Files
swift-mirror/lib/IRGen/MetadataRequest.cpp
Arnold Schwaighofer a725de5ba6 Address review comments
2025-11-17 15:52:00 -08:00

4068 lines
154 KiB
C++

//===--- MetadataRequest.cpp - IR generation for metadata requests --------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for accessing metadata.
//
//===----------------------------------------------------------------------===//
#include "MetadataRequest.h"
#include "Callee.h"
#include "ConstantBuilder.h"
#include "Explosion.h"
#include "ExtendedExistential.h"
#include "FixedTypeInfo.h"
#include "GenArchetype.h"
#include "GenClass.h"
#include "GenMeta.h"
#include "GenPack.h"
#include "GenPointerAuth.h"
#include "GenProto.h"
#include "GenTuple.h"
#include "GenType.h"
#include "GenericArguments.h"
#include "GenericRequirement.h"
#include "IRGenDebugInfo.h"
#include "IRGenFunction.h"
#include "IRGenMangler.h"
#include "IRGenModule.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/CanTypeVisitor.h"
#include "swift/AST/ConformanceLookup.h"
#include "swift/AST/DiagnosticsIRGen.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/Basic/Assertions.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/IRGen/Linking.h"
#include "swift/SIL/FormalLinkage.h"
#include "swift/SIL/TypeLowering.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/ModRef.h"
#include <algorithm>
using namespace swift;
using namespace irgen;
llvm::Value *DynamicMetadataRequest::get(IRGenFunction &IGF) const {
if (isStatic()) {
return IGF.IGM.getSize(Size(StaticRequest.getOpaqueValue()));
} else {
return DynamicRequest;
}
}
llvm::Value *DynamicMetadataRequest::getRequiredState(IRGenFunction &IGF) const{
if (isStatic()) {
return IGF.IGM.getSize(Size(size_t(StaticRequest.getState())));
}
auto request = DynamicRequest;
static_assert(MetadataRequest::State_bit == 0,
"code below is not doing any shifts");
uint32_t mask =
((uint32_t(1) << MetadataRequest::State_width) - 1);
auto requiredState =
IGF.Builder.CreateAnd(request,
llvm::ConstantInt::get(IGF.IGM.SizeTy, mask));
return requiredState;
}
MetadataResponse MetadataResponse::getUndef(IRGenFunction &IGF) {
return forComplete(llvm::UndefValue::get(IGF.IGM.TypeMetadataPtrTy));
}
MetadataResponse
MetadataResponse::handle(IRGenFunction &IGF, DynamicMetadataRequest request,
llvm::Value *pair) {
assert(pair->getType() == IGF.IGM.TypeMetadataResponseTy);
// If the request is statically known to produce a complete result,
// we never even need to extract the status value.
if (request.isStaticallyBlockingComplete()) {
auto value = IGF.Builder.CreateExtractValue(pair, 0);
return MetadataResponse::forComplete(value);
}
// Otherwise, split the response.
auto split = IGF.Builder.CreateSplit<2>(pair);
// If the request has a collector installed, check the dependency now.
if (auto collector = request.getDependencyCollector()) {
collector->checkDependency(IGF, request, split[0], split[1]);
}
// Compute the static lower bound on the metadata's dynamic state.
// This will include any refinements from having branched for the
// dependency collector.
auto staticBound = request.getStaticLowerBoundOnResponseState();
auto response = MetadataResponse(split[0], split[1], staticBound);
return response;
}
llvm::Value *MetadataResponse::combine(IRGenFunction &IGF) const {
assert(isValid());
assert(hasDynamicState() && "cannot combine response without dynamic state");
return IGF.Builder.CreateCombine(IGF.IGM.TypeMetadataResponseTy,
{Metadata, getDynamicState()});
}
void MetadataResponse::ensureDynamicState(IRGenFunction &IGF) & {
assert(isValid());
// If we already have a dynamic state, bail out.
if (hasDynamicState()) return;
// If we're statically known complete, we can just fill in
// MetadataState::Complete.
if (isStaticallyKnownComplete()) {
DynamicState = getCompletedState(IGF.IGM);
return;
}
// Otherwise, we need to check the state dynamically. Do a non-blocking
// request for complete metadata.
auto request = MetadataRequest(MetadataState::Complete,
/*non-blocking*/ true);
*this = emitGetTypeMetadataDynamicState(IGF, request, Metadata);
}
llvm::Constant *MetadataResponse::getCompletedState(IRGenModule &IGM) {
return IGM.getSize(Size(size_t(MetadataState::Complete)));
}
llvm::Value *MetadataDependency::combine(IRGenFunction &IGF) const {
if (isTrivial()) {
return getTrivialCombinedDependency(IGF.IGM);
}
return IGF.Builder.CreateCombine(IGF.IGM.TypeMetadataDependencyTy,
{RequiredMetadata, RequiredState});
}
llvm::Constant *
MetadataDependency::getTrivialCombinedDependency(IRGenModule &IGM) {
return llvm::ConstantAggregateZero::get(IGM.TypeMetadataDependencyTy);
}
void MetadataDependencyCollector::checkDependency(IRGenFunction &IGF,
DynamicMetadataRequest request,
llvm::Value *metadata,
llvm::Value *metadataState) {
// Having either both or neither of the PHIs is normal.
// Having just RequiredState means that we already finalized this collector
// and shouldn't be using it anymore.
assert((!RequiredMetadata || RequiredState) &&
"checking dependencies on a finished collector");
// If the request is statically always satisfied, the operation cannot
// have failed.
if (request.isStaticallyAlwaysSatisfied())
return;
// Otherwise, we need to pull out the response state and compare it against
// the request state.
llvm::Value *requiredState = request.getRequiredState(IGF);
// More advanced metadata states are lower numbers.
static_assert(MetadataStateIsReverseOrdered,
"relying on the ordering of MetadataState here");
auto satisfied = IGF.Builder.CreateICmpULE(metadataState, requiredState);
emitCheckBranch(IGF, satisfied, metadata, requiredState);
}
void MetadataDependencyCollector::collect(IRGenFunction &IGF,
llvm::Value *dependency) {
// Having either both or neither of the PHIs is normal.
// Having just RequiredState means that we already finalized this collector
// and shouldn't be using it anymore.
assert((!RequiredMetadata || RequiredState) &&
"checking dependencies on a finished collector");
assert(dependency->getType() == IGF.IGM.TypeMetadataDependencyTy);
// Split the dependency.
auto metadata = IGF.Builder.CreateExtractValue(dependency, 0);
auto requiredState = IGF.Builder.CreateExtractValue(dependency, 1);
// We have a dependency if the metadata is non-null; otherwise we're
// satisfied and can continue.
auto satisfied = IGF.Builder.CreateIsNull(metadata);
emitCheckBranch(IGF, satisfied, metadata, requiredState);
}
void MetadataDependencyCollector::emitCheckBranch(IRGenFunction &IGF,
llvm::Value *satisfied,
llvm::Value *metadata,
llvm::Value *requiredState) {
// Lazily create the final continuation block and phis.
if (!RequiredMetadata) {
auto contBB = IGF.createBasicBlock("metadata-dependencies.cont");
RequiredMetadata =
llvm::PHINode::Create(IGF.IGM.TypeMetadataPtrTy, 4, "", contBB);
RequiredState = llvm::PHINode::Create(IGF.IGM.SizeTy, 4, "", contBB);
}
// Conditionally branch to the final continuation block.
auto satisfiedBB = IGF.createBasicBlock("dependency-satisfied");
auto curBB = IGF.Builder.GetInsertBlock();
RequiredMetadata->addIncoming(metadata, curBB);
RequiredState->addIncoming(requiredState, curBB);
IGF.Builder.CreateCondBr(satisfied, satisfiedBB,
RequiredMetadata->getParent());
// Otherwise resume emitting code on the main path.
IGF.Builder.emitBlock(satisfiedBB);
}
MetadataDependency MetadataDependencyCollector::finish(IRGenFunction &IGF) {
assert((!RequiredMetadata || RequiredState) &&
"finishing an already-finished collector");
// If we never branched with a dependency, the result is trivial.
if (RequiredMetadata == nullptr)
return MetadataDependency();
llvm::BasicBlock *curBB = IGF.Builder.GetInsertBlock();
assert(curBB);
auto contBB = RequiredMetadata->getParent();
IGF.Builder.CreateBr(contBB);
RequiredMetadata->addIncoming(
llvm::ConstantPointerNull::get(IGF.IGM.TypeMetadataPtrTy),
curBB);
RequiredState->addIncoming(llvm::ConstantInt::get(IGF.IGM.SizeTy, 0), curBB);
IGF.Builder.emitBlock(contBB);
auto result = MetadataDependency(RequiredMetadata, RequiredState);
// Clear RequiredMetadata to tell the destructor that we finished.
// We leave RequiredState in place so that we can detect attempts to
// add
RequiredMetadata = nullptr;
return result;
}
llvm::Constant *IRGenModule::getAddrOfStringForMetadataRef(
StringRef symbolName,
unsigned alignment,
bool shouldSetLowBit,
llvm::function_ref<ConstantInitFuture (ConstantInitBuilder &)> body) {
// Call this to form the return value.
auto returnValue = [&](llvm::Constant *addr) {
if (!shouldSetLowBit)
return addr;
auto bitConstant = llvm::ConstantInt::get(IntPtrTy, 1);
return llvm::ConstantExpr::getGetElementPtr(Int8Ty, addr, bitConstant);
};
// Check whether we already have an entry with this name.
auto &entry = StringsForTypeRef[symbolName];
if (entry.second) {
return returnValue(entry.second);
}
// Construct the initializer.
ConstantInitBuilder builder(*this);
auto finished = body(builder);
auto var = new llvm::GlobalVariable(Module, finished.getType(),
/*constant*/ true,
llvm::GlobalValue::LinkOnceODRLinkage,
nullptr,
symbolName);
ApplyIRLinkage(IRLinkage::InternalLinkOnceODR).to(var);
if (alignment)
var->setAlignment(llvm::MaybeAlign(alignment));
setTrueConstGlobal(var);
var->setSection(getReflectionTypeRefSectionName());
finished.installInGlobal(var);
// Drill down to the i8* at the beginning of the constant.
auto addr = llvm::ConstantExpr::getBitCast(var, Int8PtrTy);
StringsForTypeRef[symbolName] = { var, addr };
return returnValue(addr);
}
llvm::Constant *IRGenModule::getAddrOfStringForTypeRef(StringRef str,
MangledTypeRefRole role){
return getAddrOfStringForTypeRef(SymbolicMangling{str.str(), {}}, role);
}
llvm::Constant *IRGenModule::getAddrOfStringForTypeRef(
const SymbolicMangling &mangling,
MangledTypeRefRole role) {
// Create a symbol name for the symbolic mangling. This is used as the
// uniquing key both for ODR coalescing and within this TU.
IRGenMangler mangler(Context);
std::string symbolName =
mangler.mangleSymbolNameForSymbolicMangling(mangling, role);
// See if we emitted the constant already.
auto &entry = StringsForTypeRef[symbolName];
if (entry.second) {
return entry.second;
}
ConstantInitBuilder B(*this);
auto S = B.beginStruct();
S.setPacked(true);
switch (role) {
case MangledTypeRefRole::DefaultAssociatedTypeWitness:
// The 0xFF prefix identifies a default associated type witness.
S.addInt(Int8Ty,
ProtocolRequirementFlags::AssociatedTypeInProtocolContextByte);
break;
case MangledTypeRefRole::FlatUnique:
assert(mangling.SymbolicReferences.empty());
break;
case MangledTypeRefRole::Metadata:
case MangledTypeRefRole::Reflection:
case MangledTypeRefRole::FieldMetadata:
break;
}
unsigned pos = 0;
for (auto &symbolic : mangling.SymbolicReferences) {
using SymbolicReferent = IRGenMangler::SymbolicReferent;
const SymbolicReferent &referent = symbolic.first;
assert(symbolic.second >= pos
&& "references should be ordered");
if (symbolic.second != pos) {
// Emit the preceding literal chunk.
auto literalChunk = StringRef(mangling.String.data() + pos,
symbolic.second - pos);
auto literal = llvm::ConstantDataArray::getString(getLLVMContext(),
literalChunk,
/*null*/ false);
S.add(literal);
}
ConstantReference ref;
unsigned char kind;
switch (referent.getKind()) {
case SymbolicReferent::NominalType: {
auto type = const_cast<NominalTypeDecl*>(referent.getNominalType());
bool isObjCProtocol = false;
if (auto proto = dyn_cast<ProtocolDecl>(type)) {
if (proto->isObjC()) {
assert(canUseObjCSymbolicReferences());
ref = ConstantReference(
cast<llvm::Constant>(getObjCProtocolRefSymRefDescriptor(proto)),
ConstantReference::Direct);
isObjCProtocol = true;
} else {
// The symbolic reference is to the protocol descriptor of the
// referenced protocol.
ref = getAddrOfLLVMVariableOrGOTEquivalent(
LinkEntity::forProtocolDescriptor(proto));
}
} else {
// The symbolic reference is to the type context descriptor of the
// referenced type.
IRGen.noteUseOfTypeContextDescriptor(type, DontRequireMetadata);
ref = getAddrOfLLVMVariableOrGOTEquivalent(
LinkEntity::forNominalTypeDescriptor(type));
}
// \1 - direct reference, \2 - indirect reference
kind = (ref.isIndirect() ? 0x02 : (isObjCProtocol ? 0x0c : 0x01));
break;
}
case SymbolicReferent::OpaqueType: {
auto opaque = const_cast<OpaqueTypeDecl*>(referent.getOpaqueType());
IRGen.noteUseOfOpaqueTypeDescriptor(opaque);
ref = getAddrOfLLVMVariableOrGOTEquivalent(
LinkEntity::forOpaqueTypeDescriptor(opaque));
kind = (ref.isIndirect() ? 0x02 : 0x01);
break;
}
case SymbolicReferent::ExtendedExistentialTypeShape: {
auto shapeInfo =
ExtendedExistentialTypeShapeInfo::get(
referent.getType()->getCanonicalType());
ref = ConstantReference(
emitExtendedExistentialTypeShape(*this, shapeInfo),
ConstantReference::Direct);
kind = (shapeInfo.isUnique() ? 0x0a : 0x0b);
break;
}
}
// add kind byte
S.add(llvm::ConstantInt::get(Int8Ty, kind));
// add relative reference
S.addRelativeAddress(ref.getValue());
pos = symbolic.second + 5;
}
// Add the last literal bit, if any.
if (pos != mangling.String.size()) {
auto literalChunk = StringRef(mangling.String.data() + pos,
mangling.String.size() - pos);
auto literal = llvm::ConstantDataArray::getString(getLLVMContext(),
literalChunk,
/*null*/ false);
S.add(literal);
}
// And a null terminator!
S.addInt(Int8Ty, 0);
auto finished = S.finishAndCreateFuture();
auto var = new llvm::GlobalVariable(Module, finished.getType(),
/*constant*/ true,
llvm::GlobalValue::LinkOnceODRLinkage,
nullptr,
symbolName);
ApplyIRLinkage(IRLinkage::InternalLinkOnceODR).to(var);
var->setAlignment(llvm::MaybeAlign(2));
setTrueConstGlobal(var);
var->setSection(getReflectionTypeRefSectionName());
finished.installInGlobal(var);
// Drill down to the i8* at the beginning of the constant.
auto addr = llvm::ConstantExpr::getBitCast(var, Int8PtrTy);
entry = {var, addr};
return addr;
}
llvm::Value *irgen::emitObjCMetadataRefForMetadata(IRGenFunction &IGF,
llvm::Value *classPtr) {
assert(IGF.IGM.Context.LangOpts.EnableObjCInterop);
classPtr = IGF.Builder.CreateBitCast(classPtr, IGF.IGM.ObjCClassPtrTy);
// Fetch the metadata for that class.
auto call = IGF.Builder.CreateCall(
IGF.IGM.getGetObjCClassMetadataFunctionPointer(), classPtr);
call->setDoesNotThrow();
call->setDoesNotAccessMemory();
return call;
}
/// Emit a reference to the Swift metadata for an Objective-C class.
static llvm::Value *emitObjCMetadataRef(IRGenFunction &IGF,
ClassDecl *theClass) {
// Derive a pointer to the Objective-C class.
auto classPtr = emitObjCHeapMetadataRef(IGF, theClass);
return emitObjCMetadataRefForMetadata(IGF, classPtr);
}
// Get the type that exists at runtime to represent a compile-time type.
CanType IRGenModule::getRuntimeReifiedType(CanType type) {
// Leave type-erased ObjC generics with their generic arguments unbound, since
// the arguments do not exist at runtime.
return CanType(type.transformRec([&](TypeBase *t) -> std::optional<Type> {
if (CanType(t).isTypeErasedGenericClassType()) {
return t->getAnyNominal()->getDeclaredType()->getCanonicalType();
}
return std::nullopt;
}));
}
Type IRGenModule::substOpaqueTypesWithUnderlyingTypes(Type type) {
// Substitute away opaque types whose underlying types we're allowed to
// assume are constant.
auto context = getMaximalTypeExpansionContext();
return swift::substOpaqueTypesWithUnderlyingTypes(type, context);
}
CanType IRGenModule::substOpaqueTypesWithUnderlyingTypes(CanType type) {
return substOpaqueTypesWithUnderlyingTypes(static_cast<Type>(type))
->getCanonicalType();
}
SILType IRGenModule::substOpaqueTypesWithUnderlyingTypes(SILType type) {
// Substitute away opaque types whose underlying types we're allowed to
// assume are constant.
auto context = getMaximalTypeExpansionContext();
return SILType::getPrimitiveType(
swift::substOpaqueTypesWithUnderlyingTypes(type.getASTType(), context),
type.getCategory());
}
ProtocolConformanceRef
IRGenModule::substOpaqueTypesWithUnderlyingTypes(
ProtocolConformanceRef conformance) {
auto context = getMaximalTypeExpansionContext();
return swift::substOpaqueTypesWithUnderlyingTypes(conformance, context);
}
/// Attempts to return a constant heap metadata reference for a
/// class type. This is generally only valid for specific kinds of
/// ObjC reference, like superclasses or category references.
llvm::Constant *
irgen::tryEmitConstantHeapMetadataRef(IRGenModule &IGM,
CanType type,
bool allowDynamicUninitialized) {
auto theDecl = type->getClassOrBoundGenericClass();
assert(theDecl && "emitting constant heap metadata ref for non-class type?");
switch (IGM.getClassMetadataStrategy(theDecl)) {
case ClassMetadataStrategy::Resilient:
case ClassMetadataStrategy::Singleton:
if (!allowDynamicUninitialized)
return nullptr;
break;
case ClassMetadataStrategy::Update:
case ClassMetadataStrategy::FixedOrUpdate:
case ClassMetadataStrategy::Fixed:
break;
}
// For imported classes, use the ObjC class symbol.
if (!hasKnownSwiftMetadata(IGM, theDecl))
return IGM.getAddrOfObjCClass(theDecl, NotForDefinition);
return IGM.getAddrOfTypeMetadata(type);
}
/// Attempts to return a constant type metadata reference for a
/// nominal type.
