Files
swift-mirror/lib/SILPasses/Utils/Local.cpp
Mark Lacey 1f23ff27bb Remove the transparent bit from apply instructions.
We no longer need or use it since we can always refer to the same bit on
the applied function when deciding whether to inline during mandatory
inlining.

Resolves rdar://problem/19478366.

Swift SVN r26534
2015-03-25 08:36:34 +00:00

1249 lines
42 KiB
C++

//===--- Local.cpp - Functions that perform local SIL transformations. ---===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===---------------------------------------------------------------------===//
#include "swift/SILPasses/Utils/Local.h"
#include "swift/SILAnalysis/Analysis.h"
#include "swift/SILAnalysis/ARCAnalysis.h"
#include "swift/SILAnalysis/DominanceAnalysis.h"
#include "swift/SIL/DynamicCasts.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILUndef.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/CommandLine.h"
#include <deque>
using namespace swift;
llvm::cl::opt<bool>
DebugValuesPropagateLiveness("debug-values-propagate-liveness",
llvm::cl::init(false));
bool swift::debugValuesPropagateLiveness() {
return DebugValuesPropagateLiveness;
}
/// \brief Perform a fast local check to see if the instruction is dead.
///
/// This routine only examines the state of the instruction at hand.
bool
swift::isInstructionTriviallyDead(SILInstruction *I) {
if (!I->use_empty() || isa<TermInst>(I))
return false;
if (auto *BI = dyn_cast<BuiltinInst>(I)) {
return !BI->mayHaveSideEffects();
}
// condfail instructions that obviously can't fail are dead.
if (auto *CFI = dyn_cast<CondFailInst>(I))
if (auto *ILI = dyn_cast<IntegerLiteralInst>(CFI->getOperand()))
if (!ILI->getValue())
return true;
// mark_uninitialized is never dead.
if (isa<MarkUninitializedInst>(I))
return false;
if (debugValuesPropagateLiveness() &&
(isa<DebugValueInst>(I) || isa<DebugValueAddrInst>(I)))
return false;
// These invalidate enums so "write" memory, but that is not an essential
// operation so we can remove these if they are trivially dead.
if (isa<UncheckedTakeEnumDataAddrInst>(I))
return true;
if (!I->mayHaveSideEffects())
return true;
return false;
}
namespace {
using CallbackTy = std::function<void(SILInstruction *)>;
} // end anonymous namespace
bool swift::
recursivelyDeleteTriviallyDeadInstructions(ArrayRef<SILInstruction *> IA,
bool Force, CallbackTy Callback) {
// Delete these instruction and others that become dead after it's deleted.
llvm::SmallPtrSet<SILInstruction *, 8> DeadInsts;
for (auto I : IA) {
// If the instruction is not dead and force is false, do nothing.
if (Force || isInstructionTriviallyDead(I))
DeadInsts.insert(I);
}
llvm::SmallPtrSet<SILInstruction *, 8> NextInsts;
while (!DeadInsts.empty()) {
for (auto I : DeadInsts) {
// Call the callback before we mutate the to be deleted instruction in any
// way.
Callback(I);
// Check if any of the operands will become dead as well.
MutableArrayRef<Operand> Ops = I->getAllOperands();
for (Operand &Op : Ops) {
SILValue OpVal = Op.get();
if (!OpVal)
continue;
// Remove the reference from the instruction being deleted to this
// operand.
Op.drop();
// If the operand is an instruction that is only used by the instruction
// being deleted, delete it.
if (SILInstruction *OpValInst = dyn_cast<SILInstruction>(OpVal))
if (!DeadInsts.count(OpValInst) &&
isInstructionTriviallyDead(OpValInst))
NextInsts.insert(OpValInst);
}
// If we have a function ref inst, we need to especially drop its function
// argument so that it gets a proper ref decement.
auto *FRI = dyn_cast<FunctionRefInst>(I);
if (FRI && FRI->getReferencedFunction())
FRI->dropReferencedFunction();
}
for (auto I : DeadInsts) {
// This will remove this instruction and all its uses.
I->eraseFromParent();
}
NextInsts.swap(DeadInsts);
NextInsts.clear();
}
return true;
}
/// \brief If the given instruction is dead, delete it along with its dead
/// operands.
///
/// \param I The instruction to be deleted.
/// \param Force If Force is set, don't check if the top level instruction is
/// considered dead - delete it regardless.
/// \return Returns true if any instructions were deleted.
bool swift::recursivelyDeleteTriviallyDeadInstructions(SILInstruction *I,
bool Force,
CallbackTy Callback) {
ArrayRef<SILInstruction *> AI = ArrayRef<SILInstruction *>(I);
return recursivelyDeleteTriviallyDeadInstructions(AI, Force, Callback);
}
void swift::eraseUsesOfInstruction(SILInstruction *Inst) {
for (auto UI : Inst->getUses()) {
auto *User = UI->getUser();
// If the instruction itself has any uses, recursively zap them so that
// nothing uses this instruction.
eraseUsesOfInstruction(User);
// Walk through the operand list and delete any random instructions that
// will become trivially dead when this instruction is removed.
for (auto &Op : User->getAllOperands()) {
if (auto *OpI = dyn_cast<SILInstruction>(Op.get())) {
// Don't recursively delete the pointer we're getting in.
