mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
The signature is: (T, @inout @unowned(unsafe) Optional<T>) -> () The reason for the weird signature is that currently the Builtin infrastructure does not handle results well. The semantics of this builtin is that it enables one to store the first argument into an unowned unsafe address without any reference counting operations. It does this just by SILGening the relevant code. The optimizer chews through this code well, so we get the expected behavior. I also included a small proof of concept to validate that this builtin works as expected.
620 lines
23 KiB
C++
620 lines
23 KiB
C++
//===--- LValue.h - Logical LValue Representation ---------------*- C++ -*-===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// A storage structure for keeping track of logical lvalues during SILGen.
|
|
//
|
|
// In general, only the routines in SILGenLValue.cpp should actually be
|
|
// accessing LValues and their components. Everything else should just
|
|
// pass them around opaquely.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef SWIFT_LOWERING_LVALUE_H
|
|
#define SWIFT_LOWERING_LVALUE_H
|
|
|
|
#include "FormalEvaluation.h"
|
|
#include "SILGenFunction.h"
|
|
#include "Scope.h"
|
|
|
|
namespace swift {
|
|
namespace Lowering {
|
|
|
|
class ArgumentSource;
|
|
class LogicalPathComponent;
|
|
class ManagedValue;
|
|
class PhysicalPathComponent;
|
|
class SILGenFunction;
|
|
class TranslationPathComponent;
|
|
|
|
/// Information about the type of an l-value.
|
|
struct LValueTypeData {
|
|
/// The abstraction pattern of the l-value.
|
|
///
|
|
/// The type-of-rvalue should always be the substituted formal type
|
|
/// lowered under this abstraction pattern.
|
|
AbstractionPattern OrigFormalType = AbstractionPattern::getInvalid();
|
|
|
|
/// The substituted formal object type of the l-value.
|
|
///
|
|
/// Tn the most common case, this is the type of an l-value
|
|
/// expression as recorded in the AST, only with the
|
|
/// LValueType/InOutType stripped off.
|
|
CanType SubstFormalType;
|
|
|
|
/// The lowered type of value that should be stored in the l-value.
|
|
///
|
|
/// On physical path components, projection yields an address of
|
|
/// this type. On logical path components, materialize yields an
|
|
/// address of this type, set expects a value of this type, and
|
|
/// get yields an object of this type.
|
|
CanType TypeOfRValue;
|
|
|
|
SGFAccessKind AccessKind;
|
|
|
|
LValueTypeData() = default;
|
|
LValueTypeData(SGFAccessKind accessKind, AbstractionPattern origFormalType,
|
|
CanType substFormalType, CanType typeOfRValue)
|
|
: OrigFormalType(origFormalType), SubstFormalType(substFormalType),
|
|
TypeOfRValue(typeOfRValue), AccessKind(accessKind) {
|
|
assert(substFormalType->isMaterializable());
|
|
}
|
|
|
|
SGFAccessKind getAccessKind() const { return AccessKind; }
|
|
};
|
|
|
|
/// An l-value path component represents a chunk of the access path to
|
|
/// an object. Path components may be either "physical" or "logical".
|
|
/// A physical path involves elementary address manipulations; these
|
|
/// address manipulations may be in some way dynamic, but they are
|
|
/// ultimately just pointer arithmetic. A logical path requires
|
|
/// getter/setter logic.
|
|
///
|
|
/// This divide between physical/logical is closely related to the
|
|
/// fragile/resilient split, with two primary differences:
|
|
/// - Any sort of implementation can be fragile. For example, a
|
|
/// computed variable can still be fragile, meaning that it is known
|
|
/// to be implemented with a getter/setter. The known
|
|
/// implementation must be a direct offset in order to qualify as
|
|
/// physical.
|
|
/// - A path component's implementation can be resilient and yet
|
|
/// still qualify for physical access if we are in a privileged
|
|
/// component.
