Files
swift-mirror/lib/SILGen/SILGenFunction.cpp
Slava Pestov 16d5716e71 SIL: Use the best resilience expansion when lowering types
This is a large patch; I couldn't split it up further while still
keeping things working. There are four things being changed at
once here:

- Places that call SILType::isAddressOnly()/isLoadable() now call
  the SILFunction overload and not the SILModule one.

- SILFunction's overloads of getTypeLowering() and getLoweredType()
  now pass the function's resilience expansion down, instead of
  hardcoding ResilienceExpansion::Minimal.

- Various other places with '// FIXME: Expansion' now use a better
  resilience expansion.

- A few tests were updated to reflect SILGen's improved code
  generation, and some new tests are added to cover more code paths
  that previously were uncovered and only manifested themselves as
  standard library build failures while I was working on this change.
2019-04-26 22:47:59 -04:00

776 lines
30 KiB
C++

//===--- SILGenFunction.cpp - Top-level lowering for functions ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the primary routines for creating and emitting
// functions.
//
//===----------------------------------------------------------------------===//
#include "SILGenFunction.h"
#include "RValue.h"
#include "SILGenFunctionBuilder.h"
#include "Scope.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/PropertyDelegates.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILProfiler.h"
#include "swift/SIL/SILUndef.h"
using namespace swift;
using namespace Lowering;
//===----------------------------------------------------------------------===//
// SILGenFunction Class implementation
//===----------------------------------------------------------------------===//
SILGenFunction::SILGenFunction(SILGenModule &SGM, SILFunction &F,
DeclContext *DC)
: SGM(SGM), F(F), silConv(SGM.M), FunctionDC(DC),
StartOfPostmatter(F.end()), B(*this), OpenedArchetypesTracker(&F),
CurrentSILLoc(F.getLocation()), Cleanups(*this),
StatsTracer(SGM.M.getASTContext().Stats, "SILGen-function", &F) {
assert(DC && "creating SGF without a DeclContext?");
B.setInsertionPoint(createBasicBlock());
B.setCurrentDebugScope(F.getDebugScope());
B.setOpenedArchetypesTracker(&OpenedArchetypesTracker);
}
/// SILGenFunction destructor - called after the entire function's AST has been
/// visited. This handles "falling off the end of the function" logic.
SILGenFunction::~SILGenFunction() {
// If the end of the function isn't terminated, we screwed up somewhere.
assert(!B.hasValidInsertionPoint() &&
"SILGenFunction did not terminate function?!");
// If we didn't clean up the rethrow destination, we screwed up somewhere.
assert(!ThrowDest.isValid() &&
"SILGenFunction did not emit throw destination");
}
//===----------------------------------------------------------------------===//
// Function emission
//===----------------------------------------------------------------------===//
// Get the #function name for a declaration.
DeclName SILGenModule::getMagicFunctionName(DeclContext *dc) {
// For closures, use the parent name.
if (auto closure = dyn_cast<AbstractClosureExpr>(dc)) {
return getMagicFunctionName(closure->getParent());
}
if (auto absFunc = dyn_cast<AbstractFunctionDecl>(dc)) {
// If this is an accessor, use the name of the storage.
if (auto accessor = dyn_cast<AccessorDecl>(absFunc))
return accessor->getStorage()->getFullName();
if (auto func = dyn_cast<FuncDecl>(absFunc)) {
// If this is a defer body, use the parent name.
