|
|
|
|
// Now propagate liveness backwards from each instruction in our
|
|
// worklist, adding new instructions to the worklist as we discover
|
|
// more that we need to keep.
|
|
while (!Worklist.empty()) {
|
|
auto *I = Worklist.pop_back_val();
|
|
propagateLiveness(I);
|
|
}
|
|
}
|
|
|
|
// Records a reverse dependency. See DCE::ReverseDependencies.
|
|
void DCE::addReverseDependency(SILInstruction *From, SILInstruction *To) {
|
|
assert(!ReverseDependencies.lookup(To) &&
|
|
"Target of reverse dependency already in map");
|
|
SILInstruction *&Target = ReverseDependencies[From];
|
|
SILInstruction *ExistingTarget = Target;
|
|
Target = To;
|
|
if (ExistingTarget) {
|
|
// Create a single linked chain if From has multiple targets.
|
|
ReverseDependencies[To] = ExistingTarget;
|
|
}
|
|
}
|
|
|
|
// Mark as live the terminator argument at index ArgIndex in Pred that
|
|
// targets Succ.
|
|
void DCE::markTerminatorArgsLive(SILBasicBlock *Pred,
|
|
SILBasicBlock *Succ,
|
|
size_t ArgIndex) {
|
|
auto *Term = Pred->getTerminator();
|
|
|
|
// If the arguments are live, we need to keep the terminator that
|
|
// delivers those arguments.
|
|
markValueLive(Term);
|
|
|
|
switch (Term->getTermKind()) {
|
|
case TermKind::ReturnInst:
|
|
case TermKind::ThrowInst:
|
|
|
|
case TermKind::UnreachableInst:
|
|
case TermKind::SwitchValueInst:
|
|
case TermKind::SwitchEnumAddrInst:
|
|
case TermKind::CheckedCastAddrBranchInst:
|
|
llvm_unreachable("Unexpected argument for terminator kind!");
|
|
break;
|
|
|
|
case TermKind::DynamicMethodBranchInst:
|
|
case TermKind::SwitchEnumInst:
|
|
case TermKind::CheckedCastBranchInst:
|
|
assert(ArgIndex == 0 && "Expected a single argument!");
|
|
|
|
// We do not need to do anything with these. If the resulting
|
|
// argument is used at the destination these terminators will end
|
|
// up live, and then our normal liveness propagation will mark the
|
|
// single operand of these instructions as live.
|
|
break;
|
|
|
|
case TermKind::BranchInst:
|
|
markValueLive(cast<BranchInst>(Term)->getArg(ArgIndex));
|
|
break;
|
|
|
|
case TermKind::CondBranchInst: {
|
|
auto *CondBr = cast<CondBranchInst>(Term);
|
|
|
|
if (CondBr->getTrueBB() == Succ) {
|
|
auto TrueArgs = CondBr->getTrueArgs();
|
|
markValueLive(TrueArgs[ArgIndex]);
|
|
}
|
|
|
|
if (CondBr->getFalseBB() == Succ) {
|
|
auto FalseArgs = CondBr->getFalseArgs();
|
|
markValueLive(FalseArgs[ArgIndex]);
|
|
}
|
|
|
|
break;
|
|
}
|
|
case TermKind::TryApplyInst: {
|
|
assert(ArgIndex == 0 && "Expect a single argument!");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Propagate liveness back from Arg to the terminator arguments that
|
|
// supply its value.
|
|
void DCE::propagateLiveBlockArgument(SILArgument *Arg) {
|
|
// Conceptually, the dependency from a debug instruction to its definition
|
|
// is in reverse direction: Only if its definition (the Arg) is alive, also
|
|
// the debug_value instruction is alive.
|
|
for (Operand *DU : getDebugUses(Arg))
|
|
markValueLive(DU->getUser());
|
|
|
|
if (Arg->isFunctionArg())
|
|
return;
|
|
|
|
auto *Block = Arg->getParent();
|
|
auto ArgIndex = Arg->getIndex();
|
|
|
|
for (auto Pred : Block->getPreds())
|
|
markTerminatorArgsLive(Pred, Block, ArgIndex);
|
|
}
|
|
|
|
// Given an instruction which is considered live, propagate that liveness
|
|
// back to the instructions that produce values it consumes.
|
|
void DCE::propagateLiveness(SILInstruction *I) {
|
|
if (!isa<TermInst>(I)) {
|
|
for (auto &O : I->getAllOperands())
|
|
markValueLive(O.get());
|
|
|
|
// Conceptually, the dependency from a debug instruction to its definition
|
|
// is in reverse direction: Only if its definition is alive, also the
|
|
// debug_value instruction is alive.
