Files
swift-mirror/lib/Sema/CSFix.h
Hamish Knight d69a42d656 [CS] Preserve compatibility for collection coercions
Previously we could allow some invalid coercions to
sneak past Sema. In most cases these would either
cause crashes later down the pipeline or
miscompiles. However, for coercions between
collections, we emitted somewhat reasonable code
that performed a force cast.

This commit aims to preserve compatibility with
those collection coercions that previously
compiled, and emits a warning telling the user to
use either 'as?' or 'as!' instead.
2020-04-10 10:16:07 -07:00

1794 lines
64 KiB
C++

//===--- CSFix.h - Constraint Fixes ---------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file provides necessary abstractions for constraint fixes.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SEMA_CSFIX_H
#define SWIFT_SEMA_CSFIX_H
#include "swift/AST/Decl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Identifier.h"
#include "swift/AST/Type.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Debug.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/TrailingObjects.h"
#include <string>
namespace llvm {
class raw_ostream;
}
namespace swift {
class SourceManager;
namespace constraints {
class OverloadChoice;
class ConstraintSystem;
class ConstraintLocator;
class ConstraintLocatorBuilder;
enum class ConversionRestrictionKind;
class Solution;
/// Describes the kind of fix to apply to the given constraint before
/// visiting it.
///
/// Note: values 0 and 1 are reserved for empty and tombstone kinds.
enum class FixKind : uint8_t {
/// Introduce a '!' to force an optional unwrap.
ForceOptional = 2,
/// Unwrap an optional base when we have a member access.
UnwrapOptionalBase,
UnwrapOptionalBaseWithOptionalResult,
/// Append 'as! T' to force a downcast to the specified type.
ForceDowncast,
/// Introduce a '&' to take the address of an lvalue.
AddressOf,
/// Remove extraneous use of `&`.
RemoveAddressOf,
/// Replace a coercion ('as') with a forced checked cast ('as!').
CoerceToCheckedCast,
/// Mark function type as explicitly '@escaping'.
ExplicitlyEscaping,
/// Arguments have labeling failures - missing/extraneous or incorrect
/// labels attached to the, fix it by suggesting proper labels.
RelabelArguments,
/// Treat rvalue as lvalue
TreatRValueAsLValue,
/// Add a new conformance to the type to satisfy a requirement.
AddConformance,
/// Skip same-type generic requirement constraint,
/// and assume that types are equal.
SkipSameTypeRequirement,
/// Skip superclass generic requirement constraint,
/// and assume that types are related.
SkipSuperclassRequirement,
/// Fix up one of the sides of conversion to make it seem
/// like the types are aligned.
ContextualMismatch,
/// Fix up the generic arguments of two types so they match each other.
GenericArgumentsMismatch,
/// Fix up @autoclosure argument to the @autoclosure parameter,
/// to for a call to be able to foward it properly, since
/// @autoclosure conversions are unsupported starting from
/// Swift version 5.
AutoClosureForwarding,
/// Remove `!` or `?` because base is not an optional type.
RemoveUnwrap,
/// Add explicit `()` at the end of function or member to call it.
InsertCall,
/// Add '$' or '_' to refer to the property wrapper or storage instead
/// of the wrapped property type.
UsePropertyWrapper,
/// Remove '$' or '_' to refer to the wrapped property type instead of
/// the storage or property wrapper.
UseWrappedValue,
/// Instead of spelling out `subscript` directly, use subscript operator.
UseSubscriptOperator,
/// Requested name is not associated with a give base type,
/// fix this issue by pretending that member exists and matches
/// given arguments/result types exactly.
DefineMemberBasedOnUse,
/// Allow access to type member on instance or instance member on type
AllowTypeOrInstanceMember,
/// Allow expressions where 'mutating' method is only partially applied,
/// which means either not applied at all e.g. `Foo.bar` or only `Self`
/// is applied e.g. `foo.bar` or `Foo.bar(&foo)`.
///
/// Allow expressions where initializer call (either `self.init` or
/// `super.init`) is only partially applied.
AllowInvalidPartialApplication,
/// Non-required constructors may not be not inherited. Therefore when
/// constructing a class object, either the metatype must be statically
/// derived (rather than an arbitrary value of metatype type) or the
/// referenced constructor must be required.
AllowInvalidInitRef,
/// Allow a tuple to be destructured with mismatched arity, or mismatched
/// types.
AllowTupleTypeMismatch,
/// Allow a function type to be destructured with mismatched parameter types
/// or return type.
AllowFunctionTypeMismatch,
/// Allow an invalid member access on a value of protocol type as if
/// that protocol type were a generic constraint requiring conformance
/// to that protocol.
AllowMemberRefOnExistential,
/// If there are fewer arguments than parameters, let's fix that up
/// by adding new arguments to the list represented as type variables.
AddMissingArguments,
/// If there are more arguments than parameters, let's fix that up
/// by removing extraneous arguments.
RemoveExtraneousArguments,
/// Allow single tuple closure parameter destructuring into N arguments.
AllowClosureParameterDestructuring,
/// If there is out-of-order argument, let's fix that by re-ordering.
MoveOutOfOrderArgument,
/// If there is a matching inaccessible member - allow it as if there
/// no access control.
AllowInaccessibleMember,
/// Allow KeyPaths to use AnyObject as root type
AllowAnyObjectKeyPathRoot,
/// Using subscript references in the keypath requires that each
/// of the index arguments to be Hashable.
TreatKeyPathSubscriptIndexAsHashable,
/// Allow an invalid reference to a member declaration as part
/// of a key path component.
AllowInvalidRefInKeyPath,
/// Remove `return` or default last expression of single expression
/// function to `Void` to conform to expected result type.
RemoveReturn,
/// Default ambiguous generic arguments to \c Any
DefaultGenericArgument,
/// Skip any unhandled constructs that occur within a closure argument that
/// matches up with a
/// parameter that has a function builder.
SkipUnhandledConstructInFunctionBuilder,
/// Allow invalid reference to a member declared as `mutating`
/// when base is an r-value type.
AllowMutatingMemberOnRValueBase,
/// Allow a single tuple parameter to be matched with N arguments
/// by forming all of the given arguments into a single tuple.
AllowTupleSplatForSingleParameter,
/// Allow a single argument type mismatch. This is the most generic
/// failure related to argument-to-parameter conversions.
AllowArgumentTypeMismatch,
/// Explicitly construct type conforming to `RawRepresentable` protocol
/// via forming `Foo(rawValue:)` instead of using its `RawValue` directly.
ExplicitlyConstructRawRepresentable,
/// Use raw value type associated with raw representative accessible
/// using `.rawValue` member.
UseValueTypeOfRawRepresentative,
/// If an array was passed to a variadic argument, give a specific diagnostic
/// and offer to drop the brackets if it's a literal.
ExpandArrayIntoVarargs,
/// Remove extraneous call to something which can't be invoked e.g.