if (OpI != Inst) {
Op.drop();
recursivelyDeleteTriviallyDeadInstructions(OpI);
}
}
}
User->eraseFromParent();
}
}
void swift::replaceWithSpecializedFunction(ApplyInst *AI, SILFunction *NewF) {
SILLocation Loc = AI->getLoc();
ArrayRef<Substitution> Subst;
SmallVector<SILValue, 4> Arguments;
for (auto &Op : AI->getArgumentOperands()) {
Arguments.push_back(Op.get());
}
SILBuilderWithScope<2> Builder(AI);
FunctionRefInst *FRI = Builder.createFunctionRef(Loc, NewF);
ApplyInst *NAI =
Builder.createApply(Loc, FRI, Arguments);
AI->replaceAllUsesWith(NAI);
recursivelyDeleteTriviallyDeadInstructions(AI, true);
}
bool swift::hasUnboundGenericTypes(TypeSubstitutionMap &SubsMap) {
// Check whether any of the substitutions are dependent.
for (auto &entry : SubsMap)
if (entry.second->getCanonicalType()->hasArchetype())
return true;
return false;
}
bool swift::hasUnboundGenericTypes(ArrayRef<Substitution> Subs) {
// Check whether any of the substitutions are dependent.
for (auto &sub : Subs)
if (sub.getReplacement()->getCanonicalType()->hasArchetype())
return true;
return false;
}
/// Find a new position for an ApplyInst's FuncRef so that it dominates its
/// use. Not that FuncionRefInsts may be shared by multiple ApplyInsts.
void swift::placeFuncRef(ApplyInst *AI, DominanceInfo *DT) {
FunctionRefInst *FuncRef = cast<FunctionRefInst>(AI->getCallee());
SILBasicBlock *DomBB =
DT->findNearestCommonDominator(AI->getParent(), FuncRef->getParent());
if (DomBB == AI->getParent() && DomBB != FuncRef->getParent())
// Prefer to place the FuncRef immediately before the call. Since we're
// moving FuncRef up, this must be the only call to it in the block.
FuncRef->moveBefore(AI);
else
// Otherwise, conservatively stick it at the beginning of the block.
FuncRef->moveBefore(DomBB->begin());
}
/// \brief Add an argument, \p val, to the branch-edge that is pointing into
/// block \p Dest. Return a new instruction and do not erase the old
/// instruction.
TermInst *swift::addArgumentToBranch(SILValue Val, SILBasicBlock *Dest,
TermInst *Branch) {
SILBuilderWithScope<2> Builder(Branch);
if (CondBranchInst *CBI = dyn_cast<CondBranchInst>(Branch)) {
SmallVector<SILValue, 8> TrueArgs;
SmallVector<SILValue, 8> FalseArgs;
for (auto A : CBI->getTrueArgs())
TrueArgs.push_back(A);
for (auto A : CBI->getFalseArgs())
FalseArgs.push_back(A);
if (Dest == CBI->getTrueBB()) {
TrueArgs.push_back(Val);
assert(TrueArgs.size() == Dest->getNumBBArg());
} else {
FalseArgs.push_back(Val);
assert(FalseArgs.size() == Dest->getNumBBArg());
}
return Builder.createCondBranch(CBI->getLoc(), CBI->getCondition(),
CBI->getTrueBB(), TrueArgs,
CBI->getFalseBB(), FalseArgs);
}
if (BranchInst *BI = dyn_cast<BranchInst>(Branch)) {
SmallVector<SILValue, 8> Args;
for (auto A : BI->getArgs())
Args.push_back(A);
Args.push_back(Val);
assert(Args.size() == Dest->getNumBBArg());
return Builder.createBranch(BI->getLoc(), BI->getDestBB(), Args);
}
llvm_unreachable("unsupported terminator");
}
SILLinkage swift::getSpecializedLinkage(SILLinkage L) {
switch (L) {
case SILLinkage::Public:
case SILLinkage::PublicExternal:
case SILLinkage::Shared:
case SILLinkage::SharedExternal:
case SILLinkage::Hidden:
case SILLinkage::HiddenExternal:
// Specializations of public or hidden symbols can be shared by all TUs
// that specialize the definition.
return SILLinkage::Shared;
case SILLinkage::Private:
case SILLinkage::PrivateExternal:
// Specializations of private symbols should remain so.
// TODO: maybe PrivateExternals should get SharedExternal (these are private
// functions from the stdlib which are specialized in another module).
return SILLinkage::Private;
}
}
/// Remove all instructions in the body of \p BB in safe manner by using
/// undef.
void swift::clearBlockBody(SILBasicBlock *BB) {
// Instructions in the dead block may be used by other dead blocks. Replace
// any uses of them with undef values.
while (!BB->empty()) {
// Grab the last instruction in the BB.
auto *Inst = &BB->getInstList().back();
// Replace any non-dead results with SILUndef values.
Inst->replaceAllUsesWithUndef();
// Pop the instruction off of the back of the basic block.
BB->getInstList().pop_back();
}
}
// Handle the mechanical aspects of removing an unreachable block.
void swift::removeDeadBlock(SILBasicBlock *BB) {
// Clear the body of BB.
clearBlockBody(BB);
// Now that the BB is empty, eliminate it.
BB->eraseFromParent();
}
//===----------------------------------------------------------------------===//
// String Concatenation Optimizer
//===----------------------------------------------------------------------===//
namespace {
/// This is a helper class that performs optimization of string literals
/// concatenation.
class StringConcatenationOptimizer {
/// Apply instruction being optimized.
ApplyInst *AI;
/// Builder to be used for creation of new instructions.
SILBuilder &Builder;
/// Left string literal operand of a string concatenation.
StringLiteralInst *SLILeft = nullptr;
/// Right string literal operand of a string concatenation.
StringLiteralInst *SLIRight = nullptr;
/// Function used to construct the left string literal.