|
|
for (Operand *DU : getDebugUses(I))
|
|
markValueLive(DU->getUser());
|
|
|
|
// Handle all other reverse-dependency instructions, like cond_fail and
|
|
// fix_lifetime. Only if the definition is alive, the user itself is alive.
|
|
if (SILInstruction *DepInst = ReverseDependencies.lookup(I)) {
|
|
markValueLive(DepInst);
|
|
}
|
|
return;
|
|
}
|
|
|
|
switch (ValueKindAsTermKind(I->getKind())) {
|
|
case TermKind::BranchInst:
|
|
case TermKind::UnreachableInst:
|
|
return;
|
|
|
|
case TermKind::ReturnInst:
|
|
case TermKind::ThrowInst:
|
|
case TermKind::CondBranchInst:
|
|
case TermKind::SwitchEnumInst:
|
|
case TermKind::SwitchEnumAddrInst:
|
|
case TermKind::DynamicMethodBranchInst:
|
|
case TermKind::CheckedCastBranchInst:
|
|
markValueLive(I->getOperand(0));
|
|
return;
|
|
|
|
case TermKind::TryApplyInst:
|
|
case TermKind::SwitchValueInst:
|
|
for (auto &O : I->getAllOperands())
|
|
markValueLive(O.get());
|
|
return;
|
|
|
|
case TermKind::CheckedCastAddrBranchInst:
|
|
markValueLive(I->getOperand(0));
|
|
markValueLive(I->getOperand(1));
|
|
return;
|
|
}
|
|
llvm_unreachable("corrupt instruction!");
|
|
}
|
|
|
|
SILBasicBlock *DCE::nearestUsefulPostDominator(SILBasicBlock *Block) {
|
|
// Find the nearest post-dominator that has useful instructions.
|
|
auto *PostDomNode = PDT->getNode(Block)->getIDom();
|
|
while (!LiveBlocks.count(PostDomNode->getBlock()))
|
|
PostDomNode = PostDomNode->getIDom();
|
|
|
|
return PostDomNode->getBlock();
|
|
}
|
|
|
|
// Replace the given conditional branching instruction with a plain
|
|
// jump (aka unconditional branch) to the destination block.
|
|
void DCE::replaceBranchWithJump(SILInstruction *Inst, SILBasicBlock *Block) {
|
|
++NumBranchesPromoted;
|
|
|
|
assert(Block && "Expected a destination block!");
|
|
|
|
assert((isa<CondBranchInst>(Inst) ||
|
|
isa<SwitchValueInst>(Inst) ||
|
|
isa<SwitchEnumInst>(Inst) ||
|
|
isa<SwitchEnumAddrInst>(Inst) ||
|
|
isa<DynamicMethodBranchInst>(Inst) ||
|
|
isa<CheckedCastBranchInst>(Inst)) &&
|
|
"Unexpected dead terminator kind!");
|
|
|
|
SILInstruction *Branch;
|
|
if (!Block->bbarg_empty()) {
|
|
std::vector<SILValue> Args;
|
|
auto E = Block->bbarg_end();
|
|
for (auto A = Block->bbarg_begin(); A != E; ++A) {
|
|
assert(!LiveValues.count(*A) && "Unexpected live block argument!");
|
|
Args.push_back(SILUndef::get((*A)->getType(), (*A)->getModule()));
|
|
}
|
|
Branch =
|
|
SILBuilderWithScope(Inst).createBranch(Inst->getLoc(), Block, Args);
|
|
} else {
|
|
Branch = SILBuilderWithScope(Inst).createBranch(Inst->getLoc(), Block);
|
|
}
|
|
DEBUG(llvm::dbgs() << "Inserted unconditional branch:\n");
|
|
DEBUG(Branch->dump());
|
|
(void)Branch;
|
|
}
|
|
|
|
// Remove the instructions that are not potentially useful.
|
|
bool DCE::removeDead(SILFunction &F) {
|
|
bool Changed = false;
|
|
|
|
for (auto &BB : F) {
|
|
for (auto I = BB.bbarg_begin(), E = BB.bbarg_end(); I != E; ) {
|
|
auto Inst = *I++;
|
|
if (LiveValues.count(Inst))
|
|
continue;
|
|
|
|
DEBUG(llvm::dbgs() << "Removing dead argument:\n");
|
|
DEBUG(Inst->dump());
|
|
|
|
if (Inst->hasValue()) {
|
|
auto *Undef = SILUndef::get(Inst->getType(), Inst->getModule());
|
|
Inst->replaceAllUsesWith(Undef);
|
|
}
|
|
|
|
Changed = true;
|
|
}
|
|
|
|
for (auto I = BB.begin(), E = BB.end(); I != E; ) {
|
|
auto *Inst = &*I;
|
|
I++;
|
|
if (LiveValues.count(Inst) || isa<BranchInst>(Inst))
|
|
continue;
|
|
|
|
// We want to replace dead terminators with unconditional branches to
|
|
// the nearest post-dominator that has useful instructions.