/// a variable, a property etc.
RemoveCall,
AllowInvalidUseOfTrailingClosure,
/// Allow an ephemeral argument conversion for a parameter marked as being
/// non-ephemeral.
TreatEphemeralAsNonEphemeral,
/// Base type in reference to the contextual member e.g. `.foo` couldn't be
/// inferred and has to be specified explicitly.
SpecifyBaseTypeForContextualMember,
/// Closure return type has to be explicitly specified because it can't be
/// inferred in current context e.g. because it's a multi-statement closure.
SpecifyClosureReturnType,
/// Object literal type coudn't be inferred because the module where
/// the default type that implements the associated literal protocol
/// is declared was not imported.
SpecifyObjectLiteralTypeImport,
/// Allow any type (and not just class or class-constrained type) to
/// be convertible to AnyObject.
AllowNonClassTypeToConvertToAnyObject,
/// Member shadows a top-level name, such a name could only be accessed by
/// prefixing it with a module name.
AddQualifierToAccessTopLevelName,
/// A warning fix that allows a coercion to perform a force-cast.
AllowCoercionToForceCast,
};
class ConstraintFix {
ConstraintSystem &CS;
FixKind Kind;
ConstraintLocator *Locator;
/// Determines whether this fix is simplify a warning which doesn't
/// require immediate source changes.
bool IsWarning;
public:
ConstraintFix(ConstraintSystem &cs, FixKind kind, ConstraintLocator *locator,
bool warning = false)
: CS(cs), Kind(kind), Locator(locator), IsWarning(warning) {}
virtual ~ConstraintFix();
template <typename Fix>
const Fix *getAs() const {
return Fix::classof(this) ? static_cast<const Fix *>(this) : nullptr;
}
FixKind getKind() const { return Kind; }
bool isWarning() const { return IsWarning; }
virtual std::string getName() const = 0;
/// Coalesce this fix with the given secondary fixes and diagnose the failure.
///
/// The default implementation ignores \c secondaryFixes and calls
/// \c diagnose.
virtual bool coalesceAndDiagnose(const Solution &solution,
ArrayRef<ConstraintFix *> secondaryFixes,
bool asNote = false) const {
return diagnose(solution, asNote);
}
/// Diagnose a failure associated with this fix.
virtual bool diagnose(const Solution &solution,
bool asNote = false) const = 0;
using CommonFixesArray =
ArrayRef<std::pair<const Solution *, const ConstraintFix *>>;
virtual bool diagnoseForAmbiguity(CommonFixesArray commonFixes) const {
return false;
}
void print(llvm::raw_ostream &Out) const;
SWIFT_DEBUG_DUMP;
/// Retrieve anchor expression associated with this fix.
/// NOTE: such anchor comes directly from locator without
/// any simplication attempts.
Expr *getAnchor() const;
ConstraintLocator *getLocator() const { return Locator; }
protected:
ConstraintSystem &getConstraintSystem() const { return CS; }
};
/// Unwrap an optional base when we have a member access.
class UnwrapOptionalBase final : public ConstraintFix {
DeclNameRef MemberName;
UnwrapOptionalBase(ConstraintSystem &cs, FixKind kind, DeclNameRef member,
ConstraintLocator *locator)
: ConstraintFix(cs, kind, locator), MemberName(member) {
assert(kind == FixKind::UnwrapOptionalBase ||
kind == FixKind::UnwrapOptionalBaseWithOptionalResult);
}
public:
std::string getName() const override {
return "unwrap optional base of member lookup";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static UnwrapOptionalBase *create(ConstraintSystem &cs, DeclNameRef member,
ConstraintLocator *locator);
static UnwrapOptionalBase *
createWithOptionalResult(ConstraintSystem &cs, DeclNameRef member,
ConstraintLocator *locator);
};
// Treat rvalue as if it was an lvalue
class TreatRValueAsLValue final : public ConstraintFix {
TreatRValueAsLValue(ConstraintSystem &cs, ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::TreatRValueAsLValue, locator) {}
public:
std::string getName() const override { return "treat rvalue as lvalue"; }
bool diagnose(const Solution &solution, bool asNote = false) const override;
static TreatRValueAsLValue *create(ConstraintSystem &cs,
ConstraintLocator *locator);
};
/// Arguments have labeling failures - missing/extraneous or incorrect
/// labels attached to the, fix it by suggesting proper labels.
class RelabelArguments final
: public ConstraintFix,
private llvm::TrailingObjects<RelabelArguments, Identifier> {
friend TrailingObjects;
unsigned NumLabels;
RelabelArguments(ConstraintSystem &cs,
llvm::ArrayRef<Identifier> correctLabels,
ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::RelabelArguments, locator),
NumLabels(correctLabels.size()) {
std::uninitialized_copy(correctLabels.begin(), correctLabels.end(),
getLabelsBuffer().begin());
}
public:
std::string getName() const override { return "re-label argument(s)"; }
ArrayRef<Identifier> getLabels() const {
return {getTrailingObjects<Identifier>(), NumLabels};
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static RelabelArguments *create(ConstraintSystem &cs,
llvm::ArrayRef<Identifier> correctLabels,
ConstraintLocator *locator);
private:
MutableArrayRef<Identifier> getLabelsBuffer() {
return {getTrailingObjects<Identifier>(), NumLabels};
}
};
/// Add a new conformance to the type to satisfy a requirement.
class MissingConformance final : public ConstraintFix {
// Determines whether given protocol type comes from the context e.g.
// assignment destination or argument comparison.
bool IsContextual;
Type NonConformingType;
// This could either be a protocol or protocol composition.
Type ProtocolType;
MissingConformance(ConstraintSystem &cs, bool isContextual, Type type,
Type protocolType, ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::AddConformance, locator),
IsContextual(isContextual), NonConformingType(type),
ProtocolType(protocolType) {}
public:
std::string getName() const override {
return "add missing protocol conformance";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static MissingConformance *forRequirement(ConstraintSystem &cs, Type type,
Type protocolType,
ConstraintLocator *locator);
static MissingConformance *forContextual(ConstraintSystem &cs, Type type,
Type protocolType,
ConstraintLocator *locator);
Type getNonConformingType() { return NonConformingType; }
Type getProtocolType() { return ProtocolType; }
};
/// Skip same-type generic requirement constraint,
/// and assume that types are equal.
class SkipSameTypeRequirement final : public ConstraintFix {
Type LHS, RHS;
SkipSameTypeRequirement(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::SkipSameTypeRequirement, locator), LHS(lhs),
RHS(rhs) {}
public:
std::string getName() const override {
return "skip same-type generic requirement";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
Type lhsType() { return LHS; }
Type rhsType() { return RHS; }
static SkipSameTypeRequirement *create(ConstraintSystem &cs, Type lhs,
Type rhs, ConstraintLocator *locator);
};
/// Skip 'superclass' generic requirement constraint,
/// and assume that types are equal.