FunctionRefInst *FRILeft = nullptr;
/// Function used to construct the right string literal.
FunctionRefInst *FRIRight = nullptr;
/// Apply instructions used to construct left string literal.
ApplyInst *AILeft = nullptr;
/// Apply instructions used to construct right string literal.
ApplyInst *AIRight = nullptr;
/// String literal conversion function to be used.
FunctionRefInst *FRIConvertFromBuiltin = nullptr;
/// Result type of a function producing the concatenated string literal.
SILValue FuncResultType;
/// Internal helper methods
bool extractStringConcatOperands();
void adjustEncodings();
APInt getConcatenatedLength();
bool isAscii() const;
public:
StringConcatenationOptimizer(ApplyInst *AI, SILBuilder &Builder)
: AI(AI), Builder(Builder) {}
/// Tries to optimize a given apply instruction if it is a
/// concatenation of string literals.
///
/// Returns a new instruction if optimization was possible.
SILInstruction *optimize();
};
} // end anonymous namespace
/// Checks operands of a string concatenation operation to see if
/// optimization is applicable.
///
/// Returns false if optimization is not possible.
/// Returns true and initializes internal fields if optimization is possible.
bool StringConcatenationOptimizer::extractStringConcatOperands() {
auto *FRI = dyn_cast<FunctionRefInst>(AI->getCallee());
if (!FRI)
return false;
auto *FRIFun = FRI->getReferencedFunction();
if (AI->getNumOperands() != 3 ||
!FRIFun->hasSemanticsString("string.concat"))
return false;
// Left and right operands of a string concatenation operation.
AILeft = dyn_cast<ApplyInst>(AI->getOperand(1));
AIRight = dyn_cast<ApplyInst>(AI->getOperand(2));
if (!AILeft || !AIRight)
return false;
FRILeft = dyn_cast<FunctionRefInst>(AILeft->getCallee());
FRIRight = dyn_cast<FunctionRefInst>(AIRight->getCallee());
if (!FRILeft || !FRIRight)
return false;
auto *FRILeftFun = FRILeft->getReferencedFunction();
auto *FRIRightFun = FRIRight->getReferencedFunction();
if (FRILeftFun->getEffectsKind() >= EffectsKind::ReadWrite ||
FRIRightFun->getEffectsKind() >= EffectsKind::ReadWrite)
return false;
if (!FRILeftFun->hasDefinedSemantics() ||
!FRIRightFun->hasDefinedSemantics())
return false;
auto SemanticsLeft = FRILeftFun->getSemanticsString();
auto SemanticsRight = FRIRightFun->getSemanticsString();
auto AILeftOperandsNum = AILeft->getNumOperands();
auto AIRightOperandsNum = AIRight->getNumOperands();
// makeUTF16 should have following parameters:
// (start: RawPointer, numberOfCodeUnits: Word)
// makeUTF8 should have following parameters:
// (start: RawPointer, byteSize: Word, isASCII: Int1)
if (!((SemanticsLeft == "string.makeUTF16" && AILeftOperandsNum == 4) ||
(SemanticsLeft == "string.makeUTF8" && AILeftOperandsNum == 5) ||
(SemanticsRight == "string.makeUTF16" && AIRightOperandsNum == 4) ||
(SemanticsRight == "string.makeUTF8" && AIRightOperandsNum == 5)))
return false;
SLILeft = dyn_cast<StringLiteralInst>(AILeft->getOperand(1));
SLIRight = dyn_cast<StringLiteralInst>(AIRight->getOperand(1));
if (!SLILeft || !SLIRight)
return false;
// Only UTF-8 and UTF-16 encoded string literals are supported by this
// optimization.
if (SLILeft->getEncoding() != StringLiteralInst::Encoding::UTF8 &&
SLILeft->getEncoding() != StringLiteralInst::Encoding::UTF16)
return false;
if (SLIRight->getEncoding() != StringLiteralInst::Encoding::UTF8 &&
SLIRight->getEncoding() != StringLiteralInst::Encoding::UTF16)
return false;
return true;
}
/// Ensures that both string literals to be concatenated use the same
/// UTF encoding. Converts UTF-8 into UTF-16 if required.
void StringConcatenationOptimizer::adjustEncodings() {
if (SLILeft->getEncoding() == SLIRight->getEncoding()) {
FRIConvertFromBuiltin = FRILeft;
if (SLILeft->getEncoding() == StringLiteralInst::Encoding::UTF8) {
FuncResultType = AILeft->getOperand(4);
} else {
FuncResultType = AILeft->getOperand(3);
}
return;
}
// If one of the string literals is UTF8 and another one is UTF16,
// convert the UTF8-encoded string literal into UTF16-encoding first.
if (SLILeft->getEncoding() == StringLiteralInst::Encoding::UTF8 &&
SLIRight->getEncoding() == StringLiteralInst::Encoding::UTF16) {
FuncResultType = AIRight->getOperand(3);
FRIConvertFromBuiltin = FRIRight;
// Convert UTF8 representation into UTF16.
SLILeft = Builder.createStringLiteral(AI->getLoc(), SLILeft->getValue(),
StringLiteralInst::Encoding::UTF16);
SLILeft->setDebugScope(AI->getDebugScope());
}
if (SLIRight->getEncoding() == StringLiteralInst::Encoding::UTF8 &&
SLILeft->getEncoding() == StringLiteralInst::Encoding::UTF16) {
FuncResultType = AILeft->getOperand(3);
FRIConvertFromBuiltin = FRILeft;
// Convert UTF8 representation into UTF16.