if (func->isDeferBody()) {
return getMagicFunctionName(func->getParent());
}
}
return absFunc->getFullName();
}
if (auto init = dyn_cast<Initializer>(dc)) {
return getMagicFunctionName(init->getParent());
}
if (auto nominal = dyn_cast<NominalTypeDecl>(dc)) {
return nominal->getName();
}
if (auto tl = dyn_cast<TopLevelCodeDecl>(dc)) {
return tl->getModuleContext()->getName();
}
if (auto fu = dyn_cast<FileUnit>(dc)) {
return fu->getParentModule()->getName();
}
if (auto m = dyn_cast<ModuleDecl>(dc)) {
return m->getName();
}
if (auto e = dyn_cast<ExtensionDecl>(dc)) {
assert(e->getExtendedNominal() && "extension for nonnominal");
return e->getExtendedNominal()->getName();
}
if (auto EED = dyn_cast<EnumElementDecl>(dc)) {
return EED->getFullName();
}
if (auto SD = dyn_cast<SubscriptDecl>(dc)) {
return SD->getFullName();
}
llvm_unreachable("unexpected #function context");
}
DeclName SILGenModule::getMagicFunctionName(SILDeclRef ref) {
switch (ref.kind) {
case SILDeclRef::Kind::Func:
if (auto closure = ref.getAbstractClosureExpr())
return getMagicFunctionName(closure);
return getMagicFunctionName(cast<FuncDecl>(ref.getDecl()));
case SILDeclRef::Kind::Initializer:
case SILDeclRef::Kind::Allocator:
return getMagicFunctionName(cast<ConstructorDecl>(ref.getDecl()));
case SILDeclRef::Kind::Deallocator:
case SILDeclRef::Kind::Destroyer:
return getMagicFunctionName(cast<DestructorDecl>(ref.getDecl()));
case SILDeclRef::Kind::GlobalAccessor:
return getMagicFunctionName(cast<VarDecl>(ref.getDecl())->getDeclContext());
case SILDeclRef::Kind::DefaultArgGenerator:
return getMagicFunctionName(cast<DeclContext>(ref.getDecl()));
case SILDeclRef::Kind::StoredPropertyInitializer:
return getMagicFunctionName(cast<VarDecl>(ref.getDecl())->getDeclContext());
case SILDeclRef::Kind::IVarInitializer:
return getMagicFunctionName(cast<ClassDecl>(ref.getDecl()));
case SILDeclRef::Kind::IVarDestroyer:
return getMagicFunctionName(cast<ClassDecl>(ref.getDecl()));
case SILDeclRef::Kind::EnumElement:
return getMagicFunctionName(cast<EnumElementDecl>(ref.getDecl())
->getDeclContext());
}
llvm_unreachable("Unhandled SILDeclRefKind in switch.");
}
std::tuple<ManagedValue, SILType>
SILGenFunction::emitSiblingMethodRef(SILLocation loc,
SILValue selfValue,
SILDeclRef methodConstant,
SubstitutionMap subMap) {
SILValue methodValue;
// If the method is dynamic, access it through runtime-hookable virtual
// dispatch (viz. objc_msgSend for now).
if (methodConstant.hasDecl()
&& methodConstant.getDecl()->isObjCDynamic()) {
methodValue = emitDynamicMethodRef(
loc, methodConstant,
SGM.Types.getConstantInfo(methodConstant).SILFnType)
.getValue();
} else {
methodValue = emitGlobalFunctionRef(loc, methodConstant);
}
SILType methodTy = methodValue->getType();
// Specialize the generic method.
methodTy = methodTy.substGenericArgs(SGM.M, subMap);
return std::make_tuple(ManagedValue::forUnmanaged(methodValue),
methodTy);
}
void SILGenFunction::emitCaptures(SILLocation loc,
AnyFunctionRef closure,
CaptureEmission purpose,
SmallVectorImpl<ManagedValue> &capturedArgs) {
auto captureInfo = SGM.Types.getLoweredLocalCaptures(closure);
// For boxed captures, we need to mark the contained variables as having
// escaped for DI diagnostics.
SmallVector<SILValue, 2> escapesToMark;
// Partial applications take ownership of the context parameters, so we'll
// need to pass ownership rather than merely guaranteeing parameters.
bool canGuarantee;
switch (purpose) {
case CaptureEmission::PartialApplication:
canGuarantee = false;
break;
case CaptureEmission::ImmediateApplication:
canGuarantee = true;
break;
}
for (auto capture : captureInfo.getCaptures()) {
if (capture.isDynamicSelfMetadata()) {
// The parameter type is the static Self type, but the value we
// want to pass is the dynamic Self type, so upcast it.
auto dynamicSelfMetatype = MetatypeType::get(
captureInfo.getDynamicSelfType());
SILType dynamicSILType = getLoweredType(dynamicSelfMetatype);
SILValue value = B.createMetatype(loc, dynamicSILType);
capturedArgs.push_back(ManagedValue::forUnmanaged(value));
continue;
}
if (capture.isOpaqueValue()) {
OpaqueValueExpr *opaqueValue = capture.getOpaqueValue();
capturedArgs.push_back(
emitRValueAsSingleValue(opaqueValue).ensurePlusOne(*this, loc));
continue;
}
auto *vd = capture.getDecl();
auto expansion = F.getResilienceExpansion();
switch (SGM.Types.getDeclCaptureKind(capture, expansion)) {
case CaptureKind::None:
break;
case CaptureKind::Constant: {
// let declarations.