class SkipSuperclassRequirement final : public ConstraintFix {
Type LHS, RHS;
SkipSuperclassRequirement(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::SkipSuperclassRequirement, locator),
LHS(lhs), RHS(rhs) {}
public:
std::string getName() const override {
return "skip superclass generic requirement";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
Type subclassType() { return LHS; }
Type superclassType() { return RHS; }
static SkipSuperclassRequirement *
create(ConstraintSystem &cs, Type lhs, Type rhs, ConstraintLocator *locator);
};
/// For example: Sometimes type returned from the body of the
/// closure doesn't match expected contextual type:
///
/// func foo(_: () -> Int) {}
/// foo { "ultimate question" }
///
/// Body of the closure produces `String` type when `Int` is expected
/// by the context.
class ContextualMismatch : public ConstraintFix {
Type LHS, RHS;
protected:
ContextualMismatch(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::ContextualMismatch, locator), LHS(lhs),
RHS(rhs) {}
ContextualMismatch(ConstraintSystem &cs, FixKind kind, Type lhs, Type rhs,
ConstraintLocator *locator, bool warning = false)
: ConstraintFix(cs, kind, locator, warning), LHS(lhs), RHS(rhs) {}
public:
std::string getName() const override { return "fix contextual mismatch"; }
Type getFromType() const { return LHS; }
Type getToType() const { return RHS; }
bool diagnose(const Solution &solution, bool asNote = false) const override;
static ContextualMismatch *create(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator);
};
/// Mark function type as explicitly '@escaping'.
class MarkExplicitlyEscaping final : public ContextualMismatch {
MarkExplicitlyEscaping(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator)
: ContextualMismatch(cs, FixKind::ExplicitlyEscaping, lhs, rhs, locator) {
}
public:
std::string getName() const override { return "add @escaping"; }
bool diagnose(const Solution &solution, bool asNote = false) const override;
static MarkExplicitlyEscaping *create(ConstraintSystem &cs, Type lhs,
Type rhs, ConstraintLocator *locator);
};
/// Introduce a '!' to force an optional unwrap.
class ForceOptional final : public ContextualMismatch {
ForceOptional(ConstraintSystem &cs, Type fromType, Type toType,
ConstraintLocator *locator)
: ContextualMismatch(cs, FixKind::ForceOptional, fromType, toType,
locator) {
assert(fromType && "Base type must not be null");
assert(fromType->getOptionalObjectType() &&
"Unwrapped type must not be null");
}
public:
std::string getName() const override { return "force optional"; }
bool diagnose(const Solution &solution, bool asNote = false) const override;
static ForceOptional *create(ConstraintSystem &cs, Type fromType, Type toType,
ConstraintLocator *locator);
};
/// This is a contextual mismatch between throwing and non-throwing
/// function types, repair it by dropping `throws` attribute.
class DropThrowsAttribute final : public ContextualMismatch {
DropThrowsAttribute(ConstraintSystem &cs, FunctionType *fromType,
FunctionType *toType, ConstraintLocator *locator)
: ContextualMismatch(cs, fromType, toType, locator) {
assert(fromType->throws() != toType->throws());
}
public:
std::string getName() const override { return "drop 'throws' attribute"; }
bool diagnose(const Solution &solution, bool asNote = false) const override;
static DropThrowsAttribute *create(ConstraintSystem &cs,
FunctionType *fromType,
FunctionType *toType,
ConstraintLocator *locator);
};
/// Append 'as! T' to force a downcast to the specified type.
class ForceDowncast final : public ContextualMismatch {
ForceDowncast(ConstraintSystem &cs, Type fromType, Type toType,
ConstraintLocator *locator)
: ContextualMismatch(cs, FixKind::ForceDowncast, fromType, toType,
locator) {}
public:
std::string getName() const override;
bool diagnose(const Solution &solution, bool asNote = false) const override;
static ForceDowncast *create(ConstraintSystem &cs, Type fromType, Type toType,
ConstraintLocator *locator);
};
/// Introduce a '&' to take the address of an lvalue.
class AddAddressOf final : public ContextualMismatch {
AddAddressOf(ConstraintSystem &cs, Type argTy, Type paramTy,
ConstraintLocator *locator)
: ContextualMismatch(cs, FixKind::AddressOf, argTy, paramTy, locator) {}
public:
std::string getName() const override { return "add address-of"; }
bool diagnose(const Solution &solution, bool asNote = false) const override;
static AddAddressOf *create(ConstraintSystem &cs, Type argTy, Type paramTy,
ConstraintLocator *locator);
};
class RemoveAddressOf final : public ContextualMismatch {
RemoveAddressOf(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator)
: ContextualMismatch(cs, FixKind::RemoveAddressOf, lhs, rhs, locator) {}
public:
std::string getName() const override {
return "remove extraneous use of `&`";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static RemoveAddressOf *create(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator);
};
/// Detect situations where two type's generic arguments must
/// match but are not convertible e.g.
///
/// ```swift
/// struct F<G> {}
/// let _:F<Int> = F<Bool>()
/// ```
class GenericArgumentsMismatch final
: public ContextualMismatch,
private llvm::TrailingObjects<GenericArgumentsMismatch, unsigned> {
friend TrailingObjects;
unsigned NumMismatches;
protected:
GenericArgumentsMismatch(ConstraintSystem &cs, Type actual, Type required,
llvm::ArrayRef<unsigned> mismatches,
ConstraintLocator *locator)
: ContextualMismatch(cs, FixKind::GenericArgumentsMismatch, actual,
required, locator),
NumMismatches(mismatches.size()) {
assert(actual->is<BoundGenericType>());
assert(required->is<BoundGenericType>());
std::uninitialized_copy(mismatches.begin(), mismatches.end(),
getMismatchesBuf().begin());
}
public:
std::string getName() const override {
return "fix generic argument mismatch";
}
ArrayRef<unsigned> getMismatches() const {
return {getTrailingObjects<unsigned>(), NumMismatches};
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static GenericArgumentsMismatch *create(ConstraintSystem &cs, Type actual,
Type required,
llvm::ArrayRef<unsigned> mismatches,
ConstraintLocator *locator);
private:
MutableArrayRef<unsigned> getMismatchesBuf() {
return {getTrailingObjects<unsigned>(), NumMismatches};
}
};
/// Detect situations where key path doesn't have capability required
/// by the context e.g. read-only vs. writable, or either root or value
/// types are incorrect e.g.