ConstantReference
irgen::tryEmitConstantTypeMetadataRef(IRGenModule &IGM, CanType type,
SymbolReferenceKind refKind) {
if (IGM.getSwiftModule()->isStdlibModule())
return ConstantReference();
if (isCanonicalCompleteTypeMetadataStaticallyAddressable(IGM, type))
return ConstantReference();
return IGM.getAddrOfTypeMetadata(type, refKind);
}
/// Emit a reference to an ObjC class. In general, the only things
/// you're allowed to do with the address of an ObjC class symbol are
/// (1) send ObjC messages to it (in which case the message will be
/// forwarded to the real class, if one exists) or (2) put it in
/// various data sections where the ObjC runtime will properly arrange
/// things. Therefore, we must typically force the initialization of
/// a class when emitting a reference to it.
llvm::Value *irgen::emitObjCHeapMetadataRef(IRGenFunction &IGF,
ClassDecl *theClass,
bool allowUninitialized) {
// If the class is visible only through the Objective-C runtime, form the
// appropriate runtime call.
if (theClass->getForeignClassKind() == ClassDecl::ForeignKind::RuntimeOnly) {
SmallString<64> scratch;
auto className =
IGF.IGM.getAddrOfGlobalString(theClass->getObjCRuntimeName(scratch));
return IGF.Builder.CreateCall(IGF.IGM.getLookUpClassFunctionPointer(),
className);
}
assert(!theClass->isForeign());
Address classRef = IGF.IGM.getAddrOfObjCClassRef(theClass);
auto classObject = IGF.Builder.CreateLoad(classRef);
if (allowUninitialized) return classObject;
// TODO: memoize this the same way that we memoize Swift type metadata?
return IGF.Builder.CreateCall(IGF.IGM.getFixedClassInitializationFn(),
classObject);
}
static MetadataResponse emitNominalPrespecializedGenericMetadataRef(
IRGenFunction &IGF, NominalTypeDecl *theDecl, CanType theType,
DynamicMetadataRequest request,
SpecializedMetadataCanonicality canonicality) {
assert(isCompleteSpecializedNominalTypeMetadataStaticallyAddressable(
IGF.IGM, theType, canonicality));
// We are applying generic parameters to a generic type.
assert(theType->getAnyNominal() == theDecl);
// Check to see if we've maybe got a local reference already.
if (auto cache = IGF.tryGetLocalTypeMetadata(theType, request))
return cache;
switch (canonicality) {
case CanonicalSpecializedMetadata: {
auto metadata = IGF.IGM.getAddrOfTypeMetadata(theType);
return MetadataResponse::forComplete(metadata);
}
case NoncanonicalSpecializedMetadata: {
auto cacheVariable =
IGF.IGM.getAddrOfNoncanonicalSpecializedGenericTypeMetadataCacheVariable(theType);
auto call = IGF.Builder.CreateCall(
IGF.IGM.getGetCanonicalSpecializedMetadataFunctionPointer(),
{request.get(IGF),
IGF.IGM.getAddrOfTypeMetadata(theType,
TypeMetadataCanonicality::Noncanonical),
cacheVariable});
call->setDoesNotThrow();
call->setCallingConv(IGF.IGM.SwiftCC);
return MetadataResponse::handle(IGF, request, call);
}
}
llvm_unreachable("unhandled metadata canonicality");
}
static llvm::Value *
emitIdempotentClassMetadataInitialization(IRGenFunction &IGF,
llvm::Value *metadata) {
if (IGF.IGM.ObjCInterop) {
metadata = IGF.Builder.CreateBitCast(metadata, IGF.IGM.ObjCClassPtrTy);
metadata = IGF.Builder.CreateCall(IGF.IGM.getFixedClassInitializationFn(),
metadata);
metadata = IGF.Builder.CreateBitCast(metadata, IGF.IGM.TypeMetadataPtrTy);
}
return metadata;
}
/// Returns a metadata reference for a nominal type.
///
/// This is only valid in a couple of special cases:
/// 1) The nominal type is generic, in which case we emit a call to the
/// generic metadata accessor function, which must be defined separately.
/// 2) The nominal type is a value type with a fixed size from this
/// resilience domain, in which case we can reference the constant
/// metadata directly.
/// 3) The nominal type is a class with known Swift metadata and
/// a fixed layout from this resilience domain, in which case we only
/// need perform idempotent class initialization to realize it
/// in the ObjC runtime.
///
/// In any other case, a metadata accessor should be called instead.
static MetadataResponse emitNominalMetadataRef(IRGenFunction &IGF,
NominalTypeDecl *theDecl,
CanType theType,
DynamicMetadataRequest request) {
assert(!isa<ProtocolDecl>(theDecl));
if (!theDecl->isGenericContext()) {
assert(!IGF.IGM.isResilient(theDecl, ResilienceExpansion::Maximal));
if (auto response = IGF.tryGetLocalTypeMetadata(theType, request)) {
return response;
}
llvm::Value *metadata = IGF.IGM.getAddrOfTypeMetadata(theType);
// We need to realize classes with the ObjC runtime.
if (auto c = dyn_cast<ClassDecl>(theDecl)) {
assert(hasKnownSwiftMetadata(IGF.IGM, c));
metadata = emitIdempotentClassMetadataInitialization(IGF, metadata);
}
auto response = MetadataResponse::forComplete(metadata);
IGF.setScopedLocalTypeMetadata(theType, response);
return response;
}
// We are applying generic parameters to a generic type.
assert(theType->isSpecialized() &&
theType->getAnyNominal() == theDecl);
// Check to see if we've maybe got a local reference already.
if (auto cache = IGF.tryGetLocalTypeMetadata(theType, request))
return cache;
if (IGF.IGM.Context.LangOpts.hasFeature(Feature::Embedded)) {
MetadataResponse response = emitNominalPrespecializedGenericMetadataRef(
IGF, theDecl, theType, request, CanonicalSpecializedMetadata);
IGF.setScopedLocalTypeMetadata(theType, response);
return response;
}
// Grab the substitutions.
GenericArguments genericArgs;
genericArgs.collect(IGF, theType);
assert((!genericArgs.Values.empty() ||
theDecl->getGenericSignature()->areAllParamsConcrete()) &&
"no generic args?!");
MetadataResponse response;
if (isCompleteSpecializedNominalTypeMetadataStaticallyAddressable(
IGF.IGM, theType, CanonicalSpecializedMetadata)) {
response = emitNominalPrespecializedGenericMetadataRef(
IGF, theDecl, theType, request, CanonicalSpecializedMetadata);
} else if (isCompleteSpecializedNominalTypeMetadataStaticallyAddressable(
IGF.IGM, theType, NoncanonicalSpecializedMetadata)) {
response = emitNominalPrespecializedGenericMetadataRef(
IGF, theDecl, theType, request, NoncanonicalSpecializedMetadata);
} else if (isa<ClassDecl>(theDecl)) {
if (isSpecializedNominalTypeMetadataStaticallyAddressable(
IGF.IGM, theType, CanonicalSpecializedMetadata,
ForUseOnlyFromAccessor)) {
llvm::Function *accessor =
IGF.IGM
.getAddrOfCanonicalSpecializedGenericTypeMetadataAccessFunction(
theType, NotForDefinition);
response =
IGF.emitGenericTypeMetadataAccessFunctionCall(accessor, {}, request);
}
}
if (!response.isValid()) {
// Call the generic metadata accessor function.
llvm::Function *accessor =
IGF.IGM.getAddrOfGenericTypeMetadataAccessFunction(
theDecl, genericArgs.Types, NotForDefinition);
response = IGF.emitGenericTypeMetadataAccessFunctionCall(
accessor, genericArgs.Values, request, genericArgs.hasPacks);
}
IGF.setScopedLocalTypeMetadata(theType, response);
return response;
}
bool irgen::isSpecializedNominalTypeMetadataStaticallyAddressable(
IRGenModule &IGM, CanType type,
SpecializedMetadataCanonicality canonicality,
SpecializedMetadataUsageIsOnlyFromAccessor onlyFromAccessor) {
auto *nominal = type->getAnyNominal();
assert(!isa<ProtocolDecl>(nominal));
assert(nominal->isGenericContext());
if (!IGM.shouldPrespecializeGenericMetadata()) {
return false;
}
if (type->hasArchetype()) {
return false;
}
if (!IGM.getTypeInfoForUnlowered(type).isFixedSize(ResilienceExpansion::Maximal))
return false;
switch (canonicality) {
case CanonicalSpecializedMetadata:
if (IGM.getSILModule().isWholeModule()) {
// Canonical prespecializations can only be emitted within the module
// where the generic type is itself defined, since it is the module where
// the metadata accessor is defined.
if (IGM.getSwiftModule() != nominal->getModuleContext()) {
return false;
}
} else {
// If whole module optimization is not enabled, we can only construct a
// canonical prespecialization if the usage is in the same *file* as that
// containing the type's decl! The reason is that the generic metadata
// accessor is defined in the IRGenModule corresponding to the source file
// containing the type's decl.
SourceFile *nominalFile = nominal->getDeclContext()->getParentSourceFile();
if (auto *moduleFile = IGM.IRGen.getSourceFile(&IGM)) {
if (nominalFile != moduleFile) {
return false;
}
}
}
break;
case NoncanonicalSpecializedMetadata:
// Non-canonical metadata prespecializations for a type cannot be formed
// within the module that defines that type.
if (IGM.getSwiftModule() == nominal->getModuleContext()) {
return false;
}
// We cannot reference the type context across the module boundary on
// PE/COFF without a load. This prevents us from statically initializing the
// pattern.
if (IGM.Triple.isOSWindows() &&
!nominal->getModuleContext()->isStaticLibrary())
return false;
if (nominal->isResilient(IGM.getSwiftModule(),
ResilienceExpansion::Maximal)) {
return false;
}
break;
}
if (auto *theClass = dyn_cast<ClassDecl>(nominal)) {
if (theClass->hasResilientMetadata(IGM.getSwiftModule(),
ResilienceExpansion::Maximal)) {
return false;
}
AncestryOptions flags = theClass->checkAncestry();
if (flags & (AncestryOptions(AncestryFlags::ResilientOther) |
AncestryOptions(AncestryFlags::ClangImported))) {
return false;
}
if (theClass->getSuperclassDecl()) {
auto superclassType =
type->getSuperclass(/*useArchetypes=*/false)->getCanonicalType();
if (!isCanonicalInitializableTypeMetadataStaticallyAddressable(
IGM, superclassType) &&
!tryEmitConstantHeapMetadataRef(
IGM, superclassType,
/*allowDynamicUninitialized=*/false)) {
return false;
}
}
}
// Analyze the substitution map to determine if everything can be referenced
// statically.
auto substitutions = type->getContextSubstitutionMap();
// If we cannot statically reference type metadata for our replacement types,
// we cannot specialize.
for (auto replacementType : substitutions.getReplacementTypes()) {
auto canonicalType = replacementType->getCanonicalType();
if (onlyFromAccessor) {
// If an accessor is being used, then the accessor will be able to
// initialize the arguments, i.e. register classes with the ObjC
// runtime.
if (!irgen::isCanonicalInitializableTypeMetadataStaticallyAddressable(
IGM, canonicalType)) {
return false;
}
} else {
if (!irgen::isCanonicalCompleteTypeMetadataStaticallyAddressable(
IGM, canonicalType)) {
return false;
}
}
}
// If we have to instantiate resilient or dependent witness tables, we
// cannot prespecialize.
for (auto conformance : substitutions.getConformances()) {
auto protocol = conformance.getProtocol();
if (!Lowering::TypeConverter::protocolRequiresWitnessTable(protocol))
continue;
if (!conformance.isConcrete())
return false;
auto rootConformance = conformance.getConcrete()->getRootConformance();
if (IGM.isDependentConformance(rootConformance) ||
IGM.isResilientConformance(rootConformance))
return false;
}
return true;
}
bool irgen::isCompleteSpecializedNominalTypeMetadataStaticallyAddressable(
IRGenModule &IGM, CanType type,
SpecializedMetadataCanonicality canonicality) {
if (isa<ClassType>(type) || isa<BoundGenericClassType>(type)) {
if (IGM.Context.LangOpts.hasFeature(Feature::Embedded)) {
if (type->hasArchetype()) {
llvm::errs() << "Cannot get metadata of generic class for type "
<< type << "\n";
llvm::report_fatal_error("cannot get metadata");
}
return true;
}
// TODO: On platforms without ObjC interop, we can do direct access to
// class metadata.
return false;
}
if (IGM.Context.LangOpts.hasFeature(Feature::EmbeddedExistentials) &&
(isa<StructType>(type) || isa<BoundGenericStructType>(type) ||
isa<EnumType>(type) || isa<BoundGenericEnumType>(type))) {
if (type->hasArchetype()) {
llvm::errs() << "Cannot get metadata of generic class for type "
<< type << "\n";
llvm::report_fatal_error("cannot get metadata for type with archetype");
}
return true;
}
// Prespecialized struct/enum metadata gets no dedicated accessor yet and so
// cannot do the work of registering the generic arguments which are classes
// with the ObjC runtime. Concretely, the following cannot be prespecialized
// yet:
// Struct<Klass<Int>>
// Enum<Klass<Int>>
return isSpecializedNominalTypeMetadataStaticallyAddressable(
IGM, type, canonicality, NotForUseOnlyFromAccessor);
}
/// Is there a known address for canonical specialized metadata? The metadata
/// there may need initialization before it is complete.
bool irgen::isCanonicalInitializableTypeMetadataStaticallyAddressable(
IRGenModule &IGM, CanType type) {
if (isCanonicalCompleteTypeMetadataStaticallyAddressable(IGM, type)) {
// The address of the complete metadata is the address of the abstract
// metadata.
return true;
}
if (isa<ExistentialType>(type))
return false;
auto *nominal = type->getAnyNominal();
if (nominal && nominal->isGenericContext()) {
// Prespecialized class metadata gets a dedicated accessor which can do
// the work of registering the class and its arguments with the ObjC
// runtime.
// Concretely, Clazz<Klass<Int>> can be prespecialized.
return isSpecializedNominalTypeMetadataStaticallyAddressable(
IGM, type, CanonicalSpecializedMetadata,
ForUseOnlyFromAccessor);
}
return false;
}
bool irgen::isNoncanonicalCompleteTypeMetadataStaticallyAddressable(
IRGenModule &IGM, CanType type) {
// If the canonical metadata record can be statically addressed, then there
// should be no visible non-canonical metadata record to address.
if (isCanonicalCompleteTypeMetadataStaticallyAddressable(IGM, type)) {
return false;
}
if (isa<BoundGenericStructType>(type) || isa<BoundGenericEnumType>(type)) {
// Imported type metadata always requires an accessor.
if (isa<ClangModuleUnit>(type->getAnyNominal()->getModuleScopeContext()))
return false;
return isCompleteSpecializedNominalTypeMetadataStaticallyAddressable(
IGM, type, NoncanonicalSpecializedMetadata);
}
return false;
}
/// Is complete metadata for the given type available at a fixed address?
bool irgen::isCanonicalCompleteTypeMetadataStaticallyAddressable(
IRGenModule &IGM, CanType type) {
assert(!type->hasArchetype());
// Value type metadata only requires dynamic initialization on first
// access if it contains a resilient type.
if (isa<StructType>(type) || isa<EnumType>(type)) {
auto nominalType = cast<NominalType>(type);
auto *nominalDecl = nominalType->getDecl();
// Imported type metadata always requires an accessor.
if (isa<ClangModuleUnit>(nominalDecl->getModuleScopeContext()))
return false;
if (nominalDecl->isGenericContext())
return isCompleteSpecializedNominalTypeMetadataStaticallyAddressable(
IGM, type, CanonicalSpecializedMetadata);
auto expansion = ResilienceExpansion::Maximal;
return IGM.getTypeInfoForUnlowered(type).isFixedSize(expansion);
}
// The empty tuple type has a singleton metadata.
if (auto tuple = dyn_cast<TupleType>(type))
return tuple->getNumElements() == 0;
// Any and AnyObject have singleton metadata.
if (type->isAny() || type->isAnyObject())
return true;
// The builtin types generally don't require metadata, but some of them
// have nodes in the runtime anyway.
if (isa<BuiltinType>(type))
return true;
// SIL box types are artificial, but for the purposes of dynamic layout,
// we use the NativeObject metadata.
if (isa<SILBoxType>(type))
return true;
if (isa<BoundGenericStructType>(type) || isa<BoundGenericEnumType>(type)) {
return isCompleteSpecializedNominalTypeMetadataStaticallyAddressable(
IGM, type, CanonicalSpecializedMetadata);
}
return false;
}
/// Should requests for the given type's metadata be cached?
bool irgen::shouldCacheTypeMetadataAccess(IRGenModule &IGM, CanType type) {
// DynamicSelfType is actually local.
if (type->hasDynamicSelfType())
return false;
// Nongeneric, nonresilient classes with known Swift metadata need to be
// realized with the Objective-C runtime, but that only requires a single
// runtime call that already has a fast path exit for already-realized
// classes, so we don't need to put up another layer of caching in front.
//
// TODO: On platforms without ObjC interop, we can do direct access to
// Swift metadata without a runtime call at all.
if (auto classDecl = type.getClassOrBoundGenericClass()) {
if (!hasKnownSwiftMetadata(IGM, classDecl))
return true;
if (classDecl->isGenericContext() &&
isSpecializedNominalTypeMetadataStaticallyAddressable(
IGM, type, CanonicalSpecializedMetadata,
ForUseOnlyFromAccessor))
return false;
auto strategy = IGM.getClassMetadataStrategy(classDecl);
return strategy != ClassMetadataStrategy::Fixed;
}
// Trivially accessible metadata does not need a cache.
if (isCanonicalCompleteTypeMetadataStaticallyAddressable(IGM, type))
return false;
if (isNoncanonicalCompleteTypeMetadataStaticallyAddressable(IGM, type))
return false;
return true;
}
/// Should requests for the given type's metadata go through an accessor?
static bool shouldTypeMetadataAccessUseAccessor(IRGenModule &IGM, CanType type){
// Anything that requires caching should go through an accessor to outline
// the cache check.
if (shouldCacheTypeMetadataAccess(IGM, type))
return true;
// Fixed-metadata classes don't require caching, but we still want to go
// through the accessor to outline the ObjC realization.