|
|
if (isa<TermInst>(Inst)) {
|
|
replaceBranchWithJump(Inst,
|
|
nearestUsefulPostDominator(Inst->getParent()));
|
|
Inst->eraseFromParent();
|
|
BranchesChanged = true;
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
++NumDeletedInsts;
|
|
|
|
DEBUG(llvm::dbgs() << "Removing dead instruction:\n");
|
|
DEBUG(Inst->dump());
|
|
|
|
if (Inst->hasValue()) {
|
|
auto *Undef = SILUndef::get(Inst->getType(), Inst->getModule());
|
|
Inst->replaceAllUsesWith(Undef);
|
|
}
|
|
|
|
|
|
if (isa<ApplyInst>(Inst))
|
|
CallsChanged = true;
|
|
|
|
Inst->eraseFromParent();
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
// Precompute some information from the post-dominator tree to aid us
|
|
// in determining control dependence without generating a complete
|
|
// control dependence graph. Inspired by:
|
|
// Optimal control dependence and the Roman chariots problem
|
|
// TOPLAS, v19, issue 3, 1997
|
|
// http://dx.doi.org/10.1145/256167.256217
|
|
//
|
|
// For each node in the post-dominator tree we will compute:
|
|
// -- A level number.
|
|
//
|
|
// -- The list of immediate predecessors that this block is
|
|
// control-dependent on along with the level number in the
|
|
// post-dominator tree of each of those predecessors.
|
|
//
|
|
// -- The lowest level number of any predecessor below the given node
|
|
// in the post-dominator tree. This will be used to exit early in
|
|
// later control-dependence queries.
|
|
//
|
|
// Returns true upon success, false if nodes that are not present in the
|
|
// post-dominator tree are detected.
|
|
bool DCE::precomputeControlInfo(SILFunction &F) {
|
|
computeLevelNumbers(PDT->getRootNode(), 0);
|
|
if (hasInfiniteLoops(F))
|
|
return false;
|
|
computePredecessorDependence(F);
|
|
computeMinPredecessorLevels(PDT->getRootNode());
|
|
return true;
|
|
}
|
|
|
|
void DCE::insertControllingInfo(SILBasicBlock *Block, unsigned Level) {
|
|
assert(ControllingInfoMap.find(Block) == ControllingInfoMap.end() &&
|
|
"Unexpected map entry for node!");
|
|
|
|
ControllingInfo Info;
|
|
Info.Block = Block;
|
|
Info.Level = Level;
|
|
Info.MinTreePredLevel = -1;
|
|
|
|
ControllingInfoMap[Block] = Info;
|
|
}
|
|
|
|
// Assign a level number to each node in the post-dominator tree, and
|
|
void DCE::computeLevelNumbers(PostDomTreeNode *Node, unsigned Level) {
|
|
insertControllingInfo(Node->getBlock(), Level);
|
|
|
|
for (auto Child = Node->begin(), End = Node->end(); Child != End; ++Child)
|
|
computeLevelNumbers(*Child, Level + 1);
|
|
}
|
|
|
|
// Structurally infinite loops like:
|
|
// bb1:
|
|
// br bb1
|
|
// are not present in the post-dominator tree. Their presence
|
|
// requires significant modifications to the way the rest of the
|
|
// algorithm works. They should be rare, so for now we'll do the most
|
|
// conservative thing and completely bail out, doing no dead code
|
|
// elimination. Note this will also hit for unreachable code, but
|
|
// presumably we'll run DCE at some point after removing unreachable
|
|
// code.
|
|
bool DCE::hasInfiniteLoops(SILFunction &F) {
|
|
for (auto &BB : F)
|
|
if (ControllingInfoMap.find(&BB) == ControllingInfoMap.end())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// For each block, create a list of the direct predecessors that the
|
|
// block is control-dependent on. With each predecessor, also keep the
|
|
// level number of the predecessor in the post-dominator tree.