///
/// ```swift
/// struct S { let foo: Int }
/// let _: WritableKeyPath<S, Int> = \.foo
/// ```
///
/// Here context requires a writable key path but `foo` property is
/// read-only.
class KeyPathContextualMismatch final : public ContextualMismatch {
KeyPathContextualMismatch(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator)
: ContextualMismatch(cs, lhs, rhs, locator) {}
public:
std::string getName() const override {
return "fix key path contextual mismatch";
}
static KeyPathContextualMismatch *
create(ConstraintSystem &cs, Type lhs, Type rhs, ConstraintLocator *locator);
};
/// Detect situations when argument of the @autoclosure parameter is itself
/// marked as @autoclosure and is not applied. Form a fix which suggests a
/// proper way to forward such arguments, e.g.:
///
/// ```swift
/// func foo(_ fn: @autoclosure () -> Int) {}
/// func bar(_ fn: @autoclosure () -> Int) {
/// foo(fn) // error - fn should be called
/// }
/// ```
class AutoClosureForwarding final : public ConstraintFix {
AutoClosureForwarding(ConstraintSystem &cs, ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::AutoClosureForwarding, locator) {}
public:
std::string getName() const override { return "fix @autoclosure forwarding"; }
bool diagnose(const Solution &solution, bool asNote = false) const override;
static AutoClosureForwarding *create(ConstraintSystem &cs,
ConstraintLocator *locator);
};
/// Allow invalid pointer conversions for autoclosure result types as if the
/// pointer type is a function parameter rather than an autoclosure result.
class AllowAutoClosurePointerConversion final : public ContextualMismatch {
AllowAutoClosurePointerConversion(ConstraintSystem &cs, Type pointeeType,
Type pointerType, ConstraintLocator *locator)
: ContextualMismatch(cs, pointeeType, pointerType, locator) {}
public:
std::string getName() const override {
return "allow pointer conversion for autoclosure result type";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static AllowAutoClosurePointerConversion *create(ConstraintSystem &cs,
Type pointeeType,
Type pointerType,
ConstraintLocator *locator);
};
class RemoveUnwrap final : public ConstraintFix {
Type BaseType;
RemoveUnwrap(ConstraintSystem &cs, Type baseType, ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::RemoveUnwrap, locator), BaseType(baseType) {}
public:
std::string getName() const override {
return "remove unwrap operator `!` or `?`";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static RemoveUnwrap *create(ConstraintSystem &cs, Type baseType,
ConstraintLocator *locator);
};
class InsertExplicitCall final : public ConstraintFix {
InsertExplicitCall(ConstraintSystem &cs, ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::InsertCall, locator) {}
public:
std::string getName() const override {
return "insert explicit `()` to make a call";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static InsertExplicitCall *create(ConstraintSystem &cs,
ConstraintLocator *locator);
};
class UsePropertyWrapper final : public ConstraintFix {
VarDecl *Wrapped;
bool UsingStorageWrapper;
Type Base;
Type Wrapper;
UsePropertyWrapper(ConstraintSystem &cs, VarDecl *wrapped,
bool usingStorageWrapper, Type base, Type wrapper,
ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::UsePropertyWrapper, locator),
Wrapped(wrapped), UsingStorageWrapper(usingStorageWrapper), Base(base),
Wrapper(wrapper) {}
public:
std::string getName() const override {
return "insert '$' or '_' to use property wrapper type instead of wrapped type";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static UsePropertyWrapper *create(ConstraintSystem &cs, VarDecl *wrapped,
bool usingStorageWrapper, Type base,
Type wrapper, ConstraintLocator *locator);
};
class UseWrappedValue final : public ConstraintFix {
VarDecl *PropertyWrapper;
Type Base;
Type Wrapper;
UseWrappedValue(ConstraintSystem &cs, VarDecl *propertyWrapper, Type base,
Type wrapper, ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::UseWrappedValue, locator),
PropertyWrapper(propertyWrapper), Base(base), Wrapper(wrapper) {}
bool usingStorageWrapper() const {
auto nameStr = PropertyWrapper->getName().str();
return !nameStr.startswith("_");
}
public:
std::string getName() const override {
return "remove '$' or _ to use wrapped type instead of wrapper type";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static UseWrappedValue *create(ConstraintSystem &cs, VarDecl *propertyWrapper,
Type base, Type wrapper,
ConstraintLocator *locator);
};
class UseSubscriptOperator final : public ConstraintFix {
UseSubscriptOperator(ConstraintSystem &cs, ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::UseSubscriptOperator, locator) {}
public:
std::string getName() const override {
return "replace '.subscript(...)' with subscript operator";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static UseSubscriptOperator *create(ConstraintSystem &cs,
ConstraintLocator *locator);
};
class DefineMemberBasedOnUse final : public ConstraintFix {
Type BaseType;
DeclNameRef Name;
/// Whether or not the member error is already diagnosed. This can happen
/// when referencing an erroneous member, and the error is diagnosed at the
/// member declaration.
///
/// We still want to define erroneous members based on use in order to find
/// a solution through the new diagnostic infrastructure, but we don't
/// want to report a second error message.
bool AlreadyDiagnosed;
DefineMemberBasedOnUse(ConstraintSystem &cs, Type baseType, DeclNameRef member,
bool alreadyDiagnosed, ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::DefineMemberBasedOnUse, locator),
BaseType(baseType), Name(member), AlreadyDiagnosed(alreadyDiagnosed) {}
public:
std::string getName() const override {
llvm::SmallVector<char, 16> scratch;
auto memberName = Name.getString(scratch);
return "define missing member named '" + memberName.str() +
"' based on its use";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
bool diagnoseForAmbiguity(CommonFixesArray commonFixes) const override;
static DefineMemberBasedOnUse *create(ConstraintSystem &cs, Type baseType,
DeclNameRef member, bool alreadyDiagnosed,
ConstraintLocator *locator);
static bool classof(const ConstraintFix *fix) {
return fix->getKind() == FixKind::DefineMemberBasedOnUse;
}
};
class AllowInvalidMemberRef : public ConstraintFix {
Type BaseType;
ValueDecl *Member;
DeclNameRef Name;
protected:
AllowInvalidMemberRef(ConstraintSystem &cs, FixKind kind, Type baseType,
ValueDecl *member, DeclNameRef name,
ConstraintLocator *locator)
: ConstraintFix(cs, kind, locator), BaseType(baseType), Member(member),
Name(name) {}
public:
Type getBaseType() const { return BaseType; }
ValueDecl *getMember() const { return Member; }
DeclNameRef getMemberName() const { return Name; }
};
class AllowMemberRefOnExistential final : public AllowInvalidMemberRef {
AllowMemberRefOnExistential(ConstraintSystem &cs, Type baseType,
DeclNameRef memberName, ValueDecl *member,
ConstraintLocator *locator)
: AllowInvalidMemberRef(cs, FixKind::AllowMemberRefOnExistential,
baseType, member, memberName, locator) {}
public:
std::string getName() const override {
llvm::SmallVector<char, 16> scratch;
auto memberName = getMemberName().getString(scratch);
return "allow access to invalid member '" + memberName.str() +
"' on value of protocol type";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static AllowMemberRefOnExistential *create(ConstraintSystem &cs,
Type baseType, ValueDecl *member,
DeclNameRef memberName,
ConstraintLocator *locator);
};
class AllowTypeOrInstanceMember final : public AllowInvalidMemberRef {
AllowTypeOrInstanceMember(ConstraintSystem &cs, Type baseType,
ValueDecl *member, DeclNameRef name,
ConstraintLocator *locator)
: AllowInvalidMemberRef(cs, FixKind::AllowTypeOrInstanceMember, baseType,
member, name, locator) {
assert(member);