|
|
class PathComponent {
|
|
LValueTypeData TypeData;
|
|
|
|
friend class LValue;
|
|
unsigned AllocatedSize;
|
|
public:
|
|
enum KindTy {
|
|
// Physical lvalue kinds
|
|
RefElementKind, // ref_element_addr
|
|
TupleElementKind, // tuple_element_addr
|
|
StructElementKind, // struct_element_addr
|
|
OptionalObjectKind, // optional projection
|
|
OpenOpaqueExistentialKind, // opened opaque existential
|
|
AddressorKind, // var/subscript addressor
|
|
CoroutineAccessorKind, // coroutine accessor
|
|
ValueKind, // random base pointer as an lvalue
|
|
PhysicalKeyPathApplicationKind, // applying a key path
|
|
|
|
// Logical LValue kinds
|
|
GetterSetterKind, // property or subscript getter/setter
|
|
MaterializeToTemporaryKind,
|
|
OwnershipKind, // weak pointer remapping
|
|
AutoreleasingWritebackKind, // autorelease pointer on set
|
|
WritebackPseudoKind, // a fake component to customize writeback
|
|
OpenNonOpaqueExistentialKind, // opened class or metatype existential
|
|
LogicalKeyPathApplicationKind, // applying a key path
|
|
// Translation LValue kinds (a subtype of logical)
|
|
OrigToSubstKind, // generic type substitution
|
|
SubstToOrigKind, // generic type substitution
|
|
|
|
FirstLogicalKind = GetterSetterKind,
|
|
FirstTranslationKind = OrigToSubstKind,
|
|
};
|
|
private:
|
|
const KindTy Kind : 8;
|
|
|
|
// This anchor method serves three purposes: it aligns the class to
|
|
// a pointer boundary, it makes the class a primary base so that
|
|
// subclasses will be at offset zero, and it anchors the v-table
|
|
// to a specific file.
|
|
virtual void _anchor();
|
|
|
|
PathComponent(const PathComponent &) = delete;
|
|
PathComponent &operator=(const PathComponent &) = delete;
|
|
|
|
protected:
|
|
PathComponent(LValueTypeData typeData, KindTy Kind)
|
|
: TypeData(typeData), Kind(Kind) {}
|
|
public:
|
|
virtual ~PathComponent() {}
|
|
|
|
/// Returns sizeof(the final type), plus any extra storage required.
|
|
size_t allocated_size() const { return AllocatedSize; }
|
|
|
|
/// Is this component physical or logical? If physical, this will
|
|
/// be a subclass of PhysicalPathComponent. If logical, this will
|
|
/// be a subclass of LogicalPathComponent.
|
|
bool isPhysical() const { return Kind < FirstLogicalKind; }
|
|
bool isLogical() const { return Kind >= FirstLogicalKind; }
|
|
bool isTranslation() const { return Kind >= FirstTranslationKind; }
|
|
|
|
// These are implemented inline after the respective class declarations.
|
|
|
|
PhysicalPathComponent &asPhysical();
|
|
const PhysicalPathComponent &asPhysical() const;
|
|
|
|
LogicalPathComponent &asLogical();
|
|
const LogicalPathComponent &asLogical() const;
|
|
|
|
TranslationPathComponent &asTranslation();
|
|
const TranslationPathComponent &asTranslation() const;
|
|
|
|
/// Apply this component as a projection to the given base component,
|
|
/// producing something usable as the base of the next component.
|
|
virtual ManagedValue project(SILGenFunction &SGF,
|
|
SILLocation loc,
|
|
ManagedValue base) && = 0;
|
|
|
|
/// Is this some form of open-existential component?
|
|
bool isOpenExistential() const {
|
|
return getKind() == OpenOpaqueExistentialKind ||
|
|
getKind() == OpenNonOpaqueExistentialKind;
|
|
}
|
|
|
|
/// Is loading a value from this component guaranteed to have no observable
|
|
/// side effects?
