mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
2571 lines
83 KiB
C++
2571 lines
83 KiB
C++
//===--- Expr.h - Swift Language Expression ASTs ----------------*- C++ -*-===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the Expr class and subclasses.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef SWIFT_AST_EXPR_H
|
|
#define SWIFT_AST_EXPR_H
|
|
|
|
#include "swift/AST/CaptureInfo.h"
|
|
#include "swift/AST/ConcreteDeclRef.h"
|
|
#include "swift/AST/DeclContext.h"
|
|
#include "swift/AST/Identifier.h"
|
|
#include "swift/AST/Substitution.h"
|
|
#include "swift/AST/Type.h"
|
|
#include "swift/AST/TypeLoc.h"
|
|
#include "swift/Basic/SourceLoc.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
|
|
namespace llvm {
|
|
struct fltSemantics;
|
|
}
|
|
|
|
namespace swift {
|
|
class ArchetypeType;
|
|
class ASTContext;
|
|
class Type;
|
|
class ValueDecl;
|
|
class Decl;
|
|
class Pattern;
|
|
class SubscriptDecl;
|
|
class Stmt;
|
|
class BraceStmt;
|
|
class ASTWalker;
|
|
class VarDecl;
|
|
class OpaqueValueExpr;
|
|
class ProtocolConformance;
|
|
class FuncDecl;
|
|
class ConstructorDecl;
|
|
class SubstitutableType;
|
|
|
|
enum class ExprKind : uint8_t {
|
|
#define EXPR(Id, Parent) Id,
|
|
#define EXPR_RANGE(Id, FirstId, LastId) \
|
|
First_##Id##Expr = FirstId, Last_##Id##Expr = LastId,
|
|
#include "swift/AST/ExprNodes.def"
|
|
};
|
|
|
|
/// Expr - Base class for all expressions in swift.
|
|
class alignas(8) Expr {
|
|
Expr(const Expr&) = delete;
|
|
void operator=(const Expr&) = delete;
|
|
|
|
class ExprBitfields {
|
|
friend class Expr;
|
|
/// The subclass of Expr that this is.
|
|
unsigned Kind : 8;
|
|
/// Whether the Expr represents something directly written in source or
|
|
/// it was implicitly generated by the type-checker.
|
|
unsigned Implicit : 1;
|
|
};
|
|
enum { NumExprBits = 9 };
|
|
static_assert(NumExprBits <= 32, "fits in an unsigned");
|
|
|
|
class AbstractClosureExprBitfields {
|
|
friend class AbstractClosureExpr;
|
|
unsigned : NumExprBits;
|
|
};
|
|
enum { NumAbstractClosureExprBits = NumExprBits + 0 };
|
|
static_assert(NumAbstractClosureExprBits <= 32, "fits in an unsigned");
|
|
|
|
class ClosureExprBitfields {
|
|
friend class ClosureExpr;
|
|
unsigned : NumAbstractClosureExprBits;
|
|
|
|
/// True if closure parameters were synthesized from anonymous closure
|
|
/// variables.
|
|
unsigned HasAnonymousClosureVars : 1;
|
|
};
|
|
enum { NumClosureExprBits = NumAbstractClosureExprBits + 1 };
|
|
static_assert(NumClosureExprBits <= 32, "fits in an unsigned");
|
|
|
|
protected:
|
|
union {
|
|
ExprBitfields ExprBits;
|
|
AbstractClosureExprBitfields AbstractClosureExprBits;
|
|
ClosureExprBitfields ClosureExprBits;
|
|
};
|
|
|
|
private:
|
|
/// Ty - This is the type of the expression.
|
|
Type Ty;
|
|
|
|
protected:
|
|
Expr(ExprKind Kind, bool Implicit, Type Ty = Type()) : Ty(Ty) {
|
|
ExprBits.Kind = unsigned(Kind);
|
|
ExprBits.Implicit = Implicit;
|
|
}
|
|
|
|
public:
|
|
/// Return the kind of this expression.
|
|
ExprKind getKind() const { return ExprKind(ExprBits.Kind); }
|
|
|
|
/// \brief Retrieve the name of the given expression kind.
|
|
///
|
|
/// This name should only be used for debugging dumps and other
|
|
/// developer aids, and should never be part of a diagnostic or exposed
|
|
/// to the user of the compiler in any way.
|
|
static StringRef getKindName(ExprKind K);
|
|
|
|
/// getType - Return the type of this expression.
|
|
Type getType() const { return Ty; }
|
|
|
|
/// setType - Sets the type of this expression.
|
|
void setType(Type T) { Ty = T; }
|
|
|
|
/// \brief Return the source range of the expression.
|
|
SourceRange getSourceRange() const;
|
|
|
|
/// getStartLoc - Return the location of the start of the expression.
|
|
SourceLoc getStartLoc() const { return getSourceRange().Start; }
|
|
|
|
/// \brief Retrieve the location of the end of the expression.
|
|
SourceLoc getEndLoc() const { return getSourceRange().End; }
|
|
|
|
/// getLoc - Return the caret location of this expression.
|
|
SourceLoc getLoc() const;
|
|
|
|
SourceLoc TrailingSemiLoc;
|
|
|
|
/// getSemanticsProvidingExpr - Find the smallest subexpression
|
|
/// which obeys the property that evaluating it is exactly
|
|
/// equivalent to evaluating this expression.
|
|
///
|
|
/// Looks through parentheses. Would not look through something
|
|
/// like '(foo(), x:bar(), baz()).x'.
|
|
Expr *getSemanticsProvidingExpr();
|
|
|
|
/// getValueProvidingExpr - Find the smallest subexpression which is
|
|
/// responsible for generating the value of this expression.
|
|
/// Evaluating the result is not necessarily equivalent to
|
|
/// evaluating this expression because of potential missing
|
|
/// side-effects (which may influence the returned value).
|
|
Expr *getValueProvidingExpr();
|
|
|
|
/// walk - This recursively walks the AST rooted at this expression.
|
|
Expr *walk(ASTWalker &walker);
|
|
Expr *walk(ASTWalker &&walker) { return walk(walker); }
|
|
|
|
/// isImplicit - Determines whether this expression was implicitly-generated,
|
|
/// rather than explicitly written in the AST.
|
|
bool isImplicit() const {
|
|
return ExprBits.Implicit;
|
|
}
|
|
void setImplicit(bool Implicit = true) {
|
|
ExprBits.Implicit = Implicit;
|
|
}
|
|
|
|
void dump() const;
|
|
void print(raw_ostream &OS, unsigned Indent = 0) const;
|
|
|
|
// Only allow allocation of Exprs using the allocator in ASTContext
|
|
// or by doing a placement new.
|
|
void *operator new(size_t Bytes, ASTContext &C,
|
|
unsigned Alignment = alignof(Expr));
|
|
|
|
// Make placement new and vanilla new/delete illegal for Exprs.
|
|
void *operator new(size_t Bytes) throw() = delete;
|
|
void operator delete(void *Data) throw() = delete;
|
|
void *operator new(size_t Bytes, void *Mem) throw() = delete;
|
|
};
|
|
|
|
/// ErrorExpr - Represents a semantically erroneous subexpression in the AST,
|
|
/// typically this will have an ErrorType.
|
|
class ErrorExpr : public Expr {
|
|
SourceRange Range;
|
|
public:
|
|
ErrorExpr(SourceRange Range, Type Ty = Type())
|
|
: Expr(ExprKind::Error, /*Implicit=*/true, Ty), Range(Range) {}
|
|
|
|
SourceRange getSourceRange() const { return Range; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::Error;
|
|
}
|
|
};
|
|
|
|
/// LiteralExpr - Common base class between the literals.
|
|
class LiteralExpr : public Expr {
|
|
public:
|
|
LiteralExpr(ExprKind Kind, bool Implicit) : Expr(Kind, Implicit) {}
|
|
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() >= ExprKind::First_LiteralExpr &&
|
|
E->getKind() <= ExprKind::Last_LiteralExpr;
|
|
}
|
|
};
|
|
|
|
/// IntegerLiteralExpr - Integer literal, like '4'. After semantic analysis
|
|
/// assigns types, this is guaranteed to only have a BuiltinIntegerType.
|
|
class IntegerLiteralExpr : public LiteralExpr {
|
|
/// The value of the literal as an ASTContext-owned string. Underscores must
|
|
/// be stripped.
|
|
StringRef Val; // Use StringRef instead of APInt, APInt leaks.
|
|
SourceLoc Loc;
|
|
|
|
public:
|
|
IntegerLiteralExpr(StringRef Val, SourceLoc Loc, bool Implicit)
|
|
: LiteralExpr(ExprKind::IntegerLiteral, Implicit), Val(Val), Loc(Loc) {}
|
|
|
|
APInt getValue() const;
|
|
|
|
static APInt getValue(StringRef Text, unsigned BitWidth);
|
|
|
|
StringRef getText() const { return Val; }
|
|
|
|
SourceRange getSourceRange() const { return Loc; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::IntegerLiteral;
|
|
}
|
|
};
|
|
|
|
/// FloatLiteralExpr - Floating point literal, like '4.0'. After semantic
|
|
/// analysis assigns types, this is guaranteed to only have a
|
|
/// BuiltinFloatingPointType.
|
|
class FloatLiteralExpr : public LiteralExpr {
|
|
/// The value of the literal as an ASTContext-owned string. Underscores must
|
|
/// be stripped.
|
|
StringRef Val; // Use StringRef instead of APFloat, APFloat leaks.
|
|
SourceLoc Loc;
|
|
|
|
public:
|
|
FloatLiteralExpr(StringRef Val, SourceLoc Loc, bool Implicit)
|
|
: LiteralExpr(ExprKind::FloatLiteral, Implicit), Val(Val), Loc(Loc) {}
|
|
|
|
APFloat getValue() const;
|
|
|
|
static APFloat getValue(StringRef Text, const llvm::fltSemantics &Semantics);
|
|
|
|
StringRef getText() const { return Val; }
|
|
SourceRange getSourceRange() const { return Loc; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::FloatLiteral;
|
|
}
|
|
};
|
|
|
|
|
|
/// CharacterLiteral - Character literal, like 'x'. After semantic analysis
|
|
/// assigns types, this is guaranteed to only have a 32-bit BuiltinIntegerType.
|
|
class CharacterLiteralExpr : public LiteralExpr {
|
|
uint32_t Val;
|
|
SourceLoc Loc;
|
|
public:
|
|
CharacterLiteralExpr(uint32_t Val, SourceLoc Loc)
|
|
: LiteralExpr(ExprKind::CharacterLiteral, /*Implicit=*/false),
|
|
Val(Val), Loc(Loc) {}
|
|
|
|
uint32_t getValue() const { return Val; }
|
|
SourceRange getSourceRange() const { return Loc; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::CharacterLiteral;
|
|
}
|
|
};
|
|
|
|
/// StringLiteralExpr - String literal, like '"foo"'. After semantic
|
|
/// analysis assigns types, this is guaranteed to only have a
|
|
/// BuiltinRawPointerType.
|
|
class StringLiteralExpr : public LiteralExpr {
|
|
StringRef Val;
|
|
SourceRange Range;
|
|
|
|
public:
|
|
StringLiteralExpr(StringRef Val, SourceRange Range)
|
|
: LiteralExpr(ExprKind::StringLiteral, /*Implicit=*/false),
|
|
Val(Val), Range(Range) {}
|
|
|
|
StringRef getValue() const { return Val; }
|
|
SourceRange getSourceRange() const { return Range; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::StringLiteral;
|
|
}
|
|
};
|
|
|
|
/// InterpolatedStringLiteral - An interpolated string literal.
|
|
///
|
|
/// An interpolated string literal mixes expressions (which are evaluated and
|
|
/// converted into string form) within a string literal.
|
|
///
|
|
/// \code
|
|
/// "[\(min)..\(max)]"
|
|
/// \endcode
|
|
class InterpolatedStringLiteralExpr : public LiteralExpr {
|
|
SourceLoc Loc;
|
|
MutableArrayRef<Expr *> Segments;
|
|
Expr *SemanticExpr;
|
|
|
|
public:
|
|
InterpolatedStringLiteralExpr(SourceLoc Loc, MutableArrayRef<Expr *> Segments)
|
|
: LiteralExpr(ExprKind::InterpolatedStringLiteral, /*Implicit=*/false),
|
|
Loc(Loc), Segments(Segments), SemanticExpr() { }
|
|
|
|
MutableArrayRef<Expr *> getSegments() { return Segments; }
|
|
ArrayRef<Expr *> getSegments() const { return Segments; }
|
|
|
|
/// \brief Retrieve the expression that actually evaluates the resulting
|
|
/// string, typically with a series of '+' operations.
|
|
Expr *getSemanticExpr() const { return SemanticExpr; }
|
|
void setSemanticExpr(Expr *SE) { SemanticExpr = SE; }
|
|
|
|
SourceRange getSourceRange() const { return Loc; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::InterpolatedStringLiteral;
|
|
}
|
|
};
|
|
|
|
/// MagicIdentifierLiteralExpr - A magic identifier like __FILE__ which expands
|
|
/// out to a literal at SILGen time.