}
public:
std::string getName() const override {
return "allow access to instance member on type or a type member on instance";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static AllowTypeOrInstanceMember *create(ConstraintSystem &cs, Type baseType,
ValueDecl *member, DeclNameRef usedName,
ConstraintLocator *locator);
};
class AllowInvalidPartialApplication final : public ConstraintFix {
AllowInvalidPartialApplication(bool isWarning, ConstraintSystem &cs,
ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::AllowInvalidPartialApplication, locator,
isWarning) {}
public:
std::string getName() const override {
return "allow partially applied 'mutating' method";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static AllowInvalidPartialApplication *create(bool isWarning,
ConstraintSystem &cs,
ConstraintLocator *locator);
};
class AllowInvalidInitRef final : public ConstraintFix {
enum class RefKind {
DynamicOnMetatype,
ProtocolMetatype,
NonConstMetatype,
} Kind;
Type BaseType;
const ConstructorDecl *Init;
bool IsStaticallyDerived;
SourceRange BaseRange;
AllowInvalidInitRef(ConstraintSystem &cs, RefKind kind, Type baseTy,
ConstructorDecl *init, bool isStaticallyDerived,
SourceRange baseRange, ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::AllowInvalidInitRef, locator), Kind(kind),
BaseType(baseTy), Init(init), IsStaticallyDerived(isStaticallyDerived),
BaseRange(baseRange) {}
public:
std::string getName() const override {
return "allow invalid initializer reference";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static AllowInvalidInitRef *
dynamicOnMetatype(ConstraintSystem &cs, Type baseTy, ConstructorDecl *init,
SourceRange baseRange, ConstraintLocator *locator);
static AllowInvalidInitRef *
onProtocolMetatype(ConstraintSystem &cs, Type baseTy, ConstructorDecl *init,
bool isStaticallyDerived, SourceRange baseRange,
ConstraintLocator *locator);
static AllowInvalidInitRef *onNonConstMetatype(ConstraintSystem &cs,
Type baseTy,
ConstructorDecl *init,
ConstraintLocator *locator);
private:
static AllowInvalidInitRef *create(RefKind kind, ConstraintSystem &cs,
Type baseTy, ConstructorDecl *init,
bool isStaticallyDerived,
SourceRange baseRange,
ConstraintLocator *locator);
};
class AllowTupleTypeMismatch final : public ContextualMismatch {
/// If this is an element mismatch, \c Index is the element index where the
/// type mismatch occurred. If this is an arity or label mismatch, \c Index
/// will be \c None.
Optional<unsigned> Index;
AllowTupleTypeMismatch(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator, Optional<unsigned> index)
: ContextualMismatch(cs, FixKind::AllowTupleTypeMismatch, lhs, rhs,
locator), Index(index) {}
public:
static AllowTupleTypeMismatch *create(ConstraintSystem &cs, Type lhs,
Type rhs, ConstraintLocator *locator,
Optional<unsigned> index = None);
static bool classof(const ConstraintFix *fix) {
return fix->getKind() == FixKind::AllowTupleTypeMismatch;
}
std::string getName() const override {
return "fix tuple mismatches in type and arity";
}
bool isElementMismatch() const {
return Index.hasValue();
}
bool coalesceAndDiagnose(const Solution &solution,
ArrayRef<ConstraintFix *> secondaryFixes,
bool asNote = false) const override;
bool diagnose(const Solution &solution, bool asNote = false) const override;
};
class AllowFunctionTypeMismatch final : public ContextualMismatch {
/// The index of the parameter where the type mismatch occurred.
unsigned ParamIndex;
AllowFunctionTypeMismatch(ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator, unsigned index)
: ContextualMismatch(cs, FixKind::AllowFunctionTypeMismatch, lhs, rhs,
locator), ParamIndex(index) {}
public:
static AllowFunctionTypeMismatch *create(ConstraintSystem &cs, Type lhs,
Type rhs, ConstraintLocator *locator,
unsigned index);
static bool classof(const ConstraintFix *fix) {
return fix->getKind() == FixKind::AllowFunctionTypeMismatch;
}
std::string getName() const override {
return "allow function type mismatch";
}
bool coalesceAndDiagnose(const Solution &solution,
ArrayRef<ConstraintFix *> secondaryFixes,
bool asNote = false) const override;
bool diagnose(const Solution &solution, bool asNote = false) const override;
};
class AllowMutatingMemberOnRValueBase final : public AllowInvalidMemberRef {
AllowMutatingMemberOnRValueBase(ConstraintSystem &cs, Type baseType,
ValueDecl *member, DeclNameRef name,
ConstraintLocator *locator)
: AllowInvalidMemberRef(cs, FixKind::AllowMutatingMemberOnRValueBase,
baseType, member, name, locator) {}
public:
std::string getName() const override {
return "allow `mutating` method on r-value base";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static AllowMutatingMemberOnRValueBase *
create(ConstraintSystem &cs, Type baseType, ValueDecl *member,
DeclNameRef name, ConstraintLocator *locator);
};
class AllowClosureParamDestructuring final : public ConstraintFix {
FunctionType *ContextualType;
AllowClosureParamDestructuring(ConstraintSystem &cs,
FunctionType *contextualType,
ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::AllowClosureParameterDestructuring, locator),
ContextualType(contextualType) {}
public:
std::string getName() const override {
return "allow closure parameter destructuring";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static AllowClosureParamDestructuring *create(ConstraintSystem &cs,
FunctionType *contextualType,
ConstraintLocator *locator);
};
class AddMissingArguments final
: public ConstraintFix,
private llvm::TrailingObjects<
AddMissingArguments, std::pair<unsigned, AnyFunctionType::Param>> {
friend TrailingObjects;
using SynthesizedParam = std::pair<unsigned, AnyFunctionType::Param>;
unsigned NumSynthesized;
AddMissingArguments(ConstraintSystem &cs,
ArrayRef<SynthesizedParam> synthesizedArgs,
ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::AddMissingArguments, locator),
NumSynthesized(synthesizedArgs.size()) {
std::uninitialized_copy(synthesizedArgs.begin(), synthesizedArgs.end(),
getSynthesizedArgumentsBuf().begin());
}
public:
std::string getName() const override { return "synthesize missing argument(s)"; }
ArrayRef<SynthesizedParam> getSynthesizedArguments() const {
return {getTrailingObjects<SynthesizedParam>(), NumSynthesized};
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
bool diagnoseForAmbiguity(CommonFixesArray commonFixes) const override {
return diagnose(*commonFixes.front().first);
}
static AddMissingArguments *create(ConstraintSystem &cs,
ArrayRef<SynthesizedParam> synthesizedArgs,
ConstraintLocator *locator);
private:
MutableArrayRef<SynthesizedParam> getSynthesizedArgumentsBuf() {
return {getTrailingObjects<SynthesizedParam>(), NumSynthesized};
}
};
class RemoveExtraneousArguments final
: public ConstraintFix,
private llvm::TrailingObjects<
RemoveExtraneousArguments,
std::pair<unsigned, AnyFunctionType::Param>> {
friend TrailingObjects;
using IndexedParam = std::pair<unsigned, AnyFunctionType::Param>;
FunctionType *ContextualType;
unsigned NumExtraneous;
RemoveExtraneousArguments(ConstraintSystem &cs, FunctionType *contextualType,
llvm::ArrayRef<IndexedParam> extraArgs,
ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::RemoveExtraneousArguments, locator),
ContextualType(contextualType), NumExtraneous(extraArgs.size()) {
std::uninitialized_copy(extraArgs.begin(), extraArgs.end(),
getExtraArgumentsBuf().begin());
}
public:
std::string getName() const override { return "remove extraneous argument(s)"; }
ArrayRef<IndexedParam> getExtraArguments() const {
return {getTrailingObjects<IndexedParam>(), NumExtraneous};
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
bool diagnoseForAmbiguity(CommonFixesArray commonFixes) const override {
return diagnose(*commonFixes.front().first);
}
/// FIXME(diagnostics): Once `resolveDeclRefExpr` is gone this
/// logic would be obsolete.