|
|
virtual bool isLoadingPure() const {
|
|
// By default, don't assume any component is pure; components must opt-in.
|
|
return false;
|
|
}
|
|
|
|
virtual bool isRValue() const { return false; }
|
|
|
|
/// Returns the logical type-as-rvalue of the value addressed by the
|
|
/// component. This is always an object type, never an address.
|
|
SILType getTypeOfRValue() const {
|
|
return SILType::getPrimitiveObjectType(TypeData.TypeOfRValue);
|
|
}
|
|
AbstractionPattern getOrigFormalType() const {
|
|
return TypeData.OrigFormalType;
|
|
}
|
|
CanType getSubstFormalType() const { return TypeData.SubstFormalType; }
|
|
|
|
const LValueTypeData &getTypeData() const { return TypeData; }
|
|
SGFAccessKind getAccessKind() const { return getTypeData().getAccessKind(); }
|
|
|
|
KindTy getKind() const { return Kind; }
|
|
|
|
void dump() const;
|
|
virtual void dump(raw_ostream &OS, unsigned indent = 0) const = 0;
|
|
};
|
|
|
|
/// An abstract class for "physical" path components, i.e. path
|
|
/// components that can be accessed as address manipulations. See the
|
|
/// comment for PathComponent for more information.
|
|
///
|
|
/// The only operation on this component is `project`.
|
|
class PhysicalPathComponent : public PathComponent {
|
|
virtual void _anchor() override;
|
|
|
|
protected:
|
|
PhysicalPathComponent(LValueTypeData typeData, KindTy Kind)
|
|
: PathComponent(typeData, Kind) {
|
|
assert(isPhysical() && "PhysicalPathComponent Kind isn't physical");
|
|
}
|
|
};
|
|
|
|
inline PhysicalPathComponent &PathComponent::asPhysical() {
|
|
assert(isPhysical());
|
|
return static_cast<PhysicalPathComponent&>(*this);
|
|
}
|
|
inline const PhysicalPathComponent &PathComponent::asPhysical() const {
|
|
assert(isPhysical());
|
|
return static_cast<const PhysicalPathComponent&>(*this);
|
|
}
|
|
|
|
/// An abstract class for "logical" path components, i.e. path
|
|
/// components that require getter/setter methods to access. See the
|
|
/// comment for PathComponent for more information.
|
|
class LogicalPathComponent : public PathComponent {
|
|
protected:
|
|
LogicalPathComponent(LValueTypeData typeData, KindTy Kind)
|
|
: PathComponent(typeData, Kind) {
|
|
assert(isLogical() && "LogicalPathComponent Kind isn't logical");
|
|
}
|
|
|
|
/// Read the value of this component, producing the right kind of result
|
|
/// for the given access kind (which is always some kind of read access).
|
|
ManagedValue projectForRead(SILGenFunction &SGF, SILLocation loc,
|
|
ManagedValue base, SGFAccessKind kind) &&;
|
|
|
|
public:
|
|
/// Clone the path component onto the heap.
|
|
virtual std::unique_ptr<LogicalPathComponent>
|
|
clone(SILGenFunction &SGF, SILLocation l) const = 0;
|
|
|
|
/// Set the property.
|
|
///
|
|
/// \param base - always an address, but possibly an r-value
|
|
virtual void set(SILGenFunction &SGF, SILLocation loc,
|
|
ArgumentSource &&value, ManagedValue base) && = 0;
|
|
|
|
/// Get the property.
|
|
///
|
|
/// \param base - always an address, but possibly an r-value
|
|
virtual RValue get(SILGenFunction &SGF, SILLocation loc,
|
|
ManagedValue base, SGFContext c) && = 0;
|
|
|
|
/// The default implementation of project performs a get or materializes
|
|
/// to a temporary as necessary.
