Files
swift-mirror/lib/Sema/DerivedConformanceCodable.cpp

2159 lines
83 KiB
C++

//===--- DerivedConformanceCodable.cpp - Derived Codable ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements explicit derivation of the Encodable and Decodable
// protocols for a struct or class.
//
//===----------------------------------------------------------------------===//
#include "CodeSynthesis.h"
#include "TypeChecker.h"
#include "llvm/ADT/STLExtras.h"
#include "swift/AST/ConformanceLookup.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Module.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/StringExtras.h"
#include "DerivedConformances.h"
using namespace swift;
/// Returns whether the type represented by the given ClassDecl inherits from a
/// type which conforms to the given protocol.
static bool superclassConformsTo(ClassDecl *target, KnownProtocolKind kpk) {
if (!target) {
return false;
}
auto superclass = target->getSuperclassDecl();
if (!superclass)
return false;
return !lookupConformance(target->getSuperclass(),
target->getASTContext().getProtocol(kpk))
.isInvalid();
}
/// Retrieve the variable name for the purposes of encoding/decoding.
///
/// \param paramIndex if set will be used to generate name in the form of
/// '_$paramIndex' when VarDecl has no name.
static Identifier
getVarNameForCoding(VarDecl *var,
std::optional<int> paramIndex = std::nullopt) {
auto &C = var->getASTContext();
Identifier identifier;
if (auto *PD = dyn_cast<ParamDecl>(var)) {
identifier = PD->getArgumentName();
} else {
identifier = var->getName();
}
if (auto originalVar = var->getOriginalWrappedProperty())
identifier = originalVar->getName();
if (identifier.empty() && paramIndex.has_value())
return C.getIdentifier("_" + std::to_string(paramIndex.value()));
return identifier;
}
/// Compute the Identifier for the CodingKey of an enum case
static Identifier caseCodingKeysIdentifier(const ASTContext &C,
EnumElementDecl *elt) {
llvm::SmallString<16> scratch;
camel_case::appendSentenceCase(scratch, elt->getBaseIdentifier().str());
scratch += C.Id_CodingKeys.str();
return C.getIdentifier(scratch.str());
}
/// Fetches the \c CodingKeys enum nested in \c target, potentially reaching
/// through a typealias if the "CodingKeys" entity is a typealias.
///
/// This is only useful once a \c CodingKeys enum has been validated (via \c
/// hasValidCodingKeysEnum) or synthesized (via \c synthesizeCodingKeysEnum).
///
/// \param C The \c ASTContext to perform the lookup in.
///
/// \param target The target type to look in.
///
/// \return A retrieved canonical \c CodingKeys enum if \c target has a valid
/// one; \c nullptr otherwise.
static EnumDecl *lookupEvaluatedCodingKeysEnum(ASTContext &C,
NominalTypeDecl *target,
Identifier identifier) {
auto codingKeyDecls = target->lookupDirect(DeclName(identifier));
if (codingKeyDecls.empty())
return nullptr;
auto *codingKeysDecl = codingKeyDecls.front();
if (auto *typealiasDecl = dyn_cast<TypeAliasDecl>(codingKeysDecl))
codingKeysDecl = typealiasDecl->getDeclaredInterfaceType()->getAnyNominal();
return dyn_cast<EnumDecl>(codingKeysDecl);
}
static EnumDecl *lookupEvaluatedCodingKeysEnum(ASTContext &C,
NominalTypeDecl *target) {
return lookupEvaluatedCodingKeysEnum(C, target, C.Id_CodingKeys);
}
static EnumElementDecl *lookupEnumCase(ASTContext &C, NominalTypeDecl *target,
Identifier identifier) {
auto elementDecls = target->lookupDirect(DeclName(identifier));
if (elementDecls.empty())
return nullptr;
auto *elementDecl = elementDecls.front();
return dyn_cast<EnumElementDecl>(elementDecl);
}
static NominalTypeDecl *lookupErrorContext(ASTContext &C,
NominalTypeDecl *errorDecl) {
auto elementDecls = errorDecl->lookupDirect(C.Id_Context);
if (elementDecls.empty())
return nullptr;
auto *decl = elementDecls.front();
return dyn_cast<NominalTypeDecl>(decl);
}
static EnumDecl *
addImplicitCodingKeys(NominalTypeDecl *target,
llvm::SmallVectorImpl<Identifier> &caseIdentifiers,
Identifier codingKeysEnumIdentifier) {
auto &C = target->getASTContext();
assert(target->lookupDirect(DeclName(codingKeysEnumIdentifier)).empty());
// We want to look through all the var declarations of this type to create
// enum cases based on those var names.
auto *codingKeyProto = C.getProtocol(KnownProtocolKind::CodingKey);
auto codingKeyType = codingKeyProto->getDeclaredInterfaceType();
InheritedEntry protoTypeLoc[1] = {
InheritedEntry(TypeLoc::withoutLoc(codingKeyType))};
ArrayRef<InheritedEntry> inherited = C.AllocateCopy(protoTypeLoc);
auto *enumDecl = new (C) EnumDecl(SourceLoc(), codingKeysEnumIdentifier,
SourceLoc(), inherited, nullptr, target);
enumDecl->setImplicit();
enumDecl->setSynthesized();
enumDecl->setAccess(AccessLevel::Private);
// For classes which inherit from something Encodable or Decodable, we
// provide case `super` as the first key (to be used in encoding super).
auto *classDecl = dyn_cast<ClassDecl>(target);
if (superclassConformsTo(classDecl, KnownProtocolKind::Encodable) ||
superclassConformsTo(classDecl, KnownProtocolKind::Decodable)) {
// TODO: Ensure the class doesn't already have or inherit a variable named
// "`super`"; otherwise we will generate an invalid enum. In that case,
// diagnose and bail.
auto *super = new (C) EnumElementDecl(SourceLoc(), C.Id_super, nullptr,
SourceLoc(), nullptr, enumDecl);
super->setImplicit();
enumDecl->addMember(super);
}
for (auto caseIdentifier : caseIdentifiers) {
auto *elt = new (C) EnumElementDecl(SourceLoc(), caseIdentifier, nullptr,
SourceLoc(), nullptr, enumDecl);
elt->setImplicit();
enumDecl->addMember(elt);
}
// Forcibly derive conformance to CodingKey.
TypeChecker::checkConformancesInContext(enumDecl);
// Add to the type.
target->addMember(enumDecl);
return enumDecl;
}
static EnumDecl *addImplicitCaseCodingKeys(EnumDecl *target,
EnumElementDecl *elementDecl,
EnumDecl *codingKeysEnum) {
auto &C = target->getASTContext();
// Only derive if this case exist in the CodingKeys enum
auto *codingKeyCase =
lookupEnumCase(C, codingKeysEnum, elementDecl->getBaseIdentifier());
if (!codingKeyCase)
return nullptr;
auto enumIdentifier = caseCodingKeysIdentifier(C, elementDecl);
llvm::SmallVector<Identifier, 4> caseIdentifiers;
if (elementDecl->hasAssociatedValues()) {
for (auto entry : llvm::enumerate(*elementDecl->getParameterList())) {
auto *paramDecl = entry.value();
// if the type conforms to {En,De}codable, add it to the enum.
Identifier paramIdentifier =
getVarNameForCoding(paramDecl, entry.index());
caseIdentifiers.push_back(paramIdentifier);
}
}
return addImplicitCodingKeys(target, caseIdentifiers, enumIdentifier);
}
// Create CodingKeys in the parent type always, because both
// Encodable and Decodable might want to use it, and they may have
// different conditional bounds. CodingKeys is simple and can't
// depend on those bounds.
//
// FIXME: Eventually we should find a way to expose this function to the lookup
// machinery so it no longer costs two protocol conformance lookups to retrieve
// CodingKeys. It will also help in our quest to separate semantic and parsed
// members.
static EnumDecl *addImplicitCodingKeys(NominalTypeDecl *target) {
auto &C = target->getASTContext();
llvm::SmallVector<Identifier, 4> caseIdentifiers;
if (auto *enumDecl = dyn_cast<EnumDecl>(target)) {
for (auto *elementDecl : enumDecl->getAllElements()) {
caseIdentifiers.push_back(elementDecl->getBaseIdentifier());
}
} else {
for (auto *varDecl : target->getStoredProperties()) {
if (!varDecl->isUserAccessible()) {
continue;
}
caseIdentifiers.push_back(getVarNameForCoding(varDecl));
}
}
return addImplicitCodingKeys(target, caseIdentifiers, C.Id_CodingKeys);
}
namespace {
/// Container for a set of functions that produces notes used when a
/// synthesized conformance fails.
struct DelayedNotes : public std::vector<std::function<void()>> {
~DelayedNotes() {
for (const auto &fn : *this) {
fn();
}
}
};
}
static EnumDecl *validateCodingKeysType(const DerivedConformance &derived,
TypeDecl *_codingKeysTypeDecl,
DelayedNotes &delayedNotes) {
auto &C = derived.Context;
// CodingKeys may be a typealias. If so, follow the alias to its canonical
// type. We are creating a copy here, so we can hold on to the original
// `TypeDecl` in case we need to produce a diagnostic.
auto *codingKeysTypeDecl = _codingKeysTypeDecl;
auto codingKeysType = codingKeysTypeDecl->getDeclaredInterfaceType();
if (isa<TypeAliasDecl>(codingKeysTypeDecl))
codingKeysTypeDecl = codingKeysType->getAnyNominal();
// Ensure that the type we found conforms to the CodingKey protocol.
auto *codingKeyProto = C.getProtocol(KnownProtocolKind::CodingKey);
if (!lookupConformance(codingKeysType, codingKeyProto)) {
// If CodingKeys is a typealias which doesn't point to a valid nominal type,
// codingKeysTypeDecl will be nullptr here. In that case, we need to warn on
// the location of the usage, since there isn't an underlying type to
// diagnose on.