///
/// Determine whether presence of extraneous arguments indicates
/// potential name shadowing problem with local `min`/`max` shadowing
/// global definitions with different number of arguments.
static bool isMinMaxNameShadowing(ConstraintSystem &cs,
ConstraintLocatorBuilder locator);
static RemoveExtraneousArguments *
create(ConstraintSystem &cs, FunctionType *contextualType,
llvm::ArrayRef<IndexedParam> extraArgs, ConstraintLocator *locator);
private:
MutableArrayRef<IndexedParam> getExtraArgumentsBuf() {
return {getTrailingObjects<IndexedParam>(), NumExtraneous};
}
};
class MoveOutOfOrderArgument final : public ConstraintFix {
using ParamBinding = SmallVector<unsigned, 1>;
unsigned ArgIdx;
unsigned PrevArgIdx;
SmallVector<ParamBinding, 4> Bindings;
MoveOutOfOrderArgument(ConstraintSystem &cs, unsigned argIdx,
unsigned prevArgIdx, ArrayRef<ParamBinding> bindings,
ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::MoveOutOfOrderArgument, locator),
ArgIdx(argIdx), PrevArgIdx(prevArgIdx),
Bindings(bindings.begin(), bindings.end()) {}
public:
std::string getName() const override {
return "move out-of-order argument to correct position";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static MoveOutOfOrderArgument *create(ConstraintSystem &cs,
unsigned argIdx,
unsigned prevArgIdx,
ArrayRef<ParamBinding> bindings,
ConstraintLocator *locator);
};
class AllowInaccessibleMember final : public AllowInvalidMemberRef {
AllowInaccessibleMember(ConstraintSystem &cs, Type baseType,
ValueDecl *member, DeclNameRef name,
ConstraintLocator *locator)
: AllowInvalidMemberRef(cs, FixKind::AllowInaccessibleMember, baseType,
member, name, locator) {}
public:
std::string getName() const override {
return "allow inaccessible member reference";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static AllowInaccessibleMember *create(ConstraintSystem &cs, Type baseType,
ValueDecl *member, DeclNameRef name,
ConstraintLocator *locator);
};
class AllowAnyObjectKeyPathRoot final : public ConstraintFix {
AllowAnyObjectKeyPathRoot(ConstraintSystem &cs, ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::AllowAnyObjectKeyPathRoot, locator) {}
public:
std::string getName() const override {
return "allow anyobject as root type for a keypath";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static AllowAnyObjectKeyPathRoot *create(ConstraintSystem &cs,
ConstraintLocator *locator);
};
class TreatKeyPathSubscriptIndexAsHashable final : public ConstraintFix {
Type NonConformingType;
TreatKeyPathSubscriptIndexAsHashable(ConstraintSystem &cs, Type type,
ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::TreatKeyPathSubscriptIndexAsHashable,
locator),
NonConformingType(type) {}
public:
std::string getName() const override {
return "treat keypath subscript index as conforming to Hashable";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static TreatKeyPathSubscriptIndexAsHashable *
create(ConstraintSystem &cs, Type type, ConstraintLocator *locator);
};
class AllowInvalidRefInKeyPath final : public ConstraintFix {
enum RefKind {
// Allow a reference to a static member as a key path component.
StaticMember,
// Allow a reference to a declaration with mutating getter as
// a key path component.
MutatingGetter,
// Allow a reference to a method (instance or static) as
// a key path component.
Method,
// Allow a reference to a initializer instance as a key path
// component.
Initializer,
} Kind;
ValueDecl *Member;
AllowInvalidRefInKeyPath(ConstraintSystem &cs, RefKind kind,
ValueDecl *member, ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::AllowInvalidRefInKeyPath, locator),
Kind(kind), Member(member) {}
public:
std::string getName() const override {
switch (Kind) {
case RefKind::StaticMember:
return "allow reference to a static member as a key path component";
case RefKind::MutatingGetter:
return "allow reference to a member with mutating getter as a key "
"path component";
case RefKind::Method:
return "allow reference to a method as a key path component";
case RefKind::Initializer:
return "allow reference to an init method as a key path component";
}
llvm_unreachable("covered switch");
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
/// Determine whether give reference requires a fix and produce one.