// TODO: On non-Apple platforms, fixed classes should not need any
// initialization so should be directly addressable.
if (isa<ClassType>(type)) {
return true;
}
return false;
}
/// Return the standard access strategy for getting a non-dependent
/// type metadata object.
MetadataAccessStrategy irgen::getTypeMetadataAccessStrategy(CanType type) {
// We should not be emitting accessors for partially-substituted
// generic types.
assert(!type->hasArchetype());
// Non-generic structs, enums, and classes are special cases.
//
// Note that while protocol types don't have a metadata pattern,
// we still require an accessor since we actually want to get
// the metadata for the existential type.
//
// This needs to kept in sync with hasRequiredTypeMetadataAccessPattern.
auto nominal = type->getAnyNominal();
if (nominal && !isa<ProtocolDecl>(nominal)) {
// Metadata accessors for fully-substituted generic types are
// emitted with shared linkage.
if (nominal->isGenericContext() && !nominal->isObjC()) {
if (type->isSpecialized())
return MetadataAccessStrategy::NonUniqueAccessor;
assert(type->hasUnboundGenericType());
}
if (requiresForeignTypeMetadata(nominal))
return MetadataAccessStrategy::ForeignAccessor;
// If the type doesn't guarantee that it has an access function,
// we might have to use a non-unique accessor.
// Everything else requires accessors.
switch (getDeclLinkage(nominal)) {
case FormalLinkage::PublicUnique:
return MetadataAccessStrategy::PublicUniqueAccessor;
case FormalLinkage::PackageUnique:
return MetadataAccessStrategy::PackageUniqueAccessor;
case FormalLinkage::HiddenUnique:
return MetadataAccessStrategy::HiddenUniqueAccessor;
case FormalLinkage::Private:
return MetadataAccessStrategy::PrivateAccessor;
case FormalLinkage::PublicNonUnique:
return MetadataAccessStrategy::NonUniqueAccessor;
}
llvm_unreachable("bad formal linkage");
}
// Everything else requires a shared accessor function.
return MetadataAccessStrategy::NonUniqueAccessor;
}
static llvm::Constant *emitEmptyTupleTypeMetadataRef(IRGenModule &IGM) {
llvm::Constant *fullMetadata = IGM.getEmptyTupleMetadata();
llvm::Constant *indices[] = {
llvm::ConstantInt::get(IGM.Int32Ty, 0),
llvm::ConstantInt::get(IGM.Int32Ty, 1)
};
return llvm::ConstantExpr::getInBoundsGetElementPtr(
IGM.FullExistentialTypeMetadataStructTy, fullMetadata, indices);
}
/// Emit metadata for a tuple type containing one or more pack expansions, eg
/// (T, repeat each U, v: V, repeat each W).
static MetadataResponse emitDynamicTupleTypeMetadataRef(IRGenFunction &IGF,
CanTupleType type,
DynamicMetadataRequest request) {
CanPackType packType = type.getInducedPackType();
// Begin by computing the number of elements in the tuple type.
auto *shapeExpression = IGF.emitPackShapeExpression(packType);
llvm::BasicBlock *trueBB = nullptr, *falseBB = nullptr, *restBB = nullptr;
llvm::BasicBlock *unwrappedBB = nullptr;
llvm::Value *unwrapped = nullptr;
// A tuple type containing zero or one non-pack-expansions might contain
// exactly one element after substitution, in which case the tuple
// "vanishes" and gets unwrapped. This behavior is implemented in both
// compile-time type substitution, and runtime type metadata instantiation,
// ensuring consistent behavior.
//
// FIXME: Inconsistent behavior with one-element labeled tuples.
if (type->getNumScalarElements() <= 1) {
ConditionalDominanceScope scope(IGF);
// Test if the runtime length of the pack type is exactly 1.
auto *one = llvm::ConstantInt::get(IGF.IGM.SizeTy, 1);
auto *isOne = IGF.Builder.CreateICmpEQ(shapeExpression, one);
trueBB = IGF.createBasicBlock("vanishing-tuple");
falseBB = IGF.createBasicBlock("actual-tuple");
IGF.Builder.CreateCondBr(isOne, trueBB, falseBB);
IGF.Builder.emitBlock(trueBB);
// If the length is 1, directly emit the metadata for the first pack element.
ArrayRef<ProtocolConformanceRef> conformances;
llvm::SmallVector<llvm::Value *, 2> wtables;
auto *index = llvm::ConstantInt::get(IGF.IGM.SizeTy, 0);
auto *value = emitTypeMetadataPackElementRef(
IGF, packType, conformances, index, request, wtables);
// FIXME: Should emitTypeMetadataPackElementRef() preserve the dynamic state?
auto response = MetadataResponse::forBounded(
value, request.getStaticLowerBoundOnResponseState());
response.ensureDynamicState(IGF);
unwrapped = response.combine(IGF);
unwrappedBB = IGF.Builder.GetInsertBlock();
assert(wtables.empty());
restBB = IGF.createBasicBlock("tuple-rest");
IGF.Builder.CreateBr(restBB);
IGF.Builder.emitBlock(falseBB);
}
llvm::CallInst *call = nullptr;
{
ConditionalDominanceScope scope(IGF);
std::optional<StackAddress> labelString =
emitDynamicTupleTypeLabels(IGF, type, packType, shapeExpression);
// Otherwise, we know that either statically or dynamically, we have more than
// one element. Emit the pack.
llvm::Value *shape;
StackAddress addr;
std::tie(addr, shape) =
emitTypeMetadataPack(IGF, packType, MetadataState::Abstract);
auto *pointerToFirst = IGF.Builder.CreatePointerCast(
addr.getAddressPointer(), IGF.IGM.TypeMetadataPtrPtrTy);
auto *flags = shapeExpression;
if (labelString) {
flags = IGF.Builder.CreateOr(flags, llvm::ConstantInt::get(IGF.IGM.SizeTy,
TupleTypeFlags().withNonConstantLabels(true).getIntValue()));
}
// Call swift_getTupleMetadata().
llvm::Value *args[] = {
request.get(IGF),
flags,
pointerToFirst,
(labelString
? labelString->getAddress().getAddress()
: llvm::ConstantPointerNull::get(IGF.IGM.Int8PtrTy)),
llvm::ConstantPointerNull::get(IGF.IGM.WitnessTablePtrTy) // proposed
};
call = IGF.Builder.CreateCall(
IGF.IGM.getGetTupleMetadataFunctionPointer(), args);
call->setCallingConv(IGF.IGM.SwiftCC);
call->setDoesNotThrow();
cleanupTypeMetadataPack(IGF, addr, shape);
if (labelString)
IGF.emitDeallocateDynamicAlloca(*labelString);
}
// Control flow join with the one-element case.
llvm::Value *result = nullptr;
if (unwrapped != nullptr) {
IGF.Builder.CreateBr(restBB);
IGF.Builder.emitBlock(restBB);
auto *phi = IGF.Builder.CreatePHI(IGF.IGM.TypeMetadataResponseTy, 2);
phi->addIncoming(unwrapped, unwrappedBB);
phi->addIncoming(call, call->getParent());
result = phi;
} else {
result = call;
}
return MetadataResponse::handle(IGF, request, result);
}
static MetadataResponse emitFixedArrayMetadataRef(IRGenFunction &IGF,
CanBuiltinFixedArrayType type,
DynamicMetadataRequest request) {
if (type->isFixedNegativeSize()
|| type->getFixedInhabitedSize() == 0) {
// Empty or negative-sized arrays are empty types.
return MetadataResponse::forComplete(
emitEmptyTupleTypeMetadataRef(IGF.IGM));
}
auto call = IGF.Builder.CreateCall(
IGF.IGM.getGetFixedArrayTypeMetadataFunctionPointer(),
{request.get(IGF),
IGF.emitValueGenericRef(type->getSize()),
IGF.emitTypeMetadataRef(type->getElementType(), MetadataState::Abstract)
.getMetadata()});
call->setCallingConv(IGF.IGM.SwiftCC);
call->setDoesNotThrow();
return MetadataResponse::handle(IGF, request, call);
}
static MetadataResponse emitTupleTypeMetadataRef(IRGenFunction &IGF,
CanTupleType type,
DynamicMetadataRequest request) {
if (IGF.IGM.Context.LangOpts.hasFeature(Feature::EmbeddedExistentials)) {
return MetadataResponse::forComplete(IGF.IGM.getAddrOfTypeMetadata(type));
}
if (type->containsPackExpansionType())
return emitDynamicTupleTypeMetadataRef(IGF, type, request);
auto getElementMetadata = [&](CanType type) {
// Just request the elements to be abstract so that we can always build
// the metadata.
// TODO: if we have a collector, or if this is a blocking request, maybe
// we should build a stronger request?
return IGF.emitTypeMetadataRef(type, MetadataState::Abstract).getMetadata();
};
switch (type->getNumElements()) {
case 0:
return MetadataResponse::forComplete(
emitEmptyTupleTypeMetadataRef(IGF.IGM));
case 1:
// A singleton tuple is isomorphic to its element type.
return IGF.emitTypeMetadataRef(type.getElementType(0), request);
case 2: {
auto elt0Metadata = getElementMetadata(type.getElementType(0));
auto elt1Metadata = getElementMetadata(type.getElementType(1));
llvm::Value *args[] = {
request.get(IGF),
elt0Metadata, elt1Metadata,
getTupleLabelsString(IGF.IGM, type),
llvm::ConstantPointerNull::get(IGF.IGM.WitnessTablePtrTy) // proposed
};
auto call = IGF.Builder.CreateCall(
IGF.IGM.getGetTupleMetadata2FunctionPointer(), args);
call->setCallingConv(IGF.IGM.SwiftCC);
call->setDoesNotThrow();
return MetadataResponse::handle(IGF, request, call);
}
case 3: {
auto elt0Metadata = getElementMetadata(type.getElementType(0));
auto elt1Metadata = getElementMetadata(type.getElementType(1));
auto elt2Metadata = getElementMetadata(type.getElementType(2));
llvm::Value *args[] = {
request.get(IGF),
elt0Metadata, elt1Metadata, elt2Metadata,
getTupleLabelsString(IGF.IGM, type),
llvm::ConstantPointerNull::get(IGF.IGM.WitnessTablePtrTy) // proposed
};
auto call = IGF.Builder.CreateCall(
IGF.IGM.getGetTupleMetadata3FunctionPointer(), args);
call->setCallingConv(IGF.IGM.SwiftCC);
call->setDoesNotThrow();
return MetadataResponse::handle(IGF, request, call);
}
default:
return emitDynamicTupleTypeMetadataRef(IGF, type, request);
}
}
static Address createGenericArgumentsArray(IRGenFunction &IGF,
ArrayRef<llvm::Value *> args) {
// Allocate an array to pass the arguments.
auto argsBufferTy = llvm::ArrayType::get(IGF.IGM.Int8PtrTy, args.size());
auto argsBuffer =
IGF.createAlloca(argsBufferTy, IGF.IGM.getPointerAlignment());
// Mark the beginning of the array lifetime.
IGF.Builder.CreateLifetimeStart(argsBuffer,
IGF.IGM.getPointerSize() * args.size());
// Fill in the buffer.
for (unsigned i : indices(args)) {
Address elt = IGF.Builder.CreateStructGEP(argsBuffer, i,
IGF.IGM.getPointerSize() * i);
auto *arg = IGF.Builder.CreateBitOrPointerCast(args[i], IGF.IGM.Int8PtrTy);
IGF.Builder.CreateStore(arg, elt);
}
return argsBuffer;
}
static void destroyGenericArgumentsArray(IRGenFunction &IGF,
Address argsBuffer,
ArrayRef<llvm::Value *> args) {
IGF.Builder.CreateLifetimeEnd(argsBuffer,
IGF.IGM.getPointerSize() * args.size());
}
static llvm::Value *getFunctionParameterRef(IRGenFunction &IGF,
AnyFunctionType::CanParam param) {
auto type = param.getPlainType()->getCanonicalType();
return IGF.emitAbstractTypeMetadataRef(type);
}
/// Mapping type-level parameter flags to ABI parameter flags.
ParameterFlags irgen::getABIParameterFlags(ParameterTypeFlags flags) {
return ParameterFlags()
.withOwnership(asParameterOwnership(flags.getValueOwnership()))
.withVariadic(flags.isVariadic())
.withAutoClosure(flags.isAutoClosure())
.withNoDerivative(flags.isNoDerivative())
.withIsolated(flags.isIsolated())
.withSending(flags.isSending());
}
static std::pair<FunctionTypeFlags, ExtendedFunctionTypeFlags>
getFunctionTypeFlags(CanFunctionType type) {
bool hasParameterFlags = false;
for (auto param : type.getParams()) {
if (!getABIParameterFlags(param.getParameterFlags()).isNone()) {
hasParameterFlags = true;
break;
}
}
// Map the convention to a runtime metadata value.
FunctionMetadataConvention metadataConvention;
bool isEscaping = false;
switch (type->getRepresentation()) {
case FunctionTypeRepresentation::Swift:
metadataConvention = FunctionMetadataConvention::Swift;
isEscaping = !type->isNoEscape();
break;
case FunctionTypeRepresentation::Thin:
metadataConvention = FunctionMetadataConvention::Thin;
break;
case FunctionTypeRepresentation::Block:
metadataConvention = FunctionMetadataConvention::Block;
break;
case FunctionTypeRepresentation::CFunctionPointer:
metadataConvention = FunctionMetadataConvention::CFunctionPointer;
break;
}
// Compute the set of suppressed protocols.
InvertibleProtocolSet InvertedProtocols;
for (auto invertibleKind : InvertibleProtocolSet::allKnown()) {
switch (invertibleKind) {
case InvertibleProtocolKind::Copyable: {
// If the function type is noncopyable, note that in the suppressed
// protocols.
auto proto =
type->getASTContext().getProtocol(KnownProtocolKind::Copyable);
if (proto && lookupConformance(type, proto).isInvalid())
InvertedProtocols.insert(invertibleKind);
break;
}
case InvertibleProtocolKind::Escapable:
// We intentionally do not record the "escapable" bit here, because it's
// already in the normal function type flags. The runtime will
// introduce it as necessary.
break;
}
}
auto isolation = type->getIsolation();
auto extFlags = ExtendedFunctionTypeFlags()
.withTypedThrows(!type->getThrownError().isNull())
.withSendingResult(type->hasSendingResult())
.withInvertedProtocols(InvertedProtocols);
if (isolation.isErased())
extFlags = extFlags.withIsolatedAny();
if (isolation.isNonIsolatedCaller())
extFlags = extFlags.withNonIsolatedCaller();
auto flags = FunctionTypeFlags()
.withConvention(metadataConvention)
.withAsync(type->isAsync())
.withSendable(type->isSendable())
.withThrows(type->isThrowing())
.withParameterFlags(hasParameterFlags)
.withEscaping(isEscaping)
.withDifferentiable(type->isDifferentiable())
.withGlobalActor(isolation.isGlobalActor())
.withExtendedFlags(extFlags.getIntValue() != 0);
return std::make_pair(flags, extFlags);
}
namespace {
struct FunctionTypeMetadataParamInfo {
StackAddress parameters;
StackAddress paramFlags;
unsigned numParams;
};
}
static FunctionTypeMetadataParamInfo
emitFunctionTypeMetadataParams(IRGenFunction &IGF,
AnyFunctionType::CanParamArrayRef params,
FunctionTypeFlags flags,
DynamicMetadataRequest request,
SmallVectorImpl<llvm::Value *> &arguments) {
FunctionTypeMetadataParamInfo info;
info.numParams = params.size();
ConstantInitBuilder paramFlags(IGF.IGM);
auto flagsArr = paramFlags.beginArray();
if (!params.empty()) {
auto arrayTy =
llvm::ArrayType::get(IGF.IGM.TypeMetadataPtrTy, info.numParams);
info.parameters = StackAddress(IGF.createAlloca(
arrayTy, IGF.IGM.getTypeMetadataAlignment(), "function-parameters"));
IGF.Builder.CreateLifetimeStart(info.parameters.getAddress(),
IGF.IGM.getPointerSize() * info.numParams);
for (unsigned i : indices(params)) {
auto param = params[i];
auto paramFlags = getABIParameterFlags(param.getParameterFlags());
auto argPtr = IGF.Builder.CreateStructGEP(info.parameters.getAddress(), i,
IGF.IGM.getPointerSize());
auto *typeRef = getFunctionParameterRef(IGF, param);
IGF.Builder.CreateStore(typeRef, argPtr);
if (i == 0)
arguments.push_back(argPtr.getAddress());
flagsArr.addInt32(paramFlags.getIntValue());
}
} else {
auto parametersPtr = llvm::ConstantPointerNull::get(IGF.IGM.PtrTy);
arguments.push_back(parametersPtr);
}
auto *Int32Ptr = IGF.IGM.PtrTy;
if (flags.hasParameterFlags()) {
auto *flagsVar = flagsArr.finishAndCreateGlobal(
"parameter-flags", IGF.IGM.getPointerAlignment(),
/* constant */ true);
arguments.push_back(IGF.Builder.CreateBitCast(flagsVar, Int32Ptr));
} else {
flagsArr.abandon();
arguments.push_back(llvm::ConstantPointerNull::get(Int32Ptr));
}
return info;
}
static FunctionTypeMetadataParamInfo
emitDynamicFunctionTypeMetadataParams(IRGenFunction &IGF,
AnyFunctionType::CanParamArrayRef params,
FunctionTypeFlags flags,
CanPackType packType,
DynamicMetadataRequest request,
SmallVectorImpl<llvm::Value *> &arguments) {
assert(!params.empty());
FunctionTypeMetadataParamInfo info;
llvm::Value *shape;
std::tie(info.parameters, shape) = emitTypeMetadataPack(
IGF, packType, MetadataState::Abstract);
arguments.push_back(info.parameters.getAddress().getAddress());
if (flags.hasParameterFlags()) {
info.paramFlags = emitDynamicFunctionParameterFlags(
IGF, params, packType, shape);
arguments.push_back(info.paramFlags.getAddress().getAddress());
} else {
arguments.push_back(llvm::ConstantPointerNull::get(IGF.IGM.PtrTy));
}
return info;
}
static void cleanupFunctionTypeMetadataParams(IRGenFunction &IGF,
FunctionTypeMetadataParamInfo info) {
if (info.parameters.isValid()) {
if (info.parameters.getExtraInfo()) {
IGF.emitDeallocateDynamicAlloca(info.parameters);
} else {
IGF.Builder.CreateLifetimeEnd(info.parameters.getAddress(),
IGF.IGM.getPointerSize() * info.numParams);
}
}
}
static CanPackType getInducedPackType(AnyFunctionType::CanParamArrayRef params,
ASTContext &ctx) {
SmallVector<CanType, 2> elts;
for (auto param : params)
elts.push_back(param.getPlainType());
return CanPackType::get(ctx, elts);
}
static MetadataResponse emitFunctionTypeMetadataRef(IRGenFunction &IGF,
CanFunctionType type,
DynamicMetadataRequest request) {
auto result =
IGF.emitAbstractTypeMetadataRef(type->getResult()->getCanonicalType());
auto params = type.getParams();
bool hasPackExpansion = type->containsPackExpansionParam();
FunctionTypeFlags flags;
ExtendedFunctionTypeFlags extFlags;
std::tie(flags, extFlags) = getFunctionTypeFlags(type);
llvm::Value *flagsVal = nullptr;
llvm::Value *shapeExpression = nullptr;
CanPackType packType;
if (!hasPackExpansion) {
flags = flags.withNumParameters(params.size());
flagsVal = llvm::ConstantInt::get(IGF.IGM.SizeTy,
flags.getIntValue());
} else {
packType = getInducedPackType(type.getParams(), type->getASTContext());
auto *shapeExpression = IGF.emitPackShapeExpression(packType);
flagsVal = llvm::ConstantInt::get(IGF.IGM.SizeTy,
flags.getIntValue());
flagsVal = IGF.Builder.CreateOr(flagsVal, shapeExpression);
}
auto constructSimpleCall =
[&](llvm::SmallVectorImpl<llvm::Value *> &arguments)
-> FunctionPointer {
assert(!flags.hasParameterFlags());
assert(!shapeExpression);
arguments.push_back(flagsVal);
for (auto param : params) {
arguments.push_back(getFunctionParameterRef(IGF, param));
}
arguments.push_back(result);
switch (params.size()) {
case 0:
return IGF.IGM.getGetFunctionMetadata0FunctionPointer();
case 1:
return IGF.IGM.getGetFunctionMetadata1FunctionPointer();
case 2:
return IGF.IGM.getGetFunctionMetadata2FunctionPointer();
case 3:
return IGF.IGM.getGetFunctionMetadata3FunctionPointer();
default:
llvm_unreachable("supports only 1/2/3 parameter functions");
}
};
switch (params.size()) {
case 0:
case 1:
case 2:
case 3: {
if (!flags.hasParameterFlags() && !type->isDifferentiable() &&
!type->getGlobalActor() && !hasPackExpansion &&
!flags.hasExtendedFlags()) {
llvm::SmallVector<llvm::Value *, 8> arguments;
auto metadataFn = constructSimpleCall(arguments);
auto *call = IGF.Builder.CreateCall(metadataFn, arguments);
call->setDoesNotThrow();
return MetadataResponse::forComplete(call);
}
// If function type has parameter flags or is differentiable or has a
// global actor, emit the most general function to retrieve them.