SourceLoc loc = codingKeysTypeDecl ? codingKeysTypeDecl->getLoc()
: cast<TypeDecl>(_codingKeysTypeDecl)->getLoc();
delayedNotes.push_back([=] {
ASTContext &C = derived.getProtocolType()->getASTContext();
C.Diags.diagnose(loc, diag::codable_codingkeys_type_does_not_conform_here,
derived.getProtocolType());
});
return nullptr;
}
auto *codingKeysDecl =
dyn_cast_or_null<EnumDecl>(codingKeysType->getAnyNominal());
if (!codingKeysDecl) {
delayedNotes.push_back([=] {
codingKeysTypeDecl->diagnose(
diag::codable_codingkeys_type_is_not_an_enum_here,
derived.getProtocolType());
});
return nullptr;
}
return codingKeysDecl;
}
/// Validates the given CodingKeys enum decl by ensuring its cases are a 1-to-1
/// match with the given VarDecls.
///
/// \param varDecls The \c var decls to validate against.
/// \param codingKeysTypeDecl The \c CodingKeys enum decl to validate.
static bool validateCodingKeysEnum(const DerivedConformance &derived,
llvm::SmallMapVector<Identifier, VarDecl *, 8> varDecls,
TypeDecl *codingKeysTypeDecl,
DelayedNotes &delayedNotes) {
auto *codingKeysDecl = validateCodingKeysType(
derived, codingKeysTypeDecl, delayedNotes);
if (!codingKeysDecl)
return false;
// Look through all var decls.
//
// If any of the entries in the CodingKeys decl are not present in the type
// by name, then this decl doesn't match.
// If there are any vars left in the type which don't have a default value
// (for Decodable), then this decl doesn't match.
bool varDeclsAreValid = true;
for (auto elt : codingKeysDecl->getAllElements()) {
auto it = varDecls.find(elt->getBaseIdentifier());
if (it == varDecls.end()) {
delayedNotes.push_back([=] {
elt->diagnose(diag::codable_extraneous_codingkey_case_here,
elt->getBaseIdentifier());
});
// TODO: Investigate typo-correction here; perhaps the case name was
// misspelled and we can provide a fix-it.
varDeclsAreValid = false;
continue;
}
// We have a property to map to. Ensure it's {En,De}codable.
auto target = derived.getConformanceContext()->mapTypeIntoContext(
it->second->getValueInterfaceType());
if (checkConformance(target, derived.Protocol).isInvalid()) {
TypeLoc typeLoc = {
it->second->getTypeReprOrParentPatternTypeRepr(),
it->second->getTypeInContext(),
};
auto var = it->second;
auto proto = derived.getProtocolType();
delayedNotes.push_back([=] {
var->diagnose(diag::codable_non_conforming_property_here,
proto, typeLoc);
});
varDeclsAreValid = false;
} else {
// The property was valid. Remove it from the list.
varDecls.erase(it);
}
}
if (!varDeclsAreValid)
return false;
// If there are any remaining var decls which the CodingKeys did not cover,
// we can skip them on encode. On decode, though, we can only skip them if
// they have a default value.
if (derived.Protocol->isSpecificProtocol(KnownProtocolKind::Decodable)) {
for (auto &entry : varDecls) {
const auto *pbd = entry.second->getParentPatternBinding();
if (pbd && pbd->isDefaultInitializable()) {
continue;
}
if (entry.second->isParentInitialized()) {
continue;
}
if (auto *paramDecl = dyn_cast<ParamDecl>(entry.second)) {
if (paramDecl->hasDefaultExpr()) {
continue;
}
}
// The var was not default initializable, and did not have an explicit
// initial value.
varDeclsAreValid = false;
delayedNotes.push_back([=] {
entry.second->diagnose(diag::codable_non_decoded_property_here,
derived.getProtocolType(), entry.first);
});
}
}
return varDeclsAreValid;
}
static bool validateCodingKeysEnum_enum(const DerivedConformance &derived,
TypeDecl *codingKeysTypeDecl,
DelayedNotes &delayedNotes) {
auto *enumDecl = dyn_cast<EnumDecl>(derived.Nominal);
if (!enumDecl) {
return false;
}
llvm::SmallSetVector<Identifier, 4> caseNames;
for (auto *elt : enumDecl->getAllElements()) {
caseNames.insert(elt->getBaseIdentifier());
}
auto *codingKeysDecl = validateCodingKeysType(
derived, codingKeysTypeDecl, delayedNotes);
if (!codingKeysDecl)
return false;
bool casesAreValid = true;
for (auto *elt : codingKeysDecl->getAllElements()) {
if (!caseNames.contains(elt->getBaseIdentifier())) {
delayedNotes.push_back([=] {
elt->diagnose(diag::codable_extraneous_codingkey_case_here,
elt->getBaseIdentifier());
});
casesAreValid = false;
}
}
return casesAreValid;
}
/// Looks up and validates a CodingKeys enum for the given DerivedConformance.
/// If a CodingKeys enum does not exist, one will be derived.
static bool validateCodingKeysEnum(const DerivedConformance &derived,
DelayedNotes &delayedNotes) {
auto &C = derived.Context;
auto codingKeysDecls =
derived.Nominal->lookupDirect(DeclName(C.Id_CodingKeys));
if (codingKeysDecls.size() > 1) {
return false;
}
ValueDecl *result = codingKeysDecls.empty()
? addImplicitCodingKeys(derived.Nominal)
: codingKeysDecls.front();
auto *codingKeysTypeDecl = dyn_cast<TypeDecl>(result);
if (!codingKeysTypeDecl) {
delayedNotes.push_back([=] {
result->diagnose(diag::codable_codingkeys_type_is_not_an_enum_here,
derived.getProtocolType());
});
return false;
}
if (dyn_cast<EnumDecl>(derived.Nominal)) {
return validateCodingKeysEnum_enum(
derived, codingKeysTypeDecl, delayedNotes);
} else {
// Look through all var decls in the given type.
// * Filter out lazy/computed vars.
// * Filter out ones which are present in the given decl (by name).
// Here we'll hold on to properties by name -- when we've validated a property
// against its CodingKey entry, it will get removed.
llvm::SmallMapVector<Identifier, VarDecl *, 8> properties;
for (auto *varDecl : derived.Nominal->getStoredProperties()) {
if (!varDecl->isUserAccessible())
continue;
properties[getVarNameForCoding(varDecl)] = varDecl;
}
return validateCodingKeysEnum(
derived, properties, codingKeysTypeDecl, delayedNotes);
}
}
/// Looks up and validates a CaseCodingKeys enum for the given elementDecl.
/// If a CaseCodingKeys enum does not exist, one will be derived.
///
/// \param elementDecl The \c EnumElementDecl to validate against.
static bool validateCaseCodingKeysEnum(const DerivedConformance &derived,
EnumElementDecl *elementDecl,
DelayedNotes &delayedNotes) {
auto &C = derived.Context;
auto *enumDecl = dyn_cast<EnumDecl>(derived.Nominal);
if (!enumDecl) {
return false;
}
auto *codingKeysEnum = lookupEvaluatedCodingKeysEnum(C, enumDecl);
// At this point we ran validation for this and should have
// a CodingKeys decl.
assert(codingKeysEnum && "Missing CodingKeys decl.");
auto cckIdentifier = caseCodingKeysIdentifier(C, elementDecl);
auto caseCodingKeysDecls =
enumDecl->lookupDirect(DeclName(cckIdentifier));
if (caseCodingKeysDecls.size() > 1) {
return false;
}
ValueDecl *result = caseCodingKeysDecls.empty()
? addImplicitCaseCodingKeys(
enumDecl, elementDecl, codingKeysEnum)
: caseCodingKeysDecls.front();
if (!result) {
// There is no coding key defined for this element,
// which is okay, because not all elements have to
// be considered for serialization. Attempts to
// en-/decode them will be handled at runtime.
return true;
}
auto *codingKeysTypeDecl = dyn_cast<TypeDecl>(result);
if (!codingKeysTypeDecl) {
delayedNotes.push_back([=] {
result->diagnose(diag::codable_codingkeys_type_is_not_an_enum_here,
derived.getProtocolType());
});
return false;
}
// Here we'll hold on to parameters by name -- when we've validated a parameter
// against its CodingKey entry, it will get removed.
llvm::SmallMapVector<Identifier, VarDecl *, 8> properties;
if (elementDecl->hasAssociatedValues()) {
for (auto entry : llvm::enumerate(*elementDecl->getParameterList())) {
auto paramDecl = entry.value();
if (!paramDecl->isUserAccessible())
continue;
auto identifier = getVarNameForCoding(paramDecl, entry.index());
properties[identifier] = paramDecl;
}
}
return validateCodingKeysEnum(
derived, properties, codingKeysTypeDecl, delayedNotes);
}
/// Creates a new var decl representing
///
/// var/let identifier : containerBase<keyType>
///
/// \c containerBase is the name of the type to use as the base (either
/// \c KeyedEncodingContainer or \c KeyedDecodingContainer).
///
/// \param C The AST context to create the decl in.
///
/// \param DC The \c DeclContext to create the decl in.
///
/// \param keyedContainerDecl The generic type to bind the key type in.
///
/// \param keyType The key type to bind to the container type.
///
/// \param introducer Whether to declare the variable as immutable.
///
/// \param identifier Identifier of the variable.
static VarDecl *createKeyedContainer(ASTContext &C, DeclContext *DC,
NominalTypeDecl *keyedContainerDecl,
Type keyType,
VarDecl::Introducer introducer,
Identifier identifier) {
// Bind Keyed*Container to Keyed*Container<KeyType>
Type boundType[1] = {keyType};
auto containerType = BoundGenericType::get(keyedContainerDecl, Type(),
C.AllocateCopy(boundType));
// let container : Keyed*Container<KeyType>
auto *containerDecl = new (C) VarDecl(/*IsStatic=*/false, introducer,
SourceLoc(), identifier, DC);
containerDecl->setImplicit();
containerDecl->setSynthesized();
containerDecl->setInterfaceType(containerType);
return containerDecl;
}
/// Creates a new var decl representing
///
/// var/let container : containerBase<keyType>
///
/// \c containerBase is the name of the type to use as the base (either
/// \c KeyedEncodingContainer or \c KeyedDecodingContainer).
