Files
swift-mirror/include/swift/AST/Expr.h
Argyrios Kyrtzidis 2456b33471 Propagate implicit'ness of OverloadSetRefExpr nodes.
Swift SVN r8604
2013-09-24 21:18:00 +00:00

2571 lines
83 KiB
C++

//===--- Expr.h - Swift Language Expression ASTs ----------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the Expr class and subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_AST_EXPR_H
#define SWIFT_AST_EXPR_H
#include "swift/AST/CaptureInfo.h"
#include "swift/AST/ConcreteDeclRef.h"
#include "swift/AST/DeclContext.h"
#include "swift/AST/Identifier.h"
#include "swift/AST/Substitution.h"
#include "swift/AST/Type.h"
#include "swift/AST/TypeLoc.h"
#include "swift/Basic/SourceLoc.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
namespace llvm {
struct fltSemantics;
}
namespace swift {
class ArchetypeType;
class ASTContext;
class Type;
class ValueDecl;
class Decl;
class Pattern;
class SubscriptDecl;
class Stmt;
class BraceStmt;
class ASTWalker;
class VarDecl;
class OpaqueValueExpr;
class ProtocolConformance;
class FuncDecl;
class ConstructorDecl;
class SubstitutableType;
enum class ExprKind : uint8_t {
#define EXPR(Id, Parent) Id,
#define EXPR_RANGE(Id, FirstId, LastId) \
First_##Id##Expr = FirstId, Last_##Id##Expr = LastId,
#include "swift/AST/ExprNodes.def"
};
/// Expr - Base class for all expressions in swift.
class alignas(8) Expr {
Expr(const Expr&) = delete;
void operator=(const Expr&) = delete;
class ExprBitfields {
friend class Expr;
/// The subclass of Expr that this is.
unsigned Kind : 8;
/// Whether the Expr represents something directly written in source or
/// it was implicitly generated by the type-checker.
unsigned Implicit : 1;
};
enum { NumExprBits = 9 };
static_assert(NumExprBits <= 32, "fits in an unsigned");
class AbstractClosureExprBitfields {
friend class AbstractClosureExpr;
unsigned : NumExprBits;
};
enum { NumAbstractClosureExprBits = NumExprBits + 0 };
static_assert(NumAbstractClosureExprBits <= 32, "fits in an unsigned");
class ClosureExprBitfields {
friend class ClosureExpr;
unsigned : NumAbstractClosureExprBits;
/// True if closure parameters were synthesized from anonymous closure
/// variables.
unsigned HasAnonymousClosureVars : 1;
};
enum { NumClosureExprBits = NumAbstractClosureExprBits + 1 };
static_assert(NumClosureExprBits <= 32, "fits in an unsigned");
protected:
union {
ExprBitfields ExprBits;
AbstractClosureExprBitfields AbstractClosureExprBits;
ClosureExprBitfields ClosureExprBits;
};
private:
/// Ty - This is the type of the expression.
Type Ty;
protected:
Expr(ExprKind Kind, bool Implicit, Type Ty = Type()) : Ty(Ty) {
ExprBits.Kind = unsigned(Kind);
ExprBits.Implicit = Implicit;
}
public:
/// Return the kind of this expression.
ExprKind getKind() const { return ExprKind(ExprBits.Kind); }
/// \brief Retrieve the name of the given expression kind.
///
/// This name should only be used for debugging dumps and other
/// developer aids, and should never be part of a diagnostic or exposed
/// to the user of the compiler in any way.
static StringRef getKindName(ExprKind K);
/// getType - Return the type of this expression.
Type getType() const { return Ty; }
/// setType - Sets the type of this expression.
void setType(Type T) { Ty = T; }
/// \brief Return the source range of the expression.
SourceRange getSourceRange() const;
/// getStartLoc - Return the location of the start of the expression.
SourceLoc getStartLoc() const { return getSourceRange().Start; }
/// \brief Retrieve the location of the end of the expression.
SourceLoc getEndLoc() const { return getSourceRange().End; }
/// getLoc - Return the caret location of this expression.
SourceLoc getLoc() const;
SourceLoc TrailingSemiLoc;
/// getSemanticsProvidingExpr - Find the smallest subexpression
/// which obeys the property that evaluating it is exactly
/// equivalent to evaluating this expression.
///
/// Looks through parentheses. Would not look through something
/// like '(foo(), x:bar(), baz()).x'.
Expr *getSemanticsProvidingExpr();
/// getValueProvidingExpr - Find the smallest subexpression which is
/// responsible for generating the value of this expression.
/// Evaluating the result is not necessarily equivalent to
/// evaluating this expression because of potential missing
/// side-effects (which may influence the returned value).
Expr *getValueProvidingExpr();
/// walk - This recursively walks the AST rooted at this expression.
Expr *walk(ASTWalker &walker);
Expr *walk(ASTWalker &&walker) { return walk(walker); }
/// isImplicit - Determines whether this expression was implicitly-generated,
/// rather than explicitly written in the AST.
bool isImplicit() const {
return ExprBits.Implicit;
}
void setImplicit(bool Implicit = true) {
ExprBits.Implicit = Implicit;
}
void dump() const;
void print(raw_ostream &OS, unsigned Indent = 0) const;
// Only allow allocation of Exprs using the allocator in ASTContext
// or by doing a placement new.
void *operator new(size_t Bytes, ASTContext &C,
unsigned Alignment = alignof(Expr));
// Make placement new and vanilla new/delete illegal for Exprs.
void *operator new(size_t Bytes) throw() = delete;
void operator delete(void *Data) throw() = delete;
void *operator new(size_t Bytes, void *Mem) throw() = delete;
};
/// ErrorExpr - Represents a semantically erroneous subexpression in the AST,
/// typically this will have an ErrorType.
class ErrorExpr : public Expr {
SourceRange Range;
public:
ErrorExpr(SourceRange Range, Type Ty = Type())
: Expr(ExprKind::Error, /*Implicit=*/true, Ty), Range(Range) {}
SourceRange getSourceRange() const { return Range; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::Error;
}
};
/// LiteralExpr - Common base class between the literals.
class LiteralExpr : public Expr {
public:
LiteralExpr(ExprKind Kind, bool Implicit) : Expr(Kind, Implicit) {}
static bool classof(const Expr *E) {
return E->getKind() >= ExprKind::First_LiteralExpr &&
E->getKind() <= ExprKind::Last_LiteralExpr;
}
};
/// IntegerLiteralExpr - Integer literal, like '4'. After semantic analysis
/// assigns types, this is guaranteed to only have a BuiltinIntegerType.
class IntegerLiteralExpr : public LiteralExpr {
/// The value of the literal as an ASTContext-owned string. Underscores must
/// be stripped.
StringRef Val; // Use StringRef instead of APInt, APInt leaks.
SourceLoc Loc;
public:
IntegerLiteralExpr(StringRef Val, SourceLoc Loc, bool Implicit)
: LiteralExpr(ExprKind::IntegerLiteral, Implicit), Val(Val), Loc(Loc) {}
APInt getValue() const;
static APInt getValue(StringRef Text, unsigned BitWidth);
StringRef getText() const { return Val; }
SourceRange getSourceRange() const { return Loc; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::IntegerLiteral;
}
};
/// FloatLiteralExpr - Floating point literal, like '4.0'. After semantic
/// analysis assigns types, this is guaranteed to only have a
/// BuiltinFloatingPointType.
class FloatLiteralExpr : public LiteralExpr {
/// The value of the literal as an ASTContext-owned string. Underscores must
/// be stripped.
StringRef Val; // Use StringRef instead of APFloat, APFloat leaks.
SourceLoc Loc;
public:
FloatLiteralExpr(StringRef Val, SourceLoc Loc, bool Implicit)
: LiteralExpr(ExprKind::FloatLiteral, Implicit), Val(Val), Loc(Loc) {}
APFloat getValue() const;
static APFloat getValue(StringRef Text, const llvm::fltSemantics &Semantics);
StringRef getText() const { return Val; }
SourceRange getSourceRange() const { return Loc; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::FloatLiteral;
}
};
/// CharacterLiteral - Character literal, like 'x'. After semantic analysis
/// assigns types, this is guaranteed to only have a 32-bit BuiltinIntegerType.
class CharacterLiteralExpr : public LiteralExpr {
uint32_t Val;
SourceLoc Loc;
public:
CharacterLiteralExpr(uint32_t Val, SourceLoc Loc)
: LiteralExpr(ExprKind::CharacterLiteral, /*Implicit=*/false),
Val(Val), Loc(Loc) {}
uint32_t getValue() const { return Val; }
SourceRange getSourceRange() const { return Loc; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::CharacterLiteral;
}
};
/// StringLiteralExpr - String literal, like '"foo"'. After semantic
/// analysis assigns types, this is guaranteed to only have a
/// BuiltinRawPointerType.
class StringLiteralExpr : public LiteralExpr {
StringRef Val;
SourceRange Range;
public:
StringLiteralExpr(StringRef Val, SourceRange Range)
: LiteralExpr(ExprKind::StringLiteral, /*Implicit=*/false),
Val(Val), Range(Range) {}
StringRef getValue() const { return Val; }
SourceRange getSourceRange() const { return Range; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::StringLiteral;
}
};
/// InterpolatedStringLiteral - An interpolated string literal.
///
/// An interpolated string literal mixes expressions (which are evaluated and
/// converted into string form) within a string literal.
///
/// \code
/// "[\(min)..\(max)]"
/// \endcode
class InterpolatedStringLiteralExpr : public LiteralExpr {
SourceLoc Loc;
MutableArrayRef<Expr *> Segments;
Expr *SemanticExpr;
public:
InterpolatedStringLiteralExpr(SourceLoc Loc, MutableArrayRef<Expr *> Segments)
: LiteralExpr(ExprKind::InterpolatedStringLiteral, /*Implicit=*/false),
Loc(Loc), Segments(Segments), SemanticExpr() { }
MutableArrayRef<Expr *> getSegments() { return Segments; }
ArrayRef<Expr *> getSegments() const { return Segments; }
/// \brief Retrieve the expression that actually evaluates the resulting
/// string, typically with a series of '+' operations.