static AllowInvalidRefInKeyPath *
forRef(ConstraintSystem &cs, ValueDecl *member, ConstraintLocator *locator);
private:
static AllowInvalidRefInKeyPath *create(ConstraintSystem &cs, RefKind kind,
ValueDecl *member,
ConstraintLocator *locator);
};
class RemoveReturn final : public ConstraintFix {
RemoveReturn(ConstraintSystem &cs, ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::RemoveReturn, locator) {}
public:
std::string getName() const override { return "remove or omit return type"; }
bool diagnose(const Solution &solution, bool asNote = false) const override;
static RemoveReturn *create(ConstraintSystem &cs, ConstraintLocator *locator);
};
class CollectionElementContextualMismatch final : public ContextualMismatch {
CollectionElementContextualMismatch(ConstraintSystem &cs, Type srcType,
Type dstType, ConstraintLocator *locator)
: ContextualMismatch(cs, srcType, dstType, locator) {}
public:
std::string getName() const override {
return "fix collection element contextual mismatch";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static CollectionElementContextualMismatch *
create(ConstraintSystem &cs, Type srcType, Type dstType,
ConstraintLocator *locator);
};
class DefaultGenericArgument final : public ConstraintFix {
GenericTypeParamType *Param;
DefaultGenericArgument(ConstraintSystem &cs, GenericTypeParamType *param,
ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::DefaultGenericArgument, locator),
Param(param) {}
public:
static bool classof(const ConstraintFix *fix) {
return fix->getKind() == FixKind::DefaultGenericArgument;
}
std::string getName() const override {
auto paramName = Param->getString();
return "default generic argument '" + paramName + "' to 'Any'";
}
bool coalesceAndDiagnose(const Solution &solution,
ArrayRef<ConstraintFix *> secondaryFixes,
bool asNote = false) const override;
bool diagnose(const Solution &solution, bool asNote = false) const override;
bool diagnoseForAmbiguity(CommonFixesArray commonFixes) const override {
return diagnose(*commonFixes.front().first);
}
static DefaultGenericArgument *create(ConstraintSystem &cs,
GenericTypeParamType *param,
ConstraintLocator *locator);
};
class SkipUnhandledConstructInFunctionBuilder final : public ConstraintFix {
public:
using UnhandledNode = llvm::PointerUnion<Stmt *, Decl *>;
private:
UnhandledNode unhandled;
NominalTypeDecl *builder;
SkipUnhandledConstructInFunctionBuilder(ConstraintSystem &cs,
UnhandledNode unhandled,
NominalTypeDecl *builder,
ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::SkipUnhandledConstructInFunctionBuilder,
locator),
unhandled(unhandled), builder(builder) { }
public:
std::string getName() const override {
return "skip unhandled constructs when applying a function builder";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static SkipUnhandledConstructInFunctionBuilder *
create(ConstraintSystem &cs, UnhandledNode unhandledNode,
NominalTypeDecl *builder, ConstraintLocator *locator);
};
class AllowTupleSplatForSingleParameter final : public ConstraintFix {
using Param = AnyFunctionType::Param;
Type ParamType;
AllowTupleSplatForSingleParameter(ConstraintSystem &cs, Type paramTy,
ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::AllowTupleSplatForSingleParameter, locator),
ParamType(paramTy) {}
public:
std::string getName() const override {
return "allow single parameter tuple splat";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
/// Apply this fix to given arguments/parameters and return `true`
/// this fix is not applicable and solver can't continue, `false`
/// otherwise.
static bool attempt(ConstraintSystem &cs, SmallVectorImpl<Param> &args,
ArrayRef<Param> params,
SmallVectorImpl<SmallVector<unsigned, 1>> &bindings,
ConstraintLocatorBuilder locator);
};
class IgnoreContextualType : public ContextualMismatch {
IgnoreContextualType(ConstraintSystem &cs, Type resultTy, Type specifiedTy,
ConstraintLocator *locator)
: ContextualMismatch(cs, resultTy, specifiedTy, locator) {}
public:
std::string getName() const override {
return "ignore specified contextual type";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
bool diagnoseForAmbiguity(CommonFixesArray commonFixes) const override {
return diagnose(*commonFixes.front().first);
}
static IgnoreContextualType *create(ConstraintSystem &cs, Type resultTy,
Type specifiedTy,
ConstraintLocator *locator);
};
class IgnoreAssignmentDestinationType final : public ContextualMismatch {
IgnoreAssignmentDestinationType(ConstraintSystem &cs, Type sourceTy,
Type destTy, ConstraintLocator *locator)
: ContextualMismatch(cs, sourceTy, destTy, locator) {}
public:
std::string getName() const override {
return "ignore type of the assignment destination";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static IgnoreAssignmentDestinationType *create(ConstraintSystem &cs,
Type sourceTy, Type destTy,
ConstraintLocator *locator);
};
/// If this is an argument-to-parameter conversion which is associated with
/// `inout` parameter, subtyping is not permitted, types have to
/// be identical.
class AllowInOutConversion final : public ContextualMismatch {
AllowInOutConversion(ConstraintSystem &cs, Type argType, Type paramType,
ConstraintLocator *locator)
: ContextualMismatch(cs, argType, paramType, locator) {}
public:
std::string getName() const override {
return "allow conversions between argument/parameter marked as `inout`";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static AllowInOutConversion *create(ConstraintSystem &cs, Type argType,
Type paramType,
ConstraintLocator *locator);
};
class AllowArgumentMismatch : public ContextualMismatch {
protected:
AllowArgumentMismatch(ConstraintSystem &cs, Type argType, Type paramType,
ConstraintLocator *locator)
: AllowArgumentMismatch(cs, FixKind::AllowArgumentTypeMismatch, argType,
paramType, locator) {}
AllowArgumentMismatch(ConstraintSystem &cs, FixKind kind, Type argType,
Type paramType, ConstraintLocator *locator,
bool warning = false)
: ContextualMismatch(cs, kind, argType, paramType, locator, warning) {}
public:
std::string getName() const override {
return "allow argument to parameter type conversion mismatch";
}
unsigned getParamIdx() const;
bool diagnose(const Solution &solution, bool asNote = false) const override;
static AllowArgumentMismatch *create(ConstraintSystem &cs, Type argType,
Type paramType,
ConstraintLocator *locator);
static bool classof(const ConstraintFix *fix) {
return fix->getKind() == FixKind::AllowArgumentTypeMismatch;
}
};
class ExpandArrayIntoVarargs final : public AllowArgumentMismatch {
ExpandArrayIntoVarargs(ConstraintSystem &cs, Type argType, Type paramType,
ConstraintLocator *locator)
: AllowArgumentMismatch(cs, FixKind::ExpandArrayIntoVarargs, argType,
paramType, locator) {}
public:
std::string getName() const override {
return "cannot pass Array elements as variadic arguments";
}
bool diagnose(const Solution &solution, bool asNote = false) const override;
static ExpandArrayIntoVarargs *attempt(ConstraintSystem &cs, Type argType,
Type paramType,
ConstraintLocatorBuilder locator);
};
class ExplicitlyConstructRawRepresentable final : public AllowArgumentMismatch {
ExplicitlyConstructRawRepresentable(ConstraintSystem &cs, Type argType,
Type paramType,
ConstraintLocator *locator)
: AllowArgumentMismatch(cs, FixKind::ExplicitlyConstructRawRepresentable,
argType, paramType, locator) {}
public:
std::string getName() const override {
return "explicitly construct a raw representable type";
}
static ExplicitlyConstructRawRepresentable *
attempt(ConstraintSystem &cs, Type argType, Type paramType,
ConstraintLocatorBuilder locator);
};
class UseValueTypeOfRawRepresentative final : public AllowArgumentMismatch {
UseValueTypeOfRawRepresentative(ConstraintSystem &cs, Type argType,
Type paramType, ConstraintLocator *locator)
: AllowArgumentMismatch(cs, FixKind::UseValueTypeOfRawRepresentative,
argType, paramType, locator) {}
public:
std::string getName() const override {
return "use `.rawValue` of a raw representable type";
}
static UseValueTypeOfRawRepresentative *
attempt(ConstraintSystem &cs, Type argType, Type paramType,
ConstraintLocatorBuilder locator);
};
/// Replace a coercion ('as') with a forced checked cast ('as!').