///
/// \param C The AST context to create the decl in.
///
/// \param DC The \c DeclContext to create the decl in.
///
/// \param keyedContainerDecl The generic type to bind the key type in.
///
/// \param keyType The key type to bind to the container type.
///
/// \param introducer Whether to declare the variable as immutable.
static VarDecl *createKeyedContainer(ASTContext &C, DeclContext *DC,
NominalTypeDecl *keyedContainerDecl,
Type keyType,
VarDecl::Introducer introducer) {
return createKeyedContainer(C, DC, keyedContainerDecl, keyType,
introducer, C.Id_container);
}
/// Creates a new \c CallExpr representing
///
/// base.container(keyedBy: CodingKeys.self)
///
/// \param C The AST context to create the expression in.
///
/// \param DC The \c DeclContext to create any decls in.
///
/// \param base The base expression to make the call on.
///
/// \param returnType The return type of the call.
///
/// \param param The parameter to the call.
static CallExpr *createContainerKeyedByCall(ASTContext &C, DeclContext *DC,
Expr *base, Type returnType,
NominalTypeDecl *param) {
// (keyedBy:)
auto *keyedByDecl = new (C)
ParamDecl(SourceLoc(), SourceLoc(),
C.Id_keyedBy, SourceLoc(), C.Id_keyedBy, DC);
keyedByDecl->setImplicit();
keyedByDecl->setSpecifier(ParamSpecifier::Default);
keyedByDecl->setInterfaceType(returnType);
// base.container(keyedBy:) expr
auto *paramList = ParameterList::createWithoutLoc(keyedByDecl);
auto *unboundCall = UnresolvedDotExpr::createImplicit(C, base, C.Id_container,
paramList);
// CodingKeys.self expr
auto *codingKeysExpr = TypeExpr::createImplicitForDecl(
DeclNameLoc(), param, param->getDeclContext(),
DC->mapTypeIntoContext(param->getInterfaceType()));
auto *codingKeysMetaTypeExpr = new (C) DotSelfExpr(codingKeysExpr,
SourceLoc(), SourceLoc());
// Full bound base.container(keyedBy: CodingKeys.self) call
auto *argList =
ArgumentList::forImplicitSingle(C, C.Id_keyedBy, codingKeysMetaTypeExpr);
return CallExpr::createImplicit(C, unboundCall, argList);
}
static CallExpr *createNestedContainerKeyedByForKeyCall(
ASTContext &C, DeclContext *DC, Expr *base, NominalTypeDecl *codingKeysType,
EnumElementDecl *key) {
// base.nestedContainer(keyedBy:, forKey:) expr
auto *unboundCall = UnresolvedDotExpr::createImplicit(
C, base, C.Id_nestedContainer, {C.Id_keyedBy, C.Id_forKey});
// CodingKeys.self expr
auto *codingKeysExpr = TypeExpr::createImplicitForDecl(
DeclNameLoc(), codingKeysType, codingKeysType->getDeclContext(),
DC->mapTypeIntoContext(codingKeysType->getInterfaceType()));
auto *codingKeysMetaTypeExpr =
new (C) DotSelfExpr(codingKeysExpr, SourceLoc(), SourceLoc());
// key expr
auto *metaTyRef = TypeExpr::createImplicit(
DC->mapTypeIntoContext(key->getParentEnum()->getDeclaredInterfaceType()),
C);
auto *keyExpr = new (C) MemberRefExpr(metaTyRef, SourceLoc(), key,
DeclNameLoc(), /*Implicit=*/true);
// Full bound base.nestedContainer(keyedBy: CodingKeys.self, forKey: key) call
auto *argList = ArgumentList::forImplicitCallTo(
unboundCall->getName(), {codingKeysMetaTypeExpr, keyExpr}, C);
return CallExpr::createImplicit(C, unboundCall, argList);
}
static ThrowStmt *createThrowCodingErrorStmt(ASTContext &C, Expr *containerExpr,
NominalTypeDecl *errorDecl,
Identifier errorId,
std::optional<Expr *> argument,
StringRef debugMessage) {
auto *contextDecl = lookupErrorContext(C, errorDecl);
assert(contextDecl && "Missing Context decl.");
auto *debugMessageExpr = new (C) StringLiteralExpr(
C.AllocateCopy(debugMessage), SourceRange(),
/* Implicit */ true);
auto *contextTypeExpr =
TypeExpr::createImplicit(contextDecl->getDeclaredType(), C);
// Context.init(codingPath:, debugDescription:)
auto *contextInitCall = UnresolvedDotExpr::createImplicit(
C, contextTypeExpr, DeclBaseName::createConstructor(),
{C.Id_codingPath, C.Id_debugDescription, C.Id_underlyingError});
auto *codingPathExpr =
UnresolvedDotExpr::createImplicit(C, containerExpr, C.Id_codingPath);
auto *underlyingErrorExpr =
new (C) NilLiteralExpr(SourceLoc(), /*implicit*/ true);
auto *initArgList = ArgumentList::forImplicitCallTo(
contextInitCall->getName(),
{codingPathExpr, debugMessageExpr, underlyingErrorExpr}, C);
auto *contextInitCallExpr = CallExpr::createImplicit(C, contextInitCall,
initArgList);
llvm::SmallVector<Expr *, 2> arguments;
if (argument.has_value()) {
arguments.push_back(argument.value());
}
arguments.push_back(contextInitCallExpr);
SmallVector<Identifier, 2> scratch;
auto *decodeArgList = ArgumentList::forImplicitUnlabeled(C, arguments);
auto *decodingErrorTypeExpr =
TypeExpr::createImplicit(errorDecl->getDeclaredType(), C);
auto *decodingErrorCall = UnresolvedDotExpr::createImplicit(
C, decodingErrorTypeExpr, errorId,
decodeArgList->getArgumentLabels(scratch));
auto *decodingErrorCallExpr =
CallExpr::createImplicit(C, decodingErrorCall, decodeArgList);
return new (C) ThrowStmt(SourceLoc(), decodingErrorCallExpr);
}
/// Looks up the property corresponding to the indicated coding key.
///
/// \param conformanceDC The DeclContext we're generating code within.
/// \param elt The CodingKeys enum case.
/// \param targetDecl The type to look up properties in.
///
/// \return A tuple containing the \c VarDecl for the property, the type that
/// should be passed when decoding it, and a boolean which is true if
/// \c encodeIfPresent/\c decodeIfPresent should be used for this property.
static std::tuple<VarDecl *, Type, bool>
lookupVarDeclForCodingKeysCase(DeclContext *conformanceDC,
EnumElementDecl *elt,
NominalTypeDecl *targetDecl) {
for (auto decl : targetDecl->lookupDirect(
DeclName(elt->getBaseIdentifier()))) {
if (auto *vd = dyn_cast<VarDecl>(decl)) {
// If we found a property with an attached wrapper, retrieve the
// backing property.
if (auto backingVar = vd->getPropertyWrapperBackingProperty())
vd = backingVar;
if (!vd->isStatic()) {
// This is the VarDecl we're looking for.
auto varType =
conformanceDC->mapTypeIntoContext(vd->getValueInterfaceType());
bool useIfPresentVariant = false;
if (auto objType = varType->getOptionalObjectType()) {
varType = objType;
useIfPresentVariant = true;
}
return std::make_tuple(vd, varType, useIfPresentVariant);
}
}
}
llvm_unreachable("Should have found at least 1 var decl");
}
static TryExpr *createEncodeCall(ASTContext &C, Type codingKeysType,
EnumElementDecl *codingKey,
Expr *containerExpr, Expr *varExpr,
bool useIfPresentVariant) {
// CodingKeys.x
auto *metaTyRef = TypeExpr::createImplicit(codingKeysType, C);
auto *keyExpr = new (C) MemberRefExpr(metaTyRef, SourceLoc(), codingKey,
DeclNameLoc(), /*Implicit=*/true);
// encode(_:forKey:)/encodeIfPresent(_:forKey:)
auto methodName = useIfPresentVariant ? C.Id_encodeIfPresent : C.Id_encode;
auto *encodeCall = UnresolvedDotExpr::createImplicit(
C, containerExpr, methodName, {Identifier(), C.Id_forKey});
// container.encode(x, forKey: CodingKeys.x)
auto *argList = ArgumentList::forImplicitCallTo(encodeCall->getName(),
{varExpr, keyExpr}, C);
auto *callExpr = CallExpr::createImplicit(C, encodeCall, argList);
// try container.encode(x, forKey: CodingKeys.x)
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
/*Implicit=*/true);
return tryExpr;
}
/// Synthesizes the body for `func encode(to encoder: Encoder) throws`.
///
/// \param encodeDecl The function decl whose body to synthesize.
static std::pair<BraceStmt *, bool>
deriveBodyEncodable_encode(AbstractFunctionDecl *encodeDecl, void *) {
// struct Foo : Codable {
// var x: Int
// var y: String
//
// // Already derived by this point if possible.
// @derived enum CodingKeys : CodingKey {
// case x
// case y
// }
//
// @derived func encode(to encoder: Encoder) throws {
// var container = encoder.container(keyedBy: CodingKeys.self)
// try container.encode(x, forKey: .x)
// try container.encode(y, forKey: .y)
// }
// }
// The enclosing type decl.
auto conformanceDC = encodeDecl->getDeclContext();
auto *targetDecl = conformanceDC->getSelfNominalTypeDecl();
auto *funcDC = cast<DeclContext>(encodeDecl);
auto &C = funcDC->getASTContext();
// We'll want the CodingKeys enum for this type, potentially looking through
// a typealias.
auto *codingKeysEnum = lookupEvaluatedCodingKeysEnum(C, targetDecl);
// We should have bailed already if:
// a) The type does not have CodingKeys
// b) The type is not an enum
assert(codingKeysEnum && "Missing CodingKeys decl.");
SmallVector<ASTNode, 5> statements;
// Generate a reference to containerExpr ahead of time in case there are no
// properties to encode or decode, but the type is a class which inherits from
// something Codable and needs to encode super.