Expr *getSemanticExpr() const { return SemanticExpr; }
void setSemanticExpr(Expr *SE) { SemanticExpr = SE; }
SourceRange getSourceRange() const { return Loc; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::InterpolatedStringLiteral;
}
};
/// MagicIdentifierLiteralExpr - A magic identifier like __FILE__ which expands
/// out to a literal at SILGen time.
class MagicIdentifierLiteralExpr : public LiteralExpr {
public:
enum KindTy {
File, Line, Column
};
private:
KindTy Kind;
SourceLoc Loc;
public:
MagicIdentifierLiteralExpr(KindTy Kind, SourceLoc Loc, bool Implicit)
: LiteralExpr(ExprKind::MagicIdentifierLiteral, Implicit), Kind(Kind), Loc(Loc) {}
KindTy getKind() const { return Kind; }
bool isFile() const { return Kind == File; }
bool isLine() const { return Kind == Line; }
bool isColumn() const { return Kind == Column; }
SourceRange getSourceRange() const { return Loc; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::MagicIdentifierLiteral;
}
};
/// DeclRefExpr - A reference to a value, "x".
class DeclRefExpr : public Expr {
/// \brief The declaration pointer and a bit specifying whether it was
/// explicitly specialized with <...>.
llvm::PointerIntPair<ValueDecl *, 1, bool> DAndSpecialized;
SourceLoc Loc;
public:
DeclRefExpr(ValueDecl *D, SourceLoc Loc, bool Implicit, Type Ty = Type())
: Expr(ExprKind::DeclRef, Implicit, Ty), DAndSpecialized(D, false), Loc(Loc) {}
ValueDecl *getDecl() const { return DAndSpecialized.getPointer(); }
void setSpecialized(bool specialized) { DAndSpecialized.setInt(specialized); }
/// \brief Determine whether this declaration reference was immediately
/// specialized by <...>.
bool isSpecialized() const { return DAndSpecialized.getInt(); }
SourceRange getSourceRange() const { return Loc; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::DeclRef;
}
};
/// A reference to 'super'. References to members of 'super' resolve to members
/// of a superclass of 'self'.
class SuperRefExpr : public Expr {
ValueDecl *Self;
SourceLoc Loc;
public:
SuperRefExpr(ValueDecl *Self, SourceLoc Loc, bool Implicit,
Type SuperTy = Type())
: Expr(ExprKind::SuperRef, Implicit, SuperTy), Self(Self), Loc(Loc) {}
ValueDecl *getSelf() const { return Self; }
SourceLoc getSuperLoc() const { return Loc; }
SourceRange getSourceRange() const { return Loc; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::SuperRef;
}
};
/// A reference to another constructor from within a constructor body,
/// either to a delegating constructor or to a super.constructor invocation.
/// For a reference type, this semantically references a different constructor
/// entry point, called the 'initializing constructor', from the 'allocating
/// constructor' entry point referenced by a 'new' expression.
class OtherConstructorDeclRefExpr : public Expr {
ConstructorDecl *Ctor;
SourceLoc Loc;
public:
OtherConstructorDeclRefExpr(ConstructorDecl /*nullable*/ *Ctor, SourceLoc Loc,
Type Ty = {})
: Expr(ExprKind::OtherConstructorDeclRef, /*Implicit=*/true, Ty),
Ctor(Ctor), Loc(Loc)
{}
ConstructorDecl *getDecl() const {
return Ctor;
}
SourceLoc getConstructorLoc() const { return Loc; }
SourceRange getSourceRange() const { return Loc; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::OtherConstructorDeclRef;
}
};
/// An unresolved reference to a constructor member of a value. Resolves to a
/// DotSyntaxCall involving the value and the resolved constructor.
class UnresolvedConstructorExpr : public Expr {
Expr *SubExpr;
SourceLoc DotLoc;
SourceLoc ConstructorLoc;
public:
UnresolvedConstructorExpr(Expr *SubExpr, SourceLoc DotLoc,
SourceLoc ConstructorLoc, bool Implicit)
: Expr(ExprKind::UnresolvedConstructor, Implicit),
SubExpr(SubExpr), DotLoc(DotLoc), ConstructorLoc(ConstructorLoc)
{}
Expr *getSubExpr() const { return SubExpr; }
void setSubExpr(Expr *e) { SubExpr = e; }
SourceLoc getLoc() const { return ConstructorLoc; }
SourceLoc getConstructorLoc() const { return ConstructorLoc; }
SourceLoc getDotLoc() const { return DotLoc; }
SourceRange getSourceRange() const {
return SourceRange(SubExpr->getStartLoc(), ConstructorLoc);
}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::UnresolvedConstructor;
}
};
/// OverloadSetRefExpr - A reference to an overloaded set of values with a
/// single name.
///
/// This is an abstract class that covers the various different kinds of
/// overload sets.
class OverloadSetRefExpr : public Expr {
ArrayRef<ValueDecl*> Decls;
protected:
OverloadSetRefExpr(ExprKind Kind, ArrayRef<ValueDecl*> decls, bool Implicit,
Type Ty)
: Expr(Kind, Implicit, Ty), Decls(decls) {}
public:
ArrayRef<ValueDecl*> getDecls() const { return Decls; }
/// getBaseType - Determine the type of the base object provided for the
/// given overload set, which is only non-null when dealing with an overloaded
/// member reference.
Type getBaseType() const;
/// hasBaseObject - Determine whether this overloaded expression has a
/// concrete base object (which is not a metatype).
bool hasBaseObject() const;
static bool classof(const Expr *E) {
return E->getKind() >= ExprKind::First_OverloadSetRefExpr &&
E->getKind() <= ExprKind::Last_OverloadSetRefExpr;
}
};
/// OverloadedDeclRefExpr - A reference to an overloaded name that should
/// eventually be resolved (by overload resolution) to a value reference.
class OverloadedDeclRefExpr : public OverloadSetRefExpr {
SourceLoc Loc;
bool IsSpecialized = false;
public:
OverloadedDeclRefExpr(ArrayRef<ValueDecl*> Decls, SourceLoc Loc,
bool Implicit, Type Ty = Type())
: OverloadSetRefExpr(ExprKind::OverloadedDeclRef, Decls, Implicit, Ty),
Loc(Loc) { }
SourceLoc getLoc() const { return Loc; }
SourceRange getSourceRange() const { return Loc; }
void setSpecialized(bool specialized) { IsSpecialized = specialized; }
/// \brief Determine whether this declaration reference was immediately
/// specialized by <...>.
bool isSpecialized() const { return IsSpecialized; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::OverloadedDeclRef;
}
};
/// OverloadedMemberRefExpr - A reference to an overloaded name that is a
/// member, relative to some base expression, that will eventually be
/// resolved to some kind of member-reference expression.
class OverloadedMemberRefExpr : public OverloadSetRefExpr {
Expr *SubExpr;
SourceLoc DotLoc;
SourceLoc MemberLoc;
public:
OverloadedMemberRefExpr(Expr *SubExpr, SourceLoc DotLoc,
ArrayRef<ValueDecl *> Decls, SourceLoc MemberLoc,
bool Implicit, Type Ty = Type())
: OverloadSetRefExpr(ExprKind::OverloadedMemberRef, Decls, Implicit, Ty),
SubExpr(SubExpr), DotLoc(DotLoc), MemberLoc(MemberLoc) { }
SourceLoc getDotLoc() const { return DotLoc; }
SourceLoc getMemberLoc() const { return MemberLoc; }
Expr *getBase() const { return SubExpr; }
void setBase(Expr *E) { SubExpr = E; }
SourceLoc getLoc() const { return MemberLoc; }
SourceLoc getStartLoc() const {
return DotLoc.isValid()? SubExpr->getStartLoc() : MemberLoc;
}
SourceLoc getEndLoc() const { return MemberLoc; }
SourceRange getSourceRange() const {
return SourceRange(getStartLoc(), MemberLoc);
}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::OverloadedMemberRef;
}
};
/// UnresolvedDeclRefExpr - This represents use of an undeclared identifier,
/// which may ultimately be a use of something that hasn't been defined yet, it
/// may be a use of something that got imported (which will be resolved during
/// sema), or may just be a use of an unknown identifier.
///
class UnresolvedDeclRefExpr : public Expr {
Identifier Name;
SourceLoc Loc;
DeclRefKind RefKind;
bool IsSpecialized = false;
public:
UnresolvedDeclRefExpr(Identifier name, DeclRefKind refKind, SourceLoc loc)
: Expr(ExprKind::UnresolvedDeclRef, /*Implicit=*/false), Name(name), Loc(loc),
RefKind(refKind) {
}
Identifier getName() const { return Name; }
DeclRefKind getRefKind() const { return RefKind; }
void setSpecialized(bool specialized) { IsSpecialized = specialized; }
/// \brief Determine whether this declaration reference was immediately
/// specialized by <...>.
bool isSpecialized() const { return IsSpecialized; }
SourceRange getSourceRange() const { return Loc; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::UnresolvedDeclRef;
}
};
/// MemberRefExpr - This represents 'a.b' where we are referring to a member
/// of a type, such as a property or variable.
///
/// Note that methods found via 'dot' syntax are expressed as DotSyntaxCallExpr
/// nodes, because 'a.f' is actually an application of 'a' (the implicit object
/// argument) to the function 'f'.
class MemberRefExpr : public Expr {
Expr *Base;
ConcreteDeclRef Member;
SourceLoc DotLoc;
SourceLoc NameLoc;
public:
MemberRefExpr(Expr *base, SourceLoc dotLoc, ConcreteDeclRef member,
SourceLoc nameLoc, bool Implicit);
Expr *getBase() const { return Base; }
ConcreteDeclRef getMember() const { return Member; }
SourceLoc getNameLoc() const { return NameLoc; }
SourceLoc getDotLoc() const { return DotLoc; }
void setBase(Expr *E) { Base = E; }
SourceLoc getLoc() const { return NameLoc; }
SourceRange getSourceRange() const {
if (Base->isImplicit())
return SourceRange(NameLoc);
return SourceRange(Base->getStartLoc(), NameLoc);
}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::MemberRef;
}
};
/// ExistentialMemberRefExpr - This represents 'a.b' where we are referring to
/// a member of an existential type (e.g., a protocol member).
///
/// \code
/// protocol Printable {
/// func print(format : Format)
/// }
///
/// var p : Printable
/// p.print // An ExistentialMemberRefExpr with type (format : Format) -> ()
/// \endcode
class ExistentialMemberRefExpr : public Expr {
Expr *Base;
ValueDecl *Value;
SourceLoc DotLoc;
SourceLoc NameLoc;
public:
ExistentialMemberRefExpr(Expr *Base, SourceLoc DotLoc, ValueDecl *Value,
SourceLoc NameLoc);
Expr *getBase() const { return Base; }
ValueDecl *getDecl() const { return Value; }
SourceLoc getNameLoc() const { return NameLoc; }
SourceLoc getDotLoc() const { return DotLoc; }
void setBase(Expr *E) { Base = E; }
SourceLoc getLoc() const { return NameLoc; }
SourceRange getSourceRange() const {
if (Base->isImplicit())
return SourceRange(NameLoc);
return SourceRange(Base->getStartLoc(), NameLoc);
}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::ExistentialMemberRef;
}
};
/// ArchetypeMemberRefExpr - This represents 'a.b' where we are referring to
/// a member of an archetype type (e.g., within a generic function).