LLVM_FALLTHROUGH;
}
default:
llvm::SmallVector<llvm::Value *, 8> arguments;
arguments.push_back(flagsVal);
llvm::Value *diffKindVal = nullptr;
{
FunctionMetadataDifferentiabilityKind metadataDifferentiabilityKind;
switch (type->getDifferentiabilityKind()) {
case DifferentiabilityKind::NonDifferentiable:
metadataDifferentiabilityKind =
FunctionMetadataDifferentiabilityKind::NonDifferentiable;
break;
case DifferentiabilityKind::Normal:
metadataDifferentiabilityKind =
FunctionMetadataDifferentiabilityKind::Normal;
break;
case DifferentiabilityKind::Linear:
metadataDifferentiabilityKind =
FunctionMetadataDifferentiabilityKind::Linear;
break;
case DifferentiabilityKind::Forward:
metadataDifferentiabilityKind =
FunctionMetadataDifferentiabilityKind::Forward;
break;
case DifferentiabilityKind::Reverse:
metadataDifferentiabilityKind =
FunctionMetadataDifferentiabilityKind::Reverse;
break;
}
if (type->isDifferentiable()) {
assert(metadataDifferentiabilityKind.isDifferentiable());
diffKindVal = llvm::ConstantInt::get(
IGF.IGM.SizeTy, metadataDifferentiabilityKind.getIntValue());
} else if (type->getGlobalActor() || flags.hasExtendedFlags()) {
diffKindVal = llvm::ConstantInt::get(
IGF.IGM.SizeTy,
FunctionMetadataDifferentiabilityKind::NonDifferentiable);
}
}
if (diffKindVal) {
arguments.push_back(diffKindVal);
}
FunctionTypeMetadataParamInfo info;
if (!hasPackExpansion) {
assert(!shapeExpression);
info = emitFunctionTypeMetadataParams(IGF, params, flags, request,
arguments);
} else {
info = emitDynamicFunctionTypeMetadataParams(IGF, params, flags, packType,
request, arguments);
}
arguments.push_back(result);
if (Type globalActor = type->getGlobalActor()) {
arguments.push_back(
IGF.emitAbstractTypeMetadataRef(globalActor->getCanonicalType()));
} else if (flags.hasExtendedFlags()) {
arguments.push_back(llvm::ConstantPointerNull::get(IGF.IGM.TypeMetadataPtrTy));
}
if (flags.hasExtendedFlags()) {
auto extFlagsVal = llvm::ConstantInt::get(IGF.IGM.Int32Ty,
extFlags.getIntValue());
arguments.push_back(extFlagsVal);
}
if (Type thrownError = type->getThrownError()) {
arguments.push_back(
IGF.emitAbstractTypeMetadataRef(thrownError->getCanonicalType()));
} else if (flags.hasExtendedFlags()) {
arguments.push_back(llvm::ConstantPointerNull::get(IGF.IGM.TypeMetadataPtrTy));
}
auto getMetadataFn =
flags.hasExtendedFlags()
? IGF.IGM.getGetFunctionMetadataExtendedFunctionPointer()
: type->getGlobalActor()
? (IGF.IGM.isConcurrencyAvailable()
? IGF.IGM
.getGetFunctionMetadataGlobalActorFunctionPointer()
: IGF.IGM
.getGetFunctionMetadataGlobalActorBackDeployFunctionPointer())
: type->isDifferentiable()
? IGF.IGM.getGetFunctionMetadataDifferentiableFunctionPointer()
: IGF.IGM.getGetFunctionMetadataFunctionPointer();
auto call = IGF.Builder.CreateCall(getMetadataFn, arguments);
call->setDoesNotThrow();
cleanupFunctionTypeMetadataParams(IGF, info);
return MetadataResponse::forComplete(call);
}
}
namespace {
/// A visitor class for emitting a reference to a metatype object.
/// This implements a "raw" access, useful for implementing cache
/// functions or for implementing dependent accesses.
///
/// If the access requires runtime initialization, that initialization
/// must be dependency-ordered-before any load that carries a dependency
/// from the resulting metadata pointer.
class EmitTypeMetadataRef
: public CanTypeVisitor<EmitTypeMetadataRef, MetadataResponse,
DynamicMetadataRequest> {
private:
IRGenFunction &IGF;
public:
EmitTypeMetadataRef(IRGenFunction &IGF) : IGF(IGF) {}
MetadataResponse emitDirectMetadataRef(CanType type) {
return MetadataResponse::forComplete(IGF.IGM.getAddrOfTypeMetadata(type));
}
/// The given type should use opaque type info. We assume that
/// the runtime always provides an entry for such a type.
MetadataResponse visitBuiltinIntegerType(CanBuiltinIntegerType type,
DynamicMetadataRequest request) {
// If the size isn't a power up two, round up to the next power of two
// and use the corresponding integer type.
auto &opaqueTI = cast<FixedTypeInfo>(IGF.IGM.getTypeInfoForLowered(type));
unsigned numBits = opaqueTI.getFixedSize().getValueInBits();
if (!llvm::isPowerOf2_32(numBits)) {
numBits = llvm::NextPowerOf2(numBits);
type = CanBuiltinIntegerType(
BuiltinIntegerType::get(numBits, IGF.IGM.Context));
}
return emitDirectMetadataRef(type);
}
MetadataResponse
visitBuiltinIntegerLiteralType(CanBuiltinIntegerLiteralType type,
DynamicMetadataRequest request) {
return emitDirectMetadataRef(type);
}
MetadataResponse
visitBuiltinNativeObjectType(CanBuiltinNativeObjectType type,
DynamicMetadataRequest request) {
return emitDirectMetadataRef(type);
}
MetadataResponse visitBuiltinImplicitActor(CanBuiltinImplicitActorType type,
DynamicMetadataRequest request) {
return emitDirectMetadataRef(type);
}
MetadataResponse
visitBuiltinBridgeObjectType(CanBuiltinBridgeObjectType type,
DynamicMetadataRequest request) {
return emitDirectMetadataRef(type);
}
MetadataResponse
visitBuiltinUnsafeValueBufferType(CanBuiltinUnsafeValueBufferType type,
DynamicMetadataRequest request) {
return emitDirectMetadataRef(type);
}
MetadataResponse
visitBuiltinRawPointerType(CanBuiltinRawPointerType type,
DynamicMetadataRequest request) {
return emitDirectMetadataRef(type);
}
MetadataResponse
visitBuiltinRawUnsafeContinuationType(CanBuiltinRawUnsafeContinuationType type,
DynamicMetadataRequest request) {
return emitDirectMetadataRef(type);
}
MetadataResponse
visitBuiltinJobType(CanBuiltinJobType type,
DynamicMetadataRequest request) {
return emitDirectMetadataRef(type);
}
MetadataResponse
visitBuiltinExecutorType(CanBuiltinExecutorType type,
DynamicMetadataRequest request) {
return emitDirectMetadataRef(type);
}
MetadataResponse
visitBuiltinImplicitActorType(CanBuiltinImplicitActorType type,
DynamicMetadataRequest request) {
return emitDirectMetadataRef(type);
}
MetadataResponse
visitBuiltinPackIndexType(CanBuiltinPackIndexType type,
DynamicMetadataRequest request) {
llvm_unreachable("metadata unsupported for this builtin type");
}
MetadataResponse
visitBuiltinFloatType(CanBuiltinFloatType type,
DynamicMetadataRequest request) {
return emitDirectMetadataRef(type);
}
MetadataResponse
visitBuiltinVectorType(CanBuiltinVectorType type,
DynamicMetadataRequest request) {
return emitDirectMetadataRef(type);
}
MetadataResponse
visitBuiltinUnboundGenericType(CanBuiltinUnboundGenericType type,
DynamicMetadataRequest request) {
llvm_unreachable("not a real type");
}
MetadataResponse
visitBuiltinFixedArrayType(CanBuiltinFixedArrayType type,
DynamicMetadataRequest request) {
if (auto cached = tryGetLocal(type, request))
return cached;
auto response = emitFixedArrayMetadataRef(IGF, type, request);
return setLocal(type, response);
}
MetadataResponse visitNominalType(CanNominalType type,
DynamicMetadataRequest request) {
assert(!type->isExistentialType());
return emitNominalMetadataRef(IGF, type->getDecl(), type, request);
}
MetadataResponse visitBoundGenericType(CanBoundGenericType type,
DynamicMetadataRequest request) {
assert(!type->isExistentialType());
return emitNominalMetadataRef(IGF, type->getDecl(), type, request);
}
MetadataResponse visitPackType(CanPackType type,
DynamicMetadataRequest request) {
return emitTypeMetadataPackRef(IGF, type, request);
}
MetadataResponse visitSILPackType(CanSILPackType type,
DynamicMetadataRequest request) {
llvm_unreachable("cannot emit metadata for a SIL pack type");
}
MetadataResponse visitPackExpansionType(CanPackExpansionType type,
DynamicMetadataRequest request) {
llvm_unreachable("cannot emit metadata for a pack expansion by itself");
}
MetadataResponse visitPackElementType(CanPackElementType type,
DynamicMetadataRequest request) {
llvm_unreachable("cannot emit metadata for a pack element by itself");
}
MetadataResponse visitTupleType(CanTupleType type,
DynamicMetadataRequest request) {
if (auto cached = tryGetLocal(type, request))
return cached;
auto response = emitTupleTypeMetadataRef(IGF, type, request);
return setLocal(type, response);
}
MetadataResponse visitGenericFunctionType(CanGenericFunctionType type,
DynamicMetadataRequest request) {
IGF.unimplemented(SourceLoc(),
"metadata ref for generic function type");
return MetadataResponse::getUndef(IGF);
}
MetadataResponse visitFunctionType(CanFunctionType type,
DynamicMetadataRequest request) {
if (auto metatype = tryGetLocal(type, request))
return metatype;
auto response = emitFunctionTypeMetadataRef(IGF, type, request);
return setLocal(type, response);
}
MetadataResponse visitMetatypeType(CanMetatypeType type,
DynamicMetadataRequest request) {
// FIXME: We shouldn't accept a lowered metatype here, but we need to
// represent Optional<@objc_metatype T.Type> as an AST type for ABI
// reasons.
// assert(!type->hasRepresentation()
// && "should not be asking for a representation-specific metatype "
// "metadata");
if (auto metatype = tryGetLocal(type, request))
return metatype;
auto instMetadata =
IGF.emitAbstractTypeMetadataRef(type.getInstanceType());
auto fn = IGF.IGM.getGetMetatypeMetadataFunctionPointer();
auto call = IGF.Builder.CreateCall(fn, instMetadata);
call->setDoesNotThrow();
return setLocal(type, MetadataResponse::forComplete(call));
}
MetadataResponse
visitExistentialMetatypeType(CanExistentialMetatypeType type,
DynamicMetadataRequest request) {
if (auto metatype = tryGetLocal(type, request))
return metatype;
// Existential metatypes for extended existentials don't use
// ExistentialMetatypeMetadata.
if (type->getExistentialLayout().needsExtendedShape()) {
auto metadata = emitExtendedExistentialTypeMetadata(type);
return setLocal(type, MetadataResponse::forComplete(metadata));
}
// Otherwise, emit the instance type metadata and wrap it in an
// ExistentialMetatypeMetadata.
auto instMetadata =
IGF.emitAbstractTypeMetadataRef(type.getExistentialInstanceType());
auto fn = IGF.IGM.getGetExistentialMetatypeMetadataFunctionPointer();
auto call = IGF.Builder.CreateCall(fn, instMetadata);
call->setDoesNotThrow();
return setLocal(type, MetadataResponse::forComplete(call));
}
MetadataResponse visitModuleType(CanModuleType type,
DynamicMetadataRequest request) {
IGF.unimplemented(SourceLoc(), "metadata ref for module type");
return MetadataResponse::getUndef(IGF);
}
MetadataResponse visitDynamicSelfType(CanDynamicSelfType type,
DynamicMetadataRequest request) {
return MetadataResponse::forComplete(IGF.getDynamicSelfMetadata());
}
MetadataResponse visitExistentialType(CanExistentialType type,
DynamicMetadataRequest request) {
if (auto *PCT =
type->getConstraintType()->getAs<ProtocolCompositionType>()) {
auto constraintTy = PCT->withoutMarkerProtocols();
if (constraintTy->getClassOrBoundGenericClass()) {
auto response = IGF.emitTypeMetadataRef(
constraintTy->getCanonicalType(), request);
return setLocal(type, response);
}
}
if (auto metadata = tryGetLocal(type, request))
return metadata;
// These currently aren't wrapped in ExistentialType, but we
// can future-proof against them ending up in this path.
if (type->isAny() || type->isAnyObject())
return emitSingletonExistentialTypeMetadata(type);
auto metadata = emitExistentialTypeMetadata(type);
return setLocal(type, MetadataResponse::forComplete(metadata));
}
MetadataResponse emitSingletonExistentialTypeMetadata(CanType type) {
assert(type->isAny() || type->isAnyObject());
// Any and AnyObject have singleton metadata in the runtime.
llvm::Constant *singletonMetadata = nullptr;
if (type->isAny())
singletonMetadata = IGF.IGM.getAnyExistentialMetadata();
if (type->isAnyObject())
singletonMetadata = IGF.IGM.getAnyObjectExistentialMetadata();
llvm::Constant *indices[] = {
llvm::ConstantInt::get(IGF.IGM.Int32Ty, 0),
llvm::ConstantInt::get(IGF.IGM.Int32Ty, 1)
};
return MetadataResponse::forComplete(
llvm::ConstantExpr::getInBoundsGetElementPtr(
IGF.IGM.FullExistentialTypeMetadataStructTy, singletonMetadata, indices));
}
llvm::Value *emitExistentialTypeMetadata(CanExistentialType type) {
auto layout = type.getExistentialLayout();
if (!layout.getParameterizedProtocols().empty()) {
return emitExtendedExistentialTypeMetadata(type);
}
SmallVector<ProtocolDecl *, 4> protocols;
for (auto proto : layout.getProtocols()) {
if (!proto->isMarkerProtocol())
protocols.push_back(proto);
}
// Collect references to the protocol descriptors.
auto descriptorArrayTy
= llvm::ArrayType::get(IGF.IGM.ProtocolDescriptorRefTy,
protocols.size());
Address descriptorArray = IGF.createAlloca(descriptorArrayTy,
IGF.IGM.getPointerAlignment(),
"protocols");
IGF.Builder.CreateLifetimeStart(descriptorArray,
IGF.IGM.getPointerSize() * protocols.size());
descriptorArray = IGF.Builder.CreateElementBitCast(
descriptorArray, IGF.IGM.ProtocolDescriptorRefTy);
unsigned index = 0;
for (auto *protoDecl : protocols) {
llvm::Value *ref = emitProtocolDescriptorRef(IGF, protoDecl);
Address slot = IGF.Builder.CreateConstArrayGEP(descriptorArray,
index, IGF.IGM.getPointerSize());
IGF.Builder.CreateStore(ref, slot);
++index;
}
// Note: ProtocolClassConstraint::Class is 0, ::Any is 1.
auto classConstraint =
llvm::ConstantInt::get(IGF.IGM.Int1Ty,
!layout.requiresClass());
llvm::Value *superclassConstraint =
llvm::ConstantPointerNull::get(IGF.IGM.TypeMetadataPtrTy);
if (auto superclass = layout.explicitSuperclass) {
superclassConstraint = IGF.emitAbstractTypeMetadataRef(
CanType(superclass));
}
auto call = IGF.Builder.CreateCall(
IGF.IGM.getGetExistentialMetadataFunctionPointer(),
{classConstraint, superclassConstraint,
IGF.IGM.getSize(Size(protocols.size())),
descriptorArray.getAddress()});
call->setDoesNotThrow();
IGF.Builder.CreateLifetimeEnd(descriptorArray,
IGF.IGM.getPointerSize() * protocols.size());
return call;
}
llvm::Value *emitExtendedExistentialTypeMetadata(CanType type) {
assert(type.isAnyExistentialType());
auto shapeInfo = ExtendedExistentialTypeShapeInfo::get(type);
llvm::Constant *shape =
emitExtendedExistentialTypeShape(IGF.IGM, shapeInfo);
bool shapeIsUnique = shapeInfo.isUnique();
// Emit a reference to the extended existential shape,
// signed appropriately.
shape = llvm::ConstantExpr::getBitCast(shape, IGF.IGM.Int8PtrTy);
if (auto &schema = shapeIsUnique
? IGF.getOptions().PointerAuth.ExtendedExistentialTypeShape
: IGF.getOptions().PointerAuth.NonUniqueExtendedExistentialTypeShape) {
shape = IGF.IGM.getConstantSignedPointer(shape, schema,
PointerAuthEntity(),
/*address*/ nullptr);
}
// Emit the generalization arguments.