// let container : KeyedEncodingContainer<CodingKeys>
auto codingKeysType = codingKeysEnum->getDeclaredType();
auto *containerDecl = createKeyedContainer(C, funcDC,
C.getKeyedEncodingContainerDecl(),
codingKeysEnum->getDeclaredInterfaceType(),
VarDecl::Introducer::Var);
auto *containerExpr = new (C) DeclRefExpr(ConcreteDeclRef(containerDecl),
DeclNameLoc(), /*Implicit=*/true,
AccessSemantics::DirectToStorage);
// Need to generate
// `let container = encoder.container(keyedBy: CodingKeys.self)`
// This is unconditional because a type with no properties should encode as an
// empty container.
//
// `let container` (containerExpr) is generated above.
// encoder
auto encoderParam = encodeDecl->getParameters()->get(0);
auto *encoderExpr = new (C) DeclRefExpr(ConcreteDeclRef(encoderParam),
DeclNameLoc(), /*Implicit=*/true);
// Bound encoder.container(keyedBy: CodingKeys.self) call
auto containerType = containerDecl->getInterfaceType();
auto *callExpr = createContainerKeyedByCall(C, funcDC, encoderExpr,
containerType, codingKeysEnum);
// Full `let container = encoder.container(keyedBy: CodingKeys.self)`
// binding.
auto *containerPattern = NamedPattern::createImplicit(C, containerDecl);
auto *bindingDecl = PatternBindingDecl::createImplicit(
C, StaticSpellingKind::None, containerPattern, callExpr, funcDC);
statements.push_back(bindingDecl);
statements.push_back(containerDecl);
// Now need to generate `try container.encode(x, forKey: .x)` for all
// existing properties. Optional properties get `encodeIfPresent`.
for (auto *elt : codingKeysEnum->getAllElements()) {
VarDecl *varDecl;
Type varType; // not used in Encodable synthesis
bool useIfPresentVariant;
std::tie(varDecl, varType, useIfPresentVariant) =
lookupVarDeclForCodingKeysCase(conformanceDC, elt, targetDecl);
// self.x
auto *selfRef = DerivedConformance::createSelfDeclRef(encodeDecl);
auto *varExpr = new (C) MemberRefExpr(selfRef, SourceLoc(),
ConcreteDeclRef(varDecl),
DeclNameLoc(), /*Implicit=*/true);
auto *encodeCallExpr = createEncodeCall(
C, codingKeysType, elt, containerExpr, varExpr, useIfPresentVariant);
statements.push_back(encodeCallExpr);
}
// Classes which inherit from something Codable should encode super as well.
if (superclassConformsTo(dyn_cast<ClassDecl>(targetDecl),
KnownProtocolKind::Encodable)) {
// Need to generate `try super.encode(to: container.superEncoder())`
// superEncoder()
auto *method = UnresolvedDeclRefExpr::createImplicit(C, C.Id_superEncoder);
// container.superEncoder()
auto *superEncoderRef = DotSyntaxCallExpr::create(
C, method, SourceLoc(), Argument::unlabeled(containerExpr));
// encode(to:) expr
auto *encodeDeclRef = new (C) DeclRefExpr(ConcreteDeclRef(encodeDecl),
DeclNameLoc(), /*Implicit=*/true);
// super
auto *superRef = new (C) SuperRefExpr(encodeDecl->getImplicitSelfDecl(),
SourceLoc(), /*Implicit=*/true);
// super.encode(to:)
auto *encodeCall = DotSyntaxCallExpr::create(C, encodeDeclRef, SourceLoc(),
Argument::unlabeled(superRef));
// super.encode(to: container.superEncoder())
auto *args = ArgumentList::forImplicitSingle(C, C.Id_to, superEncoderRef);
auto *callExpr = CallExpr::createImplicit(C, encodeCall, args);
// try super.encode(to: container.superEncoder())
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
/*Implicit=*/true);
statements.push_back(tryExpr);
}
auto *body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc(),
/*implicit=*/true);
return { body, /*isTypeChecked=*/false };
}
static SwitchStmt *
createEnumSwitch(ASTContext &C, DeclContext *DC, Expr *expr, EnumDecl *enumDecl,
EnumDecl *codingKeysEnum, bool createSubpattern,
std::function<std::tuple<EnumElementDecl *, BraceStmt *>(
EnumElementDecl *, EnumElementDecl *, ArrayRef<VarDecl *>)>
createCase) {
SmallVector<ASTNode, 4> cases;
for (auto elt : enumDecl->getAllElements()) {
// .<elt>(let a0, let a1, ...)
SmallVector<VarDecl *, 3> payloadVars;
Pattern *subpattern = nullptr;
std::optional<MutableArrayRef<VarDecl *>> caseBodyVarDecls;
if (createSubpattern) {
subpattern = DerivedConformance::enumElementPayloadSubpattern(
elt, 'a', DC, payloadVars, /* useLabels */ true);
auto hasBoundDecls = !payloadVars.empty();
if (hasBoundDecls) {
// We allocated a direct copy of our var decls for the case
// body.
auto copy = C.Allocate<VarDecl *>(payloadVars.size());
for (unsigned i : indices(payloadVars)) {
auto *vOld = payloadVars[i];
auto *vNew = new (C) VarDecl(
/*IsStatic*/ false, vOld->getIntroducer(), vOld->getNameLoc(),
vOld->getName(), vOld->getDeclContext());
vNew->setImplicit();
copy[i] = vNew;
}
caseBodyVarDecls.emplace(copy);
}
}
// CodingKeys.x
auto *codingKeyCase =
lookupEnumCase(C, codingKeysEnum, elt->getName().getBaseIdentifier());
EnumElementDecl *targetElt;
BraceStmt *caseBody;
std::tie(targetElt, caseBody) = createCase(elt, codingKeyCase, payloadVars);
if (caseBody) {
// generate: case .<Case>:
auto parentTy = DC->mapTypeIntoContext(
targetElt->getParentEnum()->getDeclaredInterfaceType());
auto *pat = EnumElementPattern::createImplicit(parentTy, targetElt,
subpattern, DC);
auto labelItem = CaseLabelItem(pat);
auto stmt =
CaseStmt::create(C, CaseParentKind::Switch, SourceLoc(), labelItem,
SourceLoc(), SourceLoc(), caseBody,
/*case body vardecls*/
createSubpattern ? caseBodyVarDecls : std::nullopt);
cases.push_back(stmt);
}
}
// generate: switch $expr { }
return SwitchStmt::createImplicit(LabeledStmtInfo(), expr, cases, C);
}
static DeclRefExpr *createContainer(ASTContext &C, DeclContext *DC,
VarDecl::Introducer introducer,
NominalTypeDecl *containerTypeDecl,
VarDecl *target, EnumDecl *codingKeysEnum,
llvm::SmallVectorImpl<ASTNode> &statements,
bool throws) {
// let/var container : KeyedDecodingContainer<CodingKeys>
auto *containerDecl = createKeyedContainer(
C, DC, containerTypeDecl, codingKeysEnum->getDeclaredInterfaceType(),
introducer);
auto *containerExpr =
new (C) DeclRefExpr(ConcreteDeclRef(containerDecl), DeclNameLoc(),
/*Implicit=*/true, AccessSemantics::DirectToStorage);
// de/encoder
auto *decoderExpr = new (C)
DeclRefExpr(ConcreteDeclRef(target), DeclNameLoc(), /*Implicit=*/true);
// Bound de/encoder.container(keyedBy: CodingKeys.self) call
auto containerType = containerDecl->getInterfaceType();
Expr *callExpr = createContainerKeyedByCall(C, DC, decoderExpr, containerType,
codingKeysEnum);
if (throws) {
// try decoder.container(keyedBy: CodingKeys.self)
callExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
/*implicit=*/true);
}
// Full `let container = decoder.container(keyedBy: CodingKeys.self)`
// binding.
auto *containerPattern = NamedPattern::createImplicit(C, containerDecl);
auto *bindingDecl = PatternBindingDecl::createImplicit(
C, StaticSpellingKind::None, containerPattern, callExpr, DC);
statements.push_back(bindingDecl);
statements.push_back(containerDecl);
return containerExpr;
}
static std::pair<BraceStmt *, bool>
deriveBodyEncodable_enum_encode(AbstractFunctionDecl *encodeDecl, void *) {
// enum Foo : Codable {
// case bar(x: Int)
// case baz(y: String)
//
// // Already derived by this point if possible.
// @derived enum CodingKeys : CodingKey {
// case bar
// case baz
//
// @derived enum BarCodingKeys : CodingKey {
// case x
// }
//
// @derived enum BazCodingKeys : CodingKey {
// case y
// }
// }
//
// @derived func encode(to encoder: Encoder) throws {
// var container = encoder.container(keyedBy: CodingKeys.self)
// switch self {
// case bar(let x):
// let nestedContainer = try container.nestedContainer(keyedBy:
// BarCodingKeys.self, forKey: .bar) try nestedContainer.encode(x,
// forKey: .x)
// case baz(let y):
// let nestedContainer = try container.nestedContainer(keyedBy:
// BazCodingKeys.self, forKey: .baz) try nestedContainer.encode(y,
// forKey: .y)
// }
// }
// }
// The enclosing type decl.
auto conformanceDC = encodeDecl->getDeclContext();
auto *enumDecl = conformanceDC->getSelfEnumDecl();
auto *funcDC = cast<DeclContext>(encodeDecl);
auto &C = funcDC->getASTContext();
// We'll want the CodingKeys enum for this type, potentially looking through
// a typealias.
auto *codingKeysEnum = lookupEvaluatedCodingKeysEnum(C, enumDecl);
// We should have bailed already if:
// a) The type does not have CodingKeys
// b) The type is not an enum
assert(codingKeysEnum && "Missing CodingKeys decl.");
SmallVector<ASTNode, 5> statements;
// Generate a reference to containerExpr ahead of time in case there are no
// properties to encode or decode, but the type is a class which inherits from
// something Codable and needs to encode super.