///
/// \code
/// protocol Printable {
/// func print(format : Format)
/// }
///
/// func doPrint<P : Printable>(p : P) {
/// p.print(Format());
/// }
/// \endcode
class ArchetypeMemberRefExpr : public Expr {
Expr *Base;
ValueDecl *Value;
SourceLoc DotLoc;
SourceLoc NameLoc;
public:
ArchetypeMemberRefExpr(Expr *Base, SourceLoc DotLoc, ValueDecl *Value,
SourceLoc NameLoc);
Expr *getBase() const { return Base; }
ValueDecl *getDecl() const { return Value; }
SourceLoc getNameLoc() const { return NameLoc; }
SourceLoc getDotLoc() const { return DotLoc; }
void setBase(Expr *E) { Base = E; }
SourceLoc getLoc() const { return NameLoc; }
SourceRange getSourceRange() const {
if (Base->isImplicit())
return SourceRange(NameLoc);
return SourceRange(Base->getStartLoc(), NameLoc);
}
/// getArchetype - Retrieve the archetype whose member is being accessed.
ArchetypeType *getArchetype() const;
/// isBaseIgnored - Determine whether the base expression is actually ignored,
/// rather than being used as, e.g., the 'self' argument passed to an
/// instance method or the base of a variable access.
bool isBaseIgnored() const;
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::ArchetypeMemberRef;
}
};
/// Common base for expressions that involve dynamic lookup, which
/// determines at runtime whether a particular method, property, or
/// subscript is available.
class DynamicLookupExpr : public Expr {
OpaqueValueExpr *OpaqueValue;
Expr *CreateSome;
Expr *CreateNone;
protected:
DynamicLookupExpr(ExprKind kind, OpaqueValueExpr *opaqueValue,
Expr *createSome, Expr *createNone)
: Expr(kind, /*Implicit=*/false),
OpaqueValue(opaqueValue), CreateSome(createSome),
CreateNone(createNone) { }
public:
/// Retrieve the opaque value used to represent the value \c x passed to
/// \c .Some(x) when the dynamic member is found.
OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
/// Retrieve the expression used to create the Optional<> result when a
/// dynamic member was found.
Expr *getCreateSome() const { return CreateSome; }
void setCreateSome(Expr *createSome) {
CreateSome = createSome;
}
/// Expression used to create the empty optional result when the dynamic
/// member was not found.
Expr *getCreateNone() const { return CreateNone; }
void setCreateNone(Expr *createNone) {
CreateNone = createNone;
}
static bool classof(const Expr *E) {
return E->getKind() >= ExprKind::First_DynamicLookupExpr &&
E->getKind() <= ExprKind::Last_DynamicLookupExpr;
}
};
/// A reference to a member of an object that was found via dynamic lookup.
///
/// A member found via dynamic lookup may not actually be available at runtime.
/// Therefore, a reference to that member always returns an optional instance.
/// Users can then propagate the optional (via ?) or assert that the member is
/// always available (via !). For example:
///
/// \code
/// class C {
/// func [objc] foo(i : Int) -> String { ... }
/// };
///
/// var x : DynamicLookup = <some value>
/// print(x.foo!(17)) // x.foo has type ((i : Int) -> String)?
/// \endcode
class DynamicMemberRefExpr : public DynamicLookupExpr {
Expr *Base;
ConcreteDeclRef Member;
SourceLoc DotLoc;
SourceLoc NameLoc;
public:
DynamicMemberRefExpr(Expr *base, SourceLoc dotLoc,
ConcreteDeclRef member,
SourceLoc nameLoc,
OpaqueValueExpr *opaqueValue,
Expr *createSome,
Expr *createNone)
: DynamicLookupExpr(ExprKind::DynamicMemberRef, opaqueValue,
createSome, createNone),
Base(base), Member(member), DotLoc(dotLoc), NameLoc(nameLoc) {
}
/// Retrieve the base of the expression.
Expr *getBase() const { return Base; }
/// Replace the base of the expression.
void setBase(Expr *base) { Base = base; }
/// Retrieve the member to which this access refers.
ConcreteDeclRef getMember() const { return Member; }
/// Retrieve the location of the member name.
SourceLoc getNameLoc() const { return NameLoc; }
/// Retrieve the location of the '.'.
SourceLoc getDotLoc() const { return DotLoc; }
SourceLoc getLoc() const { return NameLoc; }
SourceRange getSourceRange() const {
if (Base->isImplicit())
return SourceRange(NameLoc);
return SourceRange(Base->getStartLoc(), NameLoc);
}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::DynamicMemberRef;
}
};
/// A subscript on an object with dynamic lookup type.
///
/// A subscript found via dynamic lookup may not actually be available
/// at runtime. Therefore, the result of performing the subscript
/// operation always returns an optional instance.Users can then
/// propagate the optional (via ?) or assert that the member is always
/// available (via !). For example:
///
/// \code
/// class C {
/// subscript [objc] (i : Int) -> String {
/// get:
/// ...
/// }
/// };
///
/// var x : DynamicLookup = <some value>
/// print(x[27]! // x[27] has type String?
/// \endcode
class DynamicSubscriptExpr : public DynamicLookupExpr {
Expr *Base;
Expr *Index;
ConcreteDeclRef Member;
public:
DynamicSubscriptExpr(Expr *base, Expr *index,
ConcreteDeclRef member,
OpaqueValueExpr *opaqueValue,
Expr *createSome,
Expr *createNone)
: DynamicLookupExpr(ExprKind::DynamicSubscript, opaqueValue,
createSome, createNone),
Base(base), Index(index), Member(member) { }
/// Retrieve the base of the expression.
Expr *getBase() const { return Base; }
/// Replace the base of the expression.
void setBase(Expr *base) { Base = base; }
/// getIndex - Retrieve the index of the subscript expression, i.e., the
/// "offset" into the base value.
Expr *getIndex() const { return Index; }
void setIndex(Expr *E) { Index = E; }
/// Retrieve the member to which this access refers.
ConcreteDeclRef getMember() const { return Member; }
SourceLoc getLoc() const { return Index->getStartLoc(); }
SourceRange getSourceRange() const {
return SourceRange(Base->getStartLoc(), Index->getEndLoc());
}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::DynamicSubscript;
}
};
/// UnresolvedMemberExpr - This represents '.foo', an unresolved reference to a
/// member, which is to be resolved with context sensitive type information into
/// bar.foo. These always have unresolved type.
class UnresolvedMemberExpr : public Expr {
SourceLoc DotLoc;
SourceLoc NameLoc;
Identifier Name;
public:
UnresolvedMemberExpr(SourceLoc dotLoc, SourceLoc nameLoc,
Identifier name)
: Expr(ExprKind::UnresolvedMember, /*Implicit=*/false),
DotLoc(dotLoc), NameLoc(nameLoc), Name(name) {
}
Identifier getName() const { return Name; }
SourceLoc getNameLoc() const { return NameLoc; }
SourceLoc getDotLoc() const { return DotLoc; }
SourceLoc getLoc() const { return NameLoc; }
SourceRange getSourceRange() const {
return SourceRange(DotLoc, NameLoc);
}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::UnresolvedMember;
}
};
/// ParenExpr - A parenthesized expression like '(x+x)'. Syntactically,
/// this is just a TupleExpr with exactly one element that has no label.
/// Semantically, however, it serves only as grouping parentheses and
/// does not form an expression of tuple type (unless the sub-expression
/// has tuple type, of course).
class ParenExpr : public Expr {
SourceLoc LParenLoc, RParenLoc;
Expr *SubExpr;
/// \brief Whether we're wrapping a trailing closure expression.
/// FIXME: Pack bit into superclass.
bool HasTrailingClosure;
public:
ParenExpr(SourceLoc lploc, Expr *subExpr, SourceLoc rploc,
bool hasTrailingClosure,
Type ty = Type())
: Expr(ExprKind::Paren, /*Implicit=*/false, ty),
LParenLoc(lploc), RParenLoc(rploc),
SubExpr(subExpr), HasTrailingClosure(hasTrailingClosure) {
assert(lploc.isValid() == rploc.isValid() &&
"Mismatched source location information");
}
SourceLoc getLParenLoc() const { return LParenLoc; }
SourceLoc getRParenLoc() const { return RParenLoc; }
SourceLoc getLoc() const { return SubExpr->getLoc(); }
SourceRange getSourceRange() const {
// When the locations of the parentheses are invalid, ask our subexpression
// for its source range instead.
if (LParenLoc.isInvalid())
return SubExpr->getSourceRange();
// If we have a trailing closure, our end point is the end of the trailing
// closure.
if (HasTrailingClosure)
return SourceRange(LParenLoc, SubExpr->getEndLoc());
return SourceRange(LParenLoc, RParenLoc);
}
/// \brief Whether this expression has a trailing closure as its argument.
bool hasTrailingClosure() const { return HasTrailingClosure; }
Expr *getSubExpr() const { return SubExpr; }
void setSubExpr(Expr *E) { SubExpr = E; }
static bool classof(const Expr *E) { return E->getKind() == ExprKind::Paren; }
};
/// TupleExpr - Parenthesized expressions like '(a: x+x)' and '(x, y, 4)'. Also
/// used to represent the operands to a binary operator. Note that
/// expressions like '(4)' are represented with a ParenExpr.
class TupleExpr : public Expr {
SourceLoc LParenLoc;
SourceLoc RParenLoc;
/// SubExprs - Elements of these can be set to null to get the default init
/// value for the tuple element.
MutableArrayRef<Expr *> SubExprs;
/// SubExprNames - Can be null if no names. Otherwise length = SubExpr.size()
Identifier *SubExprNames;
/// \brief Whether we're wrapping a trailing closure expression.