|
|
void DCE::computePredecessorDependence(SILFunction &F) {
|
|
for (auto &BB : F) {
|
|
assert(ControllingInfoMap.find(&BB) != ControllingInfoMap.end()
|
|
&& "Expected to already have a map entry for block!");
|
|
|
|
for (auto Pred : BB.getPreds())
|
|
if (!PDT->properlyDominates(&BB, Pred)) {
|
|
assert(ControllingInfoMap.find(Pred) != ControllingInfoMap.end() &&
|
|
"Expected to already have a map entry for block!");
|
|
|
|
auto PredLevel = ControllingInfoMap[Pred].Level;
|
|
auto PredInfo = std::make_pair(Pred, PredLevel);
|
|
|
|
auto &MapElement = ControllingInfoMap[&BB];
|
|
MapElement.ControllingPreds.push_back(PredInfo);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return the minimum post-dominator tree level of any of the
|
|
// direct controlling predecessors of this node or any child.
|
|
unsigned DCE::computeMinPredecessorLevels(PostDomTreeNode *Node) {
|
|
unsigned Min = -1;
|
|
|
|
auto *Block = Node->getBlock();
|
|
|
|
assert(ControllingInfoMap.find(Block) != ControllingInfoMap.end() &&
|
|
"Expected to have map entry for node!");
|
|
|
|
auto &MapElement = ControllingInfoMap[Block];
|
|
for (auto &PredInfo : MapElement.ControllingPreds)
|
|
Min = std::min(Min, PredInfo.second);
|
|
|
|
for (auto Child = Node->begin(), End = Node->end(); Child != End; ++Child)
|
|
Min = std::min(Min, computeMinPredecessorLevels(*Child));
|
|
|
|
MapElement.MinTreePredLevel = Min;
|
|
|
|
return Min;
|
|
}
|
|
|
|
void DCE::collectControllingBlocksInTree(ControllingInfo &QueryInfo,
|
|
PostDomTreeNode *Node,
|
|
llvm::SmallPtrSetImpl<SILBasicBlock *> &Controlling) {
|
|
auto *Block = Node->getBlock();
|
|
|
|
assert(ControllingInfoMap.find(Block) != ControllingInfoMap.end() &&
|
|
"Expected to have map entry for node!");
|
|
|
|
auto &MapEntry = ControllingInfoMap[Block];
|
|
if (MapEntry.MinTreePredLevel > QueryInfo.Level)
|
|
return;
|
|
|
|
for (auto &PredInfo : MapEntry.ControllingPreds)
|
|
if (PredInfo.second <= QueryInfo.Level) {
|
|
assert(PDT->properlyDominates(
|
|
PDT->getNode(PredInfo.first)->getIDom()->getBlock(),
|
|
QueryInfo.Block) &&
|
|
"Expected predecessor's post-dominator to post-dominate node.");
|
|
Controlling.insert(PredInfo.first);
|
|
}
|
|
|
|
for (auto Child = Node->begin(), End = Node->end(); Child != End; ++Child)
|
|
collectControllingBlocksInTree(QueryInfo, (*Child), Controlling);
|
|
}
|
|
|
|
// Walk the post-dominator tree from the query block down, building
|
|
// the set of blocks that the given block is control-dependent on. To
|
|
// determine control dependence we use some precomputed information
|
|
// about the direct predecessors that control each block, along with
|
|
// the level numbers in the post-dominator tree of those controlling
|
|
// predecessors. We can use the latter to terminate the walk down the
|
|
// dominator tree early.
|
|
void DCE::collectControllingBlocks(SILBasicBlock *Block,
|
|
llvm::SmallPtrSetImpl<SILBasicBlock *> &Controlling) {
|
|
// First add the blocks that QueryNode is directly control-dependent on.
|
|
assert(ControllingInfoMap.find(Block) != ControllingInfoMap.end() &&
|
|
"Expected map entry for node!");
|
|
auto &MapEntry = ControllingInfoMap[Block];
|
|
|
|
// Now walk the children looking for nodes that have controlling
|
|
// predecessors that have the same or lower level number in the
|
|
// post-dominator tree.
|
|
collectControllingBlocksInTree(MapEntry, PDT->getNode(Block), Controlling);
|
|
}
|
|
|
|
void DCE::markControllingTerminatorsLive(SILBasicBlock *Block) {
|
|
if (LiveBlocks.count(Block))
|
|
return;
|
|
|
|
LiveBlocks.insert(Block);
|
|
|
|
llvm::SmallPtrSet<SILBasicBlock *, 4> ControllingBlocks;
|
|
collectControllingBlocks(Block, ControllingBlocks);
|
|
|
|
for (auto BB : ControllingBlocks)
|
|
markValueLive(BB->getTerminator());
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
SILTransform *swift::createDCE() {
|
|
return new DCE();
|
|
}
|