SLIRight = Builder.createStringLiteral(AI->getLoc(), SLIRight->getValue(),
StringLiteralInst::Encoding::UTF16);
SLIRight->setDebugScope(AI->getDebugScope());
}
// It should be impossible to have two operands with different
// encodings at this point.
assert(SLILeft->getEncoding() == SLIRight->getEncoding() &&
"Both operands of string concatenation should have the same encoding");
}
/// Computes the length of a concatenated string literal.
APInt StringConcatenationOptimizer::getConcatenatedLength() {
// Real length of string literals computed based on its contents.
// Length is in code units.
auto SLILenLeft = SLILeft->getCodeUnitCount();
(void) SLILenLeft;
auto SLILenRight = SLIRight->getCodeUnitCount();
(void) SLILenRight;
// Length of string literals as reported by string.make functions.
auto *LenLeft = dyn_cast<IntegerLiteralInst>(AILeft->getOperand(2));
auto *LenRight = dyn_cast<IntegerLiteralInst>(AIRight->getOperand(2));
// Real and reported length should be the same.
assert(SLILenLeft == LenLeft->getValue() &&
"Size of string literal in @semantics(string.make) is wrong");
assert(SLILenRight == LenRight->getValue() &&
"Size of string literal in @semantics(string.make) is wrong");
// Compute length of the concatenated literal.
return LenLeft->getValue() + LenRight->getValue();
}
/// Computes the isAscii flag of a concatenated UTF8-encoded string literal.
bool StringConcatenationOptimizer::isAscii() const{
// Add the isASCII argument in case of UTF8.
// IsASCII is true only if IsASCII of both literals is true.
auto *AsciiLeft = dyn_cast<IntegerLiteralInst>(AILeft->getOperand(3));
auto *AsciiRight = dyn_cast<IntegerLiteralInst>(AIRight->getOperand(3));
auto IsAsciiLeft = AsciiLeft->getValue() == 1;
auto IsAsciiRight = AsciiRight->getValue() == 1;
return IsAsciiLeft && IsAsciiRight;
}
SILInstruction *StringConcatenationOptimizer::optimize() {
// Bail out if string literals concatenation optimization is
// not possible.
if (!extractStringConcatOperands())
return nullptr;
// Perform string literal encodings adjustments if needed.
adjustEncodings();
// Arguments of the new StringLiteralInst to be created.
SmallVector<SILValue, 4> Arguments;
// Encoding to be used for the concatenated string literal.
auto Encoding = SLILeft->getEncoding();
// Create a concatenated string literal.
auto LV = SLILeft->getValue();
auto RV = SLIRight->getValue();
auto *NewSLI =
Builder.createStringLiteral(AI->getLoc(), LV + Twine(RV), Encoding);
NewSLI->setDebugScope(AI->getDebugScope());
Arguments.push_back(NewSLI);
// Length of the concatenated literal according to its encoding.
auto *Len = Builder.createIntegerLiteral(
AI->getLoc(), AILeft->getOperand(2).getType(), getConcatenatedLength());
Len->setDebugScope(AI->getDebugScope());
Arguments.push_back(Len);
// isAscii flag for UTF8-encoded string literals.
if (Encoding == StringLiteralInst::Encoding::UTF8) {
bool IsAscii = isAscii();
auto ILType = AILeft->getOperand(3).getType();
auto *Ascii =
Builder.createIntegerLiteral(AI->getLoc(), ILType, intmax_t(IsAscii));
Ascii->setDebugScope(AI->getDebugScope());
Arguments.push_back(Ascii);
}
// Type.
Arguments.push_back(FuncResultType);
auto FnTy = FRIConvertFromBuiltin->getType();
auto STResultType = FnTy.castTo<SILFunctionType>()->getResult().getSILType();
return ApplyInst::create(AI->getLoc(),
FRIConvertFromBuiltin,
FnTy,
STResultType,
ArrayRef<Substitution>(),
Arguments,
*FRIConvertFromBuiltin->getReferencedFunction());
}
/// Top level entry point
SILInstruction *swift::tryToConcatenateStrings(ApplyInst *AI, SILBuilder &B) {
return StringConcatenationOptimizer(AI, B).optimize();
}
//===----------------------------------------------------------------------===//
// Closure Deletion
//===----------------------------------------------------------------------===//
static bool isARCOperationRemovableIfObjectIsDead(const SILInstruction *I) {
switch (I->getKind()) {
case ValueKind::StrongRetainInst:
case ValueKind::StrongReleaseInst:
case ValueKind::RetainValueInst:
case ValueKind::ReleaseValueInst:
return true;
default:
return false;
}
}
/// TODO: Generalize this to general objects.
bool swift::tryDeleteDeadClosure(SILInstruction *Closure) {
// We currently only handle locally identified values that do not escape. We
// also assume that the partial apply does not capture any addresses.
if (!isa<PartialApplyInst>(Closure) && !isa<ThinToThickFunctionInst>(Closure))
return false;
// We only accept a user if it is an ARC object that can be removed if the
// object is dead. This should be expanded in the future. This also ensures
// that we are locally identified and non-escaping since we only allow for
// specific ARC users.
ReleaseTracker Tracker([](const SILInstruction *I) -> bool {
return isARCOperationRemovableIfObjectIsDead(I);
});
// Find the ARC Users and the final retain, release.
if (!getFinalReleasesForValue(SILValue(Closure), Tracker))
return false;
// If we have a partial_apply, release each captured argument at each one of
// the final release locations of the partial apply.