/// FIXME: Pack bit into superclass.
bool HasTrailingClosure;
public:
TupleExpr(SourceLoc LParenLoc, MutableArrayRef<Expr *> SubExprs,
Identifier *SubExprNames, SourceLoc RParenLoc,
bool hasTrailingClosure, bool Implicit, Type Ty = Type())
: Expr(ExprKind::Tuple, Implicit, Ty),
LParenLoc(LParenLoc), RParenLoc(RParenLoc),
SubExprs(SubExprs), SubExprNames(SubExprNames),
HasTrailingClosure(hasTrailingClosure)
{
assert(LParenLoc.isValid() == RParenLoc.isValid() &&
"Mismatched parenthesis location information validity");
}
SourceLoc getLParenLoc() const { return LParenLoc; }
SourceLoc getRParenLoc() const { return RParenLoc; }
SourceRange getSourceRange() const;
/// \brief Whether this expression has a trailing closure as its argument.
bool hasTrailingClosure() const { return HasTrailingClosure; }
MutableArrayRef<Expr*> getElements() {
return SubExprs;
}
ArrayRef<Expr*> getElements() const {
return SubExprs;
}
unsigned getNumElements() const { return SubExprs.size(); }
Expr *getElement(unsigned i) const {
return SubExprs[i];
}
void setElement(unsigned i, Expr *e) {
SubExprs[i] = e;
}
bool hasElementNames() const { return SubExprNames; }
Identifier *getElementNames() const { return SubExprNames; }
Identifier getElementName(unsigned i) const {
return SubExprNames ? SubExprNames[i] : Identifier();
}
static bool classof(const Expr *E) { return E->getKind() == ExprKind::Tuple; }
};
/// \brief A collection literal expression.
///
/// The subexpression is represented as a TupleExpr or ParenExpr and
/// passed on to the appropriate semantics-providing conversion
/// operation.
class CollectionExpr : public Expr {
SourceLoc LBracketLoc;
SourceLoc RBracketLoc;
Expr *SubExpr;
Expr *SemanticExpr;
protected:
CollectionExpr(ExprKind Kind, SourceLoc LBracketLoc, Expr *SubExpr,
SourceLoc RBracketLoc, Type Ty)
: Expr(Kind, /*Implicit=*/false, Ty),
LBracketLoc(LBracketLoc), RBracketLoc(RBracketLoc),
SubExpr(SubExpr), SemanticExpr(nullptr) { }
public:
/// Get the ParenExpr or TupleExpr representing the literal contents
/// of the container.
Expr *getSubExpr() const { return SubExpr; }
void setSubExpr(Expr *e) { SubExpr = e; }
SourceLoc getLBracketLoc() const { return LBracketLoc; }
SourceLoc getRBracketLoc() const { return RBracketLoc; }
SourceRange getSourceRange() const {
return SourceRange(LBracketLoc, RBracketLoc);
}
Expr *getSemanticExpr() const { return SemanticExpr; }
void setSemanticExpr(Expr *e) { SemanticExpr = e; }
static bool classof(const Expr *e) {
return e->getKind() >= ExprKind::First_CollectionExpr &&
e->getKind() <= ExprKind::Last_CollectionExpr;
}
};
/// \brief An array literal expression [a, b, c].
class ArrayExpr : public CollectionExpr {
public:
ArrayExpr(SourceLoc LBracketLoc, Expr *SubExpr, SourceLoc RBracketLoc,
Type Ty = Type())
: CollectionExpr(ExprKind::Array, LBracketLoc, SubExpr, RBracketLoc, Ty) { }
static bool classof(const Expr *e) {
return e->getKind() == ExprKind::Array;
}
};
/// \brief A dictionary literal expression [a : x, b : y, c : z].
class DictionaryExpr : public CollectionExpr {
public:
DictionaryExpr(SourceLoc LBracketLoc, Expr *SubExpr, SourceLoc RBracketLoc,
Type Ty = Type())
: CollectionExpr(ExprKind::Dictionary, LBracketLoc, SubExpr, RBracketLoc,
Ty) { }
static bool classof(const Expr *e) {
return e->getKind() == ExprKind::Dictionary;
}
};
/// Subscripting expressions like a[i] that refer to an element within a
/// container.
///
/// There is no built-in subscripting in the language. Rather, a fully
/// type-checked and well-formed subscript expression refers to a subscript
/// declaration, which provides a getter and (optionally) a setter that will
/// be used to perform reads/writes.
class SubscriptExpr : public Expr {
ConcreteDeclRef TheDecl;
Expr *Base;
Expr *Index;
public:
SubscriptExpr(Expr *base, Expr *index,
ConcreteDeclRef decl = ConcreteDeclRef())
: Expr(ExprKind::Subscript, /*Implicit=*/false, Type()),
TheDecl(decl), Base(base), Index(index) { }
/// getBase - Retrieve the base of the subscript expression, i.e., the
/// value being indexed.
Expr *getBase() const { return Base; }
void setBase(Expr *E) { Base = E; }
/// getIndex - Retrieve the index of the subscript expression, i.e., the
/// "offset" into the base value.
Expr *getIndex() const { return Index; }
void setIndex(Expr *E) { Index = E; }
/// Determine whether subscript operation has a known underlying
/// subscript declaration or not.
bool hasDecl() const { return static_cast<bool>(TheDecl); }
/// Retrieve the subscript declaration that this subscripting
/// operation refers to. Only valid when \c hasDecl() is true.
ConcreteDeclRef getDecl() const {
assert(hasDecl() && "No subscript declaration known!");
return TheDecl;
}
SourceRange getSourceRange() const {
return SourceRange(Base->getStartLoc(), Index->getEndLoc());
}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::Subscript;
}
};
/// ExistentialSubscriptExpr - Subscripting expressions like a[i] that refer to
/// an element within a container, where the container has existential type.
///
/// There is no built-in subscripting in the language. Rather, a fully
/// type-checked and well-formed subscript expression refers to a subscript
/// declaration, which provides a getter and (optionally) a setter that will
/// be used to perform reads/writes.
class ExistentialSubscriptExpr : public Expr {
SubscriptDecl *D;
Expr *Base;
Expr *Index;
public:
ExistentialSubscriptExpr(Expr *Base, Expr *Index, SubscriptDecl *D);
/// getBase - Retrieve the base of the subscript expression, i.e., the
/// value being indexed. This value has existential type.
Expr *getBase() const { return Base; }
void setBase(Expr *E) { Base = E; }
/// getIndex - Retrieve the index of the subscript expression, i.e., the
/// "offset" into the base value.
Expr *getIndex() const { return Index; }
void setIndex(Expr *E) { Index = E; }
/// getDecl - Retrieve the subscript declaration that this subscripting
/// operation refers to.
SubscriptDecl *getDecl() const { return D; }
SourceRange getSourceRange() const {
return SourceRange(Base->getStartLoc(), Index->getEndLoc());
}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::ExistentialSubscript;
}
};
/// ArchetypeSubscriptExpr - Subscripting expressions like a[i] that refer to
/// an element within a container, where the container is an archetype.
class ArchetypeSubscriptExpr : public Expr {
SubscriptDecl *D;
Expr *Base;
Expr *Index;
public:
ArchetypeSubscriptExpr(Expr *Base, Expr *Index, SubscriptDecl *D);
/// getBase - Retrieve the base of the subscript expression, i.e., the
/// value being indexed. This value has archetype type.
Expr *getBase() const { return Base; }
void setBase(Expr *E) { Base = E; }
/// getIndex - Retrieve the index of the subscript expression, i.e., the
/// "offset" into the base value.
Expr *getIndex() const { return Index; }
void setIndex(Expr *E) { Index = E; }
/// getDecl - Retrieve the subscript declaration that this subscripting
/// operation refers to.
SubscriptDecl *getDecl() const { return D; }
SourceRange getSourceRange() const {
return SourceRange(Base->getStartLoc(), Index->getEndLoc());
}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::ArchetypeSubscript;
}
};
/// UnresolvedDotExpr - A field access (foo.bar) on an expression with
/// unresolved type.
class UnresolvedDotExpr : public Expr {
Expr *SubExpr;
SourceLoc DotLoc;
SourceLoc NameLoc;
Identifier Name;
public:
UnresolvedDotExpr(Expr *subexpr, SourceLoc dotloc, Identifier name,
SourceLoc nameloc, bool Implicit)
: Expr(ExprKind::UnresolvedDot, Implicit), SubExpr(subexpr), DotLoc(dotloc),
NameLoc(nameloc), Name(name) {}
SourceLoc getLoc() const { return NameLoc; }
SourceRange getSourceRange() const {
if (DotLoc.isInvalid())
return SourceRange(NameLoc, NameLoc);
return SourceRange(SubExpr->getStartLoc(), NameLoc);
}
SourceLoc getDotLoc() const { return DotLoc; }
Expr *getBase() const { return SubExpr; }
void setBase(Expr *e) { SubExpr = e; }
Identifier getName() const { return Name; }
SourceLoc getNameLoc() const { return NameLoc; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::UnresolvedDot;
}
};
/// ModuleExpr - Reference a module by name. The module being referenced is
/// captured in the type of the expression, which is always a ModuleType.
class ModuleExpr : public Expr {
SourceLoc Loc;
public:
ModuleExpr(SourceLoc Loc, Type Ty)
: Expr(ExprKind::Module, /*Implicit=*/false, Ty), Loc(Loc) {}
SourceRange getSourceRange() const { return SourceRange(Loc, Loc); }
SourceLoc getLoc() const { return Loc; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::Module;
}
};
/// TupleElementExpr - Refer to an element of a tuple,
/// e.g. "(1,field=2).field".
class TupleElementExpr : public Expr {
Expr *SubExpr;
SourceLoc NameLoc;
unsigned FieldNo;
SourceLoc DotLoc;
public:
TupleElementExpr(Expr *SubExpr, SourceLoc DotLoc, unsigned FieldNo,
SourceLoc NameLoc, Type Ty)
: Expr(ExprKind::TupleElement, /*Implicit=*/false, Ty), SubExpr(SubExpr),
NameLoc(NameLoc), FieldNo(FieldNo), DotLoc(DotLoc) {}
SourceLoc getLoc() const { return NameLoc; }
Expr *getBase() const { return SubExpr; }
void setBase(Expr *e) { SubExpr = e; }
unsigned getFieldNumber() const { return FieldNo; }
SourceLoc getNameLoc() const { return NameLoc; }
SourceLoc getDotLoc() const { return DotLoc; }
SourceRange getSourceRange() const {
return SourceRange(getBase()->getStartLoc(), getNameLoc());
}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::TupleElement;
}
};
/// ImplicitConversionExpr - An abstract class for expressions which
/// implicitly convert the value of an expression in some way.
class ImplicitConversionExpr : public Expr {
Expr *SubExpr;
protected:
ImplicitConversionExpr(ExprKind kind, Expr *subExpr, Type ty)
: Expr(kind, /*Implicit=*/true, ty), SubExpr(subExpr) {}
public:
SourceRange getSourceRange() const { return SubExpr->getSourceRange(); }
SourceLoc getLoc() const { return SubExpr->getLoc(); }
Expr *getSubExpr() const { return SubExpr; }
void setSubExpr(Expr *e) { SubExpr = e; }
static bool classof(const Expr *E) {
return E->getKind() >= ExprKind::First_ImplicitConversionExpr &&
E->getKind() <= ExprKind::Last_ImplicitConversionExpr;
}
};
/// BridgeToBlockExpr - FIXME: A hack to represent limited Swift closure to
/// ObjC block conversion.
class BridgeToBlockExpr : public ImplicitConversionExpr {
public:
BridgeToBlockExpr(Expr *subExpr, Type ty)
: ImplicitConversionExpr(ExprKind::BridgeToBlock, subExpr, ty) {}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::BridgeToBlock;
}
};
/// TupleShuffleExpr - This represents a permutation of a tuple value to a new
/// tuple type. The expression's type is known to be a tuple type and the
/// subexpression is known to have a tuple type as well.
class TupleShuffleExpr : public ImplicitConversionExpr {
public:
enum : int {
/// The element mapping value indicating that a field of the destination
/// tuple should be default-initialized.