|
|
class MagicIdentifierLiteralExpr : public LiteralExpr {
|
|
public:
|
|
enum KindTy {
|
|
File, Line, Column
|
|
};
|
|
private:
|
|
KindTy Kind;
|
|
SourceLoc Loc;
|
|
|
|
public:
|
|
MagicIdentifierLiteralExpr(KindTy Kind, SourceLoc Loc, bool Implicit)
|
|
: LiteralExpr(ExprKind::MagicIdentifierLiteral, Implicit), Kind(Kind), Loc(Loc) {}
|
|
|
|
KindTy getKind() const { return Kind; }
|
|
bool isFile() const { return Kind == File; }
|
|
bool isLine() const { return Kind == Line; }
|
|
bool isColumn() const { return Kind == Column; }
|
|
|
|
SourceRange getSourceRange() const { return Loc; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::MagicIdentifierLiteral;
|
|
}
|
|
};
|
|
|
|
|
|
/// DeclRefExpr - A reference to a value, "x".
|
|
class DeclRefExpr : public Expr {
|
|
/// \brief The declaration pointer and a bit specifying whether it was
|
|
/// explicitly specialized with <...>.
|
|
llvm::PointerIntPair<ValueDecl *, 1, bool> DAndSpecialized;
|
|
SourceLoc Loc;
|
|
|
|
public:
|
|
DeclRefExpr(ValueDecl *D, SourceLoc Loc, bool Implicit, Type Ty = Type())
|
|
: Expr(ExprKind::DeclRef, Implicit, Ty), DAndSpecialized(D, false), Loc(Loc) {}
|
|
|
|
ValueDecl *getDecl() const { return DAndSpecialized.getPointer(); }
|
|
|
|
void setSpecialized(bool specialized) { DAndSpecialized.setInt(specialized); }
|
|
|
|
/// \brief Determine whether this declaration reference was immediately
|
|
/// specialized by <...>.
|
|
bool isSpecialized() const { return DAndSpecialized.getInt(); }
|
|
|
|
SourceRange getSourceRange() const { return Loc; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::DeclRef;
|
|
}
|
|
};
|
|
|
|
/// A reference to 'super'. References to members of 'super' resolve to members
|
|
/// of a superclass of 'self'.
|
|
class SuperRefExpr : public Expr {
|
|
ValueDecl *Self;
|
|
SourceLoc Loc;
|
|
|
|
public:
|
|
SuperRefExpr(ValueDecl *Self, SourceLoc Loc, bool Implicit,
|
|
Type SuperTy = Type())
|
|
: Expr(ExprKind::SuperRef, Implicit, SuperTy), Self(Self), Loc(Loc) {}
|
|
|
|
ValueDecl *getSelf() const { return Self; }
|
|
|
|
SourceLoc getSuperLoc() const { return Loc; }
|
|
SourceRange getSourceRange() const { return Loc; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::SuperRef;
|
|
}
|
|
};
|
|
|
|
/// A reference to another constructor from within a constructor body,
|
|
/// either to a delegating constructor or to a super.constructor invocation.
|
|
/// For a reference type, this semantically references a different constructor
|
|
/// entry point, called the 'initializing constructor', from the 'allocating
|
|
/// constructor' entry point referenced by a 'new' expression.
|
|
class OtherConstructorDeclRefExpr : public Expr {
|
|
ConstructorDecl *Ctor;
|
|
SourceLoc Loc;
|
|
|
|
public:
|
|
OtherConstructorDeclRefExpr(ConstructorDecl /*nullable*/ *Ctor, SourceLoc Loc,
|
|
Type Ty = {})
|
|
: Expr(ExprKind::OtherConstructorDeclRef, /*Implicit=*/true, Ty),
|
|
Ctor(Ctor), Loc(Loc)
|
|
{}
|
|
|
|
ConstructorDecl *getDecl() const {
|
|
return Ctor;
|
|
}
|
|
|
|
SourceLoc getConstructorLoc() const { return Loc; }
|
|
SourceRange getSourceRange() const { return Loc; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::OtherConstructorDeclRef;
|
|
}
|
|
};
|
|
|
|
/// An unresolved reference to a constructor member of a value. Resolves to a
|
|
/// DotSyntaxCall involving the value and the resolved constructor.
|
|
class UnresolvedConstructorExpr : public Expr {
|
|
Expr *SubExpr;
|
|
SourceLoc DotLoc;
|
|
SourceLoc ConstructorLoc;
|
|
public:
|
|
UnresolvedConstructorExpr(Expr *SubExpr, SourceLoc DotLoc,
|
|
SourceLoc ConstructorLoc, bool Implicit)
|
|
: Expr(ExprKind::UnresolvedConstructor, Implicit),
|
|
SubExpr(SubExpr), DotLoc(DotLoc), ConstructorLoc(ConstructorLoc)
|
|
{}
|
|
|
|
Expr *getSubExpr() const { return SubExpr; }
|
|
void setSubExpr(Expr *e) { SubExpr = e; }
|
|
|
|
SourceLoc getLoc() const { return ConstructorLoc; }
|
|
SourceLoc getConstructorLoc() const { return ConstructorLoc; }
|
|
SourceLoc getDotLoc() const { return DotLoc; }
|
|
|
|
SourceRange getSourceRange() const {
|
|
return SourceRange(SubExpr->getStartLoc(), ConstructorLoc);
|
|
}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::UnresolvedConstructor;
|
|
}
|
|
};
|
|
|
|
/// OverloadSetRefExpr - A reference to an overloaded set of values with a
|
|
/// single name.
|
|
///
|
|
/// This is an abstract class that covers the various different kinds of
|
|
/// overload sets.
|
|
class OverloadSetRefExpr : public Expr {
|
|
ArrayRef<ValueDecl*> Decls;
|
|
|
|
protected:
|
|
OverloadSetRefExpr(ExprKind Kind, ArrayRef<ValueDecl*> decls, bool Implicit,
|
|
Type Ty)
|
|
: Expr(Kind, Implicit, Ty), Decls(decls) {}
|
|
|
|
public:
|
|
ArrayRef<ValueDecl*> getDecls() const { return Decls; }
|
|
|
|
/// getBaseType - Determine the type of the base object provided for the
|
|
/// given overload set, which is only non-null when dealing with an overloaded
|
|
/// member reference.
|
|
Type getBaseType() const;
|
|
|
|
/// hasBaseObject - Determine whether this overloaded expression has a
|
|
/// concrete base object (which is not a metatype).
|
|
bool hasBaseObject() const;
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() >= ExprKind::First_OverloadSetRefExpr &&
|
|
E->getKind() <= ExprKind::Last_OverloadSetRefExpr;
|
|
}
|
|
};
|
|
|
|
/// OverloadedDeclRefExpr - A reference to an overloaded name that should
|
|
/// eventually be resolved (by overload resolution) to a value reference.
|
|
class OverloadedDeclRefExpr : public OverloadSetRefExpr {
|
|
SourceLoc Loc;
|
|
bool IsSpecialized = false;
|
|
|
|
public:
|
|
OverloadedDeclRefExpr(ArrayRef<ValueDecl*> Decls, SourceLoc Loc,
|
|
bool Implicit, Type Ty = Type())
|
|
: OverloadSetRefExpr(ExprKind::OverloadedDeclRef, Decls, Implicit, Ty),
|
|
Loc(Loc) { }
|
|
|
|
SourceLoc getLoc() const { return Loc; }
|
|
SourceRange getSourceRange() const { return Loc; }
|
|
|
|
void setSpecialized(bool specialized) { IsSpecialized = specialized; }
|
|
|
|
/// \brief Determine whether this declaration reference was immediately
|
|
/// specialized by <...>.
|
|
bool isSpecialized() const { return IsSpecialized; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::OverloadedDeclRef;
|
|
}
|
|
};
|
|
|
|
/// OverloadedMemberRefExpr - A reference to an overloaded name that is a
|
|
/// member, relative to some base expression, that will eventually be
|
|
/// resolved to some kind of member-reference expression.
|
|
class OverloadedMemberRefExpr : public OverloadSetRefExpr {
|
|
Expr *SubExpr;
|
|
SourceLoc DotLoc;
|
|
SourceLoc MemberLoc;
|
|
|
|
public:
|
|
OverloadedMemberRefExpr(Expr *SubExpr, SourceLoc DotLoc,
|
|
ArrayRef<ValueDecl *> Decls, SourceLoc MemberLoc,
|
|
bool Implicit, Type Ty = Type())
|
|
: OverloadSetRefExpr(ExprKind::OverloadedMemberRef, Decls, Implicit, Ty),
|
|
SubExpr(SubExpr), DotLoc(DotLoc), MemberLoc(MemberLoc) { }
|
|
|
|
SourceLoc getDotLoc() const { return DotLoc; }
|
|
SourceLoc getMemberLoc() const { return MemberLoc; }
|
|
Expr *getBase() const { return SubExpr; }
|
|
void setBase(Expr *E) { SubExpr = E; }
|
|
|
|
SourceLoc getLoc() const { return MemberLoc; }
|
|
SourceLoc getStartLoc() const {
|
|
return DotLoc.isValid()? SubExpr->getStartLoc() : MemberLoc;
|
|
}
|
|
SourceLoc getEndLoc() const { return MemberLoc; }
|
|
SourceRange getSourceRange() const {
|
|
return SourceRange(getStartLoc(), MemberLoc);
|
|
}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::OverloadedMemberRef;
|
|
}
|
|
};
|
|
|
|
/// UnresolvedDeclRefExpr - This represents use of an undeclared identifier,
|
|
/// which may ultimately be a use of something that hasn't been defined yet, it
|
|
/// may be a use of something that got imported (which will be resolved during
|
|
/// sema), or may just be a use of an unknown identifier.
|
|
///
|
|
class UnresolvedDeclRefExpr : public Expr {
|
|
Identifier Name;
|
|
SourceLoc Loc;
|
|
DeclRefKind RefKind;
|
|
bool IsSpecialized = false;
|
|
|
|
public:
|
|
UnresolvedDeclRefExpr(Identifier name, DeclRefKind refKind, SourceLoc loc)
|
|
: Expr(ExprKind::UnresolvedDeclRef, /*Implicit=*/false), Name(name), Loc(loc),
|
|
RefKind(refKind) {
|
|
}
|
|
|
|
Identifier getName() const { return Name; }
|
|
DeclRefKind getRefKind() const { return RefKind; }
|
|
|
|
void setSpecialized(bool specialized) { IsSpecialized = specialized; }
|
|
|
|
/// \brief Determine whether this declaration reference was immediately
|
|
/// specialized by <...>.
|
|
bool isSpecialized() const { return IsSpecialized; }
|
|
|
|
SourceRange getSourceRange() const { return Loc; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::UnresolvedDeclRef;
|
|
}
|
|
};
|
|
|
|
/// MemberRefExpr - This represents 'a.b' where we are referring to a member
|
|
/// of a type, such as a property or variable.
|
|
///
|
|
/// Note that methods found via 'dot' syntax are expressed as DotSyntaxCallExpr
|
|
/// nodes, because 'a.f' is actually an application of 'a' (the implicit object
|
|
/// argument) to the function 'f'.
|
|
class MemberRefExpr : public Expr {
|
|
Expr *Base;
|
|
ConcreteDeclRef Member;
|
|
SourceLoc DotLoc;
|
|
SourceLoc NameLoc;
|
|
|
|
public:
|
|
MemberRefExpr(Expr *base, SourceLoc dotLoc, ConcreteDeclRef member,
|
|
SourceLoc nameLoc, bool Implicit);
|
|
Expr *getBase() const { return Base; }
|
|
ConcreteDeclRef getMember() const { return Member; }
|
|
SourceLoc getNameLoc() const { return NameLoc; }
|
|
SourceLoc getDotLoc() const { return DotLoc; }
|
|
|
|
void setBase(Expr *E) { Base = E; }
|
|
|
|
SourceLoc getLoc() const { return NameLoc; }
|
|
SourceRange getSourceRange() const {
|
|
if (Base->isImplicit())
|
|
return SourceRange(NameLoc);
|
|
|
|
return SourceRange(Base->getStartLoc(), NameLoc);
|
|
}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::MemberRef;
|
|
}
|
|
};
|
|
|
|
/// ExistentialMemberRefExpr - This represents 'a.b' where we are referring to
|
|
/// a member of an existential type (e.g., a protocol member).
|
|
///
|
|
/// \code
|
|
/// protocol Printable {
|
|
/// func print(format : Format)
|
|
/// }
|
|
///
|
|
/// var p : Printable
|
|
/// p.print // An ExistentialMemberRefExpr with type (format : Format) -> ()
|
|
/// \endcode
|
|
class ExistentialMemberRefExpr : public Expr {
|
|
Expr *Base;
|
|
ValueDecl *Value;
|
|
SourceLoc DotLoc;
|
|
SourceLoc NameLoc;
|
|
|
|
public:
|
|
ExistentialMemberRefExpr(Expr *Base, SourceLoc DotLoc, ValueDecl *Value,
|
|
SourceLoc NameLoc);
|
|
Expr *getBase() const { return Base; }
|
|
ValueDecl *getDecl() const { return Value; }
|
|
SourceLoc getNameLoc() const { return NameLoc; }
|
|
SourceLoc getDotLoc() const { return DotLoc; }
|
|
|
|
void setBase(Expr *E) { Base = E; }
|
|
|
|
SourceLoc getLoc() const { return NameLoc; }
|
|
SourceRange getSourceRange() const {
|
|
if (Base->isImplicit())
|
|
return SourceRange(NameLoc);
|
|
|
|
return SourceRange(Base->getStartLoc(), NameLoc);
|
|
}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::ExistentialMemberRef;
|
|
}
|
|
};
|
|
|
|
/// ArchetypeMemberRefExpr - This represents 'a.b' where we are referring to
|
|
/// a member of an archetype type (e.g., within a generic function).