// Need to generate
// `let container = encoder.container(keyedBy: CodingKeys.self)`
// This is unconditional because a type with no properties should encode as an
// empty container.
// let container : KeyedEncodingContainer<CodingKeys>
auto *containerExpr = createContainer(
C, funcDC, VarDecl::Introducer::Var, C.getKeyedEncodingContainerDecl(),
encodeDecl->getParameters()->get(0), codingKeysEnum, statements,
/*throws*/ false);
auto *selfRef = encodeDecl->getImplicitSelfDecl();
// generate: switch self { }
auto enumRef =
new (C) DeclRefExpr(ConcreteDeclRef(selfRef), DeclNameLoc(),
/*implicit*/ true, AccessSemantics::Ordinary);
auto switchStmt = createEnumSwitch(
C, funcDC, enumRef, enumDecl, codingKeysEnum,
/*createSubpattern*/ true,
[&](EnumElementDecl *elt, EnumElementDecl *codingKeyCase,
ArrayRef<VarDecl *> payloadVars)
-> std::tuple<EnumElementDecl *, BraceStmt *> {
SmallVector<ASTNode, 3> caseStatements;
if (elt->isUnavailable()) {
// This case is not encodable because it is unavailable and therefore
// should not be instantiable at runtime. Skipping this case will
// result in the SIL pipeline giving the switch a default case for
// unexpected values.
return std::make_tuple(nullptr, nullptr);
}
if (!codingKeyCase) {
// This case should not be encodable, so throw an error if an attempt
// is made to encode it
auto debugMessage =
"Case '" + elt->getBaseIdentifier().str().str() +
"' cannot be encoded because it is not defined in CodingKeys.";
auto *selfRefExpr = new (C) DeclRefExpr(
ConcreteDeclRef(selfRef), DeclNameLoc(), /* Implicit */ true);
auto *throwStmt = createThrowCodingErrorStmt(
C, containerExpr, C.getEncodingErrorDecl(), C.Id_invalidValue,
selfRefExpr, debugMessage);
caseStatements.push_back(throwStmt);
} else {
auto caseIdentifier = caseCodingKeysIdentifier(C, elt);
auto *caseCodingKeys =
lookupEvaluatedCodingKeysEnum(C, enumDecl, caseIdentifier);
auto *nestedContainerDecl = createKeyedContainer(
C, funcDC, C.getKeyedEncodingContainerDecl(),
caseCodingKeys->getDeclaredInterfaceType(),
VarDecl::Introducer::Var, C.Id_nestedContainer);
auto *nestedContainerCall = createNestedContainerKeyedByForKeyCall(
C, funcDC, containerExpr, caseCodingKeys, codingKeyCase);
auto *containerPattern =
NamedPattern::createImplicit(C, nestedContainerDecl);
auto *bindingDecl = PatternBindingDecl::createImplicit(
C, StaticSpellingKind::None, containerPattern,
nestedContainerCall, funcDC);
caseStatements.push_back(bindingDecl);
caseStatements.push_back(nestedContainerDecl);
for (auto entry : llvm::enumerate(payloadVars)) {
auto *payloadVar = entry.value();
auto *nestedContainerExpr = new (C) DeclRefExpr(
ConcreteDeclRef(nestedContainerDecl), DeclNameLoc(),
/*Implicit=*/true, AccessSemantics::DirectToStorage);
auto payloadVarRef = new (C) DeclRefExpr(payloadVar, DeclNameLoc(),
/*implicit*/ true);
auto *paramDecl = elt->getParameterList()->get(entry.index());
auto caseCodingKeysIdentifier =
getVarNameForCoding(paramDecl, entry.index());
auto *caseCodingKey =
lookupEnumCase(C, caseCodingKeys, caseCodingKeysIdentifier);
// If there is no key defined for this parameter, skip it.
if (!caseCodingKey)
continue;
auto varType = conformanceDC->mapTypeIntoContext(
payloadVar->getValueInterfaceType());
bool useIfPresentVariant = false;
if (auto objType = varType->getOptionalObjectType()) {
varType = objType;
useIfPresentVariant = true;
}
auto *encodeCallExpr = createEncodeCall(
C, caseCodingKeys->getDeclaredType(), caseCodingKey,
nestedContainerExpr, payloadVarRef, useIfPresentVariant);
caseStatements.push_back(encodeCallExpr);
}
}
auto body =
BraceStmt::create(C, SourceLoc(), caseStatements, SourceLoc());
return std::make_tuple(elt, body);
});
statements.push_back(switchStmt);
auto *body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc(),
/*implicit=*/true);
return {body, /*isTypeChecked=*/false};
}
/// Synthesizes a function declaration for `encode(to: Encoder) throws` with a
/// lazily synthesized body for the given type.
///
/// Adds the function declaration to the given type before returning it.
static FuncDecl *deriveEncodable_encode(DerivedConformance &derived) {
auto &C = derived.Context;
auto conformanceDC = derived.getConformanceContext();
// Expected type: (Self) -> (Encoder) throws -> ()
// Constructed as: func type
// input: Self
// throws
// output: function type
// input: Encoder
// output: ()
// Create from the inside out:
auto encoderType = ExistentialType::get(C.getEncoderType());
auto returnType = TupleType::getEmpty(C);
// Params: (Encoder)
auto *encoderParam = new (C)
ParamDecl(SourceLoc(), SourceLoc(), C.Id_to,
SourceLoc(), C.Id_encoder, conformanceDC);
encoderParam->setSpecifier(ParamSpecifier::Default);
encoderParam->setInterfaceType(encoderType);
encoderParam->setImplicit();
ParameterList *params = ParameterList::createWithoutLoc(encoderParam);
// Func name: encode(to: Encoder)
DeclName name(C, C.Id_encode, params);
auto *const encodeDecl = FuncDecl::createImplicit(
C, StaticSpellingKind::None, name, /*NameLoc=*/SourceLoc(),
/*Async=*/false,
/*Throws=*/true, /*ThrownType=*/Type(),
/*GenericParams=*/nullptr, params, returnType,
conformanceDC);
encodeDecl->setSynthesized();
if (dyn_cast<EnumDecl>(derived.Nominal)) {
encodeDecl->setBodySynthesizer(deriveBodyEncodable_enum_encode);
} else {
encodeDecl->setBodySynthesizer(deriveBodyEncodable_encode);
}
// This method should be marked as 'override' for classes inheriting Encodable
// conformance from a parent class.
if (superclassConformsTo(dyn_cast<ClassDecl>(derived.Nominal),
KnownProtocolKind::Encodable)) {
auto *attr = new (C) OverrideAttr(/*IsImplicit=*/true);
encodeDecl->getAttrs().add(attr);
}
addNonIsolatedToSynthesized(derived, encodeDecl);
encodeDecl->copyFormalAccessFrom(derived.Nominal,
/*sourceIsParentContext*/ true);
derived.addMembersToConformanceContext({encodeDecl});
return encodeDecl;
}
static TryExpr *createDecodeCall(ASTContext &C, Type resultType,
Type codingKeysType,
EnumElementDecl *codingKey,
Expr *containerExpr,
bool useIfPresentVariant) {
auto methodName = useIfPresentVariant ? C.Id_decodeIfPresent : C.Id_decode;
// Type.self
auto *metaTyRef = TypeExpr::createImplicit(resultType, C);
auto *targetExpr =
new (C) DotSelfExpr(metaTyRef, SourceLoc(), SourceLoc(), resultType);
// CodingKeys.x
metaTyRef = TypeExpr::createImplicit(codingKeysType, C);
auto *keyExpr =
new (C) MemberRefExpr(metaTyRef, SourceLoc(), codingKey, DeclNameLoc(),
/*Implicit=*/true);
// decode(_:forKey:)/decodeIfPresent(_:forKey:)
auto *decodeCall = UnresolvedDotExpr::createImplicit(
C, containerExpr, methodName, {Identifier(), C.Id_forKey});
// container.decode(Type.self, forKey: CodingKeys.x)
auto *argList = ArgumentList::forImplicitCallTo(decodeCall->getName(),
{targetExpr, keyExpr}, C);
auto *callExpr = CallExpr::createImplicit(C, decodeCall, argList);
// try container.decode(Type.self, forKey: CodingKeys.x)
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
/*Implicit=*/true);
return tryExpr;
}
/// Synthesizes the body for `init(from decoder: Decoder) throws`.
///
/// \param initDecl The function decl whose body to synthesize.
static std::pair<BraceStmt *, bool>
deriveBodyDecodable_init(AbstractFunctionDecl *initDecl, void *) {
// struct Foo : Codable {
// var x: Int
// var y: String
//
// // Already derived by this point if possible.
// @derived enum CodingKeys : CodingKey {
// case x
// case y
// }
//
// @derived init(from decoder: Decoder) throws {
// let container = try decoder.container(keyedBy: CodingKeys.self)
// x = try container.decode(Type.self, forKey: .x)
// y = try container.decode(Type.self, forKey: .y)
// }
// }
// The enclosing type decl.
auto conformanceDC = initDecl->getDeclContext();
auto *targetDecl = conformanceDC->getSelfNominalTypeDecl();
auto *funcDC = cast<DeclContext>(initDecl);
auto &C = funcDC->getASTContext();
// We'll want the CodingKeys enum for this type, potentially looking through
// a typealias.
auto *codingKeysEnum = lookupEvaluatedCodingKeysEnum(C, targetDecl);
// We should have bailed already if:
// a) The type does not have CodingKeys
// b) The type is not an enum
assert(codingKeysEnum && "Missing CodingKeys decl.");
// Generate a reference to containerExpr ahead of time in case there are no
// properties to encode or decode, but the type is a class which inherits from
// something Codable and needs to decode super.