DefaultInitialize = -1,
/// The element mapping value signaling the first variadic field.
FirstVariadic = -2,
/// The element mapping value indicating that the field of the
/// destination tuple should be default-initialized with an expression
/// provided by the caller.
/// FIXME: Yet another indication that TupleShuffleExpr uses the wrong
/// formulation.
CallerDefaultInitialize = -3
};
private:
/// This contains an entry for each element in the Expr type. Each element
/// specifies which index from the SubExpr that the destination element gets.
/// If the element value is DefaultInitialize, then the destination value
/// gets the default initializer for that tuple element value.
ArrayRef<int> ElementMapping;
/// If we're doing a varargs shuffle, this is the function to build the
/// destination slice type.
Expr *InjectionFn;
/// If there are any default arguments, the owning function
/// declaration.
ValueDecl *DefaultArgsOwner;
ArrayRef<Expr *> CallerDefaultArgs;
public:
TupleShuffleExpr(Expr *subExpr, ArrayRef<int> elementMapping,
ValueDecl *defaultArgsOwner,
ArrayRef<Expr *> CallerDefaultArgs, Type ty)
: ImplicitConversionExpr(ExprKind::TupleShuffle, subExpr, ty),
ElementMapping(elementMapping), InjectionFn(nullptr),
DefaultArgsOwner(defaultArgsOwner), CallerDefaultArgs(CallerDefaultArgs)
{
}
ArrayRef<int> getElementMapping() const { return ElementMapping; }
/// Set the injection function expression to use.
void setVarargsInjectionFunction(Expr *fn) { InjectionFn = fn; }
Expr *getVarargsInjectionFunction() const {
assert(InjectionFn != nullptr);
return InjectionFn;
}
Expr *getVarargsInjectionFunctionOrNull() const {
return InjectionFn;
}
/// Retrieve the owner of the default arguments.
ValueDecl *getDefaultArgsOwner() const { return DefaultArgsOwner; }
/// Retrieve the caller-defaulted arguments.
ArrayRef<Expr *> getCallerDefaultArgs() const { return CallerDefaultArgs; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::TupleShuffle;
}
};
/// LoadExpr - Turn an l-value into an r-value by performing a "load"
/// operation. This operation may actually be a logical operation,
/// i.e. one implemented using a call to a potentially user-defined
/// function instead of a simple memory transaction.
class LoadExpr : public ImplicitConversionExpr {
public:
LoadExpr(Expr *subExpr, Type type)
: ImplicitConversionExpr(ExprKind::Load, subExpr, type) {}
static bool classof(const Expr *E) { return E->getKind() == ExprKind::Load; }
};
/// MaterializeExpr - Turn an r-value into an l-value by placing it in
/// temporary memory.
class MaterializeExpr : public ImplicitConversionExpr {
public:
MaterializeExpr(Expr *subExpr, Type ty)
: ImplicitConversionExpr(ExprKind::Materialize, subExpr, ty) {}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::Materialize;
}
};
/// RequalifyExpr - Change the qualification on an l-value. The new
/// type always has the same object type as the old type with strictly
/// "more" (i.e. a supertyped set of) qualifiers.
class RequalifyExpr : public ImplicitConversionExpr {
bool IsForObject;
public:
RequalifyExpr(Expr *subExpr, Type type, bool isForObject = false)
: ImplicitConversionExpr(ExprKind::Requalify, subExpr, type),
IsForObject(isForObject) {}
/// Is this requalification for the object operand?
///
/// Qualification adjustments for the object operand are permitted
/// to remove non-settability. This is neither sound nor a good
/// idea, but it's necessary until we have the capacity to control
/// mutation.
bool isForObjectOperand() const { return IsForObject; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::Requalify;
}
};
/// FunctionConversionExpr - Convert a function to another function type,
/// which might involve renaming the parameters or handling substitutions
/// of subtypes (in the return) or supertypes (in the input).
///
/// FIXME: This should be a CapturingExpr.
class FunctionConversionExpr : public ImplicitConversionExpr {
// FIXME: Sink into Expr.
unsigned IsTrivial : 1;
public:
FunctionConversionExpr(Expr *subExpr, Type type, bool IsTrivial)
: ImplicitConversionExpr(ExprKind::FunctionConversion, subExpr, type),
IsTrivial(IsTrivial) {}
/// \brief Whether this is a "trivial" conversion, that only includes
/// parameter renaming and other similarly trivial operations that do not
/// change the representation of the function.
///
/// The 'trivial' computation is a "best effort" computation based on the
/// language model itself. It does not account for conversions that may be
/// made trivial if the layout of specific data types is known.
bool isTrivial() const { return IsTrivial; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::FunctionConversion;
}
};
/// MetatypeConversionExpr - Convert a metatype to another metatype
/// using essentially a derived-to-base conversion.
class MetatypeConversionExpr : public ImplicitConversionExpr {
public:
MetatypeConversionExpr(Expr *subExpr, Type type)
: ImplicitConversionExpr(ExprKind::MetatypeConversion, subExpr, type) {}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::MetatypeConversion;
}
};
/// ErasureExpr - Perform type erasure by converting a value to existential
/// type. For example:
///
/// \code
/// protocol Printable {
/// func print()
/// }
///
/// struct Book {
/// func print() { ... }
/// }
///
/// var printable : Printable = Book() // erases type
/// \endcode
class ErasureExpr : public ImplicitConversionExpr {
ArrayRef<ProtocolConformance *> Conformances;
public:
ErasureExpr(Expr *SubExpr, Type Ty,
ArrayRef<ProtocolConformance *> Conformances)
: ImplicitConversionExpr(ExprKind::Erasure, SubExpr, Ty),
Conformances(Conformances) {}
/// \brief Retrieve the mapping specifying how the type of the subexpression
/// maps to the resulting existential type. If the resulting existential
/// type involves several different protocols, there will be mappings for each
/// of those protocols, in the order in which the existential type expands
/// its properties.
///
/// The entries in this array may be null, indicating that the conformance
/// to the corresponding protocol is trivial (because the source
/// type is either an archetype or an existential type that conforms to
/// that corresponding protocol).
ArrayRef<ProtocolConformance *> getConformances() const {
return Conformances;
}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::Erasure;
}
};
/// SpecializeExpr - Specializes a reference to a generic entity by binding
/// each of its type parameters to a specific type.
///
/// In a type-checked AST, every reference to a generic entity will be bound
/// (at some point) by a SpecializeExpr. The type of a SpecializeExpr is the
/// type of the entity with all of the type parameters substituted.
///
/// An example:
/// \code
/// func identity<T>(x : T) -> T { return x }
///
/// var i : Int = identity(17) // 'identity' is specialized to (x : Int) -> Int
/// \endcode
class SpecializeExpr : public ImplicitConversionExpr {
public:
typedef swift::Substitution Substitution;
private:
ArrayRef<Substitution> Substitutions;
public:
SpecializeExpr(Expr *SubExpr, Type Ty, ArrayRef<Substitution> Substitutions)
: ImplicitConversionExpr(ExprKind::Specialize, SubExpr, Ty),
Substitutions(Substitutions) { }
/// \brief Retrieve the set of substitutions applied to specialize the
/// subexpression.
///
/// Each substitution contains the archetype being substitued, the type it is
/// being replaced with, and the protocol conformance relationships.
ArrayRef<Substitution> getSubstitutions() const { return Substitutions; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::Specialize;
}
};
/// UnresolvedSpecializeExpr - Represents an explicit specialization using
/// a type parameter list (e.g. "Vector<Int>") that has not been resolved.
class UnresolvedSpecializeExpr : public Expr {
Expr *SubExpr;
SourceLoc LAngleLoc;
SourceLoc RAngleLoc;
MutableArrayRef<TypeLoc> UnresolvedParams;
public:
UnresolvedSpecializeExpr(Expr *SubExpr,
SourceLoc LAngleLoc,
MutableArrayRef<TypeLoc> UnresolvedParams,
SourceLoc RAngleLoc)
: Expr(ExprKind::UnresolvedSpecialize, /*Implicit=*/false),
SubExpr(SubExpr),
LAngleLoc(LAngleLoc), RAngleLoc(RAngleLoc),
UnresolvedParams(UnresolvedParams) { }
Expr *getSubExpr() const { return SubExpr; }
void setSubExpr(Expr *e) { SubExpr = e; }
/// \brief Retrieve the list of type parameters. These parameters have not yet
/// been bound to archetypes of the entity to be specialized.
ArrayRef<TypeLoc> getUnresolvedParams() const { return UnresolvedParams; }
MutableArrayRef<TypeLoc> getUnresolvedParams() { return UnresolvedParams; }
SourceLoc getLoc() const { return LAngleLoc; }
SourceLoc getLAngleLoc() const { return LAngleLoc; }
SourceLoc getRAngleLoc() const { return RAngleLoc; }
SourceRange getSourceRange() const {
return SourceRange(SubExpr->getStartLoc(), RAngleLoc);
}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::UnresolvedSpecialize;
}
};
/// \brief Describes an implicit conversion from a subclass to one of its
/// superclasses.
class DerivedToBaseExpr : public ImplicitConversionExpr {
public:
DerivedToBaseExpr(Expr *subExpr, Type type)
: ImplicitConversionExpr(ExprKind::DerivedToBase, subExpr, type) {}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::DerivedToBase;
}
};
/// \brief Describes an implicit conversion from a value of archetype type to
/// its concrete superclass.
class ArchetypeToSuperExpr : public ImplicitConversionExpr {
public:
ArchetypeToSuperExpr(Expr *subExpr, Type type)
: ImplicitConversionExpr(ExprKind::ArchetypeToSuper, subExpr, type) {}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::ArchetypeToSuper;
}
};
/// ScalarToTupleExpr - Convert a scalar to tuple type.
class ScalarToTupleExpr : public ImplicitConversionExpr {
public:
/// Describes an element of the destination tuple, which can be the
/// caller-side default argument expression, the declaration from which the
/// callee-side default argument should be produced, or null to indicate the
/// 'hole' where the scalar expression should be placed.
typedef llvm::PointerUnion<Expr *, ValueDecl *> Element;
private:
/// If we're doing a varargs shuffle, this is the function to build the
/// destination slice type.