|
|
///
|
|
/// \code
|
|
/// protocol Printable {
|
|
/// func print(format : Format)
|
|
/// }
|
|
///
|
|
/// func doPrint<P : Printable>(p : P) {
|
|
/// p.print(Format());
|
|
/// }
|
|
/// \endcode
|
|
class ArchetypeMemberRefExpr : public Expr {
|
|
Expr *Base;
|
|
ValueDecl *Value;
|
|
SourceLoc DotLoc;
|
|
SourceLoc NameLoc;
|
|
|
|
public:
|
|
ArchetypeMemberRefExpr(Expr *Base, SourceLoc DotLoc, ValueDecl *Value,
|
|
SourceLoc NameLoc);
|
|
Expr *getBase() const { return Base; }
|
|
ValueDecl *getDecl() const { return Value; }
|
|
SourceLoc getNameLoc() const { return NameLoc; }
|
|
SourceLoc getDotLoc() const { return DotLoc; }
|
|
|
|
void setBase(Expr *E) { Base = E; }
|
|
|
|
SourceLoc getLoc() const { return NameLoc; }
|
|
SourceRange getSourceRange() const {
|
|
if (Base->isImplicit())
|
|
return SourceRange(NameLoc);
|
|
|
|
return SourceRange(Base->getStartLoc(), NameLoc);
|
|
}
|
|
|
|
/// getArchetype - Retrieve the archetype whose member is being accessed.
|
|
ArchetypeType *getArchetype() const;
|
|
|
|
/// isBaseIgnored - Determine whether the base expression is actually ignored,
|
|
/// rather than being used as, e.g., the 'self' argument passed to an
|
|
/// instance method or the base of a variable access.
|
|
bool isBaseIgnored() const;
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::ArchetypeMemberRef;
|
|
}
|
|
};
|
|
|
|
/// Common base for expressions that involve dynamic lookup, which
|
|
/// determines at runtime whether a particular method, property, or
|
|
/// subscript is available.
|
|
class DynamicLookupExpr : public Expr {
|
|
OpaqueValueExpr *OpaqueValue;
|
|
Expr *CreateSome;
|
|
Expr *CreateNone;
|
|
|
|
protected:
|
|
DynamicLookupExpr(ExprKind kind, OpaqueValueExpr *opaqueValue,
|
|
Expr *createSome, Expr *createNone)
|
|
: Expr(kind, /*Implicit=*/false),
|
|
OpaqueValue(opaqueValue), CreateSome(createSome),
|
|
CreateNone(createNone) { }
|
|
|
|
public:
|
|
/// Retrieve the opaque value used to represent the value \c x passed to
|
|
/// \c .Some(x) when the dynamic member is found.
|
|
OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
|
|
|
|
/// Retrieve the expression used to create the Optional<> result when a
|
|
/// dynamic member was found.
|
|
Expr *getCreateSome() const { return CreateSome; }
|
|
|
|
void setCreateSome(Expr *createSome) {
|
|
CreateSome = createSome;
|
|
}
|
|
|
|
/// Expression used to create the empty optional result when the dynamic
|
|
/// member was not found.
|
|
Expr *getCreateNone() const { return CreateNone; }
|
|
|
|
void setCreateNone(Expr *createNone) {
|
|
CreateNone = createNone;
|
|
}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() >= ExprKind::First_DynamicLookupExpr &&
|
|
E->getKind() <= ExprKind::Last_DynamicLookupExpr;
|
|
}
|
|
};
|
|
|
|
/// A reference to a member of an object that was found via dynamic lookup.
|
|
///
|
|
/// A member found via dynamic lookup may not actually be available at runtime.
|
|
/// Therefore, a reference to that member always returns an optional instance.
|
|
/// Users can then propagate the optional (via ?) or assert that the member is
|
|
/// always available (via !). For example:
|
|
///
|
|
/// \code
|
|
/// class C {
|
|
/// func [objc] foo(i : Int) -> String { ... }
|
|
/// };
|
|
///
|
|
/// var x : DynamicLookup = <some value>
|
|
/// print(x.foo!(17)) // x.foo has type ((i : Int) -> String)?
|
|
/// \endcode
|
|
class DynamicMemberRefExpr : public DynamicLookupExpr {
|
|
Expr *Base;
|
|
ConcreteDeclRef Member;
|
|
SourceLoc DotLoc;
|
|
SourceLoc NameLoc;
|
|
|
|
public:
|
|
DynamicMemberRefExpr(Expr *base, SourceLoc dotLoc,
|
|
ConcreteDeclRef member,
|
|
SourceLoc nameLoc,
|
|
OpaqueValueExpr *opaqueValue,
|
|
Expr *createSome,
|
|
Expr *createNone)
|
|
: DynamicLookupExpr(ExprKind::DynamicMemberRef, opaqueValue,
|
|
createSome, createNone),
|
|
Base(base), Member(member), DotLoc(dotLoc), NameLoc(nameLoc) {
|
|
}
|
|
|
|
/// Retrieve the base of the expression.
|
|
Expr *getBase() const { return Base; }
|
|
|
|
/// Replace the base of the expression.
|
|
void setBase(Expr *base) { Base = base; }
|
|
|
|
/// Retrieve the member to which this access refers.
|
|
ConcreteDeclRef getMember() const { return Member; }
|
|
|
|
/// Retrieve the location of the member name.
|
|
SourceLoc getNameLoc() const { return NameLoc; }
|
|
|
|
/// Retrieve the location of the '.'.
|
|
SourceLoc getDotLoc() const { return DotLoc; }
|
|
|
|
SourceLoc getLoc() const { return NameLoc; }
|
|
|
|
SourceRange getSourceRange() const {
|
|
if (Base->isImplicit())
|
|
return SourceRange(NameLoc);
|
|
|
|
return SourceRange(Base->getStartLoc(), NameLoc);
|
|
}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::DynamicMemberRef;
|
|
}
|
|
};
|
|
|
|
/// A subscript on an object with dynamic lookup type.
|
|
///
|
|
/// A subscript found via dynamic lookup may not actually be available
|
|
/// at runtime. Therefore, the result of performing the subscript
|
|
/// operation always returns an optional instance.Users can then
|
|
/// propagate the optional (via ?) or assert that the member is always
|
|
/// available (via !). For example:
|
|
///
|
|
/// \code
|
|
/// class C {
|
|
/// subscript [objc] (i : Int) -> String {
|
|
/// get:
|
|
/// ...
|
|
/// }
|
|
/// };
|
|
///
|
|
/// var x : DynamicLookup = <some value>
|
|
/// print(x[27]! // x[27] has type String?
|
|
/// \endcode
|
|
class DynamicSubscriptExpr : public DynamicLookupExpr {
|
|
Expr *Base;
|
|
Expr *Index;
|
|
ConcreteDeclRef Member;
|
|
|
|
public:
|
|
DynamicSubscriptExpr(Expr *base, Expr *index,
|
|
ConcreteDeclRef member,
|
|
OpaqueValueExpr *opaqueValue,
|
|
Expr *createSome,
|
|
Expr *createNone)
|
|
: DynamicLookupExpr(ExprKind::DynamicSubscript, opaqueValue,
|
|
createSome, createNone),
|
|
Base(base), Index(index), Member(member) { }
|
|
|
|
/// Retrieve the base of the expression.
|
|
Expr *getBase() const { return Base; }
|
|
|
|
/// Replace the base of the expression.
|
|
void setBase(Expr *base) { Base = base; }
|
|
|
|
/// getIndex - Retrieve the index of the subscript expression, i.e., the
|
|
/// "offset" into the base value.
|
|
Expr *getIndex() const { return Index; }
|
|
void setIndex(Expr *E) { Index = E; }
|
|
|
|
/// Retrieve the member to which this access refers.
|
|
ConcreteDeclRef getMember() const { return Member; }
|
|
|
|
SourceLoc getLoc() const { return Index->getStartLoc(); }
|
|
|
|
SourceRange getSourceRange() const {
|
|
return SourceRange(Base->getStartLoc(), Index->getEndLoc());
|
|
}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::DynamicSubscript;
|
|
}
|
|
};
|
|
|
|
/// UnresolvedMemberExpr - This represents '.foo', an unresolved reference to a
|
|
/// member, which is to be resolved with context sensitive type information into
|
|
/// bar.foo. These always have unresolved type.
|
|
class UnresolvedMemberExpr : public Expr {
|
|
SourceLoc DotLoc;
|
|
SourceLoc NameLoc;
|
|
Identifier Name;
|
|
|
|
public:
|
|
UnresolvedMemberExpr(SourceLoc dotLoc, SourceLoc nameLoc,
|
|
Identifier name)
|
|
: Expr(ExprKind::UnresolvedMember, /*Implicit=*/false),
|
|
DotLoc(dotLoc), NameLoc(nameLoc), Name(name) {
|
|
}
|
|
|
|
Identifier getName() const { return Name; }
|
|
SourceLoc getNameLoc() const { return NameLoc; }
|
|
SourceLoc getDotLoc() const { return DotLoc; }
|
|
|
|
SourceLoc getLoc() const { return NameLoc; }
|
|
SourceRange getSourceRange() const {
|
|
return SourceRange(DotLoc, NameLoc);
|
|
}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::UnresolvedMember;
|
|
}
|
|
};
|
|
|
|
/// ParenExpr - A parenthesized expression like '(x+x)'. Syntactically,
|
|
/// this is just a TupleExpr with exactly one element that has no label.
|
|
/// Semantically, however, it serves only as grouping parentheses and
|
|
/// does not form an expression of tuple type (unless the sub-expression
|
|
/// has tuple type, of course).
|
|
class ParenExpr : public Expr {
|
|
SourceLoc LParenLoc, RParenLoc;
|
|
Expr *SubExpr;
|
|
|
|
/// \brief Whether we're wrapping a trailing closure expression.
|
|
/// FIXME: Pack bit into superclass.
|
|
bool HasTrailingClosure;
|
|
|
|
public:
|
|
ParenExpr(SourceLoc lploc, Expr *subExpr, SourceLoc rploc,
|
|
bool hasTrailingClosure,
|
|
Type ty = Type())
|
|
: Expr(ExprKind::Paren, /*Implicit=*/false, ty),
|
|
LParenLoc(lploc), RParenLoc(rploc),
|
|
SubExpr(subExpr), HasTrailingClosure(hasTrailingClosure) {
|
|
assert(lploc.isValid() == rploc.isValid() &&
|
|
"Mismatched source location information");
|
|
}
|
|
|
|
SourceLoc getLParenLoc() const { return LParenLoc; }
|
|
SourceLoc getRParenLoc() const { return RParenLoc; }
|
|
|
|
SourceLoc getLoc() const { return SubExpr->getLoc(); }
|
|
SourceRange getSourceRange() const {
|
|
// When the locations of the parentheses are invalid, ask our subexpression
|
|
// for its source range instead.
|
|
if (LParenLoc.isInvalid())
|
|
return SubExpr->getSourceRange();
|
|
|
|
// If we have a trailing closure, our end point is the end of the trailing
|
|
// closure.
|
|
if (HasTrailingClosure)
|
|
return SourceRange(LParenLoc, SubExpr->getEndLoc());
|
|
|
|
return SourceRange(LParenLoc, RParenLoc);
|
|
}
|
|
|
|
/// \brief Whether this expression has a trailing closure as its argument.
|
|
bool hasTrailingClosure() const { return HasTrailingClosure; }
|
|
|
|
Expr *getSubExpr() const { return SubExpr; }
|
|
void setSubExpr(Expr *E) { SubExpr = E; }
|
|
|
|
static bool classof(const Expr *E) { return E->getKind() == ExprKind::Paren; }
|
|
};
|
|
|
|
/// TupleExpr - Parenthesized expressions like '(a: x+x)' and '(x, y, 4)'. Also
|
|
/// used to represent the operands to a binary operator. Note that
|
|
/// expressions like '(4)' are represented with a ParenExpr.
|
|
class TupleExpr : public Expr {
|
|
SourceLoc LParenLoc;
|
|
SourceLoc RParenLoc;
|
|
/// SubExprs - Elements of these can be set to null to get the default init
|
|
/// value for the tuple element.
|
|
MutableArrayRef<Expr *> SubExprs;
|
|
/// SubExprNames - Can be null if no names. Otherwise length = SubExpr.size()
|
|
Identifier *SubExprNames;
|
|
|
|
/// \brief Whether we're wrapping a trailing closure expression.
|
|
/// FIXME: Pack bit into superclass.
|
|
bool HasTrailingClosure;
|
|
|
|
public:
|
|
TupleExpr(SourceLoc LParenLoc, MutableArrayRef<Expr *> SubExprs,
|
|
Identifier *SubExprNames, SourceLoc RParenLoc,
|
|
bool hasTrailingClosure, bool Implicit, Type Ty = Type())
|
|
: Expr(ExprKind::Tuple, Implicit, Ty),
|
|
LParenLoc(LParenLoc), RParenLoc(RParenLoc),
|
|
SubExprs(SubExprs), SubExprNames(SubExprNames),
|
|
HasTrailingClosure(hasTrailingClosure)
|
|
{
|
|
assert(LParenLoc.isValid() == RParenLoc.isValid() &&
|
|
"Mismatched parenthesis location information validity");
|
|
}
|
|
|
|
SourceLoc getLParenLoc() const { return LParenLoc; }
|
|
SourceLoc getRParenLoc() const { return RParenLoc; }
|
|
|
|
SourceRange getSourceRange() const;
|
|
|
|
/// \brief Whether this expression has a trailing closure as its argument.