auto found = VarLocs.find(vd);
assert(found != VarLocs.end());
auto Entry = found->second;
auto *var = cast<VarDecl>(vd);
auto &tl = getTypeLowering(var->getType()->getReferenceStorageReferent());
SILValue Val = Entry.value;
if (!Val->getType().isAddress()) {
// Our 'let' binding can guarantee the lifetime for the callee,
// if we don't need to do anything more to it.
if (canGuarantee && !var->getType()->is<ReferenceStorageType>()) {
auto guaranteed = ManagedValue::forUnmanaged(Val).borrow(*this, loc);
capturedArgs.push_back(guaranteed);
break;
}
// Just retain a by-val let.
Val = B.emitCopyValueOperation(loc, Val);
} else {
// If we have a mutable binding for a 'let', such as 'self' in an
// 'init' method, load it.
Val = emitLoad(loc, Val, tl, SGFContext(), IsNotTake).forward(*this);
}
// If we're capturing an unowned pointer by value, we will have just
// loaded it into a normal retained class pointer, but we capture it as
// an unowned pointer. Convert back now.
if (var->getType()->is<ReferenceStorageType>()) {
auto type = getLoweredType(var->getType());
Val = emitConversionFromSemanticValue(loc, Val, type);
}
capturedArgs.push_back(emitManagedRValueWithCleanup(Val));
break;
}
case CaptureKind::StorageAddress: {
// No-escaping stored declarations are captured as the
// address of the value.
assert(VarLocs.count(vd) && "no location for captured var!");
VarLoc vl = VarLocs[vd];
assert(vl.value->getType().isAddress() && "no address for captured var!");
capturedArgs.push_back(ManagedValue::forLValue(vl.value));
break;
}
case CaptureKind::Box: {
// LValues are captured as both the box owning the value and the
// address of the value.
assert(VarLocs.count(vd) && "no location for captured var!");
VarLoc vl = VarLocs[vd];
assert(vl.value->getType().isAddress() && "no address for captured var!");
// If this is a boxed variable, we can use it directly.
if (vl.box) {
// We can guarantee our own box to the callee.
if (canGuarantee) {
capturedArgs.push_back(
ManagedValue::forUnmanaged(vl.box).borrow(*this, loc));
} else {
capturedArgs.push_back(emitManagedRetain(loc, vl.box));
}
escapesToMark.push_back(vl.value);
} else {
// Address only 'let' values are passed by box. This isn't great, in
// that a variable captured by multiple closures will be boxed for each
// one. This could be improved by doing an "isCaptured" analysis when
// emitting address-only let constants, and emit them into an alloc_box
// like a variable instead of into an alloc_stack.
//
// TODO: This might not be profitable anymore with guaranteed captures,
// since we could conceivably forward the copied value into the
// closure context and pass it down to the partially applied function
// in-place.
// TODO: Use immutable box for immutable captures.
auto boxTy = SGM.Types.getContextBoxTypeForCapture(vd,
vl.value->getType().getASTType(),
F.getGenericEnvironment(),
/*mutable*/ true);
AllocBoxInst *allocBox = B.createAllocBox(loc, boxTy);
ProjectBoxInst *boxAddress = B.createProjectBox(loc, allocBox, 0);
B.createCopyAddr(loc, vl.value, boxAddress, IsNotTake,
IsInitialization);
if (canGuarantee)
capturedArgs.push_back(
emitManagedRValueWithCleanup(allocBox).borrow(*this, loc));
else
capturedArgs.push_back(emitManagedRValueWithCleanup(allocBox));
}
break;
}
}
}
// Mark box addresses as captured for DI purposes. The values must have
// been fully initialized before we close over them.
if (!escapesToMark.empty()) {
B.createMarkFunctionEscape(loc, escapesToMark);
}
}
ManagedValue
SILGenFunction::emitClosureValue(SILLocation loc, SILDeclRef constant,
CanType expectedType,
SubstitutionMap subs) {
auto closure = *constant.getAnyFunctionRef();
auto captureInfo = closure.getCaptureInfo();
auto loweredCaptureInfo = SGM.Types.getLoweredLocalCaptures(closure);
auto hasCaptures = SGM.Types.hasLoweredLocalCaptures(closure);
auto constantInfo = getConstantInfo(constant);
SILValue functionRef = emitGlobalFunctionRef(loc, constant, constantInfo);
SILType functionTy = functionRef->getType();
// Apply substitutions.