Expr *InjectionFn;
/// The elements of the destination tuple.
MutableArrayRef<Element> Elements;
public:
ScalarToTupleExpr(Expr *subExpr, Type type,
MutableArrayRef<Element> elements,
Expr *InjectionFn = nullptr)
: ImplicitConversionExpr(ExprKind::ScalarToTuple, subExpr, type),
InjectionFn(InjectionFn), Elements(elements) {}
/// Retrieve the index of the scalar field within the destination tuple.
unsigned getScalarField() const;
/// Retrieve the expression that refers to the injection function.
Expr *getVarargsInjectionFunction() { return InjectionFn; }
/// Retrieve the elements of the destination tuple.
MutableArrayRef<Element> getElements() { return Elements; }
ArrayRef<Element> getElements() const { return Elements; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::ScalarToTuple;
}
};
/// AddressOfExpr - Using the builtin unary '&' operator, convert the
/// given l-value into an explicit l-value.
class AddressOfExpr : public Expr {
Expr *SubExpr;
SourceLoc OperLoc;
public:
AddressOfExpr(SourceLoc operLoc, Expr *subExpr, Type type)
: Expr(ExprKind::AddressOf, /*Implicit=*/false, type),
SubExpr(subExpr), OperLoc(operLoc) {}
SourceRange getSourceRange() const {
return SourceRange(OperLoc, SubExpr->getEndLoc());
}
SourceLoc getLoc() const { return OperLoc; }
Expr *getSubExpr() const { return SubExpr; }
void setSubExpr(Expr *e) { SubExpr = e; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::AddressOf;
}
};
/// SequenceExpr - A list of binary operations which has not yet been
/// folded into a tree. The operands all have even indices, while the
/// subexpressions with odd indices are all (potentially overloaded)
/// references to binary operators.
class SequenceExpr : public Expr {
unsigned NumElements;
Expr **getSubExprs() { return reinterpret_cast<Expr **>(this + 1); }
Expr * const *getSubExprs() const {
return const_cast<SequenceExpr*>(this)->getSubExprs();
}
SequenceExpr(ArrayRef<Expr*> elements)
: Expr(ExprKind::Sequence, /*Implicit=*/false),
NumElements(elements.size()) {
assert(NumElements > 0 && "zero-length sequence!");
memcpy(getSubExprs(), elements.data(), elements.size() * sizeof(Expr*));
}
public:
static SequenceExpr *create(ASTContext &ctx, ArrayRef<Expr*> elements);
SourceRange getSourceRange() const {
return SourceRange(getElements()[0]->getStartLoc(),
getElements()[getNumElements() - 1]->getEndLoc());
}
unsigned getNumElements() const { return NumElements; }
MutableArrayRef<Expr*> getElements() {
return MutableArrayRef<Expr*>(getSubExprs(), NumElements);
}
ArrayRef<Expr*> getElements() const {
return ArrayRef<Expr*>(getSubExprs(), NumElements);
}
Expr *getElement(unsigned i) const {
assert(i < NumElements);
return getSubExprs()[i];
}
void setElement(unsigned i, Expr *e) {
assert(i < NumElements);
getSubExprs()[i] = e;
}
// Implement isa/cast/dyncast/etc.
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::Sequence;
}
};
/// \brief A base class for closure expressions.
class AbstractClosureExpr : public Expr, public DeclContext {
CaptureInfo Captures;
/// \brief The set of parameters.
Pattern *ParamPattern;
public:
AbstractClosureExpr(ExprKind Kind, Type FnType, bool Implicit,
DeclContext *Parent)
: Expr(Kind, Implicit, FnType),
DeclContext(DeclContextKind::AbstractClosureExpr, Parent),
ParamPattern(nullptr)
{}
CaptureInfo &getCaptureInfo() { return Captures; }
const CaptureInfo &getCaptureInfo() const { return Captures; }
/// \brief Retrieve the parameters of this closure.
Pattern *getParams() { return ParamPattern; }
const Pattern *getParams() const { return ParamPattern; }
void setParams(Pattern *P) { ParamPattern = P; }
ArrayRef<Pattern *> getParamPatterns() { return ParamPattern; }
ArrayRef<const Pattern *> getParamPatterns() const { return ParamPattern; }
/// \brief Retrieve the result type of this closure.
Type getResultType() const;
static bool classof(const Expr *E) {
return E->getKind() >= ExprKind::First_AbstractClosureExpr &&
E->getKind() <= ExprKind::Last_AbstractClosureExpr;
}
static bool classof(const DeclContext *DC) {
return DC->getContextKind() == DeclContextKind::AbstractClosureExpr;
}
using DeclContext::operator new;
};
/// \brief An explicit unnamed function expression, which can optionally have
/// named arguments.
///
/// \code
/// { $0 + $1 }
/// { a, b -> Int in a + b }
/// { (a : Int, b : Int) -> Int in a + b }
/// \endcode
class ClosureExpr : public AbstractClosureExpr {
/// \brief The location of the '->' denoting an explicit return type,
/// if present.
SourceLoc arrowLoc;
/// \brief The explicitly-specified result type.
TypeLoc explicitResultType;
/// \brief The body of the closure, along with a bit indicating whether it
/// was originally just a single expression.
llvm::PointerIntPair<BraceStmt *, 1, bool> body;
public:
ClosureExpr(Pattern *Params, SourceLoc arrowLoc,
TypeLoc explicitResultType, DeclContext *Parent)
: AbstractClosureExpr(ExprKind::Closure, Type(), /*Implicit=*/false, Parent),
arrowLoc(arrowLoc), explicitResultType(explicitResultType),
body(nullptr) {
setParams(Params);
ClosureExprBits.HasAnonymousClosureVars = false;
}
SourceRange getSourceRange() const;
SourceLoc getLoc() const;
BraceStmt *getBody() const { return body.getPointer(); }
void setBody(BraceStmt *S, bool isSingleExpression) {
body.setPointer(S);
body.setInt(isSingleExpression);
}
/// \brief Determine whether the parameters of this closure are actually
/// anonymous closure variables.
bool hasAnonymousClosureVars() const {
return ClosureExprBits.HasAnonymousClosureVars;
}
/// \brief Set the parameters of this closure along with a flag indicating
/// whether these parameters are actually anonymous closure variables.
void setHasAnonymousClosureVars() {
ClosureExprBits.HasAnonymousClosureVars = true;
}
/// \brief Determine whether this closure expression has an
/// explicitly-specified result type.
bool hasExplicitResultType() const { return arrowLoc.isValid(); }
/// \brief Retrieve the location of the \c '->' for closures with an
/// explicit result type.
SourceLoc getArrowLoc() const {
assert(hasExplicitResultType() && "No arrow location");
return arrowLoc;
}
/// \brief Retrieve the explicit result type location information.
TypeLoc &getExplicitResultTypeLoc() {
assert(hasExplicitResultType() && "No explicit result type");
return explicitResultType;
}
/// \brief Determine whether the closure has a single expression for its
/// body.
///
/// This will be true for closures such as, e.g.,
/// \code
/// { $0 + 1 }
/// \endcode
///
/// or
///
/// \code
/// { x, y in x > y }
/// \endcode
///
/// But not for empty closures nor
bool hasSingleExpressionBody() const {
return body.getInt();
}
/// \brief Retrieve the body for closure that has a single expression for
/// its body.
///
/// Only valid when \c hasSingleExpressionBody() is true.
Expr *getSingleExpressionBody() const;
/// \brief Set the body for a closure that has a single expression as its
/// body.
///
/// This routine cannot change whether a closure has a single expression as
/// its body; it can only update that expression.
void setSingleExpressionBody(Expr *NewBody);
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::Closure;
}
};
/// \brief This is a closure of the contained subexpression that is formed
/// when an scalar expression is converted to [auto_closure] function type.
/// For example:
/// \code
/// var x : [auto_closure] () -> int = 4
/// \endcode
class AutoClosureExpr : public AbstractClosureExpr {
BraceStmt *Body;
public:
AutoClosureExpr(Expr *Body, Type ResultTy, DeclContext *Parent)
: AbstractClosureExpr(ExprKind::AutoClosure, ResultTy, /*Implicit=*/true,
Parent) {
setBody(Body);
}
SourceRange getSourceRange() const;
BraceStmt *getBody() const { return Body; }
void setBody(Expr *E);
/// Returns the body of the auto_closure as an \c Expr.
///
/// The body of an auto_closure always consists of a single expression.
Expr *getSingleExpressionBody() const;
// Implement isa/cast/dyncast/etc.
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::AutoClosure;
}
};
/// NewArrayExpr - The allocation of an array. Allocates and constructs
/// the array, then injects that into the corresponding slice type.
class NewArrayExpr : public Expr {
public:
struct Bound {
Expr *Value;
SourceRange Brackets;
Bound() = default;
Bound(Expr *value, SourceRange brackets)
: Value(value), Brackets(brackets) {}
};
private:
TypeLoc ElementTyAsWritten;
Type ElementTy;
unsigned NumBounds;
SourceLoc NewLoc;
Expr *InjectionFn;
NewArrayExpr(SourceLoc newLoc, TypeLoc elementTy,
unsigned numBounds)
: Expr(ExprKind::NewArray, /*Implicit=*/false, Type()),
ElementTyAsWritten(elementTy),
NumBounds(numBounds), NewLoc(newLoc), InjectionFn(nullptr) {}
Bound *getBoundsBuffer() {
return reinterpret_cast<Bound*>(this + 1);
}
const Bound *getBoundsBuffer() const {
return reinterpret_cast<const Bound*>(this + 1);
}
public:
static NewArrayExpr *create(ASTContext &Context, SourceLoc newLoc,
TypeLoc elementTy, ArrayRef<Bound> bounds);
unsigned getNumBounds() const { return NumBounds; }
MutableArrayRef<Bound> getBounds() {
return MutableArrayRef<Bound>(getBoundsBuffer(), getNumBounds());
}
ArrayRef<Bound> getBounds() const {
return ArrayRef<Bound>(getBoundsBuffer(), getNumBounds());
}
/// Return the location of the 'new' keyword.