GenericArguments genericArgs;
Address argsBuffer;
llvm::Value *argsPointer;
if (shapeInfo.genSubs.empty()) {
argsPointer = llvm::UndefValue::get(IGF.IGM.Int8PtrPtrTy);
} else {
genericArgs.collect(IGF, shapeInfo.genSubs);
argsBuffer = createGenericArgumentsArray(IGF, genericArgs.Values);
argsPointer =
IGF.Builder.CreateBitCast(argsBuffer.getAddress(),
IGF.IGM.Int8PtrPtrTy);
}
// Call the metadata access function in the runtime.
auto call = IGF.Builder.CreateCall(
shapeIsUnique
? IGF.IGM
.getGetExtendedExistentialTypeMetadataUniqueFunctionPointer()
: IGF.IGM.getGetExtendedExistentialTypeMetadataFunctionPointer(),
{shape, argsPointer});
call->setDoesNotThrow();
// Destroy the generalization arguments array, if we made one.
if (!shapeInfo.genSubs.empty())
destroyGenericArgumentsArray(IGF, argsBuffer, genericArgs.Values);
return call;
}
MetadataResponse visitProtocolType(CanProtocolType type,
DynamicMetadataRequest request) {
assert(false && "constraint type should be wrapped in existential type");
CanExistentialType existential(
ExistentialType::get(type)->castTo<ExistentialType>());
if (auto metatype = tryGetLocal(existential, request))
return metatype;
auto metadata = emitExistentialTypeMetadata(existential);
return setLocal(type, MetadataResponse::forComplete(metadata));
}
MetadataResponse
visitProtocolCompositionType(CanProtocolCompositionType type,
DynamicMetadataRequest request) {
if (type->isAny() || type->isAnyObject())
return emitSingletonExistentialTypeMetadata(type);
assert(false && "constraint type should be wrapped in existential type");
CanExistentialType existential(
ExistentialType::get(type)->castTo<ExistentialType>());
if (auto metatype = tryGetLocal(existential, request))
return metatype;
auto metadata = emitExistentialTypeMetadata(existential);
return setLocal(type, MetadataResponse::forComplete(metadata));
}
MetadataResponse
visitParameterizedProtocolType(CanParameterizedProtocolType type,
DynamicMetadataRequest request) {
llvm_unreachable("constraint type should be wrapped in existential type");
}
MetadataResponse visitReferenceStorageType(CanReferenceStorageType type,
DynamicMetadataRequest request) {
llvm_unreachable("reference storage type should have been converted by "
"SILGen");
}
MetadataResponse visitSILFunctionType(CanSILFunctionType type,
DynamicMetadataRequest request) {
llvm_unreachable("should not be asking for metadata of a lowered SIL "
"function type--SILGen should have used the AST type");
}
MetadataResponse visitSILTokenType(CanSILTokenType type,
DynamicMetadataRequest request) {
llvm_unreachable("should not be asking for metadata of a SILToken type");
}
MetadataResponse
visitSILMoveOnlyWrappedType(CanSILMoveOnlyWrappedType type,
DynamicMetadataRequest request) {
llvm_unreachable("should not be asking for metadata of a move only type");
}
MetadataResponse visitArchetypeType(CanArchetypeType type,
DynamicMetadataRequest request) {
if (auto packArchetypeType = dyn_cast<PackArchetypeType>(type))
return emitPackArchetypeMetadataRef(IGF, packArchetypeType, request);
return emitArchetypeTypeMetadataRef(IGF, type, request);
}
MetadataResponse visitGenericTypeParamType(CanGenericTypeParamType type,
DynamicMetadataRequest request) {
llvm_unreachable("dependent type should have been substituted by Sema or SILGen");
}
MetadataResponse visitDependentMemberType(CanDependentMemberType type,
DynamicMetadataRequest request) {
llvm_unreachable("dependent type should have been substituted by Sema or SILGen");
}
MetadataResponse visitLValueType(CanLValueType type,
DynamicMetadataRequest request) {
llvm_unreachable("lvalue type should have been lowered by SILGen");
}
MetadataResponse visitInOutType(CanInOutType type,
DynamicMetadataRequest request) {
llvm_unreachable("inout type should have been lowered by SILGen");
}
MetadataResponse visitErrorType(CanErrorType type,
DynamicMetadataRequest request) {
llvm_unreachable("error type should not appear in IRGen");
}
MetadataResponse visitIntegerType(CanIntegerType type,
DynamicMetadataRequest request) {
llvm_unreachable("integer type should not appear in IRGen");
}
// These types are artificial types used for internal purposes and
// should never appear in a metadata request.
#define INTERNAL_ONLY_TYPE(ID) \
MetadataResponse visit##ID##Type(Can##ID##Type type, \
DynamicMetadataRequest request) { \
llvm_unreachable("cannot ask for metadata of compiler-internal type"); \
}
INTERNAL_ONLY_TYPE(SILBlockStorage)
INTERNAL_ONLY_TYPE(BuiltinDefaultActorStorage)
INTERNAL_ONLY_TYPE(BuiltinNonDefaultDistributedActorStorage)
#undef INTERNAL_ONLY_TYPE
MetadataResponse visitSILBoxType(CanSILBoxType type,
DynamicMetadataRequest request) {
// The Builtin.NativeObject metadata can stand in for boxes.
return emitDirectMetadataRef(type->getASTContext().TheNativeObjectType);
}
/// Try to find the metatype in local data.
MetadataResponse tryGetLocal(CanType type, DynamicMetadataRequest request) {
return IGF.tryGetLocalTypeMetadata(type, request);
}
/// Set the metatype in local data.
MetadataResponse setLocal(CanType type, MetadataResponse response) {
IGF.setScopedLocalTypeMetadata(type, response);
return response;
}
};
} // end anonymous namespace
/// Emit a type metadata reference without using an accessor function.
static MetadataResponse emitDirectTypeMetadataRef(IRGenFunction &IGF,
CanType type,
DynamicMetadataRequest request) {
return EmitTypeMetadataRef(IGF).visit(type, request);
}
static bool isLoadFrom(llvm::Value *value, Address address) {
if (auto load = dyn_cast<llvm::LoadInst>(value)) {
return load->getOperand(0) == address.getAddress();
}
return false;
}
/// Emit the body of a cache accessor.
///
/// If cacheVariable is null, we perform the direct access every time.
/// This is used for metadata accessors that come about due to resilience,
/// where the direct access is completely trivial.
void irgen::emitCacheAccessFunction(IRGenModule &IGM, llvm::Function *accessor,
llvm::Constant *cacheVariable,
llvm::Type *cacheTy,
CacheStrategy cacheStrategy,
CacheEmitter getValue, bool isReadNone) {
assert((cacheStrategy == CacheStrategy::None) == (cacheVariable == nullptr));
accessor->setDoesNotThrow();
// Don't inline cache functions, since doing so has little impact on
// overall performance.
accessor->addFnAttr(llvm::Attribute::NoInline);
// Accessor functions don't need frame pointers.
IGM.setHasNoFramePointer(accessor);
IGM.setColocateMetadataSection(accessor);
// This function is logically 'readnone': the caller does not need
// to reason about any side effects or stores it might perform.
if (isReadNone)
accessor->setDoesNotAccessMemory();
IRGenFunction IGF(IGM, accessor);
if (IGM.DebugInfo)
IGM.DebugInfo->emitArtificialFunction(IGF, accessor);
auto parameters = IGF.collectParameters();
bool returnsResponse =
(accessor->getReturnType() == IGM.TypeMetadataResponseTy);
switch (cacheStrategy) {
// If there's no cache variable, just perform the direct access.
case CacheStrategy::None: {
auto response = getValue(IGF, parameters);
llvm::Value *ret;
if (returnsResponse) {
response.ensureDynamicState(IGF);
ret = response.combine(IGF);
} else {
assert(response.isStaticallyKnownComplete());
ret = response.getMetadata();
}
IGF.Builder.CreateRet(ret);
return;
}
// For in-place initialization, drill to the first element of the cache.
case CacheStrategy::SingletonInitialization:
cacheVariable = llvm::ConstantExpr::getBitCast(cacheVariable, IGM.PtrTy);
break;
case CacheStrategy::Lazy:
break;
}
llvm::Constant *null =
llvm::ConstantPointerNull::get(cast<llvm::PointerType>(cacheTy));
Address cache(cacheVariable, cacheTy, IGM.getPointerAlignment());
// Okay, first thing, check the cache variable.
//
// Conceptually, this needs to establish memory ordering with the
// store we do later in the function: if the metadata value is
// non-null, we must be able to see any stores performed by the
// initialization of the metadata. However, any attempt to read
// from the metadata will be address-dependent on the loaded
// metadata pointer, which is sufficient to provide adequate
// memory ordering guarantees on all the platforms we care about:
// ARM has special rules about address dependencies, and x86's
// memory ordering is strong enough to guarantee the visibility
// even without the address dependency.
//
// And we do not need to worry about the compiler because the
// address dependency naturally forces an order to the memory
// accesses.
//
// Therefore, we can perform a completely naked load here.
// FIXME: Technically should be "consume", but that introduces barriers in the
// current LLVM ARM backend.
auto load = IGF.Builder.CreateLoad(cache);
// Make this barrier explicit when building for TSan to avoid false positives.
if (IGM.IRGen.Opts.Sanitizers & SanitizerKind::Thread)
load->setOrdering(llvm::AtomicOrdering::Acquire);
// Compare the load result against null.
auto isNullBB = IGF.createBasicBlock("cacheIsNull");
auto contBB = IGF.createBasicBlock("cont");
llvm::Value *comparison = IGF.Builder.CreateICmpEQ(load, null);
IGF.Builder.CreateCondBr(comparison, isNullBB, contBB);
auto loadBB = IGF.Builder.GetInsertBlock();
// If the load yielded null, emit the type metadata.
IGF.Builder.emitBlock(isNullBB);
MetadataResponse response = getValue(IGF, parameters);
// Ensure that we have a dynamically-correct state value.
llvm::Constant *completedState = nullptr;
if (returnsResponse) {
completedState = MetadataResponse::getCompletedState(IGM);
response.ensureDynamicState(IGF);
}
auto directResult = response.getMetadata();
// Emit a branch around the caching code if we're working with responses
// and the fetched result is not complete. We can avoid doing this if
// the response is statically known to be complete, and we don't need to
// do it if this is an in-place initialization cache because the store
// is done within the runtime.
llvm::BasicBlock *completionCheckBB = nullptr;
llvm::Value *directState = nullptr;
if (cacheStrategy == CacheStrategy::SingletonInitialization) {
directState = response.getDynamicState();
completionCheckBB = IGF.Builder.GetInsertBlock();
} else {
if (returnsResponse &&
!response.isStaticallyKnownComplete()) {
completionCheckBB = IGF.Builder.GetInsertBlock();
directState = response.getDynamicState();
auto isCompleteBB = IGF.createBasicBlock("is_complete");
auto isComplete =
IGF.Builder.CreateICmpEQ(directState, completedState);
IGF.Builder.CreateCondBr(isComplete, isCompleteBB, contBB);
IGF.Builder.emitBlock(isCompleteBB);
}
// Store it back to the cache variable. This needs to be a store-release
// because it needs to propagate memory visibility to the other threads
// that can access the cache: the initializing stores might be visible
// to this thread, but they aren't transitively guaranteed to be visible
// to other threads unless this is a store-release.
//
// However, we can skip this if the value was actually loaded from the
// cache. This is a simple, if hacky, peephole that's useful for the
// code in emitOnceTypeMetadataAccessFunctionBody.
if (!isLoadFrom(directResult, cache)) {
IGF.Builder.CreateStore(directResult, cache)
->setAtomic(llvm::AtomicOrdering::Release);
}
}
IGF.Builder.CreateBr(contBB);
auto storeBB = IGF.Builder.GetInsertBlock();
// Emit the continuation block.
IGF.Builder.emitBlock(contBB);
// Add a phi for the metadata value.
auto phi = IGF.Builder.CreatePHI(null->getType(), 3);
phi->addIncoming(load, loadBB);
phi->addIncoming(directResult, storeBB);
// Add a phi for the metadata state if we're returning a response.
llvm::Value *stateToReturn = nullptr;
if (directState) {
if (storeBB != completionCheckBB)
phi->addIncoming(directResult, completionCheckBB);
auto completionStatePHI = IGF.Builder.CreatePHI(IGM.SizeTy, 3);
completionStatePHI->addIncoming(completedState, loadBB);
completionStatePHI->addIncoming(directState, completionCheckBB);
if (storeBB != completionCheckBB)
completionStatePHI->addIncoming(completedState, storeBB);
stateToReturn = completionStatePHI;
} else if (returnsResponse) {
stateToReturn = completedState;
}
// Build the return value.
llvm::Value *ret;
if (returnsResponse) {
ret = MetadataResponse(phi, stateToReturn, MetadataState::Abstract)
.combine(IGF);
} else {
ret = phi;
}
IGF.Builder.CreateRet(ret);
}
MetadataResponse IRGenFunction::emitGenericTypeMetadataAccessFunctionCall(
llvm::Function *accessFunction, ArrayRef<llvm::Value *> args,
DynamicMetadataRequest request, bool hasPacks) {
SmallVector<llvm::Value *, 8> callArgs;
// Add the metadata request argument.
callArgs.push_back(request.get(*this));
Address argsBuffer;
bool allocatedArgsBuffer = false;
if (args.size() > NumDirectGenericTypeMetadataAccessFunctionArgs) {
argsBuffer = createGenericArgumentsArray(*this, args);
allocatedArgsBuffer = true;
// Add the buffer to the call arguments.
callArgs.push_back(
Builder.CreateBitCast(argsBuffer.getAddress(), IGM.Int8PtrPtrTy));
} else {
callArgs.append(args.begin(), args.end());
}
auto call = Builder.CreateCall(accessFunction->getFunctionType(),
accessFunction, callArgs);
call->setDoesNotThrow();
call->setCallingConv(IGM.SwiftCC);
call->setMemoryEffects(hasPacks || allocatedArgsBuffer
? llvm::MemoryEffects::inaccessibleOrArgMemOnly()
: llvm::MemoryEffects::none());
// If we allocated a buffer for the arguments, end its lifetime.
if (allocatedArgsBuffer)
destroyGenericArgumentsArray(*this, argsBuffer, args);
return MetadataResponse::handle(*this, request, call);
}
MetadataResponse irgen::emitGenericTypeMetadataAccessFunction(
IRGenFunction &IGF, Explosion &params, NominalTypeDecl *nominal,
GenericArguments &genericArgs) {
auto &IGM = IGF.IGM;
llvm::Value *descriptor =
IGM.getAddrOfTypeContextDescriptor(nominal, RequireMetadata);
// Sign the descriptor.
auto schema = IGF.IGM.getOptions().PointerAuth.TypeDescriptorsAsArguments;
if (schema) {
auto authInfo = PointerAuthInfo::emit(
IGF, schema, nullptr,
PointerAuthEntity::Special::TypeDescriptorAsArgument);
descriptor = emitPointerAuthSign(IGF, descriptor, authInfo);
}
auto request = params.claimNext();
bool checkPrespecialized =
IGM.IRGen.metadataPrespecializationsForType(nominal).size() > 0;
auto numArguments = genericArgs.Types.size();
llvm::Value *result;
if (numArguments > NumDirectGenericTypeMetadataAccessFunctionArgs) {
// swift_getGenericMetadata's calling convention is already cleverly
// laid out to minimize the assembly language size of the thunk.