|
|
bool hasTrailingClosure() const { return HasTrailingClosure; }
|
|
|
|
MutableArrayRef<Expr*> getElements() {
|
|
return SubExprs;
|
|
}
|
|
|
|
ArrayRef<Expr*> getElements() const {
|
|
return SubExprs;
|
|
}
|
|
|
|
unsigned getNumElements() const { return SubExprs.size(); }
|
|
|
|
Expr *getElement(unsigned i) const {
|
|
return SubExprs[i];
|
|
}
|
|
void setElement(unsigned i, Expr *e) {
|
|
SubExprs[i] = e;
|
|
}
|
|
|
|
bool hasElementNames() const { return SubExprNames; }
|
|
|
|
Identifier *getElementNames() const { return SubExprNames; }
|
|
|
|
Identifier getElementName(unsigned i) const {
|
|
return SubExprNames ? SubExprNames[i] : Identifier();
|
|
}
|
|
|
|
static bool classof(const Expr *E) { return E->getKind() == ExprKind::Tuple; }
|
|
};
|
|
|
|
/// \brief A collection literal expression.
|
|
///
|
|
/// The subexpression is represented as a TupleExpr or ParenExpr and
|
|
/// passed on to the appropriate semantics-providing conversion
|
|
/// operation.
|
|
class CollectionExpr : public Expr {
|
|
SourceLoc LBracketLoc;
|
|
SourceLoc RBracketLoc;
|
|
Expr *SubExpr;
|
|
Expr *SemanticExpr;
|
|
|
|
protected:
|
|
CollectionExpr(ExprKind Kind, SourceLoc LBracketLoc, Expr *SubExpr,
|
|
SourceLoc RBracketLoc, Type Ty)
|
|
: Expr(Kind, /*Implicit=*/false, Ty),
|
|
LBracketLoc(LBracketLoc), RBracketLoc(RBracketLoc),
|
|
SubExpr(SubExpr), SemanticExpr(nullptr) { }
|
|
|
|
public:
|
|
/// Get the ParenExpr or TupleExpr representing the literal contents
|
|
/// of the container.
|
|
Expr *getSubExpr() const { return SubExpr; }
|
|
void setSubExpr(Expr *e) { SubExpr = e; }
|
|
|
|
SourceLoc getLBracketLoc() const { return LBracketLoc; }
|
|
SourceLoc getRBracketLoc() const { return RBracketLoc; }
|
|
SourceRange getSourceRange() const {
|
|
return SourceRange(LBracketLoc, RBracketLoc);
|
|
}
|
|
|
|
Expr *getSemanticExpr() const { return SemanticExpr; }
|
|
void setSemanticExpr(Expr *e) { SemanticExpr = e; }
|
|
|
|
static bool classof(const Expr *e) {
|
|
return e->getKind() >= ExprKind::First_CollectionExpr &&
|
|
e->getKind() <= ExprKind::Last_CollectionExpr;
|
|
}
|
|
|
|
};
|
|
|
|
/// \brief An array literal expression [a, b, c].
|
|
class ArrayExpr : public CollectionExpr {
|
|
public:
|
|
ArrayExpr(SourceLoc LBracketLoc, Expr *SubExpr, SourceLoc RBracketLoc,
|
|
Type Ty = Type())
|
|
: CollectionExpr(ExprKind::Array, LBracketLoc, SubExpr, RBracketLoc, Ty) { }
|
|
|
|
static bool classof(const Expr *e) {
|
|
return e->getKind() == ExprKind::Array;
|
|
}
|
|
};
|
|
|
|
/// \brief A dictionary literal expression [a : x, b : y, c : z].
|
|
class DictionaryExpr : public CollectionExpr {
|
|
public:
|
|
DictionaryExpr(SourceLoc LBracketLoc, Expr *SubExpr, SourceLoc RBracketLoc,
|
|
Type Ty = Type())
|
|
: CollectionExpr(ExprKind::Dictionary, LBracketLoc, SubExpr, RBracketLoc,
|
|
Ty) { }
|
|
|
|
static bool classof(const Expr *e) {
|
|
return e->getKind() == ExprKind::Dictionary;
|
|
}
|
|
};
|
|
|
|
/// Subscripting expressions like a[i] that refer to an element within a
|
|
/// container.
|
|
///
|
|
/// There is no built-in subscripting in the language. Rather, a fully
|
|
/// type-checked and well-formed subscript expression refers to a subscript
|
|
/// declaration, which provides a getter and (optionally) a setter that will
|
|
/// be used to perform reads/writes.
|
|
class SubscriptExpr : public Expr {
|
|
ConcreteDeclRef TheDecl;
|
|
Expr *Base;
|
|
Expr *Index;
|
|
|
|
public:
|
|
SubscriptExpr(Expr *base, Expr *index,
|
|
ConcreteDeclRef decl = ConcreteDeclRef())
|
|
: Expr(ExprKind::Subscript, /*Implicit=*/false, Type()),
|
|
TheDecl(decl), Base(base), Index(index) { }
|
|
|
|
/// getBase - Retrieve the base of the subscript expression, i.e., the
|
|
/// value being indexed.
|
|
Expr *getBase() const { return Base; }
|
|
void setBase(Expr *E) { Base = E; }
|
|
|
|
/// getIndex - Retrieve the index of the subscript expression, i.e., the
|
|
/// "offset" into the base value.
|
|
Expr *getIndex() const { return Index; }
|
|
void setIndex(Expr *E) { Index = E; }
|
|
|
|
/// Determine whether subscript operation has a known underlying
|
|
/// subscript declaration or not.
|
|
bool hasDecl() const { return static_cast<bool>(TheDecl); }
|
|
|
|
/// Retrieve the subscript declaration that this subscripting
|
|
/// operation refers to. Only valid when \c hasDecl() is true.
|
|
ConcreteDeclRef getDecl() const {
|
|
assert(hasDecl() && "No subscript declaration known!");
|
|
return TheDecl;
|
|
}
|
|
|
|
SourceRange getSourceRange() const {
|
|
return SourceRange(Base->getStartLoc(), Index->getEndLoc());
|
|
}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::Subscript;
|
|
}
|
|
};
|
|
|
|
/// ExistentialSubscriptExpr - Subscripting expressions like a[i] that refer to
|
|
/// an element within a container, where the container has existential type.
|
|
///
|
|
/// There is no built-in subscripting in the language. Rather, a fully
|
|
/// type-checked and well-formed subscript expression refers to a subscript
|
|
/// declaration, which provides a getter and (optionally) a setter that will
|
|
/// be used to perform reads/writes.
|
|
class ExistentialSubscriptExpr : public Expr {
|
|
SubscriptDecl *D;
|
|
Expr *Base;
|
|
Expr *Index;
|
|
|
|
public:
|
|
ExistentialSubscriptExpr(Expr *Base, Expr *Index, SubscriptDecl *D);
|
|
|
|
/// getBase - Retrieve the base of the subscript expression, i.e., the
|
|
/// value being indexed. This value has existential type.
|
|
Expr *getBase() const { return Base; }
|
|
void setBase(Expr *E) { Base = E; }
|
|
|
|
/// getIndex - Retrieve the index of the subscript expression, i.e., the
|
|
/// "offset" into the base value.
|
|
Expr *getIndex() const { return Index; }
|
|
void setIndex(Expr *E) { Index = E; }
|
|
|
|
/// getDecl - Retrieve the subscript declaration that this subscripting
|
|
/// operation refers to.
|
|
SubscriptDecl *getDecl() const { return D; }
|
|
|
|
SourceRange getSourceRange() const {
|
|
return SourceRange(Base->getStartLoc(), Index->getEndLoc());
|
|
}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::ExistentialSubscript;
|
|
}
|
|
};
|
|
|
|
/// ArchetypeSubscriptExpr - Subscripting expressions like a[i] that refer to
|
|
/// an element within a container, where the container is an archetype.
|
|
class ArchetypeSubscriptExpr : public Expr {
|
|
SubscriptDecl *D;
|
|
Expr *Base;
|
|
Expr *Index;
|
|
|
|
public:
|
|
ArchetypeSubscriptExpr(Expr *Base, Expr *Index, SubscriptDecl *D);
|
|
|
|
/// getBase - Retrieve the base of the subscript expression, i.e., the
|
|
/// value being indexed. This value has archetype type.
|
|
Expr *getBase() const { return Base; }
|
|
void setBase(Expr *E) { Base = E; }
|
|
|
|
/// getIndex - Retrieve the index of the subscript expression, i.e., the
|
|
/// "offset" into the base value.
|
|
Expr *getIndex() const { return Index; }
|
|
void setIndex(Expr *E) { Index = E; }
|
|
|
|
/// getDecl - Retrieve the subscript declaration that this subscripting
|
|
/// operation refers to.
|
|
SubscriptDecl *getDecl() const { return D; }
|
|
|
|
SourceRange getSourceRange() const {
|
|
return SourceRange(Base->getStartLoc(), Index->getEndLoc());
|
|
}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::ArchetypeSubscript;
|
|
}
|
|
};
|
|
|
|
/// UnresolvedDotExpr - A field access (foo.bar) on an expression with
|
|
/// unresolved type.
|
|
class UnresolvedDotExpr : public Expr {
|
|
Expr *SubExpr;
|
|
SourceLoc DotLoc;
|
|
SourceLoc NameLoc;
|
|
Identifier Name;
|
|
public:
|
|
UnresolvedDotExpr(Expr *subexpr, SourceLoc dotloc, Identifier name,
|
|
SourceLoc nameloc, bool Implicit)
|
|
: Expr(ExprKind::UnresolvedDot, Implicit), SubExpr(subexpr), DotLoc(dotloc),
|
|
NameLoc(nameloc), Name(name) {}
|
|
|
|
SourceLoc getLoc() const { return NameLoc; }
|
|
|
|
SourceRange getSourceRange() const {
|
|
if (DotLoc.isInvalid())
|
|
return SourceRange(NameLoc, NameLoc);
|
|
return SourceRange(SubExpr->getStartLoc(), NameLoc);
|
|
}
|
|
|
|
SourceLoc getDotLoc() const { return DotLoc; }
|
|
Expr *getBase() const { return SubExpr; }
|
|
void setBase(Expr *e) { SubExpr = e; }
|
|
|
|
Identifier getName() const { return Name; }
|
|
SourceLoc getNameLoc() const { return NameLoc; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::UnresolvedDot;
|
|
}
|
|
};
|
|
|
|
/// ModuleExpr - Reference a module by name. The module being referenced is
|
|
/// captured in the type of the expression, which is always a ModuleType.
|
|
class ModuleExpr : public Expr {
|
|
SourceLoc Loc;
|
|
|
|
public:
|
|
ModuleExpr(SourceLoc Loc, Type Ty)
|
|
: Expr(ExprKind::Module, /*Implicit=*/false, Ty), Loc(Loc) {}
|
|
|
|
SourceRange getSourceRange() const { return SourceRange(Loc, Loc); }
|
|
SourceLoc getLoc() const { return Loc; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::Module;
|
|
}
|
|
};
|
|
|
|
|
|
/// TupleElementExpr - Refer to an element of a tuple,
|
|
/// e.g. "(1,field=2).field".
|
|
class TupleElementExpr : public Expr {
|
|
Expr *SubExpr;
|
|
SourceLoc NameLoc;
|
|
unsigned FieldNo;
|
|
SourceLoc DotLoc;
|
|
|
|
public:
|
|
TupleElementExpr(Expr *SubExpr, SourceLoc DotLoc, unsigned FieldNo,
|
|
SourceLoc NameLoc, Type Ty)
|
|
: Expr(ExprKind::TupleElement, /*Implicit=*/false, Ty), SubExpr(SubExpr),
|
|
NameLoc(NameLoc), FieldNo(FieldNo), DotLoc(DotLoc) {}
|
|
|
|
SourceLoc getLoc() const { return NameLoc; }
|
|
Expr *getBase() const { return SubExpr; }
|
|
void setBase(Expr *e) { SubExpr = e; }
|
|
|
|
unsigned getFieldNumber() const { return FieldNo; }
|
|
SourceLoc getNameLoc() const { return NameLoc; }
|
|
SourceLoc getDotLoc() const { return DotLoc; }
|
|
|
|
SourceRange getSourceRange() const {
|
|
return SourceRange(getBase()->getStartLoc(), getNameLoc());
|
|
}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::TupleElement;
|
|
}
|
|
};
|
|
|
|
/// ImplicitConversionExpr - An abstract class for expressions which
|
|
/// implicitly convert the value of an expression in some way.
|
|
class ImplicitConversionExpr : public Expr {
|
|
Expr *SubExpr;
|
|
|
|
protected:
|
|
ImplicitConversionExpr(ExprKind kind, Expr *subExpr, Type ty)
|
|
: Expr(kind, /*Implicit=*/true, ty), SubExpr(subExpr) {}
|
|
|
|
public:
|
|
SourceRange getSourceRange() const { return SubExpr->getSourceRange(); }
|
|
SourceLoc getLoc() const { return SubExpr->getLoc(); }
|
|
|
|
Expr *getSubExpr() const { return SubExpr; }
|
|
void setSubExpr(Expr *e) { SubExpr = e; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() >= ExprKind::First_ImplicitConversionExpr &&
|
|
E->getKind() <= ExprKind::Last_ImplicitConversionExpr;
|
|
}
|
|
};
|
|
|
|
/// BridgeToBlockExpr - FIXME: A hack to represent limited Swift closure to
|
|
/// ObjC block conversion.