// let container : KeyedDecodingContainer<CodingKeys>
auto codingKeysType = codingKeysEnum->getDeclaredType();
auto *containerDecl = createKeyedContainer(C, funcDC,
C.getKeyedDecodingContainerDecl(),
codingKeysEnum->getDeclaredInterfaceType(),
VarDecl::Introducer::Let);
auto *containerExpr = new (C) DeclRefExpr(ConcreteDeclRef(containerDecl),
DeclNameLoc(), /*Implicit=*/true,
AccessSemantics::DirectToStorage);
SmallVector<ASTNode, 5> statements;
auto enumElements = codingKeysEnum->getAllElements();
if (!enumElements.empty()) {
// Need to generate
// `let container = try decoder.container(keyedBy: CodingKeys.self)`
// `let container` (containerExpr) is generated above.
// decoder
auto decoderParam = initDecl->getParameters()->get(0);
auto *decoderExpr = new (C) DeclRefExpr(ConcreteDeclRef(decoderParam),
DeclNameLoc(), /*Implicit=*/true);
// Bound decoder.container(keyedBy: CodingKeys.self) call
auto containerType = containerDecl->getInterfaceType();
auto *callExpr = createContainerKeyedByCall(C, funcDC, decoderExpr,
containerType, codingKeysEnum);
// try decoder.container(keyedBy: CodingKeys.self)
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
/*implicit=*/true);
// Full `let container = decoder.container(keyedBy: CodingKeys.self)`
// binding.
auto *containerPattern = NamedPattern::createImplicit(C, containerDecl);
auto *bindingDecl = PatternBindingDecl::createImplicit(
C, StaticSpellingKind::None, containerPattern, tryExpr, funcDC);
statements.push_back(bindingDecl);
statements.push_back(containerDecl);
// Now need to generate `x = try container.decode(Type.self, forKey: .x)`
// for all existing properties. Optional properties get `decodeIfPresent`.
for (auto *elt : enumElements) {
VarDecl *varDecl;
Type varType;
bool useIfPresentVariant;
std::tie(varDecl, varType, useIfPresentVariant) =
lookupVarDeclForCodingKeysCase(conformanceDC, elt, targetDecl);
// Don't output a decode statement for a let with an initial value.
if (varDecl->isLet() && varDecl->isParentInitialized()) {
// But emit a warning to let the user know that it won't be decoded.
auto lookupResult =
codingKeysEnum->lookupDirect(varDecl->getBaseName());
auto keyExistsInCodingKeys =
llvm::any_of(lookupResult, [&](ValueDecl *VD) {
if (isa<EnumElementDecl>(VD)) {
return VD->getBaseName() == varDecl->getBaseName();
}
return false;
});
auto *encodableProto = C.getProtocol(KnownProtocolKind::Encodable);
bool conformsToEncodable =
(bool) lookupConformance(
targetDecl->getDeclaredInterfaceType(), encodableProto);
// Strategy to use for CodingKeys enum diagnostic part - this is to
// make the behaviour more explicit:
//
// 1. If we have an *implicit* CodingKeys enum:
// (a) If the type is Decodable only, explicitly define the enum and
// remove the key from it. This makes it explicit that the key
// will not be decoded.
// (b) If the type is Codable, explicitly define the enum and keep the
// key in it. This is because removing the key will break encoding
// which is mostly likely not what the user expects.
//
// 2. If we have an *explicit* CodingKeys enum:
// (a) If the type is Decodable only and the key exists in the enum,
// then explicitly remove the key from the enum. This makes it
// explicit that the key will not be decoded.
// (b) If the type is Decodable only and the key does not exist in
// the enum, do nothing. This is because the user has explicitly
// made it clear that they don't want the key to be decoded.
// (c) If the type is Codable, do nothing. This is because removing
// the key will break encoding which is most likely not what the
// user expects.
if (!codingKeysEnum->isImplicit()) {
if (conformsToEncodable || !keyExistsInCodingKeys) {
continue;
}
}
varDecl->diagnose(diag::decodable_property_will_not_be_decoded);
if (codingKeysEnum->isImplicit()) {
varDecl->diagnose(
diag::decodable_property_init_or_codingkeys_implicit,
conformsToEncodable ? 0 : 1, varDecl->getName());
} else {
varDecl->diagnose(
diag::decodable_property_init_or_codingkeys_explicit,
varDecl->getName());
}
if (auto *PBD = varDecl->getParentPatternBinding()) {
varDecl->diagnose(diag::decodable_make_property_mutable)
.fixItReplace(PBD->getLoc(), "var");
}
continue;
}
auto *tryExpr = createDecodeCall(C, varType, codingKeysType, elt,
containerExpr, useIfPresentVariant);
auto *selfRef = DerivedConformance::createSelfDeclRef(initDecl);
auto *varExpr = UnresolvedDotExpr::createImplicit(C, selfRef,
varDecl->getName());
auto *assignExpr = new (C) AssignExpr(varExpr, SourceLoc(), tryExpr,
/*Implicit=*/true);
statements.push_back(assignExpr);
}
}
// Classes which have a superclass must call super.init(from:) if the
// superclass is Decodable, or super.init() if it is not.
if (auto *classDecl = dyn_cast<ClassDecl>(targetDecl)) {
if (auto *superclassDecl = classDecl->getSuperclassDecl()) {
if (superclassConformsTo(classDecl, KnownProtocolKind::Decodable)) {
// Need to generate `try super.init(from: container.superDecoder())`
// container.superDecoder
auto *superDecoderRef =
UnresolvedDotExpr::createImplicit(C, containerExpr,
C.Id_superDecoder);
// container.superDecoder()
auto *superDecoderCall =
CallExpr::createImplicitEmpty(C, superDecoderRef);
// super
auto *superRef = new (C) SuperRefExpr(initDecl->getImplicitSelfDecl(),
SourceLoc(), /*Implicit=*/true);
// super.init(from:)
auto *initCall = UnresolvedDotExpr::createImplicit(
C, superRef, DeclBaseName::createConstructor(), {C.Id_from});
// super.decode(from: container.superDecoder())
auto *argList =
ArgumentList::forImplicitSingle(C, C.Id_from, superDecoderCall);
auto *callExpr = CallExpr::createImplicit(C, initCall, argList);
// try super.init(from: container.superDecoder())
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
/*Implicit=*/true);
statements.push_back(tryExpr);
} else {
// The explicit constructor name is a compound name taking no arguments.
DeclName initName(C, DeclBaseName::createConstructor(),
ArrayRef<Identifier>());
// We need to look this up in the superclass to see if it throws.
auto result = superclassDecl->lookupDirect(initName);
// We should have bailed one level up if this were not available.
assert(!result.empty());
// If the init is failable, we should have already bailed one level
// above.
ConstructorDecl *superInitDecl = cast<ConstructorDecl>(result.front());
assert(!superInitDecl->isFailable());
// super
auto *superRef = new (C) SuperRefExpr(initDecl->getImplicitSelfDecl(),
SourceLoc(), /*Implicit=*/true);
// super.init()
auto *superInitRef = UnresolvedDotExpr::createImplicit(C, superRef,
initName);
// super.init() call
Expr *callExpr = CallExpr::createImplicitEmpty(C, superInitRef);
// If super.init throws, try super.init()
if (superInitDecl->hasThrows())
callExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
/*Implicit=*/true);
statements.push_back(callExpr);
}
}
}
auto *body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc(),
/*implicit=*/true);
return { body, /*isTypeChecked=*/false };
}
/// Synthesizes the body for `init(from decoder: Decoder) throws`.
///
/// \param initDecl The function decl whose body to synthesize.
static std::pair<BraceStmt *, bool>
deriveBodyDecodable_enum_init(AbstractFunctionDecl *initDecl, void *) {
// enum Foo : Codable {
// case bar(x: Int)
// case baz(y: String)
// @available(*, unavailable) case qux(z: Double)
//
// // Already derived by this point if possible.
// @derived enum CodingKeys : CodingKey {
// case bar
// case baz
// case qux
//
// @derived enum BarCodingKeys : CodingKey {
// case x
// }
//
// @derived enum BazCodingKeys : CodingKey {
// case y
// }
//
// @derived enum QuxCodingKeys : CodingKey {
// case z
// }
// }
//
// @derived init(from decoder: Decoder) throws {
// let container = try decoder.container(keyedBy: CodingKeys.self)
// var allKeys = ArraySlice(container.allKeys)
// guard let onlyKey = allKeys.popFirst(), allKeys.isEmpty else {
// let context = DecodingError.Context(
// codingPath: container.codingPath,
// debugDescription: "Invalid number of keys found, expected one.")
// throw DecodingError.typeMismatch(Foo.self, context)
// }
// switch onlyKey {
// case .bar:
// let nestedContainer = try container.nestedContainer(
// keyedBy: BarCodingKeys.self, forKey: .bar)
// let x = try nestedContainer.decode(Int.self, forKey: .x)
// self = .bar(x: x)
// case .baz:
// let nestedContainer = try container.nestedContainer(
// keyedBy: BazCodingKeys.self, forKey: .baz)
// let y = try nestedContainer.decode(String.self, forKey: .y)
// self = .baz(y: y)
// case .qux:
// throw DecodingError.dataCorrupted(
// DecodingError.Context(
// codingPath: decoder.codingPath,
// debugDescription: "Unavailable enum element encountered.")