// The caller passed us an appropriate buffer with the arguments.
auto argsBuffer =
Address(params.claimNext(), IGM.Int8PtrTy, IGM.getPointerAlignment());
llvm::Value *arguments =
IGF.Builder.CreateBitCast(argsBuffer.getAddress(), IGM.Int8PtrTy);
// Make the call.
llvm::CallInst *call;
if (checkPrespecialized) {
call = IGF.Builder.CreateCall(
IGM.getGetCanonicalPrespecializedGenericMetadataFunctionPointer(),
{request, arguments, descriptor,
IGM.getAddrOfCanonicalPrespecializedGenericTypeCachingOnceToken(
nominal)});
} else {
call = IGF.Builder.CreateCall(IGM.getGetGenericMetadataFunctionPointer(),
{request, arguments, descriptor});
}
call->setDoesNotThrow();
call->setCallingConv(IGM.SwiftCC);
call->setOnlyReadsMemory();
result = call;
} else {
static_assert(NumDirectGenericTypeMetadataAccessFunctionArgs == 3,
"adjust this if you change "
"NumDirectGenericTypeMetadataAccessFunctionArgs");
// Factor out the buffer shuffling for metadata accessors that take their
// arguments directly, so that the accessor function itself only needs to
// materialize the nominal type descriptor and call this thunk.
auto generateThunkFn = [&IGM,
checkPrespecialized](IRGenFunction &subIGF) {
subIGF.CurFn->setOnlyReadsMemory();
subIGF.CurFn->setWillReturn();
subIGF.CurFn->setCallingConv(IGM.SwiftCC);
if (IGM.DebugInfo)
IGM.DebugInfo->emitArtificialFunction(subIGF, subIGF.CurFn);
IGM.setHasNoFramePointer(subIGF.CurFn);
auto params = subIGF.collectParameters();
auto request = params.claimNext();
auto arg0 = params.claimNext();
auto arg1 = params.claimNext();
auto arg2 = params.claimNext();
auto descriptor = params.claimNext();
llvm::Value *token = nullptr;
if (checkPrespecialized) {
token = params.claimNext();
}
// Allocate a buffer with enough storage for the arguments.
auto argsBufferTy =
llvm::ArrayType::get(IGM.Int8PtrTy,
NumDirectGenericTypeMetadataAccessFunctionArgs);
auto argsBuffer = subIGF.createAlloca(argsBufferTy,
IGM.getPointerAlignment(),
"generic.arguments");
subIGF.Builder.CreateLifetimeStart(argsBuffer,
IGM.getPointerSize() * NumDirectGenericTypeMetadataAccessFunctionArgs);
auto arg0Buf = subIGF.Builder.CreateConstInBoundsGEP2_32(argsBufferTy,
argsBuffer.getAddress(), 0, 0);
subIGF.Builder.CreateStore(arg0, arg0Buf, IGM.getPointerAlignment());
auto arg1Buf = subIGF.Builder.CreateConstInBoundsGEP2_32(argsBufferTy,
argsBuffer.getAddress(), 0, 1);
subIGF.Builder.CreateStore(arg1, arg1Buf, IGM.getPointerAlignment());
auto arg2Buf = subIGF.Builder.CreateConstInBoundsGEP2_32(argsBufferTy,
argsBuffer.getAddress(), 0, 2);
subIGF.Builder.CreateStore(arg2, arg2Buf, IGM.getPointerAlignment());
// Make the call.
auto argsAddr = subIGF.Builder.CreateBitCast(argsBuffer.getAddress(),
IGM.Int8PtrTy);
llvm::Value *result;
if (checkPrespecialized) {
result = subIGF.Builder.CreateCall(
IGM.getGetCanonicalPrespecializedGenericMetadataFunctionPointer(),
{request, argsAddr, descriptor, token});
} else {
result = subIGF.Builder.CreateCall(
IGM.getGetGenericMetadataFunctionPointer(),
{request, argsAddr, descriptor});
}
subIGF.Builder.CreateRet(result);
};
llvm::Function *thunkFn;
if (checkPrespecialized) {
thunkFn = cast<llvm::Function>(IGM.getOrCreateHelperFunction(
"__swift_instantiateCanonicalPrespecializedGenericMetadata",
IGM.TypeMetadataResponseTy,
{
IGM.SizeTy, // request
IGM.Int8PtrTy, // arg 0
IGM.Int8PtrTy, // arg 1
IGM.Int8PtrTy, // arg 2
IGM.TypeContextDescriptorPtrTy, // type context descriptor
IGM.PtrTy // token pointer
},
generateThunkFn,
/*noinline*/ true));
} else {
thunkFn = cast<llvm::Function>(IGM.getOrCreateHelperFunction(
"__swift_instantiateGenericMetadata", IGM.TypeMetadataResponseTy,
{
IGM.SizeTy, // request
IGM.Int8PtrTy, // arg 0
IGM.Int8PtrTy, // arg 1
IGM.Int8PtrTy, // arg 2
IGM.TypeContextDescriptorPtrTy // type context descriptor
},
generateThunkFn,
/*noinline*/ true));
}
IGM.setColocateMetadataSection(thunkFn);
// Call out to the helper.
auto getNextParam = [&]() -> llvm::Value * {
auto *param = params.claimNext();
if (param->getType()->isPointerTy())
return IGF.Builder.CreateBitCast(param, IGM.Int8PtrTy);
return IGF.Builder.CreateIntToPtr(param, IGM.Int8PtrTy);
};
auto arg0 = numArguments >= 1
? getNextParam()
: llvm::UndefValue::get(IGM.Int8PtrTy);
auto arg1 = numArguments >= 2
? getNextParam()
: llvm::UndefValue::get(IGM.Int8PtrTy);
auto arg2 = numArguments >= 3
? getNextParam()
: llvm::UndefValue::get(IGM.Int8PtrTy);
llvm::CallInst *call;
if (checkPrespecialized) {
auto *token =
IGM.getAddrOfCanonicalPrespecializedGenericTypeCachingOnceToken(
nominal);
call = IGF.Builder.CreateCall(
thunkFn->getFunctionType(), thunkFn,
{request, arg0, arg1, arg2, descriptor, token});
} else {
call = IGF.Builder.CreateCall(thunkFn->getFunctionType(), thunkFn,
{request, arg0, arg1, arg2, descriptor});
}
call->setDoesNotAccessMemory();
call->setDoesNotThrow();
call->setCallingConv(IGM.SwiftCC);
result = call;
}
return MetadataResponse::handle(IGF, DynamicMetadataRequest(request), result);
}
static void
emitIdempotentCanonicalSpecializedClassMetadataInitializationComponent(
IRGenFunction &IGF, CanType theType,
llvm::SmallSet<CanType, 16> &initializedTypes) {
if (initializedTypes.count(theType) > 0) {
return;
}
initializedTypes.insert(theType);
auto *classDecl = theType->getClassOrBoundGenericClass();
assert(classDecl);
if (classDecl->isGenericContext()) {
llvm::Function *accessor =
IGF.IGM.getAddrOfCanonicalSpecializedGenericTypeMetadataAccessFunction(
theType, NotForDefinition);
auto request = DynamicMetadataRequest(MetadataState::Complete);
IGF.emitGenericTypeMetadataAccessFunctionCall(accessor, {}, request);
} else {
llvm::Function *accessor =
IGF.IGM.getAddrOfTypeMetadataAccessFunction(theType, NotForDefinition);
auto request = DynamicMetadataRequest(MetadataState::Complete);
IGF.emitGenericTypeMetadataAccessFunctionCall(accessor, {}, request);
}
}
MetadataResponse
irgen::emitCanonicalSpecializedGenericTypeMetadataAccessFunction(
IRGenFunction &IGF, Explosion &params, CanType theType) {
assert(isa<ClassDecl>(theType->getAnyNominal()));
auto request = params.claimNext();
// The metadata request that is passed to a canonical specialized generic
// metadata accessor is ignored because complete metadata is always returned.
(void)request;
llvm::SmallSet<CanType, 16> initializedTypes;
auto *nominal = theType->getAnyNominal();
assert(nominal);
assert(isa<ClassDecl>(nominal));
assert(nominal->isGenericContext());
assert(!theType->hasUnboundGenericType());
auto requirements = GenericTypeRequirements(IGF.IGM, nominal);
auto substitutions = theType->getContextSubstitutionMap();
for (auto requirement : requirements.getRequirements()) {
if (requirement.isAnyWitnessTable()) {
continue;
}
assert(requirement.isMetadata()); // FIXME: packs and counts
auto parameter = requirement.getTypeParameter();
auto noncanonicalArgument = parameter.subst(substitutions);
auto argument = noncanonicalArgument->getCanonicalType();
if (argument->getClassOrBoundGenericClass()) {
emitIdempotentCanonicalSpecializedClassMetadataInitializationComponent(
IGF, argument, initializedTypes);
}
}
Type superclassType = theType->getSuperclass(/*useArchetypes=*/false);
if (superclassType) {
emitIdempotentCanonicalSpecializedClassMetadataInitializationComponent(
IGF, superclassType->getCanonicalType(), initializedTypes);
}
auto *uninitializedMetadata = IGF.IGM.getAddrOfTypeMetadata(theType);
initializedTypes.insert(theType);
auto *initializedMetadata =
emitIdempotentClassMetadataInitialization(IGF, uninitializedMetadata);
return MetadataResponse::forComplete(initializedMetadata);
}
/// Emit the body of a metadata accessor function for the given type.
///
/// This function is appropriate for ordinary situations where the
/// construction of the metadata value just involves calling idempotent
/// metadata-construction functions. It is not used for the in-place
/// initialization of non-generic nominal type metadata.
static MetadataResponse
emitDirectTypeMetadataAccessFunctionBody(IRGenFunction &IGF,
DynamicMetadataRequest request,
CanType type) {
assert(!type->hasArchetype() &&
"cannot emit metadata accessor for context-dependent type");
// We only take this path for non-generic nominal types.
auto typeDecl = type->getAnyNominal();
if (!typeDecl)
return emitDirectTypeMetadataRef(IGF, type, request);
if (typeDecl->isGenericContext() &&
!(isa<ClassDecl>(typeDecl) &&
isa<ClangModuleUnit>(typeDecl->getModuleScopeContext()))) {
// This is a metadata accessor for a fully substituted generic type.
return emitDirectTypeMetadataRef(IGF, type, request);
}
// We should never be emitting a metadata accessor for resilient nominal
// types outside of their defining module. We'd only do that anyway for
// types that don't guarantee the existence of a non-unique access
// function, and that should never be true of a resilient type with
// external availability.
//
// (The type might still not have a statically-known layout. It just
// can't be resilient at the top level: we have to know its immediate
// members, or we can't even begin to approach the problem of emitting
// metadata for it.)
assert(!IGF.IGM.isResilient(typeDecl, ResilienceExpansion::Maximal));
// We should never be emitting a metadata accessor for foreign type
// metadata using this function.
assert(!requiresForeignTypeMetadata(typeDecl));
if (auto classDecl = dyn_cast<ClassDecl>(typeDecl)) {
// For known-Swift metadata, we can perform a direct reference with
// potentially idempotent initialization.
if (hasKnownSwiftMetadata(IGF.IGM, classDecl))
return emitDirectTypeMetadataRef(IGF, type, request);
// Classes that might not have Swift metadata use a different
// access pattern.
return MetadataResponse::forComplete(emitObjCMetadataRef(IGF, classDecl));
}
// We should not be doing more serious work along this path.
assert(isCanonicalCompleteTypeMetadataStaticallyAddressable(IGF.IGM, type));
// Okay, everything else is built from a Swift metadata object.
llvm::Constant *metadata = IGF.IGM.getAddrOfTypeMetadata(type);
return MetadataResponse::forComplete(metadata);
}
static llvm::Function *getAccessFunctionPrototype(IRGenModule &IGM,
CanType type,
ForDefinition_t forDefinition) {
assert(!type->hasArchetype());
// Type should be bound unless it's type erased.
assert(type.isTypeErasedGenericClassType()
? !isa<BoundGenericType>(type)
: !isa<UnboundGenericType>(type));
return IGM.getAddrOfTypeMetadataAccessFunction(type, forDefinition);
}
llvm::Function *
irgen::getOtherwiseDefinedTypeMetadataAccessFunction(IRGenModule &IGM,
CanType type) {
return getAccessFunctionPrototype(IGM, type, NotForDefinition);
}
/// Get or create an accessor function to the given non-dependent type.
llvm::Function *
irgen::createTypeMetadataAccessFunction(IRGenModule &IGM, CanType type,
CacheStrategy cacheStrategy,
MetadataAccessGenerator generator,
bool allowExistingDefinition) {
// Get the prototype.
auto accessor = getAccessFunctionPrototype(IGM, type, ForDefinition);
// If we're not supposed to define the accessor, or if we already
// have defined it, just return the pointer.
if (!accessor->empty()) {
assert(allowExistingDefinition &&
"repeat definition of access function!");
return accessor;
}
// Okay, define the accessor.
llvm::Constant *cacheVariable = nullptr;
llvm::Type *cacheTy = nullptr;
// If our preferred access method is to go via an accessor, it means
// there is some non-trivial computation that needs to be cached.
if (!shouldCacheTypeMetadataAccess(IGM, type)) {
cacheStrategy = CacheStrategy::None;
} else {
switch (cacheStrategy) {
// Nothing to do.
case CacheStrategy::None:
break;
// For lazy initialization, the cache variable is just a pointer.
case CacheStrategy::Lazy:
cacheVariable = IGM.getAddrOfTypeMetadataLazyCacheVariable(type);
cacheTy = IGM.TypeMetadataPtrTy;
break;
// For in-place initialization, drill down to the first element.
case CacheStrategy::SingletonInitialization:
cacheVariable = IGM.getAddrOfTypeMetadataSingletonInitializationCache(
type->getAnyNominal(), ForDefinition);
cacheTy = IGM.TypeMetadataPtrTy;
break;
}
if (IGM.getOptions().optimizeForSize())
accessor->addFnAttr(llvm::Attribute::NoInline);
}
emitCacheAccessFunction(IGM, accessor, cacheVariable, cacheTy, cacheStrategy,
[&](IRGenFunction &IGF, Explosion &params) {
auto request =
DynamicMetadataRequest(params.claimNext());
return generator(IGF, request, cacheVariable);
});
return accessor;
}
/// Emit a standard accessor function to the given non-dependent type.
llvm::Function *
irgen::createDirectTypeMetadataAccessFunction(IRGenModule &IGM, CanType type,
bool allowExistingDefinition) {
return createTypeMetadataAccessFunction(IGM, type, CacheStrategy::Lazy,
[&](IRGenFunction &IGF,
DynamicMetadataRequest request,
llvm::Constant *cacheVariable) {
// We should not be called with ForDefinition for nominal types
// that require in-place initialization.
return emitDirectTypeMetadataAccessFunctionBody(IGF, request, type);
}, allowExistingDefinition);
}
/// Get or create an accessor function to the given generic type.
llvm::Function *
irgen::getGenericTypeMetadataAccessFunction(IRGenModule &IGM,
NominalTypeDecl *nominal,
ForDefinition_t shouldDefine) {
assert(nominal->isGenericContext());
assert(!nominal->isTypeErasedGenericClass());
GenericArguments genericArgs;
genericArgs.collectTypes(IGM, nominal);
llvm::Function *accessor =
IGM.getAddrOfGenericTypeMetadataAccessFunction(
nominal, genericArgs.Types, shouldDefine);
if (shouldDefine)
IGM.setColocateMetadataSection(accessor);
// If we're not supposed to define the accessor, or if we already
// have defined it, just return the pointer.
if (!shouldDefine || !accessor->empty())
return accessor;
IGM.IRGen.noteUseOfMetadataAccessor(nominal);
return accessor;
}
static bool shouldAccessByMangledName(IRGenModule &IGM, CanType type) {
// Never access by mangled name if we've been asked not to.
if (IGM.getOptions().DisableConcreteTypeMetadataMangledNameAccessors)
return false;
// Do not access by mangled name if the runtime won't understand it.
if (mangledNameIsUnknownToDeployTarget(IGM, type))
return false;
// A nongeneric nominal type with nontrivial metadata has an accessor
// already we can just call.
if (auto nom = dyn_cast<NominalType>(type)) {
if (!isa<ProtocolDecl>(nom->getDecl())
&& (!nom->getDecl()->isGenericContext()
|| nom->getDecl()->getGenericSignature()->areAllParamsConcrete())) {
return false;
}
}
return true;
// The visitor below can be used to fine-tune a heuristic to decide whether
// demangling might be better for code size than open-coding an access. In
// my experiments on the Swift standard library and Apple SDK overlays,
// always demangling seemed to have the biggest code size benefit.
#if false
// Guess the number of calls and addresses we need to materialize a
// metadata record in code.
struct OpenCodedMetadataAccessWeightVisitor
: CanTypeVisitor<OpenCodedMetadataAccessWeightVisitor>
{
IRGenModule &IGM;
unsigned NumCalls = 0, NumAddresses = 0;
OpenCodedMetadataAccessWeightVisitor(IRGenModule &IGM)
: IGM(IGM) {}
void visitBoundGenericType(CanBoundGenericType bgt) {
// Need to materialize all the arguments, then call the metadata
// accessor.
//
// TODO: Also need to count the parent type's generic arguments.
for (auto arg : bgt->getGenericArgs()) {
visit(arg);
}
NumCalls += 1;
}
void visitNominalType(CanNominalType nom) {
// Some nominal types have trivially-referenceable metadata symbols,
// others may require accessors to trigger instantiation.
//
// TODO: Also need to count the parent type's generic arguments.
if (!shouldCacheTypeMetadataAccess(IGM, nom)) {
NumAddresses += 1;
} else {
NumCalls += 1;
}
}
void visitPackType(CanPackType tup) {
llvm_unreachable("Unimplemented!");
}
void visitPackExpansionType(CanPackExpansionType tup) {
llvm_unreachable("Unimplemented!");
}
void visitPackElementType(CanPackElementType tup) {
llvm_unreachable("Unimplemented!");
}
void visitTupleType(CanTupleType tup) {
// The empty tuple has trivial metadata.
if (tup->getNumElements() == 0) {
NumAddresses += 1;
return;
}
// Need to materialize the element types, then call the getTupleMetadata
// accessor.
for (auto elt : tup.getElementTypes()) {
visit(elt);
}
NumCalls += 1;
}
void visitAnyFunctionType(CanAnyFunctionType fun) {
// Need to materialize the arguments and return, then call the
// getFunctionMetadata accessor.
for (auto arg : fun.getParams()) {
visit(arg.getPlainType());
}
visit(fun.getResult());
NumCalls += 1;
}
void visitMetatypeType(CanMetatypeType meta) {
// Need to materialize the instance type, then call the
// getMetatypeMetadata accessor.
visit(meta.getInstanceType());
NumCalls += 1;
}
void visitProtocolType(CanProtocolType proto) {
// Need to reference the protocol descriptor, then call the
// getExistentialTypeMetadata accessor.
NumAddresses += 1;
NumCalls += 1;
}
void visitBuiltinType(CanBuiltinType b) {
// Builtins always have trivial metadata.
NumAddresses += 1;
}
void visitProtocolCompositionType(CanProtocolCompositionType comp) {
unsigned numMembers = comp->getMembers().size();
// The empty compositions Any and AnyObject are trivial.
if (numMembers == 0) {
NumAddresses += 1;
return;
}
// Need to materialize the base class, if any.
if (comp->getMembers().front()->getClassOrBoundGenericClass()) {
visit(CanType(comp->getMembers().front()));
numMembers -= 1;
}
// Need to reference the protocol descriptors for each protocol.
NumAddresses += numMembers;
// Finally, call the getExistentialTypeMetadata accessor.
NumCalls += 1;
}
void visitExistentialMetatypeType(CanExistentialMetatypeType meta) {
// Extended existential metatypes just emit a different shape
// and don't do any wrapping.
if (meta->getExistentialLayout().needsExtendedShape()) {
// return visit(unwrapExistentialMetatype(meta));
}
// The number of accesses turns out the same as the instance type,
// but instead of getExistentialTypeMetadata, we call
// getExistentialMetatypeMetadata
visit(meta.getInstanceType());
}
// Shouldn't emit metadata for other kinds of types.
void visitType(CanType t) {
llvm_unreachable("unhandled type?!");
}
};
OpenCodedMetadataAccessWeightVisitor visitor(IGM);
visitor.visit(type);
// If we need more than one accessor call, or the access requires too many
// arguments, the mangled name accessor is probably more compact.
return visitor.NumCalls > 1 || visitor.NumAddresses > 1;
#endif
}
static bool canIssueIncompleteMetadataRequests(IRGenModule &IGM) {
// We can only answer blocking complete metadata requests with the <=5.1
// runtime ABI entry points.
auto &context = IGM.getSwiftModule()->getASTContext();
auto deploymentAvailability = AvailabilityRange::forDeploymentTarget(context);
return deploymentAvailability.isContainedIn(
context.getTypesInAbstractMetadataStateAvailability());
}
/// Emit a call to a type metadata accessor using a mangled name.
static MetadataResponse
emitMetadataAccessByMangledName(IRGenFunction &IGF, CanType type,
DynamicMetadataRequest request) {
assert(!isa<PackType>(type));
auto &IGM = IGF.IGM;
// We can only answer blocking complete metadata requests with the <=5.1
// runtime ABI entry points.
assert((request.isStaticallyBlockingComplete() ||
(request.isStaticallyAbstract() &&
canIssueIncompleteMetadataRequests(IGM))) &&
"can only form complete metadata by mangled name");
llvm::Constant *mangledString;
unsigned mangledStringSize;
std::tie(mangledString, mangledStringSize) =
IGM.getTypeRef(type, CanGenericSignature(), MangledTypeRefRole::Metadata);
// Android AArch64 reserves the top byte of the address for memory tagging
// since Android 11, so only use the bottom 23 bits to store this size
// and the 24th bit to signal that there is a size.
if (IGM.Triple.isAndroid() && IGM.Triple.getArch() == llvm::Triple::aarch64)
assert(mangledStringSize < 0x00800001u &&
"8MB of mangled name ought to be enough for Android AArch64");
else
assert(mangledStringSize < 0x80000000u &&
"2GB of mangled name ought to be enough for anyone");
// Get or create the cache variable if necessary.
auto cache = IGM.getAddrOfTypeMetadataDemanglingCacheVariable(type,
ConstantInit());
if (cast<llvm::GlobalVariable>(cache->stripPointerCasts())->isDeclaration()) {
ConstantInitBuilder builder(IGM);
auto structBuilder = builder.beginStruct();
// A "negative" 64-bit value in the cache indicates the uninitialized state.