|
|
class BridgeToBlockExpr : public ImplicitConversionExpr {
|
|
public:
|
|
BridgeToBlockExpr(Expr *subExpr, Type ty)
|
|
: ImplicitConversionExpr(ExprKind::BridgeToBlock, subExpr, ty) {}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::BridgeToBlock;
|
|
}
|
|
};
|
|
|
|
/// TupleShuffleExpr - This represents a permutation of a tuple value to a new
|
|
/// tuple type. The expression's type is known to be a tuple type and the
|
|
/// subexpression is known to have a tuple type as well.
|
|
class TupleShuffleExpr : public ImplicitConversionExpr {
|
|
public:
|
|
enum : int {
|
|
/// The element mapping value indicating that a field of the destination
|
|
/// tuple should be default-initialized.
|
|
DefaultInitialize = -1,
|
|
/// The element mapping value signaling the first variadic field.
|
|
FirstVariadic = -2,
|
|
/// The element mapping value indicating that the field of the
|
|
/// destination tuple should be default-initialized with an expression
|
|
/// provided by the caller.
|
|
/// FIXME: Yet another indication that TupleShuffleExpr uses the wrong
|
|
/// formulation.
|
|
CallerDefaultInitialize = -3
|
|
};
|
|
private:
|
|
/// This contains an entry for each element in the Expr type. Each element
|
|
/// specifies which index from the SubExpr that the destination element gets.
|
|
/// If the element value is DefaultInitialize, then the destination value
|
|
/// gets the default initializer for that tuple element value.
|
|
ArrayRef<int> ElementMapping;
|
|
|
|
/// If we're doing a varargs shuffle, this is the function to build the
|
|
/// destination slice type.
|
|
Expr *InjectionFn;
|
|
|
|
/// If there are any default arguments, the owning function
|
|
/// declaration.
|
|
ValueDecl *DefaultArgsOwner;
|
|
|
|
ArrayRef<Expr *> CallerDefaultArgs;
|
|
|
|
public:
|
|
TupleShuffleExpr(Expr *subExpr, ArrayRef<int> elementMapping,
|
|
ValueDecl *defaultArgsOwner,
|
|
ArrayRef<Expr *> CallerDefaultArgs, Type ty)
|
|
: ImplicitConversionExpr(ExprKind::TupleShuffle, subExpr, ty),
|
|
ElementMapping(elementMapping), InjectionFn(nullptr),
|
|
DefaultArgsOwner(defaultArgsOwner), CallerDefaultArgs(CallerDefaultArgs)
|
|
{
|
|
}
|
|
|
|
ArrayRef<int> getElementMapping() const { return ElementMapping; }
|
|
|
|
/// Set the injection function expression to use.
|
|
void setVarargsInjectionFunction(Expr *fn) { InjectionFn = fn; }
|
|
Expr *getVarargsInjectionFunction() const {
|
|
assert(InjectionFn != nullptr);
|
|
return InjectionFn;
|
|
}
|
|
Expr *getVarargsInjectionFunctionOrNull() const {
|
|
return InjectionFn;
|
|
}
|
|
|
|
/// Retrieve the owner of the default arguments.
|
|
ValueDecl *getDefaultArgsOwner() const { return DefaultArgsOwner; }
|
|
|
|
/// Retrieve the caller-defaulted arguments.
|
|
ArrayRef<Expr *> getCallerDefaultArgs() const { return CallerDefaultArgs; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::TupleShuffle;
|
|
}
|
|
};
|
|
|
|
/// LoadExpr - Turn an l-value into an r-value by performing a "load"
|
|
/// operation. This operation may actually be a logical operation,
|
|
/// i.e. one implemented using a call to a potentially user-defined
|
|
/// function instead of a simple memory transaction.
|
|
class LoadExpr : public ImplicitConversionExpr {
|
|
public:
|
|
LoadExpr(Expr *subExpr, Type type)
|
|
: ImplicitConversionExpr(ExprKind::Load, subExpr, type) {}
|
|
|
|
static bool classof(const Expr *E) { return E->getKind() == ExprKind::Load; }
|
|
};
|
|
|
|
/// MaterializeExpr - Turn an r-value into an l-value by placing it in
|
|
/// temporary memory.
|
|
class MaterializeExpr : public ImplicitConversionExpr {
|
|
public:
|
|
MaterializeExpr(Expr *subExpr, Type ty)
|
|
: ImplicitConversionExpr(ExprKind::Materialize, subExpr, ty) {}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::Materialize;
|
|
}
|
|
};
|
|
|
|
/// RequalifyExpr - Change the qualification on an l-value. The new
|
|
/// type always has the same object type as the old type with strictly
|
|
/// "more" (i.e. a supertyped set of) qualifiers.
|
|
class RequalifyExpr : public ImplicitConversionExpr {
|
|
bool IsForObject;
|
|
public:
|
|
RequalifyExpr(Expr *subExpr, Type type, bool isForObject = false)
|
|
: ImplicitConversionExpr(ExprKind::Requalify, subExpr, type),
|
|
IsForObject(isForObject) {}
|
|
|
|
/// Is this requalification for the object operand?
|
|
///
|
|
/// Qualification adjustments for the object operand are permitted
|
|
/// to remove non-settability. This is neither sound nor a good
|
|
/// idea, but it's necessary until we have the capacity to control
|
|
/// mutation.
|
|
bool isForObjectOperand() const { return IsForObject; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::Requalify;
|
|
}
|
|
};
|
|
|
|
/// FunctionConversionExpr - Convert a function to another function type,
|
|
/// which might involve renaming the parameters or handling substitutions
|
|
/// of subtypes (in the return) or supertypes (in the input).
|
|
///
|
|
/// FIXME: This should be a CapturingExpr.
|
|
class FunctionConversionExpr : public ImplicitConversionExpr {
|
|
// FIXME: Sink into Expr.
|
|
unsigned IsTrivial : 1;
|
|
public:
|
|
FunctionConversionExpr(Expr *subExpr, Type type, bool IsTrivial)
|
|
: ImplicitConversionExpr(ExprKind::FunctionConversion, subExpr, type),
|
|
IsTrivial(IsTrivial) {}
|
|
|
|
/// \brief Whether this is a "trivial" conversion, that only includes
|
|
/// parameter renaming and other similarly trivial operations that do not
|
|
/// change the representation of the function.
|
|
///
|
|
/// The 'trivial' computation is a "best effort" computation based on the
|
|
/// language model itself. It does not account for conversions that may be
|
|
/// made trivial if the layout of specific data types is known.
|
|
bool isTrivial() const { return IsTrivial; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::FunctionConversion;
|
|
}
|
|
};
|
|
|
|
/// MetatypeConversionExpr - Convert a metatype to another metatype
|
|
/// using essentially a derived-to-base conversion.
|
|
class MetatypeConversionExpr : public ImplicitConversionExpr {
|
|
public:
|
|
MetatypeConversionExpr(Expr *subExpr, Type type)
|
|
: ImplicitConversionExpr(ExprKind::MetatypeConversion, subExpr, type) {}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::MetatypeConversion;
|
|
}
|
|
};
|
|
|
|
/// ErasureExpr - Perform type erasure by converting a value to existential
|
|
/// type. For example:
|
|
///
|
|
/// \code
|
|
/// protocol Printable {
|
|
/// func print()
|
|
/// }
|
|
///
|
|
/// struct Book {
|
|
/// func print() { ... }
|
|
/// }
|
|
///
|
|
/// var printable : Printable = Book() // erases type
|
|
/// \endcode
|
|
class ErasureExpr : public ImplicitConversionExpr {
|
|
ArrayRef<ProtocolConformance *> Conformances;
|
|
|
|
public:
|
|
ErasureExpr(Expr *SubExpr, Type Ty,
|
|
ArrayRef<ProtocolConformance *> Conformances)
|
|
: ImplicitConversionExpr(ExprKind::Erasure, SubExpr, Ty),
|
|
Conformances(Conformances) {}
|
|
|
|
/// \brief Retrieve the mapping specifying how the type of the subexpression
|
|
/// maps to the resulting existential type. If the resulting existential
|
|
/// type involves several different protocols, there will be mappings for each
|
|
/// of those protocols, in the order in which the existential type expands
|
|
/// its properties.
|
|
///
|
|
/// The entries in this array may be null, indicating that the conformance
|
|
/// to the corresponding protocol is trivial (because the source
|
|
/// type is either an archetype or an existential type that conforms to
|
|
/// that corresponding protocol).
|
|
ArrayRef<ProtocolConformance *> getConformances() const {
|
|
return Conformances;
|
|
}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::Erasure;
|
|
}
|
|
};
|
|
|
|
/// SpecializeExpr - Specializes a reference to a generic entity by binding
|
|
/// each of its type parameters to a specific type.
|
|
///
|
|
/// In a type-checked AST, every reference to a generic entity will be bound
|
|
/// (at some point) by a SpecializeExpr. The type of a SpecializeExpr is the
|
|
/// type of the entity with all of the type parameters substituted.
|
|
///
|
|
/// An example:
|
|
/// \code
|
|
/// func identity<T>(x : T) -> T { return x }
|
|
///
|
|
/// var i : Int = identity(17) // 'identity' is specialized to (x : Int) -> Int
|
|
/// \endcode
|
|
class SpecializeExpr : public ImplicitConversionExpr {
|
|
public:
|
|
typedef swift::Substitution Substitution;
|
|
|
|
private:
|
|
ArrayRef<Substitution> Substitutions;
|
|
|
|
public:
|
|
SpecializeExpr(Expr *SubExpr, Type Ty, ArrayRef<Substitution> Substitutions)
|
|
: ImplicitConversionExpr(ExprKind::Specialize, SubExpr, Ty),
|
|
Substitutions(Substitutions) { }
|
|
|
|
/// \brief Retrieve the set of substitutions applied to specialize the
|
|
/// subexpression.
|
|
///
|
|
/// Each substitution contains the archetype being substitued, the type it is
|
|
/// being replaced with, and the protocol conformance relationships.
|
|
ArrayRef<Substitution> getSubstitutions() const { return Substitutions; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::Specialize;
|
|
}
|
|
};
|
|
|
|
/// UnresolvedSpecializeExpr - Represents an explicit specialization using
|
|
/// a type parameter list (e.g. "Vector<Int>") that has not been resolved.
|
|
class UnresolvedSpecializeExpr : public Expr {
|
|
Expr *SubExpr;
|
|
SourceLoc LAngleLoc;
|
|
SourceLoc RAngleLoc;
|
|
MutableArrayRef<TypeLoc> UnresolvedParams;
|
|
public:
|
|
UnresolvedSpecializeExpr(Expr *SubExpr,
|
|
SourceLoc LAngleLoc,
|
|
MutableArrayRef<TypeLoc> UnresolvedParams,
|
|
SourceLoc RAngleLoc)
|
|
: Expr(ExprKind::UnresolvedSpecialize, /*Implicit=*/false),
|
|
SubExpr(SubExpr),
|
|
LAngleLoc(LAngleLoc), RAngleLoc(RAngleLoc),
|
|
UnresolvedParams(UnresolvedParams) { }
|
|
|
|
Expr *getSubExpr() const { return SubExpr; }
|
|
void setSubExpr(Expr *e) { SubExpr = e; }
|
|
|
|
/// \brief Retrieve the list of type parameters. These parameters have not yet
|
|
/// been bound to archetypes of the entity to be specialized.
|
|
ArrayRef<TypeLoc> getUnresolvedParams() const { return UnresolvedParams; }
|
|
MutableArrayRef<TypeLoc> getUnresolvedParams() { return UnresolvedParams; }
|
|
|
|
SourceLoc getLoc() const { return LAngleLoc; }
|
|
SourceLoc getLAngleLoc() const { return LAngleLoc; }
|
|
SourceLoc getRAngleLoc() const { return RAngleLoc; }
|
|
SourceRange getSourceRange() const {
|
|
return SourceRange(SubExpr->getStartLoc(), RAngleLoc);
|
|
}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::UnresolvedSpecialize;
|
|
}
|
|
};
|
|
|
|
/// \brief Describes an implicit conversion from a subclass to one of its
|
|
/// superclasses.
|
|
class DerivedToBaseExpr : public ImplicitConversionExpr {
|
|
public:
|
|
DerivedToBaseExpr(Expr *subExpr, Type type)
|
|
: ImplicitConversionExpr(ExprKind::DerivedToBase, subExpr, type) {}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::DerivedToBase;
|
|
}
|
|
};
|
|
|
|
/// \brief Describes an implicit conversion from a value of archetype type to
|
|
/// its concrete superclass.
|
|
class ArchetypeToSuperExpr : public ImplicitConversionExpr {
|
|
public:
|
|
ArchetypeToSuperExpr(Expr *subExpr, Type type)
|
|
: ImplicitConversionExpr(ExprKind::ArchetypeToSuper, subExpr, type) {}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::ArchetypeToSuper;
|
|
}
|
|
};
|
|
|
|
/// ScalarToTupleExpr - Convert a scalar to tuple type.