SILBuilder Builder(Closure);
SILModule &M = Closure->getModule();
if (auto *PAI = dyn_cast<PartialApplyInst>(Closure)) {
for (auto *FinalRelease : Tracker.getFinalReleases()) {
Builder.setInsertionPoint(FinalRelease);
for (SILValue Arg : PAI->getArguments()) {
if (Arg.getType().isTrivial(M))
continue;
Builder.createReleaseValue(FinalRelease->getLoc(), Arg);
}
}
}
// Then delete all user instructions.
for (auto *User : Tracker.getTrackedUsers()) {
assert(User->getNumTypes() == 0 && "We expect only ARC operations without "
"results. This is true b/c of "
"isARCOperationRemovableIfObjectIsDead");
User->eraseFromParent();
}
// Finally delete the closure.
Closure->eraseFromParent();
return true;
}
// Is any successor of BB in the LiveIn set?
static bool successorHasLiveIn(SILBasicBlock *BB,
const llvm::SmallPtrSetImpl<SILBasicBlock *> &LiveIn) {
for (auto &Succ : BB->getSuccessors())
if (LiveIn.count(Succ))
return true;
return false;
}
// Walk backwards in BB looking for last use of value V and adding the
// instruction using the value to LastUsers.
static void addLastUser(SILValue V, SILBasicBlock *BB,
llvm::SmallPtrSetImpl<SILInstruction *> &LastUsers) {
for (auto I = BB->rbegin(); I != BB->rend(); ++I) {
assert(V.getDef() != &*I && "Found def before finding use!");
for (auto &O : I->getAllOperands()) {
if (O.get() != V)
continue;
LastUsers.insert(&*I);
return;
}
}
llvm_unreachable("Expected to find use of value in block!");
}
// Propagate liveness backwards from an initial set of blocks in our
// LiveIn set.
static void propagateLiveness(llvm::SmallPtrSetImpl<SILBasicBlock*> &LiveIn,
SILBasicBlock *DefBB) {
// First populate a worklist of predecessors.
llvm::SmallVector<SILBasicBlock *, 64> Worklist;
for (auto *BB : LiveIn)
for (auto Pred : BB->getPreds())
Worklist.push_back(Pred);
// Now propagate liveness backwards until we hit the block that
// defines the value.
while (!Worklist.empty()) {
auto *BB = Worklist.pop_back_val();
// If it's already in the set, then we've already queued and/or
// processed the predecessors.
if (BB == DefBB || !LiveIn.insert(BB).second)
continue;
for (auto Pred : BB->getPreds())
Worklist.push_back(Pred);
}
}
void LifetimeTracker::computeLifetime() {
llvm::SmallPtrSet<SILBasicBlock *, 16> LiveIn;
llvm::SmallPtrSet<SILBasicBlock *, 16> UseBlocks;
auto *DefInst = cast<SILInstruction>(TheValue.getDef());
auto *DefBB = DefInst->getParent();
if (TheValue->hasOneUse()) {
Endpoints.insert(TheValue->use_begin().getUser());
return;
}
for (auto UI : TheValue.getUses()) {
auto *BB = UI->getUser()->getParent();
UseBlocks.insert(BB);
if (BB != DefBB)
LiveIn.insert(BB);
}
propagateLiveness(LiveIn, DefBB);
for (auto *BB : UseBlocks)
if (!successorHasLiveIn(BB, LiveIn))
addLastUser(TheValue, BB, Endpoints);
LifetimeComputed = true;
}
//===----------------------------------------------------------------------===//
// Casts Optimization and Simplification
//===----------------------------------------------------------------------===//
SILInstruction *
CastOptimizer::
simplifyCheckedCastAddrBranchInst(CheckedCastAddrBranchInst *Inst) {
if (auto *I = optimizeCheckedCastAddrBranchInst(Inst))
Inst = dyn_cast<CheckedCastAddrBranchInst>(I);
auto Loc = Inst->getLoc();
auto Src = Inst->getSrc();
auto Dest = Inst->getDest();
auto SourceType = Inst->getSourceType();
auto TargetType = Inst->getTargetType();
auto *SuccessBB = Inst->getSuccessBB();
auto *FailureBB = Inst->getFailureBB();
auto &Mod = Inst->getModule();
SILBuilderWithScope<1> Builder(Inst);
// Try to determine the outcome of the cast from a known type
// to a protocol type at compile-time.
bool isSourceTypeExact = isa<MetatypeInst>(Inst->getSrc());
// Check if we can statically predict the outcome of the cast.
auto Feasibility = classifyDynamicCast(Mod.getSwiftModule(),
Src.getType().getSwiftRValueType(),
Dest.getType().getSwiftRValueType(),
isSourceTypeExact,
Mod.isWholeModule());
if (Feasibility == DynamicCastFeasibility::MaySucceed)
return nullptr;
if (Feasibility == DynamicCastFeasibility::WillFail) {
if (shouldDestroyOnFailure(Inst->getConsumptionKind())) {
auto &srcTL = Builder.getModule().getTypeLowering(Src.getType());
srcTL.emitDestroyAddress(Builder, Loc, Src);
}
auto NewI = Builder.createBranch(Loc, FailureBB);
EraseInstAction(Inst);
WillFailAction();
return NewI;
}
// Cast will succeed
// Replace by unconditional_addr_cast, followed by a branch.