|
|
ManagedValue project(SILGenFunction &SGF, SILLocation loc,
|
|
ManagedValue base) && override;
|
|
|
|
struct AccessedStorage {
|
|
AbstractStorageDecl *Storage;
|
|
bool IsSuper;
|
|
const PreparedArguments *Indices;
|
|
Expr *IndexExprForDiagnostics;
|
|
};
|
|
|
|
/// Get the storage accessed by this component.
|
|
virtual Optional<AccessedStorage> getAccessedStorage() const = 0;
|
|
|
|
/// Perform a writeback on the property.
|
|
///
|
|
/// \param base - always an address, but possibly an r-value
|
|
virtual void writeback(SILGenFunction &SGF, SILLocation loc,
|
|
ManagedValue base,
|
|
MaterializedLValue materialized,
|
|
bool isFinal);
|
|
};
|
|
|
|
inline LogicalPathComponent &PathComponent::asLogical() {
|
|
assert(isLogical());
|
|
return static_cast<LogicalPathComponent&>(*this);
|
|
}
|
|
inline const LogicalPathComponent &PathComponent::asLogical() const {
|
|
assert(isLogical());
|
|
return static_cast<const LogicalPathComponent&>(*this);
|
|
}
|
|
|
|
/// An abstract class for components which translate values in some way.
|
|
class TranslationPathComponent : public LogicalPathComponent {
|
|
protected:
|
|
TranslationPathComponent(LValueTypeData typeData, KindTy kind)
|
|
: LogicalPathComponent(typeData, kind) {
|
|
assert(isTranslation() &&
|
|
"TranslationPathComponent kind isn't value translation");
|
|
}
|
|
|
|
public:
|
|
Optional<AccessedStorage> getAccessedStorage() const override {
|
|
return None;
|
|
}
|
|
|
|
RValue get(SILGenFunction &SGF, SILLocation loc,
|
|
ManagedValue base, SGFContext c) && override;
|
|
|
|
void set(SILGenFunction &SGF, SILLocation loc,
|
|
ArgumentSource &&value, ManagedValue base) && override;
|
|
|
|
/// Transform from the original pattern.
|
|
virtual RValue translate(SILGenFunction &SGF, SILLocation loc,
|
|
RValue &&value,
|
|
SGFContext ctx = SGFContext()) && = 0;
|
|
|
|
/// Transform into the original pattern.
|
|
virtual RValue untranslate(SILGenFunction &SGF, SILLocation loc,
|
|
RValue &&value,
|
|
SGFContext ctx = SGFContext()) && = 0;
|
|
|
|
};
|
|
|
|
inline TranslationPathComponent &PathComponent::asTranslation() {
|
|
assert(isTranslation());
|
|
return static_cast<TranslationPathComponent&>(*this);
|
|
}
|
|
inline const TranslationPathComponent &PathComponent::asTranslation() const {
|
|
assert(isTranslation());
|
|
return static_cast<const TranslationPathComponent&>(*this);
|
|
}
|
|
|
|
/// An lvalue represents a reference to storage holding a value
|
|
/// of a type, as opposed to an rvalue, which is an actual value
|
|
/// of the type.
|
|
class LValue {
|
|
std::vector<std::unique_ptr<PathComponent>> Path;
|
|
|
|
public:
|
|
LValue() = default;
|
|
LValue(const LValue &other) = delete;
|
|
LValue(LValue &&other) = default;
|
|
|
|
LValue &operator=(const LValue &) = delete;
|
|
LValue &operator=(LValue &&) = default;
|
|
|
|
static LValue forValue(SGFAccessKind accessKind, ManagedValue value,
|
|
CanType substFormalType);
|
|
|
|
static LValue forAddress(SGFAccessKind accessKind, ManagedValue address,
|
|
Optional<SILAccessEnforcement> enforcement,
|
|
AbstractionPattern origFormalType,
|
|
CanType substFormalType);
|
|
|
|
bool isValid() const { return !Path.empty(); }
|
|
|
|
/// Is loading a value from this lvalue guaranteed to have no observable side
|
|
/// effects?