auto pft = constantInfo.SILFnType;
auto *dc = closure.getAsDeclContext()->getParent();
if (dc->isLocalContext() && !loweredCaptureInfo.hasGenericParamCaptures()) {
// If the lowered function type is not polymorphic but we were given
// substitutions, we have a closure in a generic context which does not
// capture generic parameters. Just drop the substitutions.
subs = { };
} else if (closure.getAbstractClosureExpr()) {
// If we have a closure expression in generic context, Sema won't give
// us substitutions, so we just use the forwarding substitutions from
// context.
subs = getForwardingSubstitutionMap();
}
bool wasSpecialized = false;
if (!subs.empty()) {
auto specialized = pft->substGenericArgs(F.getModule(), subs);
functionTy = SILType::getPrimitiveObjectType(specialized);
wasSpecialized = true;
}
// If we're in top-level code, we don't need to physically capture script
// globals, but we still need to mark them as escaping so that DI can flag
// uninitialized uses.
if (this == SGM.TopLevelSGF) {
SGM.emitMarkFunctionEscapeForTopLevelCodeGlobals(
loc, captureInfo);
}
if (!hasCaptures && !wasSpecialized) {
auto result = ManagedValue::forUnmanaged(functionRef);
return emitOrigToSubstValue(loc, result,
AbstractionPattern(expectedType),
expectedType);
}
SmallVector<ManagedValue, 4> capturedArgs;
emitCaptures(loc, closure, CaptureEmission::PartialApplication,
capturedArgs);
// The partial application takes ownership of the context parameters.
SmallVector<SILValue, 4> forwardedArgs;
for (auto capture : capturedArgs)
forwardedArgs.push_back(capture.forward(*this));
auto calleeConvention = ParameterConvention::Direct_Guaranteed;
auto toClosure =
B.createPartialApply(loc, functionRef, subs, forwardedArgs,
calleeConvention);
auto result = emitManagedRValueWithCleanup(toClosure);
// Get the lowered AST types:
// - the original type
auto origFormalType = AbstractionPattern(constantInfo.LoweredType);
// - the substituted type
auto substFormalType = expectedType;
// Generalize if necessary.
result = emitOrigToSubstValue(loc, result, origFormalType,
substFormalType);
return result;
}
void SILGenFunction::emitFunction(FuncDecl *fd) {
MagicFunctionName = SILGenModule::getMagicFunctionName(fd);
emitProlog(fd, fd->getParameters(), fd->getImplicitSelfDecl(),
fd->getResultInterfaceType(), fd->hasThrows());
Type resultTy = fd->mapTypeIntoContext(fd->getResultInterfaceType());
prepareEpilog(resultTy, fd->hasThrows(), CleanupLocation(fd));
emitProfilerIncrement(fd->getBody());
emitStmt(fd->getBody());
emitEpilog(fd);
mergeCleanupBlocks();
}
void SILGenFunction::emitClosure(AbstractClosureExpr *ace) {
MagicFunctionName = SILGenModule::getMagicFunctionName(ace);
auto resultIfaceTy = ace->getResultType()->mapTypeOutOfContext();
emitProlog(ace, ace->getParameters(), /*selfParam=*/nullptr,
resultIfaceTy, ace->isBodyThrowing());
prepareEpilog(ace->getResultType(), ace->isBodyThrowing(),
CleanupLocation(ace));
emitProfilerIncrement(ace);
if (auto *ce = dyn_cast<ClosureExpr>(ace)) {
emitStmt(ce->getBody());
} else {
auto *autoclosure = cast<AutoClosureExpr>(ace);
// Closure expressions implicitly return the result of their body
// expression.
emitReturnExpr(ImplicitReturnLocation(ace),
autoclosure->getSingleExpressionBody());
}
emitEpilog(ace);
}
void SILGenFunction::emitArtificialTopLevel(ClassDecl *mainClass) {
// Load argc and argv from the entry point arguments.
SILValue argc = F.begin()->getArgument(0);
SILValue argv = F.begin()->getArgument(1);
switch (mainClass->getArtificialMainKind()) {
case ArtificialMainKind::UIApplicationMain: {
// Emit a UIKit main.