// The unconditional_addr_cast can be skipped, if the result of a cast
// is not used afterwards.
bool ResultNotUsed = isa<AllocStackInst>(Dest.getDef());
for (auto Use : Dest.getUses()) {
auto *User = Use->getUser();
if (isa<DeallocStackInst>(User) || User == Inst)
continue;
ResultNotUsed = false;
break;
}
if (!ResultNotUsed) {
bool useIndirectUnconditionalCastEmitter = true;
// emitSuccessfulIndirectUnconditionalCast can handle only
// address types currently.
if (!Src.getType().isAddress() || !Dest.getType().isAddress())
useIndirectUnconditionalCastEmitter = false;
// emitSuccessfulIndirectUnconditionalCast cannot handle casts
// between metatypes yet.
if (isa<AnyMetatypeType>(Src.getType().getSwiftRValueType()) ||
isa<AnyMetatypeType>(Dest.getType().getSwiftRValueType())) {
useIndirectUnconditionalCastEmitter = false;
}
if (useIndirectUnconditionalCastEmitter) {
emitSuccessfulIndirectUnconditionalCast(
Builder, Mod.getSwiftModule(), Loc, Inst->getConsumptionKind(), Src,
SourceType, Dest, TargetType);
} else {
// Generate an unconditional cast
Builder.createUnconditionalCheckedCastAddr(
Loc, Inst->getConsumptionKind(), Src, SourceType, Dest, TargetType);
}
}
auto *NewI = Builder.createBranch(Loc, SuccessBB);
EraseInstAction(Inst);
WillSucceedAction();
return NewI;
}
SILInstruction *
CastOptimizer::simplifyCheckedCastBranchInst(CheckedCastBranchInst *Inst) {
if (Inst->isExact()) {
// Check if the exact dynamic type of the operand can be determined.
if (auto *ARI = dyn_cast<AllocRefInst>(Inst->getOperand().stripUpCasts())) {
SILBuilderWithScope<1> Builder(Inst);
auto Loc = Inst->getLoc();
auto *SuccessBB = Inst->getSuccessBB();
auto *FailureBB = Inst->getFailureBB();
if (ARI->getType() == Inst->getCastType()) {
// This exact cast will succeed.
SmallVector<SILValue, 1> Args;
Args.push_back(ARI);
auto *NewI = Builder.createBranch(Loc, SuccessBB, Args);
EraseInstAction(Inst);
WillSucceedAction();
return NewI;
} else {
// This exact cast will fail.
auto *NewI = Builder.createBranch(Loc, FailureBB);
EraseInstAction(Inst);
WillFailAction();
return NewI;
}
}
return nullptr;
}
if (auto *I = optimizeCheckedCastBranchInst(Inst))
Inst = dyn_cast<CheckedCastBranchInst>(I);
auto LoweredSourceType = Inst->getOperand().getType();
auto LoweredTargetType = Inst->getCastType();
auto Loc = Inst->getLoc();
auto *SuccessBB = Inst->getSuccessBB();
auto *FailureBB = Inst->getFailureBB();
auto Op = Inst->getOperand();
auto &Mod = Inst->getModule();
bool isSourceTypeExact = isa<MetatypeInst>(Op);
// Check if we can statically predict the outcome of the cast.
auto Feasibility = classifyDynamicCast(Mod.getSwiftModule(),
LoweredSourceType.getSwiftRValueType(),
LoweredTargetType.getSwiftRValueType(),
isSourceTypeExact);
if (Feasibility == DynamicCastFeasibility::MaySucceed)
return nullptr;
SILBuilderWithScope<1> Builder(Inst);
if (Feasibility == DynamicCastFeasibility::WillFail) {
auto *NewI = Builder.createBranch(Loc, FailureBB);
EraseInstAction(Inst);
WillFailAction();
return NewI;
}
// Casting will succeed.
// Replace by unconditional_cast, followed by a branch.
// The unconditional_cast can be skipped, if the result of a cast
// is not used afterwards.
SmallVector<SILValue, 1> Args;
bool ResultNotUsed = SuccessBB->getBBArg(0)->use_empty();
SILValue CastedValue;
if (Op.getType() != LoweredTargetType) {
if (!ResultNotUsed) {
// emitSuccessfulScalarUnconditionalCast cannot
// further simplify casts from/to existentials.
if (LoweredTargetType.isAnyExistentialType() ||
LoweredSourceType.isAnyExistentialType()) {
CastedValue =
Builder.createUnconditionalCheckedCast(Loc, Op, LoweredTargetType);
} else {
CastedValue = emitSuccessfulScalarUnconditionalCast(
Builder, Mod.getSwiftModule(), Loc, Op, LoweredTargetType,
LoweredSourceType.getSwiftRValueType(),
LoweredTargetType.getSwiftRValueType());
}
} else {
CastedValue = SILUndef::get(LoweredTargetType, Mod);
}
} else {
// No need to cast.
CastedValue = Op;
}
Args.push_back(CastedValue);
auto *NewI = Builder.createBranch(Loc, SuccessBB, Args);
EraseInstAction(Inst);
WillSucceedAction();
return NewI;
}
SILInstruction *
CastOptimizer::
optimizeCheckedCastAddrBranchInst(CheckedCastAddrBranchInst *Inst) {
auto Loc = Inst->getLoc();
auto Src = Inst->getSrc();
auto Dest = Inst->getDest();
auto TargetType = Inst->getTargetType();
auto *SuccessBB = Inst->getSuccessBB();
auto *FailureBB = Inst->getFailureBB();
// %1 = metatype $A.Type
// [%2 = init_existential_metatype %1 ...]
// %3 = alloc_stack
// store %1 to %3 or store %2 to %3
// checked_cast_addr_br %3 to ...