// )
// }
// }
// The enclosing type decl.
auto conformanceDC = initDecl->getDeclContext();
auto *targetEnum = conformanceDC->getSelfEnumDecl();
auto *funcDC = cast<DeclContext>(initDecl);
auto &C = funcDC->getASTContext();
// We'll want the CodingKeys enum for this type, potentially looking through
// a typealias.
auto *codingKeysEnum = lookupEvaluatedCodingKeysEnum(C, targetEnum);
// We should have bailed already if:
// a) The type does not have CodingKeys
// b) The type is not an enum
assert(codingKeysEnum && "Missing CodingKeys decl.");
SmallVector<ASTNode, 5> statements;
if (codingKeysEnum->hasCases()) {
// Need to generate
// `let container = try decoder.container(keyedBy: CodingKeys.self)`
auto *containerExpr = createContainer(
C, funcDC, VarDecl::Introducer::Let, C.getKeyedDecodingContainerDecl(),
initDecl->getParameters()->get(0), codingKeysEnum, statements,
/*throws*/ true);
// generate: var allKeys = ArraySlice(container.allKeys);
auto *allKeysDecl =
new (C) VarDecl(/*IsStatic=*/false, VarDecl::Introducer::Var,
SourceLoc(), C.Id_allKeys, funcDC);
allKeysDecl->setImplicit();
allKeysDecl->setSynthesized();
{
auto *arraySliceRef =
new (C) DeclRefExpr(ConcreteDeclRef(C.getArraySliceDecl()),
DeclNameLoc(), /*Implicit=*/true);
auto *containerAllKeys =
UnresolvedDotExpr::createImplicit(C, containerExpr, C.Id_allKeys);
auto *argList = ArgumentList::createImplicit(
C, {Argument::unlabeled(containerAllKeys)});
auto *init = CallExpr::createImplicit(C, arraySliceRef, argList);
auto *allKeysPattern = NamedPattern::createImplicit(C, allKeysDecl);
auto *allKeysBindingDecl = PatternBindingDecl::createImplicit(
C, StaticSpellingKind::None, allKeysPattern, init, funcDC);
statements.push_back(allKeysBindingDecl);
statements.push_back(allKeysDecl);
}
// generate:
// guard let onlyKey = allKeys.popFirst(), allKeys.isEmpty else {
// let context = DecodingError.Context(
// codingPath: container.codingPath,
// debugDescription: "Invalid number of keys found, expected
// one.")
// throw DecodingError.typeMismatch(Foo.self, context)
// }
auto *theKeyDecl =
new (C) VarDecl(/*IsStatic=*/false, VarDecl::Introducer::Let,
SourceLoc(), C.getIdentifier("onlyKey"), funcDC);
theKeyDecl->setImplicit();
theKeyDecl->setSynthesized();
SmallVector<StmtConditionElement, 2> guardElements;
{
auto *allKeysExpr =
new (C) DeclRefExpr(ConcreteDeclRef(allKeysDecl), DeclNameLoc(),
/*Implicit=*/true);
// generate: let onlyKey = allKeys.popFirst;
auto *allKeysPopFirstCallExpr = CallExpr::createImplicitEmpty(
C, UnresolvedDotExpr::createImplicit(C, allKeysExpr, C.Id_popFirst));
auto *theKeyPattern = BindingPattern::createImplicit(
C, VarDecl::Introducer::Let,
NamedPattern::createImplicit(C, theKeyDecl));
guardElements.emplace_back(ConditionalPatternBindingInfo::create(
C, SourceLoc(), theKeyPattern, allKeysPopFirstCallExpr));
// generate: allKeys.isEmpty;
auto *allKeysIsEmptyExpr =
UnresolvedDotExpr::createImplicit(C, allKeysExpr, C.Id_isEmpty);
guardElements.emplace_back(allKeysIsEmptyExpr);
}
auto *targetType = TypeExpr::createImplicit(
funcDC->mapTypeIntoContext(targetEnum->getDeclaredInterfaceType()), C);
auto *targetTypeExpr =
new (C) DotSelfExpr(targetType, SourceLoc(), SourceLoc());
auto *throwStmt = createThrowCodingErrorStmt(
C, containerExpr, C.getDecodingErrorDecl(), C.Id_typeMismatch,
targetTypeExpr, "Invalid number of keys found, expected one.");
auto *guardBody = BraceStmt::create(C, SourceLoc(), {throwStmt},
SourceLoc(), /* Implicit */ true);
auto *guardStmt =
new (C) GuardStmt(SourceLoc(), C.AllocateCopy(guardElements), guardBody,
/* Implicit */ true);
statements.push_back(guardStmt);
// generate: switch onlyKey { }
auto *theKeyExpr = new (C) DeclRefExpr(ConcreteDeclRef(theKeyDecl),
DeclNameLoc(), /*Implicit=*/true);
auto switchStmt = createEnumSwitch(
C, funcDC, theKeyExpr, targetEnum, codingKeysEnum,
/*createSubpattern*/ false,
[&](EnumElementDecl *elt, EnumElementDecl *codingKeyCase,
ArrayRef<VarDecl *> payloadVars)
-> std::tuple<EnumElementDecl *, BraceStmt *> {
// Skip this case if it's not defined in the CodingKeys
if (!codingKeyCase)
return std::make_tuple(nullptr, nullptr);
if (elt->isUnavailable()) {
// generate:
// throw DecodingError.dataCorrupted(
// DecodingError.Context(
// codingPath: decoder.codingPath,
// debugDescription: "...")
auto *throwStmt = createThrowCodingErrorStmt(
C, containerExpr, C.getDecodingErrorDecl(), C.Id_dataCorrupted,
std::nullopt, "Unavailable enum element encountered.");
auto body =
BraceStmt::create(C, SourceLoc(), {throwStmt}, SourceLoc());
return std::make_tuple(codingKeyCase, body);
}
llvm::SmallVector<ASTNode, 3> caseStatements;
auto caseIdentifier = caseCodingKeysIdentifier(C, elt);
auto *caseCodingKeys =
lookupEvaluatedCodingKeysEnum(C, targetEnum, caseIdentifier);
auto *nestedContainerDecl = createKeyedContainer(
C, funcDC, C.getKeyedDecodingContainerDecl(),
caseCodingKeys->getDeclaredInterfaceType(),
VarDecl::Introducer::Let, C.Id_nestedContainer);
auto *nestedContainerCall = createNestedContainerKeyedByForKeyCall(
C, funcDC, containerExpr, caseCodingKeys, codingKeyCase);
auto *tryNestedContainerCall = new (C) TryExpr(
SourceLoc(), nestedContainerCall, Type(), /* Implicit */ true);
auto *containerPattern =
NamedPattern::createImplicit(C, nestedContainerDecl);
auto *bindingDecl = PatternBindingDecl::createImplicit(
C, StaticSpellingKind::None, containerPattern,
tryNestedContainerCall, funcDC);
caseStatements.push_back(bindingDecl);
caseStatements.push_back(nestedContainerDecl);
llvm::SmallVector<Argument, 3> decodeArgs;
if (elt->hasAssociatedValues()) {
for (auto entry : llvm::enumerate(*elt->getParameterList())) {
auto *paramDecl = entry.value();
Identifier identifier = getVarNameForCoding(paramDecl);
if (identifier.empty()) {
identifier =
C.getIdentifier("_" + std::to_string(entry.index()));
}
auto *caseCodingKey =
lookupEnumCase(C, caseCodingKeys, identifier);
auto argLabel = getVarNameForCoding(paramDecl);
// If no key is defined for this parameter, use the default value
if (!caseCodingKey) {
// This should have been verified to have a default expr in the
// CodingKey synthesis
assert(paramDecl->hasDefaultExpr());
decodeArgs.emplace_back(SourceLoc(), argLabel,
paramDecl->getTypeCheckedDefaultExpr());
continue;
}
auto varType = conformanceDC->mapTypeIntoContext(
paramDecl->getValueInterfaceType());
bool useIfPresentVariant = false;
if (auto objType = varType->getOptionalObjectType()) {
varType = objType;
useIfPresentVariant = true;
}
auto *nestedContainerExpr = new (C) DeclRefExpr(
ConcreteDeclRef(nestedContainerDecl), DeclNameLoc(),
/*Implicit=*/true, AccessSemantics::DirectToStorage);
auto *tryExpr = createDecodeCall(
C, varType, caseCodingKeys->getDeclaredType(), caseCodingKey,
nestedContainerExpr, useIfPresentVariant);
decodeArgs.emplace_back(SourceLoc(), argLabel, tryExpr);
}
}
auto *selfRef = DerivedConformance::createSelfDeclRef(initDecl);
// Foo.bar
auto *selfTypeExpr =
TypeExpr::createImplicit(targetEnum->getDeclaredType(), C);
if (decodeArgs.empty()) {
auto *selfCaseExpr =
new (C) MemberRefExpr(selfTypeExpr, SourceLoc(), elt,
DeclNameLoc(), /*Implicit=*/true);
auto *selfRef = DerivedConformance::createSelfDeclRef(initDecl);
auto *assignExpr =
new (C) AssignExpr(selfRef, SourceLoc(), selfCaseExpr,
/*Implicit=*/true);
caseStatements.push_back(assignExpr);
} else {
// Foo.bar(x:)
SmallVector<Identifier, 3> scratch;
auto *argList = ArgumentList::createImplicit(C, decodeArgs);
auto *selfCaseExpr = UnresolvedDotExpr::createImplicit(
C, selfTypeExpr, elt->getBaseIdentifier(),
argList->getArgumentLabels(scratch));
// Foo.bar(x: try nestedContainer.decode(Int.self, forKey: .x))
auto *caseCallExpr =
CallExpr::createImplicit(C, selfCaseExpr, argList);
// self = Foo.bar(x: try nestedContainer.decode(Int.self))
auto *assignExpr =
new (C) AssignExpr(selfRef, SourceLoc(), caseCallExpr,
/*Implicit=*/true);
caseStatements.push_back(assignExpr);
}
auto body =
BraceStmt::create(C, SourceLoc(), caseStatements, SourceLoc());
return std::make_tuple(codingKeyCase, body);
});
statements.push_back(switchStmt);
}
auto *body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc(),
/*implicit=*/true);
return {body, /*isTypeChecked=*/false};
}
/// Synthesizes a function declaration for `init(from: Decoder) throws` with a
/// lazily synthesized body for the given type.