|
|
class ScalarToTupleExpr : public ImplicitConversionExpr {
|
|
public:
|
|
/// Describes an element of the destination tuple, which can be the
|
|
/// caller-side default argument expression, the declaration from which the
|
|
/// callee-side default argument should be produced, or null to indicate the
|
|
/// 'hole' where the scalar expression should be placed.
|
|
typedef llvm::PointerUnion<Expr *, ValueDecl *> Element;
|
|
|
|
private:
|
|
/// If we're doing a varargs shuffle, this is the function to build the
|
|
/// destination slice type.
|
|
Expr *InjectionFn;
|
|
|
|
/// The elements of the destination tuple.
|
|
MutableArrayRef<Element> Elements;
|
|
|
|
public:
|
|
ScalarToTupleExpr(Expr *subExpr, Type type,
|
|
MutableArrayRef<Element> elements,
|
|
Expr *InjectionFn = nullptr)
|
|
: ImplicitConversionExpr(ExprKind::ScalarToTuple, subExpr, type),
|
|
InjectionFn(InjectionFn), Elements(elements) {}
|
|
|
|
/// Retrieve the index of the scalar field within the destination tuple.
|
|
unsigned getScalarField() const;
|
|
|
|
/// Retrieve the expression that refers to the injection function.
|
|
Expr *getVarargsInjectionFunction() { return InjectionFn; }
|
|
|
|
/// Retrieve the elements of the destination tuple.
|
|
MutableArrayRef<Element> getElements() { return Elements; }
|
|
ArrayRef<Element> getElements() const { return Elements; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::ScalarToTuple;
|
|
}
|
|
};
|
|
|
|
/// AddressOfExpr - Using the builtin unary '&' operator, convert the
|
|
/// given l-value into an explicit l-value.
|
|
class AddressOfExpr : public Expr {
|
|
Expr *SubExpr;
|
|
SourceLoc OperLoc;
|
|
|
|
public:
|
|
AddressOfExpr(SourceLoc operLoc, Expr *subExpr, Type type)
|
|
: Expr(ExprKind::AddressOf, /*Implicit=*/false, type),
|
|
SubExpr(subExpr), OperLoc(operLoc) {}
|
|
|
|
SourceRange getSourceRange() const {
|
|
return SourceRange(OperLoc, SubExpr->getEndLoc());
|
|
}
|
|
SourceLoc getLoc() const { return OperLoc; }
|
|
|
|
Expr *getSubExpr() const { return SubExpr; }
|
|
void setSubExpr(Expr *e) { SubExpr = e; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::AddressOf;
|
|
}
|
|
};
|
|
|
|
/// SequenceExpr - A list of binary operations which has not yet been
|
|
/// folded into a tree. The operands all have even indices, while the
|
|
/// subexpressions with odd indices are all (potentially overloaded)
|
|
/// references to binary operators.
|
|
class SequenceExpr : public Expr {
|
|
unsigned NumElements;
|
|
|
|
Expr **getSubExprs() { return reinterpret_cast<Expr **>(this + 1); }
|
|
Expr * const *getSubExprs() const {
|
|
return const_cast<SequenceExpr*>(this)->getSubExprs();
|
|
}
|
|
|
|
SequenceExpr(ArrayRef<Expr*> elements)
|
|
: Expr(ExprKind::Sequence, /*Implicit=*/false),
|
|
NumElements(elements.size()) {
|
|
assert(NumElements > 0 && "zero-length sequence!");
|
|
memcpy(getSubExprs(), elements.data(), elements.size() * sizeof(Expr*));
|
|
}
|
|
|
|
public:
|
|
static SequenceExpr *create(ASTContext &ctx, ArrayRef<Expr*> elements);
|
|
|
|
SourceRange getSourceRange() const {
|
|
return SourceRange(getElements()[0]->getStartLoc(),
|
|
getElements()[getNumElements() - 1]->getEndLoc());
|
|
}
|
|
|
|
unsigned getNumElements() const { return NumElements; }
|
|
|
|
MutableArrayRef<Expr*> getElements() {
|
|
return MutableArrayRef<Expr*>(getSubExprs(), NumElements);
|
|
}
|
|
|
|
ArrayRef<Expr*> getElements() const {
|
|
return ArrayRef<Expr*>(getSubExprs(), NumElements);
|
|
}
|
|
|
|
Expr *getElement(unsigned i) const {
|
|
assert(i < NumElements);
|
|
return getSubExprs()[i];
|
|
}
|
|
void setElement(unsigned i, Expr *e) {
|
|
assert(i < NumElements);
|
|
getSubExprs()[i] = e;
|
|
}
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::Sequence;
|
|
}
|
|
};
|
|
|
|
/// \brief A base class for closure expressions.
|
|
class AbstractClosureExpr : public Expr, public DeclContext {
|
|
CaptureInfo Captures;
|
|
|
|
/// \brief The set of parameters.
|
|
Pattern *ParamPattern;
|
|
|
|
public:
|
|
AbstractClosureExpr(ExprKind Kind, Type FnType, bool Implicit,
|
|
DeclContext *Parent)
|
|
: Expr(Kind, Implicit, FnType),
|
|
DeclContext(DeclContextKind::AbstractClosureExpr, Parent),
|
|
ParamPattern(nullptr)
|
|
{}
|
|
|
|
CaptureInfo &getCaptureInfo() { return Captures; }
|
|
const CaptureInfo &getCaptureInfo() const { return Captures; }
|
|
|
|
/// \brief Retrieve the parameters of this closure.
|
|
Pattern *getParams() { return ParamPattern; }
|
|
const Pattern *getParams() const { return ParamPattern; }
|
|
void setParams(Pattern *P) { ParamPattern = P; }
|
|
|
|
ArrayRef<Pattern *> getParamPatterns() { return ParamPattern; }
|
|
ArrayRef<const Pattern *> getParamPatterns() const { return ParamPattern; }
|
|
|
|
/// \brief Retrieve the result type of this closure.
|
|
Type getResultType() const;
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() >= ExprKind::First_AbstractClosureExpr &&
|
|
E->getKind() <= ExprKind::Last_AbstractClosureExpr;
|
|
}
|
|
|
|
static bool classof(const DeclContext *DC) {
|
|
return DC->getContextKind() == DeclContextKind::AbstractClosureExpr;
|
|
}
|
|
|
|
using DeclContext::operator new;
|
|
};
|
|
|
|
/// \brief An explicit unnamed function expression, which can optionally have
|
|
/// named arguments.
|
|
///
|
|
/// \code
|
|
/// { $0 + $1 }
|
|
/// { a, b -> Int in a + b }
|
|
/// { (a : Int, b : Int) -> Int in a + b }
|
|
/// \endcode
|
|
class ClosureExpr : public AbstractClosureExpr {
|
|
/// \brief The location of the '->' denoting an explicit return type,
|
|
/// if present.
|
|
SourceLoc arrowLoc;
|
|
|
|
/// \brief The explicitly-specified result type.
|
|
TypeLoc explicitResultType;
|
|
|
|
/// \brief The body of the closure, along with a bit indicating whether it
|
|
/// was originally just a single expression.
|
|
llvm::PointerIntPair<BraceStmt *, 1, bool> body;
|
|
|
|
public:
|
|
ClosureExpr(Pattern *Params, SourceLoc arrowLoc,
|
|
TypeLoc explicitResultType, DeclContext *Parent)
|
|
: AbstractClosureExpr(ExprKind::Closure, Type(), /*Implicit=*/false, Parent),
|
|
arrowLoc(arrowLoc), explicitResultType(explicitResultType),
|
|
body(nullptr) {
|
|
setParams(Params);
|
|
ClosureExprBits.HasAnonymousClosureVars = false;
|
|
}
|
|
|
|
SourceRange getSourceRange() const;
|
|
SourceLoc getLoc() const;
|
|
|
|
BraceStmt *getBody() const { return body.getPointer(); }
|
|
void setBody(BraceStmt *S, bool isSingleExpression) {
|
|
body.setPointer(S);
|
|
body.setInt(isSingleExpression);
|
|
}
|
|
|
|
/// \brief Determine whether the parameters of this closure are actually
|
|
/// anonymous closure variables.
|
|
bool hasAnonymousClosureVars() const {
|
|
return ClosureExprBits.HasAnonymousClosureVars;
|
|
}
|
|
|
|
/// \brief Set the parameters of this closure along with a flag indicating
|
|
/// whether these parameters are actually anonymous closure variables.
|
|
void setHasAnonymousClosureVars() {
|
|
ClosureExprBits.HasAnonymousClosureVars = true;
|
|
}
|
|
|
|
/// \brief Determine whether this closure expression has an
|
|
/// explicitly-specified result type.
|
|
bool hasExplicitResultType() const { return arrowLoc.isValid(); }
|
|
|
|
/// \brief Retrieve the location of the \c '->' for closures with an
|
|
/// explicit result type.
|
|
SourceLoc getArrowLoc() const {
|
|
assert(hasExplicitResultType() && "No arrow location");
|
|
return arrowLoc;
|
|
}
|
|
|
|
/// \brief Retrieve the explicit result type location information.
|
|
TypeLoc &getExplicitResultTypeLoc() {
|
|
assert(hasExplicitResultType() && "No explicit result type");
|
|
return explicitResultType;
|
|
}
|
|
|
|
/// \brief Determine whether the closure has a single expression for its
|
|
/// body.
|
|
///
|
|
/// This will be true for closures such as, e.g.,
|
|
/// \code
|
|
/// { $0 + 1 }
|
|
/// \endcode
|
|
///
|
|
/// or
|
|
///
|
|
/// \code
|
|
/// { x, y in x > y }
|
|
/// \endcode
|
|
///
|
|
/// But not for empty closures nor
|
|
bool hasSingleExpressionBody() const {
|
|
return body.getInt();
|
|
}
|
|
|
|
/// \brief Retrieve the body for closure that has a single expression for
|
|
/// its body.
|
|
///
|
|
/// Only valid when \c hasSingleExpressionBody() is true.
|
|
Expr *getSingleExpressionBody() const;
|
|
|
|
/// \brief Set the body for a closure that has a single expression as its
|
|
/// body.
|
|
///
|
|
/// This routine cannot change whether a closure has a single expression as
|
|
/// its body; it can only update that expression.
|
|
void setSingleExpressionBody(Expr *NewBody);
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::Closure;
|
|
}
|
|
};
|
|
|
|
/// \brief This is a closure of the contained subexpression that is formed
|
|
/// when an scalar expression is converted to [auto_closure] function type.
|
|
/// For example:
|
|
/// \code
|
|
/// var x : [auto_closure] () -> int = 4
|
|
/// \endcode
|
|
class AutoClosureExpr : public AbstractClosureExpr {
|
|
BraceStmt *Body;
|
|
|
|
public:
|
|
AutoClosureExpr(Expr *Body, Type ResultTy, DeclContext *Parent)
|
|
: AbstractClosureExpr(ExprKind::AutoClosure, ResultTy, /*Implicit=*/true,
|
|
Parent) {
|
|
setBody(Body);
|
|
}
|
|
|
|
SourceRange getSourceRange() const;
|
|
|
|
BraceStmt *getBody() const { return Body; }
|
|
void setBody(Expr *E);
|
|
|
|
/// Returns the body of the auto_closure as an \c Expr.
|
|
///
|
|
/// The body of an auto_closure always consists of a single expression.
|
|
Expr *getSingleExpressionBody() const;
|
|
|
|
// Implement isa/cast/dyncast/etc.