// return UIApplicationMain(C_ARGC, C_ARGV, nil, ClassName);
CanType NSStringTy = SGM.Types.getNSStringType();
CanType OptNSStringTy
= OptionalType::get(NSStringTy)->getCanonicalType();
// Look up UIApplicationMain.
// FIXME: Doing an AST lookup here is gross and not entirely sound;
// we're getting away with it because the types are guaranteed to already
// be imported.
ASTContext &ctx = getASTContext();
std::pair<Identifier, SourceLoc> UIKitName =
{ctx.getIdentifier("UIKit"), SourceLoc()};
ModuleDecl *UIKit = ctx
.getClangModuleLoader()
->loadModule(SourceLoc(), UIKitName);
assert(UIKit && "couldn't find UIKit objc module?!");
SmallVector<ValueDecl *, 1> results;
UIKit->lookupQualified(UIKit,
ctx.getIdentifier("UIApplicationMain"),
NL_QualifiedDefault,
results);
assert(results.size() == 1
&& "couldn't find a unique UIApplicationMain in the UIKit ObjC "
"module?!");
ValueDecl *UIApplicationMainDecl = results.front();
auto mainRef = SILDeclRef(UIApplicationMainDecl).asForeign();
SILGenFunctionBuilder builder(SGM);
auto UIApplicationMainFn =
builder.getOrCreateFunction(mainClass, mainRef, NotForDefinition);
auto fnTy = UIApplicationMainFn->getLoweredFunctionType();
SILFunctionConventions fnConv(fnTy, SGM.M);
// Get the class name as a string using NSStringFromClass.
CanType mainClassTy = mainClass->getDeclaredInterfaceType()
->getCanonicalType();
CanType mainClassMetaty = CanMetatypeType::get(mainClassTy,
MetatypeRepresentation::ObjC);
CanType anyObjectTy = ctx.getAnyObjectType();
CanType anyObjectMetaTy = CanExistentialMetatypeType::get(anyObjectTy,
MetatypeRepresentation::ObjC);
auto NSStringFromClassType = SILFunctionType::get(nullptr,
SILFunctionType::ExtInfo()
.withRepresentation(SILFunctionType::Representation::
CFunctionPointer),
SILCoroutineKind::None,
ParameterConvention::Direct_Unowned,
SILParameterInfo(anyObjectMetaTy,
ParameterConvention::Direct_Unowned),
/*yields*/ {},
SILResultInfo(OptNSStringTy,
ResultConvention::Autoreleased),
/*error result*/ None,
ctx);
auto NSStringFromClassFn = builder.getOrCreateFunction(
mainClass, "NSStringFromClass", SILLinkage::PublicExternal,
NSStringFromClassType, IsBare, IsTransparent, IsNotSerialized,
IsNotDynamic);
auto NSStringFromClass = B.createFunctionRef(mainClass, NSStringFromClassFn);
SILValue metaTy = B.createMetatype(mainClass,
SILType::getPrimitiveObjectType(mainClassMetaty));
metaTy = B.createInitExistentialMetatype(mainClass, metaTy,
SILType::getPrimitiveObjectType(anyObjectMetaTy),
{});
SILValue optNameValue = B.createApply(
mainClass, NSStringFromClass, {}, metaTy);
ManagedValue optName = emitManagedRValueWithCleanup(optNameValue);
// Fix up the string parameters to have the right type.
SILType nameArgTy = fnConv.getSILArgumentType(3);
assert(nameArgTy == fnConv.getSILArgumentType(2));
(void)nameArgTy;
assert(optName.getType() == nameArgTy);
SILValue nilValue =
getOptionalNoneValue(mainClass, getTypeLowering(OptNSStringTy));
// Fix up argv to have the right type.