|
|
bool isLoadingPure() {
|
|
assert(isValid());
|
|
for (auto &component : Path)
|
|
if (!component->isLoadingPure())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Is this lvalue purely physical?
|
|
bool isPhysical() const {
|
|
assert(isValid());
|
|
for (auto &component : Path)
|
|
if (!component->isPhysical())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Is the lvalue's final component physical?
|
|
bool isLastComponentPhysical() const {
|
|
assert(isValid());
|
|
return Path.back()->isPhysical();
|
|
}
|
|
|
|
/// Is the lvalue's final component a translation component?
|
|
bool isLastComponentTranslation() const {
|
|
assert(isValid());
|
|
return Path.back()->isTranslation();
|
|
}
|
|
|
|
/// Given that the last component is a translation component,
|
|
/// return it.
|
|
TranslationPathComponent &getLastTranslationComponent() & {
|
|
assert(isLastComponentTranslation());
|
|
return Path.back()->asTranslation();
|
|
}
|
|
|
|
/// Given that the last component is a translation component,
|
|
/// peel it off.
|
|
void dropLastTranslationComponent() & {
|
|
assert(isLastComponentTranslation());
|
|
Path.pop_back();
|
|
}
|
|
|
|
/// Assert that the given component is the last component in the
|
|
/// l-value, drop it.
|
|
void dropLastComponent(PathComponent &component) & {
|
|
assert(&component == Path.back().get());
|
|
Path.pop_back();
|
|
}
|
|
|
|
/// Pop the last component off this LValue unsafely. Validates that the
|
|
/// component is of kind \p kind as a sanity check.
|
|
///
|
|
/// Please be careful when using this!
|
|
void unsafelyDropLastComponent(PathComponent::KindTy kind) & {
|
|
assert(kind == Path.back()->getKind());
|
|
Path.pop_back();
|
|
}
|
|
|
|
/// Add a new component at the end of the access path of this lvalue.
|
|
template <class T, class... As>
|
|
void add(As &&... args) {
|
|
Path.emplace_back(new T(std::forward<As>(args)...));
|
|
}
|
|
|
|
void addNonMemberVarComponent(SILGenFunction &SGF, SILLocation loc,
|
|
VarDecl *var, SubstitutionMap subs,
|
|
LValueOptions options,
|
|
SGFAccessKind accessKind,
|
|
AccessStrategy strategy,
|
|
CanType formalRValueType);
|
|
|
|
/// Add a member component to the access path of this lvalue.
|
|
void addMemberComponent(SILGenFunction &SGF, SILLocation loc,
|
|
AbstractStorageDecl *storage,
|
|
SubstitutionMap subs,
|
|
LValueOptions options,
|
|
bool isSuper,
|
|
SGFAccessKind accessKind,
|
|
AccessStrategy accessStrategy,
|
|
CanType formalRValueType,
|
|
PreparedArguments &&indices,
|
|
Expr *indexExprForDiagnostics);
|
|
|
|
void addMemberVarComponent(SILGenFunction &SGF, SILLocation loc,
|
|
VarDecl *var,
|
|
SubstitutionMap subs,
|
|
LValueOptions options,
|
|
bool isSuper,
|
|
SGFAccessKind accessKind,
|
|
AccessStrategy accessStrategy,
|
|
CanType formalRValueType,
|
|
bool isOnSelf = false);
|
|
|
|
void addMemberSubscriptComponent(SILGenFunction &SGF, SILLocation loc,
|
|
SubscriptDecl *subscript,
|
|
SubstitutionMap subs,
|
|
LValueOptions options,
|
|
bool isSuper,
|
|
SGFAccessKind accessKind,
|
|
AccessStrategy accessStrategy,
|
|
CanType formalRValueType,
|
|
PreparedArguments &&indices,
|
|
Expr *indexExprForDiagnostics,
|
|
bool isOnSelfParameter = false);
|
|
|
|
/// Add a subst-to-orig reabstraction component. That is, given
|
|
/// that this l-value trafficks in values following the substituted
|
|
/// abstraction pattern, make an l-value trafficking in values
|
|
/// following the original abstraction pattern.