SourceLoc getNewLoc() const { return NewLoc; }
SourceRange getSourceRange() const {
return SourceRange(NewLoc, getBounds().back().Brackets.End);
}
SourceLoc getLoc() const { return NewLoc; }
/// Set the injection function expression to use.
void setInjectionFunction(Expr *fn) { InjectionFn = fn; }
Expr *getInjectionFunction() const {
assert(InjectionFn != nullptr);
return InjectionFn;
}
bool hasInjectionFunction() const { return InjectionFn != nullptr; }
bool hasElementType() const { return !ElementTy.isNull(); }
Type getElementType() const {
assert(ElementTy && "Element type not yet computed!");
return ElementTy;
}
void setElementType(Type T) { ElementTy = T; }
TypeLoc &getElementTypeLoc() { return ElementTyAsWritten; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::NewArray;
}
};
/// MetatypeExpr - Evaluates an (optional) expression and produces a
/// metatype value. If there's no base expression, this isn't really
/// a parsed form.
class MetatypeExpr : public Expr {
Expr *Base;
SourceLoc MetatypeLoc;
public:
explicit MetatypeExpr(Expr *base, SourceLoc metatypeLoc, Type ty)
: Expr(ExprKind::Metatype, /*Implicit=*/true, ty),
Base(base), MetatypeLoc(metatypeLoc) { }
Expr *getBase() const { return Base; }
void setBase(Expr *base) { Base = base; }
SourceLoc getLoc() const { return MetatypeLoc; }
SourceRange getSourceRange() const {
if (Base) return SourceRange(Base->getStartLoc(), MetatypeLoc);
return SourceRange(MetatypeLoc);
}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::Metatype;
}
};
/// An expression referring to an opaque object of a fixed type.
///
/// Opaque value expressions occur when a particular value within the AST
/// needs to be re-used without being re-evaluated or for a value that is
/// a placeholder. OpaqueValueExpr nodes are introduced by some other AST
/// node (say, a \c DynamicMemberRefExpr) and can only be used within the
/// subexpressions of that AST node.
class OpaqueValueExpr : public Expr {
SourceLoc Loc;
bool UniquelyReferenced = false;
public:
explicit OpaqueValueExpr(SourceLoc Loc, Type Ty)
: Expr(ExprKind::OpaqueValue, /*Implicit=*/true, Ty), Loc(Loc) { }
/// Determine whether this opaque value is referenced at only one point in
/// the AST.
///
/// Opaque values referenced at only one place in the AST can be referenced
/// more efficiently, be eliminating extra retain/release traffic.
bool isUniquelyReferenced() const { return UniquelyReferenced; }
void setUniquelyReferenced(bool uniqueRef) { UniquelyReferenced = uniqueRef; }
SourceRange getSourceRange() const { return Loc; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::OpaqueValue;
}
};
/// ApplyExpr - Superclass of various function calls, which apply an argument to
/// a function to get a result.
class ApplyExpr : public Expr {
/// The function being called.
Expr *Fn;
/// The argument being passed to it, and whether it's a 'super' argument.
llvm::PointerIntPair<Expr *, 1, bool> ArgAndIsSuper;
protected:
ApplyExpr(ExprKind Kind, Expr *Fn, Expr *Arg, bool Implicit, Type Ty = Type())
: Expr(Kind, Implicit, Ty), Fn(Fn), ArgAndIsSuper(Arg, false) {
assert(classof((Expr*)this) && "ApplyExpr::classof out of date");
}
public:
Expr *getFn() const { return Fn; }
void setFn(Expr *e) { Fn = e; }
Expr *getArg() const { return ArgAndIsSuper.getPointer(); }
void setArg(Expr *e) {
assert((getKind() != ExprKind::Binary || isa<TupleExpr>(e)) &&
"BinaryExprs must have a TupleExpr as the argument");
ArgAndIsSuper = {e, ArgAndIsSuper.getInt()};
}
bool isSuper() const { return ArgAndIsSuper.getInt(); }
void setIsSuper(bool super) {
ArgAndIsSuper = {ArgAndIsSuper.getPointer(), super};
}
ValueDecl *getCalledValue() const;
static bool classof(const Expr *E) {
return E->getKind() >= ExprKind::First_ApplyExpr &&
E->getKind() <= ExprKind::Last_ApplyExpr;
}
};
/// CallExpr - Application of an argument to a function, which occurs
/// syntactically through juxtaposition with a TupleExpr whose
/// leading '(' is unspaced.
class CallExpr : public ApplyExpr {
public:
CallExpr(Expr *fn, Expr *arg, bool Implicit, Type ty = Type())
: ApplyExpr(ExprKind::Call, fn, arg, Implicit, ty) {}
SourceRange getSourceRange() const {
return SourceRange(getFn()->getStartLoc(), getArg()->getEndLoc());
}
SourceLoc getLoc() const { return getArg()->getStartLoc(); }
static bool classof(const Expr *E) { return E->getKind() == ExprKind::Call; }
};
/// PrefixUnaryExpr - Prefix unary expressions like '!y'.
class PrefixUnaryExpr : public ApplyExpr {
public:
PrefixUnaryExpr(Expr *Fn, Expr *Arg, Type Ty = Type())
: ApplyExpr(ExprKind::PrefixUnary, Fn, Arg, /*Implicit=*/false, Ty) {}
SourceLoc getLoc() const { return getFn()->getStartLoc(); }
SourceRange getSourceRange() const {
return SourceRange(getFn()->getStartLoc(), getArg()->getEndLoc());
}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::PrefixUnary;
}
};
/// PostfixUnaryExpr - Prefix unary expressions like '!y'.
class PostfixUnaryExpr : public ApplyExpr {
public:
PostfixUnaryExpr(Expr *Fn, Expr *Arg, Type Ty = Type())
: ApplyExpr(ExprKind::PostfixUnary, Fn, Arg, /*Implicit=*/false, Ty) {}
SourceLoc getLoc() const { return getFn()->getStartLoc(); }
SourceRange getSourceRange() const {
return SourceRange(getArg()->getStartLoc(), getFn()->getEndLoc());
}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::PostfixUnary;
}
};
/// BinaryExpr - Infix binary expressions like 'x+y'. The argument is always
/// an implicit tuple expression of the type expected by the function.
class BinaryExpr : public ApplyExpr {
public:
BinaryExpr(Expr *Fn, TupleExpr *Arg, bool Implicit, Type Ty = Type())
: ApplyExpr(ExprKind::Binary, Fn, Arg, Implicit, Ty) {}
SourceLoc getLoc() const { return getFn()->getLoc(); }
SourceRange getSourceRange() const {
return getArg()->getSourceRange();
}
TupleExpr *getArg() const { return cast<TupleExpr>(ApplyExpr::getArg()); }
static bool classof(const Expr *E) { return E->getKind() == ExprKind::Binary;}
};
/// SelfApplyExpr - Abstract application that provides the 'self' pointer for
/// a method curried as (this : Self) -> (params) -> result.
///
/// The application of a curried method to 'self' semantically differs from
/// normal function application because the 'self' parameter can be implicitly
/// materialized from an rvalue.
class SelfApplyExpr : public ApplyExpr {
protected:
SelfApplyExpr(ExprKind K, Expr *FnExpr, Expr *BaseExpr, Type Ty)
: ApplyExpr(K, FnExpr, BaseExpr, FnExpr->isImplicit(), Ty) { }
public:
static bool classof(const Expr *E) {
return E->getKind() >= ExprKind::First_SelfApplyExpr &&
E->getKind() <= ExprKind::Last_SelfApplyExpr;
}
};
/// DotSyntaxCallExpr - Refer to a method of a type, e.g. P.x. 'x'
/// is modeled as a DeclRefExpr or OverloadSetRefExpr on the method.
class DotSyntaxCallExpr : public SelfApplyExpr {
SourceLoc DotLoc;
public:
DotSyntaxCallExpr(Expr *FnExpr, SourceLoc DotLoc, Expr *BaseExpr,
Type Ty = Type())
: SelfApplyExpr(ExprKind::DotSyntaxCall, FnExpr, BaseExpr, Ty),
DotLoc(DotLoc) {
}
SourceLoc getDotLoc() const { return DotLoc; }
SourceLoc getLoc() const {
return DotLoc.isValid() ? getArg()->getStartLoc() : getFn()->getStartLoc();
}
SourceLoc getEndLoc() const {
return getFn()->getEndLoc();
}
SourceRange getSourceRange() const {
// Implicit 'self' receivers don't have location info for DotLoc or the
// 'arg' expression.
if (DotLoc.isValid())
return SourceRange(getArg()->getStartLoc(), getEndLoc());
return getFn()->getSourceRange();
}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::DotSyntaxCall;
}
};
/// ConstructorRefCallExpr - Refer to a constructor for a type P. The
/// actual reference to function which returns the constructor is modeled
/// as a DeclRefExpr.
class ConstructorRefCallExpr : public SelfApplyExpr {
public:
ConstructorRefCallExpr(Expr *FnExpr, Expr *BaseExpr, Type Ty = Type())
: SelfApplyExpr(ExprKind::ConstructorRefCall, FnExpr, BaseExpr, Ty) {}
SourceLoc getLoc() const {
return getArg()->getLoc();
}
SourceRange getSourceRange() const {
return SourceRange(getArg()->getSourceRange());
}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::ConstructorRefCall;
}
};
/// DotSyntaxBaseIgnoredExpr - When a.b resolves to something that does not need
/// the actual value of the base (e.g. when applied to a metatype, module, or
/// the base of a 'static' function) this expression node is created. The
/// semantics are that its base is evaluated and discarded, then 'b' is
/// evaluated and returned as the result of the expression.
class DotSyntaxBaseIgnoredExpr : public Expr {
Expr *LHS;
SourceLoc DotLoc;
Expr *RHS;
public:
DotSyntaxBaseIgnoredExpr(Expr *LHS, SourceLoc DotLoc, Expr *RHS)
: Expr(ExprKind::DotSyntaxBaseIgnored, /*Implicit=*/false, RHS->getType()),
LHS(LHS), DotLoc(DotLoc), RHS(RHS) {
}
Expr *getLHS() { return LHS; }
void setLHS(Expr *E) { LHS = E; }
SourceLoc getDotLoc() const { return DotLoc; }
Expr *getRHS() { return RHS; }
void setRHS(Expr *E) { RHS = E; }
SourceLoc getStartLoc() const {
return DotLoc.isValid()? LHS->getStartLoc() : RHS->getStartLoc();
}
SourceRange getSourceRange() const {
return SourceRange(getStartLoc(), RHS->getEndLoc());
}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::DotSyntaxBaseIgnored;
}
};
/// \brief Represents an explicit cast, 'a as T', 'a as? T', 'a as! T', or
/// 'a is T', where "T" is a type, and "a" is the expression that will be
/// converted to the type.
class ExplicitCastExpr : public Expr {
Expr *SubExpr;
SourceLoc AsLoc;
TypeLoc CastTy;
protected:
ExplicitCastExpr(ExprKind kind, Expr *sub, SourceLoc AsLoc, TypeLoc castTy,
Type resultTy)
: Expr(kind, /*Implicit=*/false), SubExpr(sub), AsLoc(AsLoc), CastTy(castTy)
{}
public:
Expr *getSubExpr() const { return SubExpr; }
/// Get the type syntactically spelled in the cast. For some forms of checked
/// cast this is different from the result type of the expression.