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::AutoClosure;
|
|
}
|
|
};
|
|
|
|
/// NewArrayExpr - The allocation of an array. Allocates and constructs
|
|
/// the array, then injects that into the corresponding slice type.
|
|
class NewArrayExpr : public Expr {
|
|
public:
|
|
struct Bound {
|
|
Expr *Value;
|
|
SourceRange Brackets;
|
|
|
|
Bound() = default;
|
|
Bound(Expr *value, SourceRange brackets)
|
|
: Value(value), Brackets(brackets) {}
|
|
};
|
|
|
|
private:
|
|
TypeLoc ElementTyAsWritten;
|
|
Type ElementTy;
|
|
unsigned NumBounds;
|
|
SourceLoc NewLoc;
|
|
Expr *InjectionFn;
|
|
|
|
NewArrayExpr(SourceLoc newLoc, TypeLoc elementTy,
|
|
unsigned numBounds)
|
|
: Expr(ExprKind::NewArray, /*Implicit=*/false, Type()),
|
|
ElementTyAsWritten(elementTy),
|
|
NumBounds(numBounds), NewLoc(newLoc), InjectionFn(nullptr) {}
|
|
|
|
Bound *getBoundsBuffer() {
|
|
return reinterpret_cast<Bound*>(this + 1);
|
|
}
|
|
const Bound *getBoundsBuffer() const {
|
|
return reinterpret_cast<const Bound*>(this + 1);
|
|
}
|
|
|
|
public:
|
|
static NewArrayExpr *create(ASTContext &Context, SourceLoc newLoc,
|
|
TypeLoc elementTy, ArrayRef<Bound> bounds);
|
|
|
|
unsigned getNumBounds() const { return NumBounds; }
|
|
|
|
MutableArrayRef<Bound> getBounds() {
|
|
return MutableArrayRef<Bound>(getBoundsBuffer(), getNumBounds());
|
|
}
|
|
ArrayRef<Bound> getBounds() const {
|
|
return ArrayRef<Bound>(getBoundsBuffer(), getNumBounds());
|
|
}
|
|
|
|
/// Return the location of the 'new' keyword.
|
|
SourceLoc getNewLoc() const { return NewLoc; }
|
|
|
|
SourceRange getSourceRange() const {
|
|
return SourceRange(NewLoc, getBounds().back().Brackets.End);
|
|
}
|
|
SourceLoc getLoc() const { return NewLoc; }
|
|
|
|
/// Set the injection function expression to use.
|
|
void setInjectionFunction(Expr *fn) { InjectionFn = fn; }
|
|
Expr *getInjectionFunction() const {
|
|
assert(InjectionFn != nullptr);
|
|
return InjectionFn;
|
|
}
|
|
|
|
bool hasInjectionFunction() const { return InjectionFn != nullptr; }
|
|
|
|
bool hasElementType() const { return !ElementTy.isNull(); }
|
|
|
|
Type getElementType() const {
|
|
assert(ElementTy && "Element type not yet computed!");
|
|
return ElementTy;
|
|
}
|
|
void setElementType(Type T) { ElementTy = T; }
|
|
TypeLoc &getElementTypeLoc() { return ElementTyAsWritten; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::NewArray;
|
|
}
|
|
};
|
|
|
|
/// MetatypeExpr - Evaluates an (optional) expression and produces a
|
|
/// metatype value. If there's no base expression, this isn't really
|
|
/// a parsed form.
|
|
class MetatypeExpr : public Expr {
|
|
Expr *Base;
|
|
SourceLoc MetatypeLoc;
|
|
|
|
public:
|
|
explicit MetatypeExpr(Expr *base, SourceLoc metatypeLoc, Type ty)
|
|
: Expr(ExprKind::Metatype, /*Implicit=*/true, ty),
|
|
Base(base), MetatypeLoc(metatypeLoc) { }
|
|
|
|
Expr *getBase() const { return Base; }
|
|
void setBase(Expr *base) { Base = base; }
|
|
|
|
SourceLoc getLoc() const { return MetatypeLoc; }
|
|
|
|
SourceRange getSourceRange() const {
|
|
if (Base) return SourceRange(Base->getStartLoc(), MetatypeLoc);
|
|
return SourceRange(MetatypeLoc);
|
|
}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::Metatype;
|
|
}
|
|
};
|
|
|
|
/// An expression referring to an opaque object of a fixed type.
|
|
///
|
|
/// Opaque value expressions occur when a particular value within the AST
|
|
/// needs to be re-used without being re-evaluated or for a value that is
|
|
/// a placeholder. OpaqueValueExpr nodes are introduced by some other AST
|
|
/// node (say, a \c DynamicMemberRefExpr) and can only be used within the
|
|
/// subexpressions of that AST node.
|
|
class OpaqueValueExpr : public Expr {
|
|
SourceLoc Loc;
|
|
bool UniquelyReferenced = false;
|
|
|
|
public:
|
|
explicit OpaqueValueExpr(SourceLoc Loc, Type Ty)
|
|
: Expr(ExprKind::OpaqueValue, /*Implicit=*/true, Ty), Loc(Loc) { }
|
|
|
|
/// Determine whether this opaque value is referenced at only one point in
|
|
/// the AST.
|
|
///
|
|
/// Opaque values referenced at only one place in the AST can be referenced
|
|
/// more efficiently, be eliminating extra retain/release traffic.
|
|
bool isUniquelyReferenced() const { return UniquelyReferenced; }
|
|
|
|
void setUniquelyReferenced(bool uniqueRef) { UniquelyReferenced = uniqueRef; }
|
|
|
|
SourceRange getSourceRange() const { return Loc; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::OpaqueValue;
|
|
}
|
|
};
|
|
|
|
/// ApplyExpr - Superclass of various function calls, which apply an argument to
|
|
/// a function to get a result.
|
|
class ApplyExpr : public Expr {
|
|
/// The function being called.
|
|
Expr *Fn;
|
|
|
|
/// The argument being passed to it, and whether it's a 'super' argument.
|
|
llvm::PointerIntPair<Expr *, 1, bool> ArgAndIsSuper;
|
|
|
|
protected:
|
|
ApplyExpr(ExprKind Kind, Expr *Fn, Expr *Arg, bool Implicit, Type Ty = Type())
|
|
: Expr(Kind, Implicit, Ty), Fn(Fn), ArgAndIsSuper(Arg, false) {
|
|
assert(classof((Expr*)this) && "ApplyExpr::classof out of date");
|
|
}
|
|
|
|
public:
|
|
Expr *getFn() const { return Fn; }
|
|
void setFn(Expr *e) { Fn = e; }
|
|
|
|
Expr *getArg() const { return ArgAndIsSuper.getPointer(); }
|
|
void setArg(Expr *e) {
|
|
assert((getKind() != ExprKind::Binary || isa<TupleExpr>(e)) &&
|
|
"BinaryExprs must have a TupleExpr as the argument");
|
|
ArgAndIsSuper = {e, ArgAndIsSuper.getInt()};
|
|
}
|
|
|
|
bool isSuper() const { return ArgAndIsSuper.getInt(); }
|
|
void setIsSuper(bool super) {
|
|
ArgAndIsSuper = {ArgAndIsSuper.getPointer(), super};
|
|
}
|
|
|
|
ValueDecl *getCalledValue() const;
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() >= ExprKind::First_ApplyExpr &&
|
|
E->getKind() <= ExprKind::Last_ApplyExpr;
|
|
}
|
|
};
|
|
|
|
/// CallExpr - Application of an argument to a function, which occurs
|
|
/// syntactically through juxtaposition with a TupleExpr whose
|
|
/// leading '(' is unspaced.
|
|
class CallExpr : public ApplyExpr {
|
|
public:
|
|
CallExpr(Expr *fn, Expr *arg, bool Implicit, Type ty = Type())
|
|
: ApplyExpr(ExprKind::Call, fn, arg, Implicit, ty) {}
|
|
|
|
SourceRange getSourceRange() const {
|
|
return SourceRange(getFn()->getStartLoc(), getArg()->getEndLoc());
|
|
}
|
|
|
|
SourceLoc getLoc() const { return getArg()->getStartLoc(); }
|
|
|
|
static bool classof(const Expr *E) { return E->getKind() == ExprKind::Call; }
|
|
};
|
|
|
|
/// PrefixUnaryExpr - Prefix unary expressions like '!y'.
|
|
class PrefixUnaryExpr : public ApplyExpr {
|
|
public:
|
|
PrefixUnaryExpr(Expr *Fn, Expr *Arg, Type Ty = Type())
|
|
: ApplyExpr(ExprKind::PrefixUnary, Fn, Arg, /*Implicit=*/false, Ty) {}
|
|
|
|
SourceLoc getLoc() const { return getFn()->getStartLoc(); }
|
|
|
|
SourceRange getSourceRange() const {
|
|
return SourceRange(getFn()->getStartLoc(), getArg()->getEndLoc());
|
|
}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::PrefixUnary;
|
|
}
|
|
};
|
|
|
|
/// PostfixUnaryExpr - Prefix unary expressions like '!y'.
|
|
class PostfixUnaryExpr : public ApplyExpr {
|
|
public:
|
|
PostfixUnaryExpr(Expr *Fn, Expr *Arg, Type Ty = Type())
|
|
: ApplyExpr(ExprKind::PostfixUnary, Fn, Arg, /*Implicit=*/false, Ty) {}
|
|
|
|
SourceLoc getLoc() const { return getFn()->getStartLoc(); }
|
|
|
|
SourceRange getSourceRange() const {
|
|
return SourceRange(getArg()->getStartLoc(), getFn()->getEndLoc());
|
|
}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::PostfixUnary;
|
|
}
|
|
};
|
|
|
|
/// BinaryExpr - Infix binary expressions like 'x+y'. The argument is always
|
|
/// an implicit tuple expression of the type expected by the function.
|
|
class BinaryExpr : public ApplyExpr {
|
|
public:
|
|
BinaryExpr(Expr *Fn, TupleExpr *Arg, bool Implicit, Type Ty = Type())
|
|
: ApplyExpr(ExprKind::Binary, Fn, Arg, Implicit, Ty) {}
|
|
|
|
SourceLoc getLoc() const { return getFn()->getLoc(); }
|
|
|
|
SourceRange getSourceRange() const {
|
|
return getArg()->getSourceRange();
|
|
}
|
|
|
|
TupleExpr *getArg() const { return cast<TupleExpr>(ApplyExpr::getArg()); }
|
|
|
|
static bool classof(const Expr *E) { return E->getKind() == ExprKind::Binary;}
|
|
};
|
|
|
|
/// SelfApplyExpr - Abstract application that provides the 'self' pointer for
|
|
/// a method curried as (this : Self) -> (params) -> result.
|
|
///
|
|
/// The application of a curried method to 'self' semantically differs from
|
|
/// normal function application because the 'self' parameter can be implicitly
|
|
/// materialized from an rvalue.
|
|
class SelfApplyExpr : public ApplyExpr {
|
|
protected:
|
|
SelfApplyExpr(ExprKind K, Expr *FnExpr, Expr *BaseExpr, Type Ty)
|
|
: ApplyExpr(K, FnExpr, BaseExpr, FnExpr->isImplicit(), Ty) { }
|
|
|
|
public:
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() >= ExprKind::First_SelfApplyExpr &&
|
|
E->getKind() <= ExprKind::Last_SelfApplyExpr;
|
|
}
|
|
};
|
|
|
|
/// DotSyntaxCallExpr - Refer to a method of a type, e.g. P.x. 'x'
|
|
/// is modeled as a DeclRefExpr or OverloadSetRefExpr on the method.
|
|
class DotSyntaxCallExpr : public SelfApplyExpr {
|
|
SourceLoc DotLoc;
|
|
|
|
public:
|
|
DotSyntaxCallExpr(Expr *FnExpr, SourceLoc DotLoc, Expr *BaseExpr,
|
|
Type Ty = Type())
|
|
: SelfApplyExpr(ExprKind::DotSyntaxCall, FnExpr, BaseExpr, Ty),
|
|
DotLoc(DotLoc) {
|
|
}
|
|
|
|
SourceLoc getDotLoc() const { return DotLoc; }
|
|
SourceLoc getLoc() const {
|
|
return DotLoc.isValid() ? getArg()->getStartLoc() : getFn()->getStartLoc();
|
|
}
|
|
SourceLoc getEndLoc() const {
|
|
return getFn()->getEndLoc();
|
|
}
|
|
|
|
SourceRange getSourceRange() const {
|
|
// Implicit 'self' receivers don't have location info for DotLoc or the
|
|
// 'arg' expression.
|
|
if (DotLoc.isValid())
|
|
return SourceRange(getArg()->getStartLoc(), getEndLoc());
|
|
return getFn()->getSourceRange();
|
|
}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::DotSyntaxCall;
|
|
}
|
|
};
|
|
|
|
/// ConstructorRefCallExpr - Refer to a constructor for a type P. The
|
|
/// actual reference to function which returns the constructor is modeled
|
|
/// as a DeclRefExpr.
|
|
class ConstructorRefCallExpr : public SelfApplyExpr {
|
|
public:
|
|
ConstructorRefCallExpr(Expr *FnExpr, Expr *BaseExpr, Type Ty = Type())
|
|
: SelfApplyExpr(ExprKind::ConstructorRefCall, FnExpr, BaseExpr, Ty) {}
|
|
|
|
SourceLoc getLoc() const {
|
|
return getArg()->getLoc();
|
|
}
|
|
SourceRange getSourceRange() const {
|
|
return SourceRange(getArg()->getSourceRange());
|
|
}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::ConstructorRefCall;
|
|
}
|
|
};
|
|
|
|
/// DotSyntaxBaseIgnoredExpr - When a.b resolves to something that does not need
|
|
/// the actual value of the base (e.g. when applied to a metatype, module, or
|
|
/// the base of a 'static' function) this expression node is created. The
|
|
/// semantics are that its base is evaluated and discarded, then 'b' is
|
|
/// evaluated and returned as the result of the expression.
|
|
class DotSyntaxBaseIgnoredExpr : public Expr {
|
|
Expr *LHS;
|
|
SourceLoc DotLoc;
|
|
Expr *RHS;
|
|
public:
|
|
DotSyntaxBaseIgnoredExpr(Expr *LHS, SourceLoc DotLoc, Expr *RHS)
|
|
: Expr(ExprKind::DotSyntaxBaseIgnored, /*Implicit=*/false, RHS->getType()),
|
|
LHS(LHS), DotLoc(DotLoc), RHS(RHS) {
|
|
}
|
|
|
|
Expr *getLHS() { return LHS; }
|
|
void setLHS(Expr *E) { LHS = E; }
|
|
SourceLoc getDotLoc() const { return DotLoc; }
|
|
Expr *getRHS() { return RHS; }
|
|
void setRHS(Expr *E) { RHS = E; }
|
|
|
|
SourceLoc getStartLoc() const {
|
|
return DotLoc.isValid()? LHS->getStartLoc() : RHS->getStartLoc();
|
|
}
|
|
|
|
SourceRange getSourceRange() const {
|
|
return SourceRange(getStartLoc(), RHS->getEndLoc());
|
|
}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::DotSyntaxBaseIgnored;
|
|
}
|
|
};
|
|
|
|
/// \brief Represents an explicit cast, 'a as T', 'a as? T', 'a as! T', or
|
|
/// 'a is T', where "T" is a type, and "a" is the expression that will be
|
|
/// converted to the type.