|
|
void addSubstToOrigComponent(AbstractionPattern origType,
|
|
SILType loweredResultType);
|
|
|
|
/// Add an orig-to-subst reabstraction component. That is, given
|
|
/// that this l-value trafficks in values following the original
|
|
/// abstraction pattern, make an l-value trafficking in values
|
|
/// following the substituted abstraction pattern.
|
|
void addOrigToSubstComponent(SILType loweredResultType);
|
|
|
|
typedef std::vector<std::unique_ptr<PathComponent>>::iterator iterator;
|
|
typedef std::vector<std::unique_ptr<PathComponent>>::const_iterator
|
|
const_iterator;
|
|
|
|
iterator begin() { return Path.begin(); }
|
|
iterator end() { return Path.end(); }
|
|
const_iterator begin() const { return Path.begin(); }
|
|
const_iterator end() const { return Path.end(); }
|
|
|
|
const LValueTypeData &getTypeData() const {
|
|
return Path.back()->getTypeData();
|
|
}
|
|
|
|
/// Return the access kind that this l-value was emitted for.
|
|
SGFAccessKind getAccessKind() const { return getTypeData().getAccessKind(); }
|
|
|
|
/// Returns the type-of-rvalue of the logical object referenced by
|
|
/// this l-value. Note that this may differ significantly from the
|
|
/// type of l-value.
|
|
SILType getTypeOfRValue() const {
|
|
return SILType::getPrimitiveObjectType(getTypeData().TypeOfRValue);
|
|
}
|
|
CanType getSubstFormalType() const { return getTypeData().SubstFormalType; }
|
|
AbstractionPattern getOrigFormalType() const {
|
|
return getTypeData().OrigFormalType;
|
|
}
|
|
|
|
/// Returns true when the other access definitely does not begin a formal
|
|
/// access that would conflict with this the accesses begun by this
|
|
/// LValue. This is a best-effort attempt; it may return false in cases
|
|
/// where the two LValues do not conflict.
|
|
bool isObviouslyNonConflicting(const LValue &other,
|
|
SGFAccessKind selfAccess,
|
|
SGFAccessKind otherAccess);
|
|
|
|
void dump() const;
|
|
void dump(raw_ostream &os, unsigned indent = 0) const;
|
|
};
|
|
|
|
/// RAII object used to enter an inout conversion scope. Writeback scopes formed
|
|
/// during the inout conversion scope will be no-ops.
|
|
class InOutConversionScope {
|
|
SILGenFunction &SGF;
|
|
public:
|
|
InOutConversionScope(SILGenFunction &SGF);
|
|
~InOutConversionScope();
|
|
};
|
|
|
|
// FIXME: Misnomer. This class is used for both shared (read) and exclusive
|
|
// (modify) formal borrows.