// Which word has that bit in the {i32, i32} layout depends on endianness.
if (IGM.getModule()->getDataLayout().isBigEndian()) {
structBuilder.addInt32(-mangledStringSize);
structBuilder.addRelativeAddress(mangledString);
} else {
structBuilder.addRelativeAddress(mangledString);
structBuilder.addInt32(-mangledStringSize);
}
auto init = structBuilder.finishAndCreateFuture();
cache = IGM.getAddrOfTypeMetadataDemanglingCacheVariable(type, init);
}
// Get or create a shared helper function to do the instantiation.
auto instantiationFnName =
request.isStaticallyAbstract()
? "__swift_instantiateConcreteTypeFromMangledNameAbstract"
: "__swift_instantiateConcreteTypeFromMangledName";
auto generateInstantiationFn = [&IGM, request](IRGenFunction &subIGF) {
subIGF.CurFn->setOnlyReadsMemory();
subIGF.CurFn->setWillReturn();
IGM.setHasNoFramePointer(subIGF.CurFn);
if (IGM.DebugInfo)
IGM.DebugInfo->emitArtificialFunction(subIGF, subIGF.CurFn);
IGM.setColocateMetadataSection(subIGF.CurFn);
auto params = subIGF.collectParameters();
auto cache = params.claimNext();
// Load the existing cache value.
// Conceptually, this needs to establish memory ordering with the
// store we do later in the function: if the metadata value is
// non-null, we must be able to see any stores performed by the
// initialization of the metadata. However, any attempt to read
// from the metadata will be address-dependent on the loaded
// metadata pointer, which is sufficient to provide adequate
// memory ordering guarantees on all the platforms we care about:
// ARM has special rules about address dependencies, and x86's
// memory ordering is strong enough to guarantee the visibility
// even without the address dependency.
//
// And we do not need to worry about the compiler because the
// address dependency naturally forces an order to the memory
// accesses.
//
// Therefore, we can perform a completely naked load here.
// FIXME: Technically should be "consume", but that introduces barriers
// in the current LLVM ARM backend.
auto cacheWordAddr = subIGF.Builder.CreateBitCast(cache, IGM.PtrTy);
auto load = subIGF.Builder.CreateLoad(
Address(cacheWordAddr, IGM.Int64Ty, Alignment(8)));
// Make this barrier explicit when building for TSan to avoid false positives.
if (IGM.IRGen.Opts.Sanitizers & SanitizerKind::Thread)
load->setOrdering(llvm::AtomicOrdering::Acquire);
else
load->setOrdering(llvm::AtomicOrdering::Monotonic);
// Compare the load result to see if it's negative.
auto isUnfilledBB = subIGF.createBasicBlock("");
auto contBB = subIGF.createBasicBlock("");
llvm::Value *comparison = subIGF.Builder.CreateICmpSLT(load,
llvm::ConstantInt::get(IGM.Int64Ty, 0));
// Check if the 24th bit is set on Android AArch64 and only instantiate the
// type metadata if it is, as otherwise it might be negative only because
// of the memory tag on Android.
if (IGM.Triple.isAndroid() &&
IGM.Triple.getArch() == llvm::Triple::aarch64) {
auto getBitAfterAndroidTag = subIGF.Builder.CreateAnd(
load, llvm::ConstantInt::get(IGM.Int64Ty, 0x0080000000000000));
auto checkNotAndroidTag = subIGF.Builder.CreateICmpNE(
getBitAfterAndroidTag, llvm::ConstantInt::get(IGM.Int64Ty, 0));
comparison = subIGF.Builder.CreateAnd(comparison, checkNotAndroidTag);
}
comparison = subIGF.Builder.CreateExpect(comparison,
llvm::ConstantInt::get(IGM.Int1Ty, 0));
subIGF.Builder.CreateCondBr(comparison, isUnfilledBB, contBB);
auto loadBB = subIGF.Builder.GetInsertBlock();
// If the load is negative, emit the call to instantiate the type
// metadata.
subIGF.Builder.SetInsertPoint(&subIGF.CurFn->back());
subIGF.Builder.emitBlock(isUnfilledBB);
// Break up the loaded value into size and relative address to the
// string.
auto size = subIGF.Builder.CreateAShr(load, 32);
size = subIGF.Builder.CreateTruncOrBitCast(size, IGM.SizeTy);
size = subIGF.Builder.CreateNeg(size);
auto stringAddrOffset = subIGF.Builder.CreateTrunc(load,
IGM.Int32Ty);
stringAddrOffset = subIGF.Builder.CreateSExtOrBitCast(stringAddrOffset,
IGM.SizeTy);
auto stringAddrBase = subIGF.Builder.CreatePtrToInt(cache, IGM.SizeTy);
if (IGM.getModule()->getDataLayout().isBigEndian()) {
stringAddrBase = subIGF.Builder.CreateAdd(stringAddrBase,
llvm::ConstantInt::get(IGM.SizeTy, 4));
}
auto stringAddr = subIGF.Builder.CreateAdd(stringAddrBase,
stringAddrOffset);
stringAddr = subIGF.Builder.CreateIntToPtr(stringAddr, IGM.Int8PtrTy);
llvm::CallInst *call;
bool signedDescriptor = IGM.getAvailabilityRange().isContainedIn(
IGM.Context.getSignedDescriptorAvailability());
if (request.isStaticallyAbstract()) {
call = signedDescriptor ?
subIGF.Builder.CreateCall(
IGM.getGetTypeByMangledNameInContextInMetadataState2FunctionPointer(),
{llvm::ConstantInt::get(IGM.SizeTy, (size_t)MetadataState::Abstract),
stringAddr, size,
// TODO: Use mangled name lookup in generic
// contexts?
llvm::ConstantPointerNull::get(IGM.TypeContextDescriptorPtrTy),
llvm::ConstantPointerNull::get(IGM.Int8PtrPtrTy)}):
subIGF.Builder.CreateCall(
IGM.getGetTypeByMangledNameInContextInMetadataStateFunctionPointer(),
{llvm::ConstantInt::get(IGM.SizeTy, (size_t)MetadataState::Abstract),
stringAddr, size,
// TODO: Use mangled name lookup in generic
// contexts?
llvm::ConstantPointerNull::get(IGM.TypeContextDescriptorPtrTy),
llvm::ConstantPointerNull::get(IGM.Int8PtrPtrTy)});
} else {
call = signedDescriptor ?
subIGF.Builder.CreateCall(
IGM.getGetTypeByMangledNameInContext2FunctionPointer(),
{stringAddr, size,
// TODO: Use mangled name lookup in generic
// contexts?
llvm::ConstantPointerNull::get(IGM.TypeContextDescriptorPtrTy),
llvm::ConstantPointerNull::get(IGM.Int8PtrPtrTy)}) :
subIGF.Builder.CreateCall(
IGM.getGetTypeByMangledNameInContextFunctionPointer(),
{stringAddr, size,
// TODO: Use mangled name lookup in generic
// contexts?
llvm::ConstantPointerNull::get(IGM.TypeContextDescriptorPtrTy),
llvm::ConstantPointerNull::get(IGM.Int8PtrPtrTy)});
}
call->setDoesNotThrow();
call->setOnlyReadsMemory();
call->setCallingConv(IGM.SwiftCC);
// Store the result back to the cache. Metadata instantiation should
// already have emitted the necessary barriers to publish the instantiated
// metadata to other threads, so we only need to expose the pointer.
// Worst case, another thread might race with us and reinstantiate the
// exact same metadata pointer.
auto resultWord = subIGF.Builder.CreatePtrToInt(call, IGM.SizeTy);
resultWord = subIGF.Builder.CreateZExtOrBitCast(resultWord, IGM.Int64Ty);
auto store = subIGF.Builder.CreateStore(resultWord, cacheWordAddr,
Alignment(8));
store->setOrdering(llvm::AtomicOrdering::Monotonic);
subIGF.Builder.CreateBr(contBB);
subIGF.Builder.SetInsertPoint(loadBB);
subIGF.Builder.emitBlock(contBB);
auto phi = subIGF.Builder.CreatePHI(IGM.Int64Ty, 2);
phi->addIncoming(load, loadBB);
phi->addIncoming(resultWord, isUnfilledBB);
auto resultAddr = subIGF.Builder.CreateTruncOrBitCast(phi, IGM.SizeTy);
resultAddr = subIGF.Builder.CreateIntToPtr(resultAddr,
IGM.TypeMetadataPtrTy);
subIGF.Builder.CreateRet(resultAddr);
};
auto instantiationFn = cast<llvm::Function>(IGM.getOrCreateHelperFunction(
instantiationFnName, IGF.IGM.TypeMetadataPtrTy, cache->getType(),
generateInstantiationFn,
/*noinline*/ true));
auto call = IGF.Builder.CreateCall(instantiationFn->getFunctionType(),
instantiationFn, cache);
call->setDoesNotThrow();
call->setOnlyReadsMemory();
auto response = MetadataResponse::forComplete(call);
IGF.setScopedLocalTypeMetadata(type, response);
return response;
}
/// Emit a call to the type metadata accessor for the given function.
static MetadataResponse
emitCallToTypeMetadataAccessFunction(IRGenFunction &IGF, CanType type,
DynamicMetadataRequest request) {
// If we already cached the metadata, use it.
if (auto local = IGF.tryGetLocalTypeMetadata(type, request))
return local;
// If the metadata would require multiple runtime calls to build, emit a
// single access by mangled name instead, if we're asking for complete
// metadata.
//
if ((request.isStaticallyBlockingComplete() ||
(request.isStaticallyAbstract() &&
canIssueIncompleteMetadataRequests(IGF.IGM))) &&
shouldAccessByMangledName(IGF.IGM, type)) {
return emitMetadataAccessByMangledName(IGF, type, request);
}
auto *accessor = getOrCreateTypeMetadataAccessFunction(IGF.IGM, type);
llvm::CallInst *call = IGF.Builder.CreateCall(accessor->getFunctionType(),
accessor, {request.get(IGF)});
call->setCallingConv(IGF.IGM.SwiftCC);
call->setDoesNotAccessMemory();
call->setDoesNotThrow();
auto response = MetadataResponse::handle(IGF, request, call);
// Save the metadata for future lookups.
IGF.setScopedLocalTypeMetadata(type, response);
return response;
}
llvm::Value *IRGenFunction::emitAbstractTypeMetadataRef(CanType type) {
return emitTypeMetadataRef(type, MetadataState::Abstract).getMetadata();
}
/// Produce the type metadata pointer for the given type.
llvm::Value *IRGenFunction::emitTypeMetadataRef(CanType type) {
return emitTypeMetadataRef(type, MetadataState::Complete).getMetadata();
}
/// Produce the type metadata pointer for the given type.
MetadataResponse
IRGenFunction::emitTypeMetadataRef(CanType type,
DynamicMetadataRequest request) {
auto &langOpts = type->getASTContext().LangOpts;
if (langOpts.hasFeature(Feature::Embedded) &&
!langOpts.hasFeature(Feature::EmbeddedExistentials) &&
!isMetadataAllowedInEmbedded(type)) {
llvm::errs() << "Metadata pointer requested in embedded Swift for type "
<< type << "\n";
llvm::report_fatal_error("metadata used in embedded mode");
}
type = IGM.getRuntimeReifiedType(type);
// Look through any opaque types we're allowed to.
type = IGM.substOpaqueTypesWithUnderlyingTypes(type);
// If we're asking for the metadata of the type that dynamic Self is known
// to be equal to, we can just use the self metadata.
if (SelfTypeIsExact && SelfType == type) {
return MetadataResponse::forComplete(getDynamicSelfMetadata());
}
if (type->hasArchetype() ||
!shouldTypeMetadataAccessUseAccessor(IGM, type) ||
isa<PackType>(type) ||
langOpts.hasFeature(Feature::Embedded)) {
return emitDirectTypeMetadataRef(*this, type, request);
}
return emitCallToTypeMetadataAccessFunction(*this, type, request);
}
/// Return the address of a function that will return type metadata
/// for the given non-dependent type.
llvm::Function *irgen::getOrCreateTypeMetadataAccessFunction(IRGenModule &IGM,
CanType type) {
type = IGM.getRuntimeReifiedType(type);
assert(!type->hasArchetype() &&
"cannot create global function to return dependent type metadata");
switch (getTypeMetadataAccessStrategy(type)) {
case MetadataAccessStrategy::ForeignAccessor:
case MetadataAccessStrategy::PublicUniqueAccessor:
case MetadataAccessStrategy::PackageUniqueAccessor:
case MetadataAccessStrategy::HiddenUniqueAccessor:
case MetadataAccessStrategy::PrivateAccessor:
return getOtherwiseDefinedTypeMetadataAccessFunction(IGM, type);
case MetadataAccessStrategy::NonUniqueAccessor:
return createDirectTypeMetadataAccessFunction(IGM, type,
/*allow existing*/true);
}
llvm_unreachable("bad type metadata access strategy");
}
namespace {
/// A visitor class for rewriting a lowered (SIL) type to a formal
/// type with the same type layout that we can fetch metadata for.
/// We need type metadata in order to do value operations on some
/// lowered types (like allocating or copying them), but we can
/// only fetch type metadata for formal types. We can't reliably
/// reverse the type lowering process to get the original formal
/// type, but we should be able to reliably find a formal type with
/// the same layout as a lowered type.
///
/// We can't reliably do this on types expressed in terms of builtin
/// types, because there aren't type metadata for all builtin types.
/// Fortunately, we really shouldn't need type metadata to do value
/// operations on builtin types, and we shouldn't ever see compound
/// types with them that would require metadata to manipulate (like
/// a tuple of a builtin type and a resilient type) --- we can rely
/// on stdlib programmers to not write such types, and we can rely on
/// SIL transformations not introducing them unnecessarily.
///
/// NOTE: If you modify the special cases in this, you should update
/// isTypeMetadataForLayoutAccessible in SIL.cpp.
class GetFormalTypeWithSameLayout
: public CanTypeVisitor<GetFormalTypeWithSameLayout, CanType> {
public:
GetFormalTypeWithSameLayout() {}
/// For most types, we can just emit the usual metadata.
CanType visitType(CanType t) { return t; }
CanType visitBoundGenericEnumType(CanBoundGenericEnumType ty) {
// Optionals have a lowered payload type, so we recurse here.
if (auto objectTy = ty.getOptionalObjectType()) {
auto payloadTy = visit(objectTy);
if (payloadTy == objectTy)
return ty;
auto &C = ty->getASTContext();
auto optDecl = C.getOptionalDecl();
return CanType(BoundGenericEnumType::get(optDecl, Type(), payloadTy));
}
// Otherwise, generic arguments are not lowered.
return ty;
}
CanType visitPackType(CanPackType ty) {
llvm_unreachable("requesting type metadata for a pack type?");
}
CanType visitPackExpansionType(CanPackExpansionType ty) {
CanType pattern = ty.getPatternType();
CanType loweredPattern = visit(ty.getPatternType());
if (pattern == loweredPattern) return ty;
return CanPackExpansionType::get(loweredPattern, ty.getCountType());
}
CanType visitTupleType(CanTupleType ty) {
bool changed = false;
SmallVector<TupleTypeElt, 4> loweredElts;
loweredElts.reserve(ty->getNumElements());
for (auto i : indices(ty->getElementTypes())) {
auto substEltType = ty.getElementType(i);
CanType loweredSubstEltType = visit(substEltType);
changed = (changed || substEltType != loweredSubstEltType);
loweredElts.push_back(ty->getElement(i).getWithType(loweredSubstEltType));
}
if (!changed)
return ty;
return CanTupleType(TupleType::get(loweredElts, ty->getASTContext()));
}
CanType visitAnyFunctionType(CanAnyFunctionType ty) {
llvm_unreachable("not a SIL type");
}
CanType visitSILFunctionType(CanSILFunctionType ty) {
// All function types have the same layout regardless of arguments or
// abstraction level. Use the metadata for () -> () for thick functions,
// or AnyObject for block functions.
auto &C = ty->getASTContext();
switch (ty->getRepresentation()) {
case SILFunctionType::Representation::Thin:
case SILFunctionType::Representation::Method:
case SILFunctionType::Representation::WitnessMethod:
case SILFunctionType::Representation::ObjCMethod:
case SILFunctionType::Representation::CXXMethod:
case SILFunctionType::Representation::CFunctionPointer:
case SILFunctionType::Representation::Closure:
case SILFunctionType::Representation::KeyPathAccessorGetter:
case SILFunctionType::Representation::KeyPathAccessorSetter:
case SILFunctionType::Representation::KeyPathAccessorEquals:
case SILFunctionType::Representation::KeyPathAccessorHash:
// A thin function looks like a plain pointer.
// FIXME: Except for extra inhabitants?
return C.TheRawPointerType;
case SILFunctionType::Representation::Thick: {
// All function types look like () -> ().
// FIXME: It'd be nice not to have to call through the runtime here.
//
// FIXME: Verify ExtInfo state is correct, not working by accident.
CanFunctionType::ExtInfo info;
return CanFunctionType::get({}, C.TheEmptyTupleType, info);
}
case SILFunctionType::Representation::Block:
// All block types look like AnyObject.
return C.getAnyObjectType();
}
llvm_unreachable("Not a valid SILFunctionType.");
}
CanType visitAnyMetatypeType(CanAnyMetatypeType ty) {
assert(ty->hasRepresentation() && "not a lowered metatype");
auto &C = ty->getASTContext();
switch (ty->getRepresentation()) {
case MetatypeRepresentation::Thin:
// Thin metatypes are empty, so they look like the empty tuple type.
return C.TheEmptyTupleType;
case MetatypeRepresentation::Thick:
case MetatypeRepresentation::ObjC:
// Thick and ObjC metatypes look like pointers with extra inhabitants.