|
|
class ExplicitCastExpr : public Expr {
|
|
Expr *SubExpr;
|
|
SourceLoc AsLoc;
|
|
TypeLoc CastTy;
|
|
|
|
protected:
|
|
ExplicitCastExpr(ExprKind kind, Expr *sub, SourceLoc AsLoc, TypeLoc castTy,
|
|
Type resultTy)
|
|
: Expr(kind, /*Implicit=*/false), SubExpr(sub), AsLoc(AsLoc), CastTy(castTy)
|
|
{}
|
|
|
|
public:
|
|
Expr *getSubExpr() const { return SubExpr; }
|
|
|
|
/// Get the type syntactically spelled in the cast. For some forms of checked
|
|
/// cast this is different from the result type of the expression.
|
|
TypeLoc &getCastTypeLoc() { return CastTy; }
|
|
|
|
/// Get the type syntactically spelled in the cast. For some forms of checked
|
|
/// cast this is different from the result type of the expression.
|
|
TypeLoc getCastTypeLoc() const { return CastTy; }
|
|
|
|
void setSubExpr(Expr *E) { SubExpr = E; }
|
|
|
|
SourceLoc getLoc() const { return AsLoc; }
|
|
|
|
SourceRange getSourceRange() const {
|
|
return SubExpr
|
|
? SourceRange{SubExpr->getStartLoc(), CastTy.getSourceRange().End}
|
|
: SourceRange{AsLoc, CastTy.getSourceRange().End};
|
|
}
|
|
|
|
/// True if the node has been processed by SequenceExpr folding.
|
|
bool isFolded() const { return SubExpr; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() >= ExprKind::First_ExplicitCastExpr &&
|
|
E->getKind() <= ExprKind::Last_ExplicitCastExpr;
|
|
}
|
|
};
|
|
|
|
/// Discriminates the different kinds of checked cast supported.
|
|
enum class CheckedCastKind {
|
|
/// The kind has not been determined yet.
|
|
Unresolved,
|
|
/// The requested conversion is implicit and should be represented as a
|
|
/// coercion.
|
|
InvalidCoercible,
|
|
|
|
/// Valid resolved kinds start here.
|
|
First_Resolved,
|
|
|
|
/// A cast from a class to one of its subclasses.
|
|
Downcast = First_Resolved,
|
|
/// A cast from a class to a type parameter constrained by that class as a
|
|
/// superclass.
|
|
SuperToArchetype,
|
|
/// A cast from a type parameter to another type parameter.
|
|
ArchetypeToArchetype,
|
|
/// A cast from a type parameter to a concrete type.
|
|
ArchetypeToConcrete,
|
|
/// A cast from an existential type to a type parameter.
|
|
ExistentialToArchetype,
|
|
/// A cast from an existential type to a concrete type.
|
|
ExistentialToConcrete,
|
|
};
|
|
|
|
/// \brief Abstract base class for checked casts 'as!' and 'is'. These represent
|
|
/// casts that can dynamically fail.
|
|
class CheckedCastExpr : public ExplicitCastExpr {
|
|
CheckedCastKind CastKind;
|
|
public:
|
|
CheckedCastExpr(ExprKind kind,
|
|
Expr *sub, SourceLoc asLoc, TypeLoc castTy, Type resultTy)
|
|
: ExplicitCastExpr(kind, sub, asLoc, castTy, resultTy),
|
|
CastKind(CheckedCastKind::Unresolved)
|
|
{}
|
|
|
|
/// Return the semantic kind of cast performed.
|
|
CheckedCastKind getCastKind() const { return CastKind; }
|
|
void setCastKind(CheckedCastKind kind) { CastKind = kind; }
|
|
|
|
/// True if the cast has been type-checked and its kind has been set.
|
|
bool isResolved() const {
|
|
return CastKind >= CheckedCastKind::First_Resolved;
|
|
}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() >= ExprKind::First_CheckedCastExpr
|
|
&& E->getKind() <= ExprKind::Last_CheckedCastExpr;
|
|
}
|
|
};
|
|
|
|
/// \brief Represents an explicit unconditional checked cast, which converts
|
|
/// from a type to some subtype or aborts if the cast is not possible,
|
|
/// spelled 'a as! T' and producing a value of type T.
|
|
///
|
|
/// FIXME: All downcasts are currently unconditional, which is horrible.
|
|
class UnconditionalCheckedCastExpr : public CheckedCastExpr {
|
|
SourceLoc BangLoc;
|
|
|
|
public:
|
|
UnconditionalCheckedCastExpr(Expr *sub, SourceLoc asLoc, SourceLoc bangLoc,
|
|
TypeLoc type)
|
|
: CheckedCastExpr(ExprKind::UnconditionalCheckedCast,
|
|
sub, asLoc, type, type.getType()),
|
|
BangLoc(bangLoc) { }
|
|
|
|
UnconditionalCheckedCastExpr(SourceLoc asLoc, SourceLoc bangLoc, TypeLoc type)
|
|
: UnconditionalCheckedCastExpr(nullptr, asLoc, bangLoc, type)
|
|
{}
|
|
|
|
SourceLoc getBangLoc() const { return BangLoc; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::UnconditionalCheckedCast;
|
|
}
|
|
};
|
|
|
|
/// \brief Represents a runtime type check query, 'a is T', where 'T' is a type
|
|
/// and 'a' is a value of some related type. Evaluates to a Bool true if 'a' is
|
|
/// of the type and 'a as! T' would succeed, false otherwise.
|
|
///
|
|
/// FIXME: We should support type queries with a runtime metatype value too.
|
|
class IsaExpr : public CheckedCastExpr {
|
|
public:
|
|
IsaExpr(Expr *sub, SourceLoc isLoc, TypeLoc type)
|
|
: CheckedCastExpr(ExprKind::Isa,
|
|
sub, isLoc, type, Type())
|
|
{}
|
|
|
|
IsaExpr(SourceLoc isLoc, TypeLoc type)
|
|
: IsaExpr(nullptr, isLoc, type)
|
|
{}
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::Isa;
|
|
}
|
|
};
|
|
|
|
/// \brief Represents the rebinding of 'self' in a constructor that calls out
|
|
/// to another constructor. The result of the subexpression is assigned to
|
|
/// 'self', and the expression returns void.
|
|
///
|
|
/// When a super.constructor or delegating constructor is invoked, 'self' is
|
|
/// reassigned to the result of the constructor (after being downcast in the
|
|
/// case of super.constructor).
|
|
/// This is needed for reference types with ObjC interop, where
|
|
/// reassigning 'self' is a supported feature, and for value type delegating
|
|
/// constructors, where the delegatee constructor is responsible for
|
|
/// initializing 'self' in-place before the delegator's logic executes.
|
|
class RebindSelfInConstructorExpr : public Expr {
|
|
Expr *SubExpr;
|
|
ValueDecl *Self;
|
|
public:
|
|
RebindSelfInConstructorExpr(Expr *SubExpr, ValueDecl *Self);
|
|
|
|
SourceLoc getLoc() const { return SubExpr->getLoc(); }
|
|
SourceRange getSourceRange() const { return SubExpr->getSourceRange(); }
|
|
|
|
ValueDecl *getSelf() const { return Self; }
|
|
Expr *getSubExpr() const { return SubExpr; }
|
|
void setSubExpr(Expr *Sub) { SubExpr = Sub; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::RebindSelfInConstructor;
|
|
}
|
|
};
|
|
|
|
/// \brief The conditional expression 'x ? y : z'.
|
|
class IfExpr : public Expr {
|
|
Expr *CondExpr, *ThenExpr, *ElseExpr;
|
|
SourceLoc QuestionLoc, ColonLoc;
|
|
public:
|
|
IfExpr(Expr *CondExpr,
|
|
SourceLoc QuestionLoc, Expr *ThenExpr,
|
|
SourceLoc ColonLoc, Expr *ElseExpr,
|
|
Type Ty = Type())
|
|
: Expr(ExprKind::If, /*Implicit=*/false, Ty),
|
|
CondExpr(CondExpr), ThenExpr(ThenExpr), ElseExpr(ElseExpr),
|
|
QuestionLoc(QuestionLoc), ColonLoc(ColonLoc)
|
|
{}
|
|
|
|
IfExpr(SourceLoc QuestionLoc, Expr *ThenExpr, SourceLoc ColonLoc)
|
|
: IfExpr(nullptr, QuestionLoc, ThenExpr, ColonLoc, nullptr)
|
|
{}
|
|
|
|
SourceLoc getLoc() const { return QuestionLoc; }
|
|
SourceRange getSourceRange() const {
|
|
if (isFolded())
|
|
return {CondExpr->getStartLoc(), ElseExpr->getEndLoc()};
|
|
return {QuestionLoc, ColonLoc};
|
|
}
|
|
SourceLoc getQuestionLoc() const { return QuestionLoc; }
|
|
SourceLoc getColonLoc() const { return ColonLoc; }
|
|
|
|
Expr *getCondExpr() const { return CondExpr; }
|
|
void setCondExpr(Expr *E) { CondExpr = E; }
|
|
|
|
Expr *getThenExpr() const { return ThenExpr; }
|
|
void setThenExpr(Expr *E) { ThenExpr = E; }
|
|
|
|
Expr *getElseExpr() const { return ElseExpr; }
|
|
void setElseExpr(Expr *E) { ElseExpr = E; }
|
|
|
|
/// True if the node has been processed by binary expression folding.
|
|
bool isFolded() const { return CondExpr && ElseExpr; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::If;
|
|
}
|
|
};
|
|
|
|
/// AssignExpr - A value assignment, like "x = y".
|
|
class AssignExpr : public Expr {
|
|
Expr *Dest;
|
|
Expr *Src;
|
|
SourceLoc EqualLoc;
|
|
|
|
public:
|
|
AssignExpr(Expr *Dest, SourceLoc EqualLoc, Expr *Src, bool Implicit)
|
|
: Expr(ExprKind::Assign, Implicit),
|
|
Dest(Dest), Src(Src), EqualLoc(EqualLoc) {}
|
|
|
|
AssignExpr(SourceLoc EqualLoc)
|
|
: AssignExpr(nullptr, EqualLoc, nullptr, /*Implicit=*/false)
|
|
{}
|
|
|
|
Expr *getDest() const { return Dest; }
|
|
void setDest(Expr *e) { Dest = e; }
|
|
Expr *getSrc() const { return Src; }
|
|
void setSrc(Expr *e) { Src = e; }
|
|
|
|
SourceLoc getEqualLoc() const { return EqualLoc; }
|
|
|
|
SourceRange getSourceRange() const;
|
|
|
|
/// True if the node has been processed by binary expression folding.
|
|
bool isFolded() const { return Dest && Src; }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::Assign;
|
|
}
|
|
};
|
|
|
|
/// \brief An expression that produces a zero value for types that
|
|
/// default-initialize to zero, including builtin types and classes.
|
|
///
|
|
/// This expression is synthesizes by type checking and cannot be written
|
|
/// directly by the user.
|
|
class ZeroValueExpr : public Expr {
|
|
public:
|
|
explicit ZeroValueExpr(Type Ty)
|
|
: Expr(ExprKind::ZeroValue, /*Implicit=*/true, Ty) { }
|
|
|
|
SourceRange getSourceRange() const { return SourceRange(); }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::ZeroValue;
|
|
}
|
|
};
|
|
|
|
/// \brief An expression that describes the use of a default value, which may
|
|
/// come from the default argument of a function type or member initializer.
|
|
///
|
|
/// This expression is synthesized by type checking and cannot be written
|
|
/// directly by the user.
|
|
class DefaultValueExpr : public Expr {
|
|
Expr *subExpr;
|
|
|
|
public:
|
|
explicit DefaultValueExpr(Expr *subExpr)
|
|
: Expr(ExprKind::DefaultValue, /*Implicit=*/true, subExpr->getType()),
|
|
subExpr(subExpr) { }
|
|
|
|
Expr *getSubExpr() const { return subExpr; }
|
|
void setSubExpr(Expr *sub) { subExpr = sub; }
|
|
|
|
SourceRange getSourceRange() const { return SourceRange(); }
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::DefaultValue;
|
|
}
|
|
};
|
|
|
|
/// \brief A pattern production that has been parsed but hasn't been resolved
|
|
/// into a complete pattern. Name binding converts these into standalone pattern
|
|
/// nodes or raises an error if a pattern production appears in an invalid
|
|
/// position.
|
|
class UnresolvedPatternExpr : public Expr {
|
|
Pattern *subPattern;
|
|
|
|
public:
|
|
explicit UnresolvedPatternExpr(Pattern *subPattern)
|
|
: Expr(ExprKind::UnresolvedPattern, /*Implicit=*/false),
|
|
subPattern(subPattern) { }
|
|
|
|
const Pattern *getSubPattern() const { return subPattern; }
|
|
Pattern *getSubPattern() { return subPattern; }
|
|
void setSubPattern(Pattern *p) { subPattern = p; }
|
|
|
|
SourceLoc getLoc() const;
|
|
SourceRange getSourceRange() const;
|
|
|
|
static bool classof(const Expr *E) {
|
|
return E->getKind() == ExprKind::UnresolvedPattern;
|
|
}
|
|
};
|
|
|
|
} // end namespace swift
|
|
|
|
#endif
|