|
|
struct LLVM_LIBRARY_VISIBILITY ExclusiveBorrowFormalAccess : FormalAccess {
|
|
std::unique_ptr<LogicalPathComponent> component;
|
|
ManagedValue base;
|
|
MaterializedLValue materialized;
|
|
|
|
~ExclusiveBorrowFormalAccess() {}
|
|
ExclusiveBorrowFormalAccess(ExclusiveBorrowFormalAccess &&) = default;
|
|
ExclusiveBorrowFormalAccess &
|
|
operator=(ExclusiveBorrowFormalAccess &&) = default;
|
|
|
|
ExclusiveBorrowFormalAccess(SILLocation loc,
|
|
std::unique_ptr<LogicalPathComponent> &&comp,
|
|
ManagedValue base,
|
|
MaterializedLValue materialized,
|
|
CleanupHandle cleanup)
|
|
: FormalAccess(sizeof(*this), FormalAccess::Exclusive, loc, cleanup),
|
|
component(std::move(comp)), base(base), materialized(materialized) {}
|
|
|
|
void diagnoseConflict(const ExclusiveBorrowFormalAccess &rhs,
|
|
SILGenFunction &SGF) const;
|
|
|
|
void performWriteback(SILGenFunction &SGF, bool isFinal) {
|
|
Scope S(SGF.Cleanups, CleanupLocation::get(loc));
|
|
component->writeback(SGF, loc, base, materialized, isFinal);
|
|
}
|
|
|
|
void finishImpl(SILGenFunction &SGF) override {
|
|
performWriteback(SGF, /*isFinal*/ true);
|
|
component.reset();
|
|
}
|
|
};
|
|
|
|
struct LLVM_LIBRARY_VISIBILITY UnenforcedAccess {
|
|
// Make sure someone called `endAccess` before destroying this.
|
|
struct DeleterCheck {
|
|
void operator()(BeginAccessInst *) {
|
|
llvm_unreachable("access scope must be ended");
|
|
}
|
|
};
|
|
typedef std::unique_ptr<BeginAccessInst, DeleterCheck> BeginAccessPtr;
|
|
BeginAccessPtr beginAccessPtr;
|
|
|
|
UnenforcedAccess() = default;
|
|
UnenforcedAccess(const UnenforcedAccess &other) = delete;
|
|
UnenforcedAccess(UnenforcedAccess &&other) = default;
|
|
|
|
UnenforcedAccess &operator=(const UnenforcedAccess &) = delete;
|
|
UnenforcedAccess &operator=(UnenforcedAccess &&other) = default;
|
|
|
|
// Return the a new begin_access if it was required, otherwise return the
|
|
// given `address`.
|
|
SILValue beginAccess(SILGenFunction &SGF, SILLocation loc, SILValue address,
|
|
SILAccessKind kind);
|
|
|
|
// End the access and release beginAccessPtr.
|
|
void endAccess(SILGenFunction &SGF);
|
|
|
|
// Emit the end_access (on a branch) without marking this access as ended.
|
|
void emitEndAccess(SILGenFunction &SGF);
|
|
};
|
|
|
|
/// Pseudo-formal access that emits access markers but does not actually
|
|
/// require enforcement. It may be used for access to formal memory that is
|
|
/// exempt from exclusivity checking, such as initialization, or it may be used
|
|
/// for accesses to local memory that are indistinguishable from formal access
|
|
/// at the SIL level. Adding the access markers in these cases gives SIL address
|
|
/// users a structural property that allows for exhaustive verification.
|
|
struct LLVM_LIBRARY_VISIBILITY UnenforcedFormalAccess : FormalAccess {
|
|
|
|
static SILValue enter(SILGenFunction &SGF, SILLocation loc, SILValue address,
|
|
SILAccessKind kind);
|
|
|
|
// access.beginAccessPtr is either the begin_access or null if no access was
|
|
// required.
|
|
UnenforcedAccess access;
|
|
|
|
UnenforcedFormalAccess(SILLocation loc, UnenforcedAccess &&access,
|
|
CleanupHandle cleanup)
|
|
: FormalAccess(sizeof(*this), FormalAccess::Unenforced, loc, cleanup),
|
|
access(std::move(access)) {}
|
|
|
|
// Emit the end_access (on a branch) without marking this access as ended.
|
|
void emitEndAccess(SILGenFunction &SGF);
|
|
|
|
// Only called at the end formal evaluation scope. End this access.
|
|
void finishImpl(SILGenFunction &SGF) override;
|
|
};
|
|
|
|
} // namespace Lowering
|
|
} // namespace swift
|
|
|
|
#endif
|