// ->
// %1 = metatype $A.Type
// checked_cast_addr_br %1 to ...
if (auto *ASI = dyn_cast<AllocStackInst>(Src.getDef())) {
// Check if the value of this alloc_stack is set only once by a store
// instruction, used only by CCABI and then deallocated.
bool isLegal = true;
StoreInst *Store = nullptr;
for (auto Use : ASI->getUses()) {
auto *User = Use->getUser();
if (isa<DeallocStackInst>(User) || User == Inst)
continue;
if (auto *SI = dyn_cast<StoreInst>(User)) {
if (!Store) {
Store = SI;
continue;
}
}
isLegal = false;
break;
}
if (isLegal && Store) {
// Check what was the value stored in the allocated stack slot.
auto Src = Store->getSrc();
MetatypeInst *MI = nullptr;
if (auto *IEMI = dyn_cast<InitExistentialMetatypeInst>(Src)) {
MI = dyn_cast<MetatypeInst>(IEMI->getOperand());
}
if (!MI)
MI = dyn_cast<MetatypeInst>(Src);
if (MI) {
SILBuilderWithScope<1> B(Inst);
auto NewI = B.createCheckedCastAddrBranch(Loc,
Inst->getConsumptionKind(),
MI,
MI->getType().getSwiftRValueType(),
Dest,
TargetType,
SuccessBB,
FailureBB);
EraseInstAction(Inst);
return NewI;
}
}
}
return nullptr;
}
SILInstruction *
CastOptimizer::optimizeCheckedCastBranchInst(CheckedCastBranchInst *Inst) {
if (Inst->isExact())
return nullptr;
auto LoweredTargetType = Inst->getCastType();
auto Loc = Inst->getLoc();
auto *SuccessBB = Inst->getSuccessBB();
auto *FailureBB = Inst->getFailureBB();
auto Op = Inst->getOperand();
// Try to simplify checked_cond_br instructions using existential
// metatypes by propagating a concrete type whenever it can be
// determined statically.
// %0 = metatype $A.Type
// %1 = init_existential_metatype ..., %0: $A
// checked_cond_br %1, ....
// ->
// %1 = metatype $A.Type
// checked_cond_br %1, ....
if (auto *IEMI = dyn_cast<InitExistentialMetatypeInst>(Op)) {
if (auto *MI = dyn_cast<MetatypeInst>(IEMI->getOperand())) {
SILBuilderWithScope<1> B(Inst);
auto *NewI = B.createCheckedCastBranch(Loc, /* isExact */ false, MI,
LoweredTargetType,
SuccessBB,
FailureBB);
EraseInstAction(Inst);
return NewI;
}
}
if (auto *EMI = dyn_cast<ExistentialMetatypeInst>(Op)) {
// Operand of the existential_metatype instruction.
auto Op = EMI->getOperand();
auto EmiTy = EMI->getType();
// %0 = alloc_stack ..
// %1 = init_existential_addr %0: $A
// %2 = existential_metatype %0, ...
// checked_cond_br %2, ....
// ->
// %1 = metatype $A.Type
// checked_cond_br %1, ....
if (auto *ASI = dyn_cast<AllocStackInst>(Op)) {
// Should be in the same BB.
if (ASI->getParent() != EMI->getParent())
return nullptr;
// Check if this alloc_stac is is only initialized once by means of
// single init_existential_addr.
bool isLegal = true;
// init_existental instruction used to initialize this alloc_stack.
InitExistentialAddrInst *FoundIEI = nullptr;
for (auto Use: ASI->getUses()) {
auto *User = Use->getUser();
if (isa<ExistentialMetatypeInst>(User) ||
isa<DestroyAddrInst>(User) ||
isa<DeallocStackInst>(User))
continue;
if (auto *IEI = dyn_cast<InitExistentialAddrInst>(User)) {
if (!FoundIEI) {
FoundIEI = IEI;
continue;
}
}
isLegal = false;
break;
}
if (isLegal && FoundIEI) {
// Should be in the same BB.
if (FoundIEI->getParent() != EMI->getParent())
return nullptr;
// Get the type used to initialize the existential.
auto LoweredConcreteTy = FoundIEI->getLoweredConcreteType();
if (LoweredConcreteTy.isAnyExistentialType())
return nullptr;
// Get the metatype of this type.
auto EMT = dyn_cast<AnyMetatypeType>(EmiTy.getSwiftRValueType());
auto *MetaTy = MetatypeType::get(LoweredConcreteTy.getSwiftRValueType(),
EMT->getRepresentation());
auto CanMetaTy = CanMetatypeType::CanTypeWrapper(MetaTy);
auto SILMetaTy = SILType::getPrimitiveObjectType(CanMetaTy);
SILBuilderWithScope<1> B(Inst);
auto *MI = B.createMetatype(FoundIEI->getLoc(), SILMetaTy);
auto *NewI = B.createCheckedCastBranch(Loc, /* isExact */ false, MI,
LoweredTargetType,
SuccessBB,
FailureBB);
EraseInstAction(Inst);
return NewI;
}
}
// %0 = alloc_ref $A
// %1 = init_existential_ref %0: $A, $...
// %2 = existential_metatype ..., %1 : ...
// checked_cond_br %2, ....