auto argvTy = fnConv.getSILArgumentType(1);
SILType unwrappedTy = argvTy;
if (Type innerTy = argvTy.getASTType()->getOptionalObjectType()) {
auto canInnerTy = innerTy->getCanonicalType();
unwrappedTy = SILType::getPrimitiveObjectType(canInnerTy);
}
auto managedArgv = ManagedValue::forUnmanaged(argv);
if (unwrappedTy != argv->getType()) {
auto converted =
emitPointerToPointer(mainClass, managedArgv,
argv->getType().getASTType(),
unwrappedTy.getASTType());
managedArgv = std::move(converted).getAsSingleValue(*this, mainClass);
}
if (unwrappedTy != argvTy) {
managedArgv = getOptionalSomeValue(mainClass, managedArgv,
getTypeLowering(argvTy));
}
auto UIApplicationMain = B.createFunctionRef(mainClass, UIApplicationMainFn);
SILValue args[] = {argc, managedArgv.getValue(), nilValue,
optName.getValue()};
B.createApply(mainClass, UIApplicationMain, SubstitutionMap(), args);
SILValue r = B.createIntegerLiteral(mainClass,
SILType::getBuiltinIntegerType(32, ctx), 0);
auto rType = F.getConventions().getSingleSILResultType();
if (r->getType() != rType)
r = B.createStruct(mainClass, rType, r);
Cleanups.emitCleanupsForReturn(mainClass, NotForUnwind);
B.createReturn(mainClass, r);
return;
}
case ArtificialMainKind::NSApplicationMain: {
// Emit an AppKit main.
// return NSApplicationMain(C_ARGC, C_ARGV);
SILParameterInfo argTypes[] = {
SILParameterInfo(argc->getType().getASTType(),
ParameterConvention::Direct_Unowned),
SILParameterInfo(argv->getType().getASTType(),
ParameterConvention::Direct_Unowned),
};
auto NSApplicationMainType = SILFunctionType::get(nullptr,
SILFunctionType::ExtInfo()
// Should be C calling convention, but NSApplicationMain
// has an overlay to fix the type of argv.
.withRepresentation(SILFunctionType::Representation::Thin),
SILCoroutineKind::None,
ParameterConvention::Direct_Unowned,
argTypes,
/*yields*/ {},
SILResultInfo(argc->getType().getASTType(),
ResultConvention::Unowned),
/*error result*/ None,
getASTContext());
SILGenFunctionBuilder builder(SGM);
auto NSApplicationMainFn = builder.getOrCreateFunction(
mainClass, "NSApplicationMain", SILLinkage::PublicExternal,
NSApplicationMainType, IsBare, IsTransparent, IsNotSerialized,
IsNotDynamic);
auto NSApplicationMain = B.createFunctionRef(mainClass, NSApplicationMainFn);
SILValue args[] = { argc, argv };
B.createApply(mainClass, NSApplicationMain, SubstitutionMap(), args);
SILValue r = B.createIntegerLiteral(mainClass,
SILType::getBuiltinIntegerType(32, getASTContext()), 0);
auto rType = F.getConventions().getSingleSILResultType();
if (r->getType() != rType)
r = B.createStruct(mainClass, rType, r);
B.createReturn(mainClass, r);
return;
}
}
}
void SILGenFunction::emitGeneratorFunction(SILDeclRef function, Expr *value) {
MagicFunctionName = SILGenModule::getMagicFunctionName(function);
RegularLocation Loc(value);
Loc.markAutoGenerated();
// Default argument generators of function typed values return noescape
// functions. Strip the escape to noescape function conversion.
if (function.kind == SILDeclRef::Kind::DefaultArgGenerator) {
if (auto funType = value->getType()->getAs<AnyFunctionType>()) {
if (funType->getExtInfo().isNoEscape()) {
auto conv = cast<FunctionConversionExpr>(value);
value = conv->getSubExpr();
assert(funType->withExtInfo(funType->getExtInfo().withNoEscape(false))
->isEqual(value->getType()));
}
}
}
auto *dc = function.getDecl()->getInnermostDeclContext();
auto interfaceType = value->getType()->mapTypeOutOfContext();
emitProlog(/*paramList=*/nullptr, /*selfParam=*/nullptr, interfaceType,
dc, false);
prepareEpilog(value->getType(), false, CleanupLocation::get(Loc));
emitReturnExpr(Loc, value);
emitEpilog(Loc);
}
void SILGenFunction::emitGeneratorFunction(SILDeclRef function, VarDecl *var) {
MagicFunctionName = SILGenModule::getMagicFunctionName(function);
RegularLocation loc(var);
loc.markAutoGenerated();
auto decl = function.getAbstractFunctionDecl();
auto *dc = decl->getInnermostDeclContext();
auto interfaceType = var->getValueInterfaceType();
auto varType = var->getType();
// If this is the backing storage for a property with an attached
// delegate that was initialized with '=', the stored property initializer
// will be in terms of the original property's type.