class CoerceToCheckedCast final : public ContextualMismatch {
CoerceToCheckedCast(ConstraintSystem &cs, Type fromType, Type toType,
ConstraintLocator *locator)
: ContextualMismatch(cs, FixKind::CoerceToCheckedCast, fromType, toType,
locator) {}
public:
std::string getName() const { return "as to as!"; }
bool diagnose(const Solution &solution, bool asNote = false) const;
static CoerceToCheckedCast *attempt(ConstraintSystem &cs, Type fromType,
Type toType, ConstraintLocator *locator);
};
class RemoveInvalidCall final : public ConstraintFix {
RemoveInvalidCall(ConstraintSystem &cs, ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::RemoveCall, locator) {}
public:
std::string getName() const {
return "remove extraneous call from value of non-function type";
}
bool diagnose(const Solution &solution, bool asNote = false) const;
static RemoveInvalidCall *create(ConstraintSystem &cs,
ConstraintLocator *locator);
};
class AllowInvalidUseOfTrailingClosure final : public AllowArgumentMismatch {
AllowInvalidUseOfTrailingClosure(ConstraintSystem &cs, Type argType,
Type paramType, ConstraintLocator *locator)
: AllowArgumentMismatch(cs, FixKind::AllowInvalidUseOfTrailingClosure,
argType, paramType, locator) {}
public:
std::string getName() const {
return "allow invalid use of trailing closure";
}
bool diagnose(const Solution &solution, bool asNote = false) const;
static AllowInvalidUseOfTrailingClosure *create(ConstraintSystem &cs,
Type argType, Type paramType,
ConstraintLocator *locator);
};
class TreatEphemeralAsNonEphemeral final : public AllowArgumentMismatch {
ConversionRestrictionKind ConversionKind;
TreatEphemeralAsNonEphemeral(ConstraintSystem &cs, ConstraintLocator *locator,
Type srcType, Type dstType,
ConversionRestrictionKind conversionKind,
bool downgradeToWarning)
: AllowArgumentMismatch(cs, FixKind::TreatEphemeralAsNonEphemeral,
srcType, dstType, locator, downgradeToWarning),
ConversionKind(conversionKind) {}
public:
ConversionRestrictionKind getConversionKind() const { return ConversionKind; }
std::string getName() const override;
bool diagnose(const Solution &solution, bool asNote = false) const override;
static TreatEphemeralAsNonEphemeral *
create(ConstraintSystem &cs, ConstraintLocator *locator, Type srcType,
Type dstType, ConversionRestrictionKind conversionKind,
bool downgradeToWarning);
};
class SpecifyBaseTypeForContextualMember final : public ConstraintFix {
DeclNameRef MemberName;
SpecifyBaseTypeForContextualMember(ConstraintSystem &cs, DeclNameRef member,
ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::SpecifyBaseTypeForContextualMember, locator),
MemberName(member) {}
public:
std::string getName() const {
const auto baseName = MemberName.getBaseName();
return "specify base type in reference to member '" +
baseName.userFacingName().str() + "'";
}
bool diagnose(const Solution &solution, bool asNote = false) const;
static SpecifyBaseTypeForContextualMember *
create(ConstraintSystem &cs, DeclNameRef member, ConstraintLocator *locator);
};
class SpecifyClosureReturnType final : public ConstraintFix {
SpecifyClosureReturnType(ConstraintSystem &cs, ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::SpecifyClosureReturnType, locator) {}
public:
std::string getName() const {
return "specify closure return type";
}
bool diagnose(const Solution &solution, bool asNote = false) const;
static SpecifyClosureReturnType *create(ConstraintSystem &cs,
ConstraintLocator *locator);
};
class SpecifyObjectLiteralTypeImport final : public ConstraintFix {
SpecifyObjectLiteralTypeImport(ConstraintSystem &cs, ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::SpecifyObjectLiteralTypeImport, locator) {}
public:
std::string getName() const {
return "import required module to gain access to a default literal type";
}
bool diagnose(const Solution &solution, bool asNote = false) const;
static SpecifyObjectLiteralTypeImport *create(ConstraintSystem &cs,
ConstraintLocator *locator);
};
class AddQualifierToAccessTopLevelName final : public ConstraintFix {
AddQualifierToAccessTopLevelName(ConstraintSystem &cs,
ConstraintLocator *locator)
: ConstraintFix(cs, FixKind::AddQualifierToAccessTopLevelName, locator) {}
public:
std::string getName() const {
return "qualify reference to access top-level function";
}
bool diagnose(const Solution &solution, bool asNote = false) const;
static AddQualifierToAccessTopLevelName *create(ConstraintSystem &cs,
ConstraintLocator *locator);
};
class AllowNonClassTypeToConvertToAnyObject final : public ContextualMismatch {
AllowNonClassTypeToConvertToAnyObject(ConstraintSystem &cs, Type type,
ConstraintLocator *locator);
public:
std::string getName() const {
return "allow non-class type to convert to 'AnyObject'";
}
bool diagnose(const Solution &solution, bool asNote = false) const;
static AllowNonClassTypeToConvertToAnyObject *
create(ConstraintSystem &cs, Type type, ConstraintLocator *locator);
};
/// A warning fix to maintain compatibility with the following:
///
/// \code
/// func foo(_ arr: [Any]?) {
/// _ = (arr ?? []) as [NSObject]
/// }
/// \endcode
///
/// which performs a force-cast of the array's elements, despite being spelled
/// as a coercion.
class AllowCoercionToForceCast final : public ContextualMismatch {
AllowCoercionToForceCast(ConstraintSystem &cs, Type fromType, Type toType,
ConstraintLocator *locator)
: ContextualMismatch(cs, FixKind::AllowCoercionToForceCast, fromType,
toType, locator, /*warning*/ true) {}
public:
std::string getName() const {
return "allow coercion to be treated as a force-cast";
}
bool diagnose(const Solution &solution, bool asNote = false) const;
static AllowCoercionToForceCast *create(ConstraintSystem &cs, Type fromType,
Type toType,
ConstraintLocator *locator);
};
} // end namespace constraints
} // end namespace swift
namespace llvm {
template <>
struct DenseMapInfo<swift::constraints::FixKind> {
using FixKind = swift::constraints::FixKind;
static inline FixKind getEmptyKey() {
return static_cast<FixKind>(0);
}
static inline FixKind getTombstoneKey() {
return static_cast<FixKind>(1);
}
static unsigned getHashValue(FixKind kind) {
return static_cast<unsigned>(kind);
}
static bool isEqual(FixKind lhs, FixKind rhs) {
return lhs == rhs;
}
};
}
#endif // SWIFT_SEMA_CSFIX_H