TypeLoc &getCastTypeLoc() { return CastTy; }
/// Get the type syntactically spelled in the cast. For some forms of checked
/// cast this is different from the result type of the expression.
TypeLoc getCastTypeLoc() const { return CastTy; }
void setSubExpr(Expr *E) { SubExpr = E; }
SourceLoc getLoc() const { return AsLoc; }
SourceRange getSourceRange() const {
return SubExpr
? SourceRange{SubExpr->getStartLoc(), CastTy.getSourceRange().End}
: SourceRange{AsLoc, CastTy.getSourceRange().End};
}
/// True if the node has been processed by SequenceExpr folding.
bool isFolded() const { return SubExpr; }
static bool classof(const Expr *E) {
return E->getKind() >= ExprKind::First_ExplicitCastExpr &&
E->getKind() <= ExprKind::Last_ExplicitCastExpr;
}
};
/// Discriminates the different kinds of checked cast supported.
enum class CheckedCastKind {
/// The kind has not been determined yet.
Unresolved,
/// The requested conversion is implicit and should be represented as a
/// coercion.
InvalidCoercible,
/// Valid resolved kinds start here.
First_Resolved,
/// A cast from a class to one of its subclasses.
Downcast = First_Resolved,
/// A cast from a class to a type parameter constrained by that class as a
/// superclass.
SuperToArchetype,
/// A cast from a type parameter to another type parameter.
ArchetypeToArchetype,
/// A cast from a type parameter to a concrete type.
ArchetypeToConcrete,
/// A cast from an existential type to a type parameter.
ExistentialToArchetype,
/// A cast from an existential type to a concrete type.
ExistentialToConcrete,
};
/// \brief Abstract base class for checked casts 'as!' and 'is'. These represent
/// casts that can dynamically fail.
class CheckedCastExpr : public ExplicitCastExpr {
CheckedCastKind CastKind;
public:
CheckedCastExpr(ExprKind kind,
Expr *sub, SourceLoc asLoc, TypeLoc castTy, Type resultTy)
: ExplicitCastExpr(kind, sub, asLoc, castTy, resultTy),
CastKind(CheckedCastKind::Unresolved)
{}
/// Return the semantic kind of cast performed.
CheckedCastKind getCastKind() const { return CastKind; }
void setCastKind(CheckedCastKind kind) { CastKind = kind; }
/// True if the cast has been type-checked and its kind has been set.
bool isResolved() const {
return CastKind >= CheckedCastKind::First_Resolved;
}
static bool classof(const Expr *E) {
return E->getKind() >= ExprKind::First_CheckedCastExpr
&& E->getKind() <= ExprKind::Last_CheckedCastExpr;
}
};
/// \brief Represents an explicit unconditional checked cast, which converts
/// from a type to some subtype or aborts if the cast is not possible,
/// spelled 'a as! T' and producing a value of type T.
///
/// FIXME: All downcasts are currently unconditional, which is horrible.
class UnconditionalCheckedCastExpr : public CheckedCastExpr {
SourceLoc BangLoc;
public:
UnconditionalCheckedCastExpr(Expr *sub, SourceLoc asLoc, SourceLoc bangLoc,
TypeLoc type)
: CheckedCastExpr(ExprKind::UnconditionalCheckedCast,
sub, asLoc, type, type.getType()),
BangLoc(bangLoc) { }
UnconditionalCheckedCastExpr(SourceLoc asLoc, SourceLoc bangLoc, TypeLoc type)
: UnconditionalCheckedCastExpr(nullptr, asLoc, bangLoc, type)
{}
SourceLoc getBangLoc() const { return BangLoc; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::UnconditionalCheckedCast;
}
};
/// \brief Represents a runtime type check query, 'a is T', where 'T' is a type
/// and 'a' is a value of some related type. Evaluates to a Bool true if 'a' is
/// of the type and 'a as! T' would succeed, false otherwise.
///
/// FIXME: We should support type queries with a runtime metatype value too.
class IsaExpr : public CheckedCastExpr {
public:
IsaExpr(Expr *sub, SourceLoc isLoc, TypeLoc type)
: CheckedCastExpr(ExprKind::Isa,
sub, isLoc, type, Type())
{}
IsaExpr(SourceLoc isLoc, TypeLoc type)
: IsaExpr(nullptr, isLoc, type)
{}
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::Isa;
}
};
/// \brief Represents the rebinding of 'self' in a constructor that calls out
/// to another constructor. The result of the subexpression is assigned to
/// 'self', and the expression returns void.
///
/// When a super.constructor or delegating constructor is invoked, 'self' is
/// reassigned to the result of the constructor (after being downcast in the
/// case of super.constructor).
/// This is needed for reference types with ObjC interop, where
/// reassigning 'self' is a supported feature, and for value type delegating
/// constructors, where the delegatee constructor is responsible for
/// initializing 'self' in-place before the delegator's logic executes.
class RebindSelfInConstructorExpr : public Expr {
Expr *SubExpr;
ValueDecl *Self;
public:
RebindSelfInConstructorExpr(Expr *SubExpr, ValueDecl *Self);
SourceLoc getLoc() const { return SubExpr->getLoc(); }
SourceRange getSourceRange() const { return SubExpr->getSourceRange(); }
ValueDecl *getSelf() const { return Self; }
Expr *getSubExpr() const { return SubExpr; }
void setSubExpr(Expr *Sub) { SubExpr = Sub; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::RebindSelfInConstructor;
}
};
/// \brief The conditional expression 'x ? y : z'.
class IfExpr : public Expr {
Expr *CondExpr, *ThenExpr, *ElseExpr;
SourceLoc QuestionLoc, ColonLoc;
public:
IfExpr(Expr *CondExpr,
SourceLoc QuestionLoc, Expr *ThenExpr,
SourceLoc ColonLoc, Expr *ElseExpr,
Type Ty = Type())
: Expr(ExprKind::If, /*Implicit=*/false, Ty),
CondExpr(CondExpr), ThenExpr(ThenExpr), ElseExpr(ElseExpr),
QuestionLoc(QuestionLoc), ColonLoc(ColonLoc)
{}
IfExpr(SourceLoc QuestionLoc, Expr *ThenExpr, SourceLoc ColonLoc)
: IfExpr(nullptr, QuestionLoc, ThenExpr, ColonLoc, nullptr)
{}
SourceLoc getLoc() const { return QuestionLoc; }
SourceRange getSourceRange() const {
if (isFolded())
return {CondExpr->getStartLoc(), ElseExpr->getEndLoc()};
return {QuestionLoc, ColonLoc};
}
SourceLoc getQuestionLoc() const { return QuestionLoc; }
SourceLoc getColonLoc() const { return ColonLoc; }
Expr *getCondExpr() const { return CondExpr; }
void setCondExpr(Expr *E) { CondExpr = E; }
Expr *getThenExpr() const { return ThenExpr; }
void setThenExpr(Expr *E) { ThenExpr = E; }
Expr *getElseExpr() const { return ElseExpr; }
void setElseExpr(Expr *E) { ElseExpr = E; }
/// True if the node has been processed by binary expression folding.
bool isFolded() const { return CondExpr && ElseExpr; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::If;
}
};
/// AssignExpr - A value assignment, like "x = y".
class AssignExpr : public Expr {
Expr *Dest;
Expr *Src;
SourceLoc EqualLoc;
public:
AssignExpr(Expr *Dest, SourceLoc EqualLoc, Expr *Src, bool Implicit)
: Expr(ExprKind::Assign, Implicit),
Dest(Dest), Src(Src), EqualLoc(EqualLoc) {}
AssignExpr(SourceLoc EqualLoc)
: AssignExpr(nullptr, EqualLoc, nullptr, /*Implicit=*/false)
{}
Expr *getDest() const { return Dest; }
void setDest(Expr *e) { Dest = e; }
Expr *getSrc() const { return Src; }
void setSrc(Expr *e) { Src = e; }
SourceLoc getEqualLoc() const { return EqualLoc; }
SourceRange getSourceRange() const;
/// True if the node has been processed by binary expression folding.
bool isFolded() const { return Dest && Src; }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::Assign;
}
};
/// \brief An expression that produces a zero value for types that
/// default-initialize to zero, including builtin types and classes.
///
/// This expression is synthesizes by type checking and cannot be written
/// directly by the user.
class ZeroValueExpr : public Expr {
public:
explicit ZeroValueExpr(Type Ty)
: Expr(ExprKind::ZeroValue, /*Implicit=*/true, Ty) { }
SourceRange getSourceRange() const { return SourceRange(); }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::ZeroValue;
}
};
/// \brief An expression that describes the use of a default value, which may
/// come from the default argument of a function type or member initializer.
///
/// This expression is synthesized by type checking and cannot be written
/// directly by the user.
class DefaultValueExpr : public Expr {
Expr *subExpr;
public:
explicit DefaultValueExpr(Expr *subExpr)
: Expr(ExprKind::DefaultValue, /*Implicit=*/true, subExpr->getType()),
subExpr(subExpr) { }
Expr *getSubExpr() const { return subExpr; }
void setSubExpr(Expr *sub) { subExpr = sub; }
SourceRange getSourceRange() const { return SourceRange(); }
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::DefaultValue;
}
};
/// \brief A pattern production that has been parsed but hasn't been resolved
/// into a complete pattern. Name binding converts these into standalone pattern
/// nodes or raises an error if a pattern production appears in an invalid
/// position.
class UnresolvedPatternExpr : public Expr {
Pattern *subPattern;
public:
explicit UnresolvedPatternExpr(Pattern *subPattern)
: Expr(ExprKind::UnresolvedPattern, /*Implicit=*/false),
subPattern(subPattern) { }
const Pattern *getSubPattern() const { return subPattern; }
Pattern *getSubPattern() { return subPattern; }
void setSubPattern(Pattern *p) { subPattern = p; }
SourceLoc getLoc() const;
SourceRange getSourceRange() const;
static bool classof(const Expr *E) {
return E->getKind() == ExprKind::UnresolvedPattern;
}
};
} // end namespace swift
#endif