if (auto originalProperty = var->getOriginalDelegatedProperty()) {
if (originalProperty->isPropertyDelegateInitializedWithInitialValue()) {
interfaceType = originalProperty->getValueInterfaceType();
varType = originalProperty->getType();
}
}
emitProlog(/*paramList*/ nullptr, /*selfParam*/ nullptr, interfaceType, dc,
false);
prepareEpilog(varType, false, CleanupLocation::get(loc));
auto pbd = var->getParentPatternBinding();
auto entry = pbd->getPatternEntryForVarDecl(var);
auto subs = getForwardingSubstitutionMap();
auto contextualType = dc->mapTypeIntoContext(interfaceType);
auto resultType = contextualType->getCanonicalType();
auto origResultType = AbstractionPattern(resultType);
SmallVector<SILValue, 4> directResults;
if (F.getConventions().hasIndirectSILResults()) {
Scope scope(Cleanups, CleanupLocation(var));
SmallVector<CleanupHandle, 4> cleanups;
auto init = prepareIndirectResultInit(resultType, directResults, cleanups);
emitApplyOfStoredPropertyInitializer(loc, entry, subs, resultType,
origResultType,
SGFContext(init.get()));
for (auto cleanup : cleanups) {
Cleanups.forwardCleanup(cleanup);
}
} else {
Scope scope(Cleanups, CleanupLocation(var));
// If we have no indirect results, just return the result.
auto result = emitApplyOfStoredPropertyInitializer(loc, entry, subs,
resultType,
origResultType,
SGFContext())
.ensurePlusOne(*this, loc);
std::move(result).forwardAll(*this, directResults);
}
Cleanups.emitBranchAndCleanups(ReturnDest, loc, directResults);
emitEpilog(loc);
}
static SILLocation getLocation(ASTNode Node) {
if (auto *E = Node.dyn_cast<Expr *>())
return E;
else if (auto *S = Node.dyn_cast<Stmt *>())
return S;
else if (auto *D = Node.dyn_cast<Decl *>())
return D;
else
llvm_unreachable("unsupported ASTNode");
}
void SILGenFunction::emitProfilerIncrement(ASTNode N) {
// Ignore functions which aren't set up for instrumentation.
SILProfiler *SP = F.getProfiler();
if (!SP)
return;
if (!SP->hasRegionCounters() || !getModule().getOptions().UseProfile.empty())
return;
auto &C = B.getASTContext();
const auto &RegionCounterMap = SP->getRegionCounterMap();
auto CounterIt = RegionCounterMap.find(N);
// TODO: Assert that this cannot happen (rdar://42792053).
if (CounterIt == RegionCounterMap.end())
return;
auto Int32Ty = getLoweredType(BuiltinIntegerType::get(32, C));
auto Int64Ty = getLoweredType(BuiltinIntegerType::get(64, C));
SILLocation Loc = getLocation(N);
SILValue Args[] = {
// The intrinsic must refer to the function profiling name var, which is
// inaccessible during SILGen. Rely on irgen to rewrite the function name.
B.createStringLiteral(Loc, SP->getPGOFuncName(),
StringLiteralInst::Encoding::UTF8),
B.createIntegerLiteral(Loc, Int64Ty, SP->getPGOFuncHash()),
B.createIntegerLiteral(Loc, Int32Ty, SP->getNumRegionCounters()),
B.createIntegerLiteral(Loc, Int32Ty, CounterIt->second)};
B.createBuiltin(Loc, C.getIdentifier("int_instrprof_increment"),
SGM.Types.getEmptyTupleType(), {}, Args);
}
ProfileCounter SILGenFunction::loadProfilerCount(ASTNode Node) const {
if (SILProfiler *SP = F.getProfiler())
return SP->getExecutionCount(Node);
return ProfileCounter();
}
Optional<ASTNode> SILGenFunction::getPGOParent(ASTNode Node) const {
if (SILProfiler *SP = F.getProfiler())
return SP->getPGOParent(Node);
return None;
}
SILValue SILGenFunction::emitUnwrapIntegerResult(SILLocation loc,
SILValue value) {
// This is a loop because we want to handle types that wrap integer types,
// like ObjCBool (which may be Bool or Int8).
while (!value->getType().is<BuiltinIntegerType>()) {
auto structDecl = value->getType().getStructOrBoundGenericStruct();
assert(structDecl && "value for error result wasn't of struct type!");
assert(std::next(structDecl->getStoredProperties().begin())
== structDecl->getStoredProperties().end());
auto property = *structDecl->getStoredProperties().begin();
value = B.createStructExtract(loc, value, property);
}
return value;
}