// ->
// %1 = metatype $A.Type
// checked_cond_br %1, ....
if (auto *FoundIERI = dyn_cast<InitExistentialRefInst>(Op)) {
auto *ASRI = dyn_cast<AllocRefInst>(FoundIERI->getOperand());
if (!ASRI)
return nullptr;
// Should be in the same BB.
if (ASRI->getParent() != EMI->getParent())
return nullptr;
// Check if this alloc_stac is is only initialized once by means of
// a single initt_existential_ref.
bool isLegal = true;
for (auto Use: ASRI->getUses()) {
auto *User = Use->getUser();
if (isa<ExistentialMetatypeInst>(User) || isa<StrongReleaseInst>(User))
continue;
if (auto *IERI = dyn_cast<InitExistentialRefInst>(User)) {
if (IERI == FoundIERI) {
continue;
}
}
isLegal = false;
break;
}
if (isLegal && FoundIERI) {
// Should be in the same BB.
if (FoundIERI->getParent() != EMI->getParent())
return nullptr;
// Get the type used to initialize the existential.
auto ConcreteTy = FoundIERI->getFormalConcreteType();
if (ConcreteTy.isAnyExistentialType())
return nullptr;
// Get the SIL metatype of this type.
auto EMT = dyn_cast<AnyMetatypeType>(EMI->getType().getSwiftRValueType());
auto *MetaTy = MetatypeType::get(ConcreteTy, EMT->getRepresentation());
auto CanMetaTy = CanMetatypeType::CanTypeWrapper(MetaTy);
auto SILMetaTy = SILType::getPrimitiveObjectType(CanMetaTy);
SILBuilderWithScope<1> B(Inst);
auto *MI = B.createMetatype(FoundIERI->getLoc(), SILMetaTy);
auto *NewI = B.createCheckedCastBranch(Loc, /* isExact */ false, MI,
LoweredTargetType,
SuccessBB,
FailureBB);
EraseInstAction(Inst);
return NewI;
}
}
}
return nullptr;
}
SILInstruction *
CastOptimizer::
optimizeUnconditionalCheckedCastInst(UnconditionalCheckedCastInst *Inst) {
auto LoweredSourceType = Inst->getOperand().getType();
auto LoweredTargetType = Inst->getType();
auto Loc = Inst->getLoc();
auto Op = Inst->getOperand();
auto &Mod = Inst->getModule();
bool isSourceTypeExact = isa<MetatypeInst>(Op);
// Check if we can statically predict the outcome of the cast.
auto Feasibility = classifyDynamicCast(Mod.getSwiftModule(),
LoweredSourceType.getSwiftRValueType(),
LoweredTargetType.getSwiftRValueType(),
isSourceTypeExact);
if (Feasibility == DynamicCastFeasibility::WillFail) {
// Remove the cast and insert a trap, followed by an
// unreachable instruction.
SILBuilderWithScope<1> Builder(Inst);
auto *Trap = Builder.createBuiltinTrap(Loc);
Inst->replaceAllUsesWithUndef();
EraseInstAction(Inst);
Builder.setInsertionPoint(std::next(SILBasicBlock::iterator(Trap)));
Builder.createUnreachable(ArtificialUnreachableLocation());
return Trap;
}
if (Feasibility == DynamicCastFeasibility::WillSucceed) {
SILBuilderWithScope<1> Builder(Inst);
auto Result = emitSuccessfulScalarUnconditionalCast(Builder,
Mod.getSwiftModule(), Loc, Op,
LoweredTargetType,
LoweredSourceType.getSwiftRValueType(),
LoweredTargetType.getSwiftRValueType());
ReplaceInstUsesAction(Inst, Result.getDef());
EraseInstAction(Inst);
return dyn_cast<SILInstruction>(Result.getDef());
}
return nullptr;
}
SILInstruction *
CastOptimizer::
optimizeUnconditionalCheckedCastAddrInst(UnconditionalCheckedCastAddrInst *Inst) {
auto Loc = Inst->getLoc();
auto Src = Inst->getSrc();
auto Dest = Inst->getDest();
auto SourceType = Inst->getSourceType();
auto TargetType = Inst->getTargetType();
auto &Mod = Inst->getModule();
bool isSourceTypeExact = isa<MetatypeInst>(Src);
// Check if we can statically predict the outcome of the cast.
auto Feasibility = classifyDynamicCast(Mod.getSwiftModule(), SourceType,
TargetType, isSourceTypeExact);
if (Feasibility == DynamicCastFeasibility::MaySucceed)
return nullptr;
if (Feasibility == DynamicCastFeasibility::WillFail) {
// Remove the cast and insert a trap, followed by an
// unreachable instruction.
SILBuilderWithScope<1> Builder(Inst);
SILInstruction *NewI = Builder.createBuiltinTrap(Loc);
// mem2reg's invariants get unhappy if we don't try to
// initialize a loadable result.
auto DestType = Dest.getType();
auto &resultTL = Builder.getModule().Types.getTypeLowering(DestType);
if (!resultTL.isAddressOnly()) {
auto undef = SILValue(SILUndef::get(DestType.getObjectType(),
Builder.getModule()));
NewI = Builder.createStore(Loc, undef, Dest);
}
Inst->replaceAllUsesWithUndef();
EraseInstAction(Inst);
Builder.setInsertionPoint(std::next(SILBasicBlock::iterator(NewI)));
Builder.createUnreachable(ArtificialUnreachableLocation());
WillFailAction();
}
if (Feasibility == DynamicCastFeasibility::WillSucceed) {
if (!Src.getType().isExistentialType() &&
Dest.getType().isExistentialType())
return nullptr;
// Bridging casts cannot be further simplified.
auto TargetIsBridgeable = TargetType->isBridgeableObjectType();
auto SourceIsBridgeable = SourceType->isBridgeableObjectType();
if (TargetIsBridgeable != SourceIsBridgeable)
return nullptr;
SILBuilderWithScope<1> Builder(Inst);
emitSuccessfulIndirectUnconditionalCast(Builder, Mod.getSwiftModule(), Loc,
Inst->getConsumptionKind(),
Src, SourceType,
Dest, TargetType);
Inst->replaceAllUsesWithUndef();
EraseInstAction(Inst);
WillSucceedAction();
}
return nullptr;
}