///
/// Adds the function declaration to the given type before returning it.
static ValueDecl *deriveDecodable_init(DerivedConformance &derived) {
auto &C = derived.Context;
auto classDecl = dyn_cast<ClassDecl>(derived.Nominal);
auto conformanceDC = derived.getConformanceContext();
// Expected type: (Self) -> (Decoder) throws -> (Self)
// Constructed as: func type
// input: Self
// throws
// output: function type
// input: Encoder
// output: Self
// Compute from the inside out:
// Params: (Decoder)
auto decoderType = ExistentialType::get(C.getDecoderType());
auto *decoderParamDecl = new (C) ParamDecl(
SourceLoc(), SourceLoc(), C.Id_from,
SourceLoc(), C.Id_decoder, conformanceDC);
decoderParamDecl->setImplicit();
decoderParamDecl->setSpecifier(ParamSpecifier::Default);
decoderParamDecl->setInterfaceType(decoderType);
auto *paramList = ParameterList::createWithoutLoc(decoderParamDecl);
// Func name: init(from: Decoder)
DeclName name(C, DeclBaseName::createConstructor(), paramList);
auto *initDecl =
new (C) ConstructorDecl(name, SourceLoc(),
/*Failable=*/false, SourceLoc(),
/*Async=*/false, /*AsyncLoc=*/SourceLoc(),
/*Throws=*/true, SourceLoc(),
/*ThrownType=*/TypeLoc(), paramList,
/*GenericParams=*/nullptr, conformanceDC,
/*LifetimeDependentTypeRepr*/ nullptr);
initDecl->setImplicit();
initDecl->setSynthesized();
if (dyn_cast<EnumDecl>(derived.Nominal)) {
initDecl->setBodySynthesizer(&deriveBodyDecodable_enum_init);
} else {
initDecl->setBodySynthesizer(&deriveBodyDecodable_init);
}
// This constructor should be marked as `required` for non-final classes.
if (classDecl && !classDecl->isSemanticallyFinal()) {
auto *reqAttr = new (C) RequiredAttr(/*IsImplicit=*/true);
initDecl->getAttrs().add(reqAttr);
}
addNonIsolatedToSynthesized(derived, initDecl);
initDecl->copyFormalAccessFrom(derived.Nominal,
/*sourceIsParentContext*/ true);
derived.addMembersToConformanceContext({initDecl});
return initDecl;
}
/// Returns whether the given type is valid for synthesizing {En,De}codable.
///
/// Checks to see whether the given type has a valid \c CodingKeys enum, and if
/// not, attempts to synthesize one for it.
///
/// \param requirement The requirement we want to synthesize.
static bool canSynthesize(DerivedConformance &derived, ValueDecl *requirement,
DelayedNotes &delayedNotes) {
// Before we attempt to look up (or more importantly, synthesize) a CodingKeys
// entity on target, we need to make sure the type is otherwise valid.
//
// If we are synthesizing Decodable and the target is a class with a
// superclass, our synthesized init(from:) will need to call either
// super.init(from:) or super.init() depending on whether the superclass is
// Decodable itself.
//
// If the required initializer is not available, we shouldn't attempt to
// synthesize CodingKeys.
auto proto = derived.Protocol;
auto *classDecl = dyn_cast<ClassDecl>(derived.Nominal);
if (proto->isSpecificProtocol(KnownProtocolKind::Decodable) && classDecl) {
if (auto *superclassDecl = classDecl->getSuperclassDecl()) {
DeclName memberName;
auto superType = superclassDecl->getDeclaredInterfaceType();
if (checkConformance(superType, proto)) {
// super.init(from:) must be accessible.
memberName = cast<ConstructorDecl>(requirement)->getName();
} else {
// super.init() must be accessible.
// Passing an empty params array constructs a compound name with no
// arguments (as opposed to a simple name when omitted).
memberName =
DeclName(derived.Context, DeclBaseName::createConstructor(),
ArrayRef<Identifier>());
}
auto result =
TypeChecker::lookupMember(superclassDecl, superType,
DeclNameRef(memberName));
if (result.empty()) {
// No super initializer for us to call.
delayedNotes.push_back([=] {
superclassDecl->diagnose(diag::decodable_no_super_init_here,
requirement->getName(), memberName);
});
return false;
} else if (result.size() > 1) {
// There are multiple results for this lookup. We'll end up producing a
// diagnostic later complaining about duplicate methods (if we haven't
// already), so just bail with a general error.
return false;
} else {
auto *initializer =
cast<ConstructorDecl>(result.front().getValueDecl());
auto conformanceDC = derived.getConformanceContext();
if (!initializer->isDesignatedInit()) {
// We must call a superclass's designated initializer.
delayedNotes.push_back([=] {
initializer->diagnose(
diag::decodable_super_init_not_designated_here,
requirement->getName(), memberName);
});
return false;
} else if (!initializer->isAccessibleFrom(conformanceDC)) {
// Cannot call an inaccessible method.
delayedNotes.push_back([=] {
auto accessScope = initializer->getFormalAccessScope(conformanceDC);
initializer->diagnose(diag::decodable_inaccessible_super_init_here,
requirement->getName(), memberName,
accessScope.accessLevelForDiagnostics());
});
return false;
} else if (initializer->isFailable()) {
// We can't call super.init() if it's failable, since init(from:)
// isn't failable.
delayedNotes.push_back([=] {
initializer->diagnose(diag::decodable_super_init_is_failable_here,
requirement->getName(), memberName);
});
return false;
}
}
}
}
if (!validateCodingKeysEnum(derived, delayedNotes)) {
return false;
}
bool allValid = true;
if (auto *enumDecl = dyn_cast<EnumDecl>(derived.Nominal)) {
llvm::SmallSetVector<Identifier, 4> caseNames;
for (auto *elementDecl : enumDecl->getAllElements()) {
bool duplicate = false;
if (!caseNames.insert(elementDecl->getBaseIdentifier())) {
delayedNotes.push_back([=] {
elementDecl->diagnose(diag::codable_enum_duplicate_case_name_here,
derived.getProtocolType(),
derived.Nominal->getDeclaredType(),
elementDecl->getBaseIdentifier());
});
allValid = false;
duplicate = true;
}
if (elementDecl->hasAssociatedValues()) {
llvm::SmallMapVector<Identifier, ParamDecl *, 4> params;
for (auto entry : llvm::enumerate(*elementDecl->getParameterList())) {
auto *paramDecl = entry.value();
Identifier paramIdentifier = getVarNameForCoding(paramDecl);
bool generatedName = false;
if (paramIdentifier.empty()) {
paramIdentifier = derived.Context.getIdentifier("_" + std::to_string(entry.index()));
generatedName = true;
}
auto inserted = params.insert(std::make_pair(paramIdentifier, paramDecl));
if (!inserted.second) {
// duplicate identifier found
auto userDefinedParam = paramDecl;
if (generatedName) {
// at most we have one user defined and one generated identifier
// with this name, so if this is the generated, the other one
// must be the user defined
userDefinedParam = inserted.first->second;
}
delayedNotes.push_back([=] {
userDefinedParam->diagnose(diag::codable_enum_duplicate_parameter_name_here,
derived.getProtocolType(),
derived.Nominal->getDeclaredType(),
paramIdentifier,
elementDecl->getBaseIdentifier());
});
allValid = false;
}
}
}
if (!duplicate &&
!validateCaseCodingKeysEnum(derived, elementDecl, delayedNotes)) {
allValid = false;
}
}
}
return allValid;
}
static bool canDeriveCodable(NominalTypeDecl *NTD,
KnownProtocolKind Kind) {
assert(Kind == KnownProtocolKind::Encodable ||
Kind == KnownProtocolKind::Decodable);
// Structs, classes and enums can explicitly derive Encodable and Decodable
// conformance (explicitly meaning we can synthesize an implementation if
// a type conforms manually).
if (!isa<StructDecl>(NTD) && !isa<ClassDecl>(NTD) && !isa<EnumDecl>(NTD)) {
return false;
}
auto *PD = NTD->getASTContext().getProtocol(Kind);
if (!PD) {
return false;
}
return true;
}
bool DerivedConformance::canDeriveDecodable(NominalTypeDecl *NTD) {
return canDeriveCodable(NTD, KnownProtocolKind::Decodable);
}
bool DerivedConformance::canDeriveEncodable(NominalTypeDecl *NTD) {
return canDeriveCodable(NTD, KnownProtocolKind::Encodable);
}
ValueDecl *DerivedConformance::deriveEncodable(ValueDecl *requirement) {
// We can only synthesize Encodable for structs and classes.
if (!isa<StructDecl>(Nominal) && !isa<ClassDecl>(Nominal) &&
!isa<EnumDecl>(Nominal))
return nullptr;
if (requirement->getBaseName() != Context.Id_encode) {
// Unknown requirement.
requirement->diagnose(diag::broken_encodable_requirement);
return nullptr;
}
if (checkAndDiagnoseDisallowedContext(requirement))
return nullptr;
// Check other preconditions for synthesized conformance.
// This synthesizes a CodingKeys enum if possible.
DelayedNotes delayedNotes;
if (!canSynthesize(*this, requirement, delayedNotes)) {
ConformanceDecl->diagnose(diag::type_does_not_conform,
Nominal->getDeclaredType(), getProtocolType());
requirement->diagnose(diag::no_witnesses, diag::RequirementKind::Func,
requirement, getProtocolType());
return nullptr;
}
assert(delayedNotes.empty());
return deriveEncodable_encode(*this);
}
ValueDecl *DerivedConformance::deriveDecodable(ValueDecl *requirement) {
// We can only synthesize Encodable for structs and classes.
if (!isa<StructDecl>(Nominal) && !isa<ClassDecl>(Nominal) &&
!isa<EnumDecl>(Nominal))
return nullptr;
if (!requirement->getBaseName().isConstructor()) {
// Unknown requirement.
requirement->diagnose(diag::broken_decodable_requirement);
return nullptr;
}
if (checkAndDiagnoseDisallowedContext(requirement))
return nullptr;
// Check other preconditions for synthesized conformance.
// This synthesizes a CodingKeys enum if possible.
DelayedNotes delayedNotes;
if (!canSynthesize(*this, requirement, delayedNotes)) {
ConformanceDecl->diagnose(diag::type_does_not_conform,
Nominal->getDeclaredType(), getProtocolType());
requirement->diagnose(diag::no_witnesses,
diag::RequirementKind::Constructor, requirement,
getProtocolType());
return nullptr;
}
assert(delayedNotes.empty());
return deriveDecodable_init(*this);
}