// Get the metatype metadata from the runtime.
// FIXME: It'd be nice not to need a runtime call here; we should just
// have a standard aligned-pointer type metadata.
return ty;
}
llvm_unreachable("Not a valid MetatypeRepresentation.");
}
};
} // end anonymous namespace
llvm::Value *IRGenFunction::emitTypeMetadataRefForLayout(SILType type) {
return emitTypeMetadataRefForLayout(type, MetadataState::Complete);
}
llvm::Value *
IRGenFunction::emitTypeMetadataRefForLayout(SILType ty,
DynamicMetadataRequest request) {
assert(request.canResponseStatusBeIgnored());
if (auto response =
tryGetLocalTypeMetadataForLayout(ty.getObjectType(), request)) {
assert(request.canResponseStatusBeIgnored() || !response.isValid());
return response.getMetadata();
}
// Map to a layout equivalent AST type.
auto layoutEquivalentType =
GetFormalTypeWithSameLayout().visit(ty.getASTType());
auto response = emitTypeMetadataRef(layoutEquivalentType, request);
setScopedLocalTypeMetadataForLayout(ty.getObjectType(), response);
return response.getMetadata();
}
llvm::Value *IRGenFunction::emitValueGenericRef(CanType type) {
if (auto integer = type->getAs<IntegerType>()) {
auto value = integer->getValue().sextOrTrunc(IGM.SizeTy->getBitWidth());
return llvm::ConstantInt::get(IGM.SizeTy, value);
}
return tryGetLocalTypeData(type, LocalTypeDataKind::forValue());
}
namespace {
/// A visitor class for emitting a reference to a type layout struct.
/// There are a few ways we can emit it:
///
/// - If the type is fixed-layout and we have visibility of its value
/// witness table (or one close enough), we can project the layout struct
/// from it.
/// - If the type is fixed layout, we can emit our own copy of the layout
/// struct.
/// - If the type is dynamic-layout, we have to instantiate its metadata
/// and project out its metadata. (FIXME: This leads to deadlocks in
/// recursive cases, though we can avoid many deadlocks because most
/// valid recursive types bottom out in fixed-sized types like classes
/// or pointers.)
class EmitTypeLayoutRef
: public CanTypeVisitor_AnyNominal<EmitTypeLayoutRef, llvm::Value *,
DynamicMetadataRequest> {
private:
IRGenFunction &IGF;
public:
EmitTypeLayoutRef(IRGenFunction &IGF) : IGF(IGF) {}
llvm::Value *emitFromValueWitnessTablePointer(llvm::Value *vwtable) {
llvm::Value *indexConstant = llvm::ConstantInt::get(IGF.IGM.Int32Ty,
(unsigned)ValueWitness::First_TypeLayoutWitness);
return IGF.Builder.CreateInBoundsGEP(IGF.IGM.Int8PtrTy, vwtable,
indexConstant);
}
/// Emit the type layout by projecting it from a value witness table to
/// which we have linkage.
llvm::Value *emitFromValueWitnessTable(CanType t) {
auto *vwtable = IGF.IGM.getAddrOfValueWitnessTable(t);
return emitFromValueWitnessTablePointer(vwtable);
}
/// Emit the type layout by projecting it from dynamic type metadata.
llvm::Value *emitFromTypeMetadata(CanType t,
DynamicMetadataRequest request) {
auto *vwtable =
IGF.emitValueWitnessTableRef(IGF.IGM.getLoweredType(t), request);
return emitFromValueWitnessTablePointer(vwtable);
}
/// Given that the type is fixed-layout, emit the type layout by
/// emitting a global layout for it.
llvm::Value *emitFromFixedLayout(CanType t) {
auto layout = tryEmitFromFixedLayout(t);
assert(layout && "type must be fixed-size to call emitFromFixedLayout");
return layout;
}
/// If the type is fixed-layout, emit the type layout by
/// emitting a global layout for it.
llvm::Value *tryEmitFromFixedLayout(CanType t) {
auto &ti = IGF.getTypeInfo(SILType::getPrimitiveObjectType(t));
if (auto fixedTI = dyn_cast<FixedTypeInfo>(&ti))
return IGF.IGM.emitFixedTypeLayout(t, *fixedTI);
return nullptr;
}
/// Fallback default implementation.
llvm::Value *visitType(CanType t, DynamicMetadataRequest request) {
auto silTy = IGF.IGM.getLoweredType(t);
auto &ti = IGF.getTypeInfo(silTy);
// If the type is in the same source file, or has a common value
// witness table exported from the runtime, we can project from the
// value witness table instead of emitting a new record.
//
// TODO: If a nominal type is in the same source file as we're currently
// emitting, we would be able to see its value witness table.
if (IGF.IGM.IsWellKnownBuiltinOrStructralType(t))
return emitFromValueWitnessTable(t);
// If the type is a singleton aggregate, the field's layout is equivalent
// to the aggregate's.
if (SILType singletonFieldTy = getSingletonAggregateFieldType(IGF.IGM,
silTy, ResilienceExpansion::Maximal))
return visit(singletonFieldTy.getASTType(), request);
// If the type is fixed-layout, emit a copy of its layout.
if (auto fixed = dyn_cast<FixedTypeInfo>(&ti))
return IGF.IGM.emitFixedTypeLayout(t, *fixed);
return emitFromTypeMetadata(t, request);
}
llvm::Value *visitAnyFunctionType(CanAnyFunctionType type,
DynamicMetadataRequest request) {
llvm_unreachable("not a SIL type");
}
llvm::Value *visitSILFunctionType(CanSILFunctionType type,
DynamicMetadataRequest request) {
// All function types have the same layout regardless of arguments or
// abstraction level. Use the value witness table for
// @convention(blah) () -> () from the runtime.
auto &C = type->getASTContext();
switch (type->getRepresentation()) {
case SILFunctionType::Representation::Thin:
case SILFunctionType::Representation::Method:
case SILFunctionType::Representation::WitnessMethod:
case SILFunctionType::Representation::ObjCMethod:
case SILFunctionType::Representation::CXXMethod:
case SILFunctionType::Representation::CFunctionPointer:
case SILFunctionType::Representation::Closure:
case SILFunctionType::Representation::KeyPathAccessorGetter:
case SILFunctionType::Representation::KeyPathAccessorSetter:
case SILFunctionType::Representation::KeyPathAccessorEquals:
case SILFunctionType::Representation::KeyPathAccessorHash:
// A thin function looks like a plain pointer.
// FIXME: Except for extra inhabitants?
return emitFromValueWitnessTable(C.TheRawPointerType);
case SILFunctionType::Representation::Thick: {
// All function types look like () -> ().
// FIXME: Verify ExtInfo state is correct, not working by accident.
CanFunctionType::ExtInfo info;
return emitFromValueWitnessTable(
CanFunctionType::get({}, C.TheEmptyTupleType, info));
}
case SILFunctionType::Representation::Block:
// All block types look like AnyObject.
return emitFromValueWitnessTable(C.getAnyObjectType());
}
llvm_unreachable("Not a valid SILFunctionType.");
}
llvm::Value *visitAnyMetatypeType(CanAnyMetatypeType type,
DynamicMetadataRequest request) {
assert(type->hasRepresentation()
&& "not a lowered metatype");
switch (type->getRepresentation()) {
case MetatypeRepresentation::Thin: {
// Thin metatypes are empty, so they look like the empty tuple type.
return emitFromValueWitnessTable(IGF.IGM.Context.TheEmptyTupleType);
}
case MetatypeRepresentation::Thick:
if (isa<ExistentialMetatypeType>(type)) {
return emitFromFixedLayout(type);
}
// Otherwise, this is a metatype that looks like a pointer.
LLVM_FALLTHROUGH;
case MetatypeRepresentation::ObjC:
// Thick metatypes look like pointers with spare bits.
return emitFromValueWitnessTable(
CanMetatypeType::get(IGF.IGM.Context.TheNativeObjectType));
}
llvm_unreachable("Not a valid MetatypeRepresentation.");
}
llvm::Value *visitAnyClassType(CanType type, ClassDecl *classDecl,
DynamicMetadataRequest request) {
// All class types have the same layout.
switch (type->getReferenceCounting()) {
case ReferenceCounting::Native:
return emitFromValueWitnessTable(IGF.IGM.Context.TheNativeObjectType);
case ReferenceCounting::ObjC:
case ReferenceCounting::Block:
case ReferenceCounting::Unknown:
return emitFromValueWitnessTable(IGF.IGM.Context.getAnyObjectType());
case ReferenceCounting::Bridge:
case ReferenceCounting::Error:
llvm_unreachable("classes shouldn't have this kind of refcounting");
case ReferenceCounting::None:
case ReferenceCounting::Custom:
return emitFromValueWitnessTable(IGF.IGM.Context.TheRawPointerType);
}
llvm_unreachable("Not a valid ReferenceCounting.");
}
llvm::Value *visitPackType(CanPackType type,
DynamicMetadataRequest request) {
llvm_unreachable("");
}
llvm::Value *visitPackExpansionType(CanPackExpansionType type,
DynamicMetadataRequest request) {
llvm_unreachable("");
}
llvm::Value *visitPackElementType(CanPackElementType type,
DynamicMetadataRequest request) {
llvm_unreachable("not implemented for PackElementType");
}
llvm::Value *visitTupleType(CanTupleType type,
DynamicMetadataRequest request) {
// Tuples containing pack expansion types are completely dynamic.
if (type->containsPackExpansionType())
return emitFromTypeMetadata(type, request);
// Single-element tuples have exactly the same layout as their elements.
if (type->getNumElements() == 1) {
return visit(type.getElementType(0), request);
}
// If the type is fixed-layout, use a global layout.
if (auto layout = tryEmitFromFixedLayout(type))
return layout;
// TODO: check for cached VWT / metadata for the type.
// Use swift_getTupleTypeLayout to compute a layout.
// Create a buffer to hold the result. We don't have any reasonable
// way to scope the lifetime of this.
auto resultPtr = IGF.createAlloca(IGF.IGM.FullTypeLayoutTy,
IGF.IGM.getPointerAlignment())
.getAddress();
switch (type->getNumElements()) {
case 0:
case 1:
llvm_unreachable("filtered out above");
case 2: {
auto elt0 = visit(type.getElementType(0), request);
auto elt1 = visit(type.getElementType(1), request);
// Ignore the offset.
auto call =
IGF.Builder.CreateCall(IGF.IGM.getGetTupleLayout2FunctionPointer(),
{resultPtr, elt0, elt1});
call->setDoesNotThrow();
break;
}
case 3: {
auto elt0 = visit(type.getElementType(0), request);
auto elt1 = visit(type.getElementType(1), request);
auto elt2 = visit(type.getElementType(2), request);
// Ignore the offsets.
auto call =
IGF.Builder.CreateCall(IGF.IGM.getGetTupleLayout3FunctionPointer(),
{resultPtr, elt0, elt1, elt2});
call->setDoesNotThrow();
break;
}
default: {
// Allocate a temporary array for the element layouts.
auto eltLayoutsArraySize =
IGF.IGM.getPointerSize() * type->getNumElements();
auto eltLayoutsArray =
IGF.createAlloca(IGF.IGM.Int8PtrPtrTy,
IGF.IGM.getSize(Size(type->getNumElements())),
IGF.IGM.getPointerAlignment());
IGF.Builder.CreateLifetimeStart(eltLayoutsArray, eltLayoutsArraySize);
// Emit layouts for all the elements and store them into the array.
for (auto i : indices(type.getElementTypes())) {
auto eltLayout = visit(type.getElementType(i), request);
auto eltLayoutSlot =
i == 0 ? eltLayoutsArray
: IGF.Builder.CreateConstArrayGEP(eltLayoutsArray, i,
IGF.IGM.getPointerSize());
IGF.Builder.CreateStore(eltLayout, eltLayoutSlot);
}
// Ignore the offsets.
auto offsetsPtr = llvm::ConstantPointerNull::get(IGF.IGM.PtrTy);
// Flags.
auto flags = TupleTypeFlags().withNumElements(type->getNumElements());
auto flagsValue = IGF.IGM.getSize(Size(flags.getIntValue()));
// Compute the layout.
auto call = IGF.Builder.CreateCall(
IGF.IGM.getGetTupleLayoutFunctionPointer(),
{resultPtr, offsetsPtr, flagsValue, eltLayoutsArray.getAddress()});
call->setDoesNotThrow();
// We're done with the buffer.
IGF.Builder.CreateLifetimeEnd(eltLayoutsArray, eltLayoutsArraySize);
break;
}
}
// Cast resultPtr to i8**, our general currency type for type layouts.
resultPtr = IGF.Builder.CreateBitCast(resultPtr, IGF.IGM.Int8PtrPtrTy);
return resultPtr;
}
};
} // end anonymous namespace
llvm::Value *irgen::emitTypeLayoutRef(IRGenFunction &IGF, SILType type,
MetadataDependencyCollector *collector) {
auto request =
DynamicMetadataRequest::getNonBlocking(MetadataState::LayoutComplete,
collector);
assert(request.canResponseStatusBeIgnored());
return EmitTypeLayoutRef(IGF).visit(type.getASTType(), request);
}
/// Given a class metatype, produce the necessary heap metadata
/// reference. This is generally the metatype pointer, but may
/// instead be a reference type.
llvm::Value *irgen::emitClassHeapMetadataRefForMetatype(IRGenFunction &IGF,
llvm::Value *metatype,
CanType type) {
// If the type is known to have Swift metadata, this is trivial.
if (hasKnownSwiftMetadata(IGF.IGM, type))
return metatype;
// Otherwise, we may have to unwrap an ObjC class wrapper.
assert(IGF.IGM.Context.LangOpts.EnableObjCInterop);
metatype = IGF.Builder.CreateBitCast(metatype, IGF.IGM.TypeMetadataPtrTy);
// Fetch the metadata for that class.
auto call = IGF.Builder.CreateCall(
IGF.IGM.getGetObjCClassFromMetadataFunctionPointer(), metatype);
call->setDoesNotThrow();
call->setDoesNotAccessMemory();
return call;
}
/// Produce the heap metadata pointer for the given class type. For
/// Swift-defined types, this is equivalent to the metatype for the
/// class, but for Objective-C-defined types, this is the class
/// object.
llvm::Value *irgen::emitClassHeapMetadataRef(IRGenFunction &IGF, CanType type,
MetadataValueType desiredType,
DynamicMetadataRequest request,
bool allowUninitialized) {
assert(request.canResponseStatusBeIgnored() &&
"emitClassHeapMetadataRef only supports satisfied requests");
assert(type->mayHaveSuperclass() || type->isTypeErasedGenericClassType());
// Archetypes may or may not be ObjC classes and need unwrapping to get at
// the class object.
if (auto archetype = dyn_cast<ArchetypeType>(type)) {
// Look up the Swift metadata from context.
auto archetypeMeta = IGF.emitTypeMetadataRef(type, request).getMetadata();
// Get the class pointer.
auto classPtr = emitClassHeapMetadataRefForMetatype(IGF, archetypeMeta,
archetype);
if (desiredType == MetadataValueType::ObjCClass)
classPtr = IGF.Builder.CreateBitCast(classPtr, IGF.IGM.ObjCClassPtrTy);
return classPtr;
}
if (ClassDecl *theClass = dyn_cast_or_null<ClassDecl>(type->getAnyNominal())) {
if (!hasKnownSwiftMetadata(IGF.IGM, theClass)) {
llvm::Value *result =
emitObjCHeapMetadataRef(IGF, theClass, allowUninitialized);
if (desiredType == MetadataValueType::TypeMetadata)
result = IGF.Builder.CreateBitCast(result, IGF.IGM.TypeMetadataPtrTy);
return result;
}
}
if (IGF.IGM.Context.LangOpts.hasFeature(Feature::Embedded)) {
llvm::Constant *result = IGF.IGM.getAddrOfTypeMetadata(type);
return result;
}
llvm::Value *result = IGF.emitTypeMetadataRef(type, request).getMetadata();
if (desiredType == MetadataValueType::ObjCClass)
result = IGF.Builder.CreateBitCast(result, IGF.IGM.ObjCClassPtrTy);
return result;
}
/// Emit a metatype value for a known type.
void irgen::emitMetatypeRef(IRGenFunction &IGF, CanMetatypeType type,
Explosion &explosion) {
switch (type->getRepresentation()) {
case MetatypeRepresentation::Thin:
// Thin types have a trivial representation.
break;
case MetatypeRepresentation::Thick:
explosion.add(IGF.emitTypeMetadataRef(type.getInstanceType()));
break;
case MetatypeRepresentation::ObjC:
explosion.add(emitClassHeapMetadataRef(IGF, type.getInstanceType(),
MetadataValueType::ObjCClass,
MetadataState::Complete));
break;
}
}
static bool canCheckStateWithBranch(DynamicMetadataRequest request,
MetadataResponse response) {
assert(request.getDependencyCollector() == nullptr ||
(request.isStatic() && request.getStaticRequest().isNonBlocking()));
return (response.hasDynamicState() &&
request.getDependencyCollector() != nullptr);
}
MetadataResponse
irgen::emitCheckTypeMetadataState(IRGenFunction &IGF,
DynamicMetadataRequest request,
MetadataResponse response) {
// Note that the structure of this function is mirrored in
// getCheckTypeMetadataStateCost.
// If the request is already satisfied by the response, we don't need
// to check anything.
if (request.isSatisfiedBy(response))
return response;
auto metadata = response.getMetadata();
// Try to check the already-fetched dynamic state against the required state.
if (canCheckStateWithBranch(request, response)) {
auto dynamicState = response.getDynamicState();
request.getDependencyCollector()
->checkDependency(IGF, request, metadata, dynamicState);
return MetadataResponse(metadata, dynamicState,
request.getStaticRequest().getState());
}
// Otherwise, we have to ask the runtime.
return emitGetTypeMetadataDynamicState(IGF, request, metadata);
}
OperationCost
irgen::getCheckTypeMetadataStateCost(DynamicMetadataRequest request,
MetadataResponse response) {
if (request.isSatisfiedBy(response))
return OperationCost::Free;
if (canCheckStateWithBranch(request, response))
return OperationCost::Arithmetic;
return OperationCost::Call;
}
/// Call swift_checkMetadataState.
MetadataResponse
irgen::emitGetTypeMetadataDynamicState(IRGenFunction &IGF,
DynamicMetadataRequest request,
llvm::Value *metadata) {
auto call =
IGF.Builder.CreateCall(IGF.IGM.getCheckMetadataStateFunctionPointer(),
{request.get(IGF), metadata});
call->setCallingConv(IGF.IGM.SwiftCC);
return MetadataResponse::handle(IGF, request, call);
}