mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
437 lines
16 KiB
C++
437 lines
16 KiB
C++
//===--- GlobalARCSequenceDataflow.cpp - ARC Sequence Dataflow Analysis ---===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "arc-sequence-opts"
|
|
#include "GlobalARCSequenceDataflow.h"
|
|
#include "ARCBBState.h"
|
|
#include "RCStateTransitionVisitors.h"
|
|
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/PostOrderAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SIL/SILFunction.h"
|
|
#include "swift/SIL/SILSuccessor.h"
|
|
#include "swift/SIL/CFG.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace swift;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
using ARCBBState = ARCSequenceDataflowEvaluator::ARCBBState;
|
|
using ARCBBStateInfo = ARCSequenceDataflowEvaluator::ARCBBStateInfo;
|
|
using ARCBBStateInfoHandle = ARCSequenceDataflowEvaluator::ARCBBStateInfoHandle;
|
|
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top Down Dataflow
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Analyze a single BB for refcount inc/dec instructions.
|
|
///
|
|
/// If anything was found it will be added to DecToIncStateMap.
|
|
///
|
|
/// NestingDetected will be set to indicate that the block needs to be
|
|
/// reanalyzed if code motion occurs.
|
|
bool ARCSequenceDataflowEvaluator::processBBTopDown(ARCBBState &BBState) {
|
|
LLVM_DEBUG(llvm::dbgs() << ">>>> Top Down!\n");
|
|
|
|
SILBasicBlock &BB = BBState.getBB();
|
|
|
|
bool NestingDetected = false;
|
|
|
|
TopDownDataflowRCStateVisitor<ARCBBState> DataflowVisitor(
|
|
RCIA, BBState, DecToIncStateMap, SetFactory);
|
|
|
|
// If the current BB is the entry BB, initialize a state corresponding to each
|
|
// of its owned parameters. This enables us to know that if we see a retain
|
|
// before any decrements that the retain is known safe.
|
|
//
|
|
// We do not handle guaranteed parameters here since those are handled in the
|
|
// code in GlobalARCPairingAnalysis. This is because even if we don't do
|
|
// anything, we will still pair the retain, releases and then the guaranteed
|
|
// parameter will ensure it is known safe to remove them.
|
|
if (BB.isEntry()) {
|
|
auto Args = BB.getArguments();
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
|
|
DataflowVisitor.visit(Args[i]);
|
|
}
|
|
}
|
|
|
|
// For each instruction I in BB...
|
|
for (auto &I : BB) {
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "VISITING:\n " << I);
|
|
|
|
auto Result = DataflowVisitor.visit(&I);
|
|
|
|
// If this instruction can have no further effects on another instructions,
|
|
// continue. This happens for instance if we have cleared all of the state
|
|
// we are tracking.
|
|
if (Result.Kind == RCStateTransitionDataflowResultKind::NoEffects)
|
|
continue;
|
|
|
|
// Make sure that we propagate out whether or not nesting was detected.
|
|
NestingDetected |= Result.NestingDetected;
|
|
|
|
// This SILValue may be null if we were unable to find a specific RCIdentity
|
|
// that the instruction "visits".
|
|
SILValue Op = Result.RCIdentity;
|
|
|
|
// For all other [(SILValue, TopDownState)] we are tracking...
|
|
for (auto &OtherState : BBState.getTopDownStates()) {
|
|
// If the other state's value is blotted, skip it.
|
|
if (!OtherState.hasValue())
|
|
continue;
|
|
|
|
// If we visited an increment or decrement successfully (and thus Op is
|
|
// set), if this is the state for this operand, skip it. We already
|
|
// processed it.
|
|
if (Op && OtherState->first == Op)
|
|
continue;
|
|
|
|
OtherState->second.updateForSameLoopInst(&I, SetFactory, AA);
|
|
}
|
|
}
|
|
|
|
return NestingDetected;
|
|
}
|
|
|
|
void ARCSequenceDataflowEvaluator::mergePredecessors(
|
|
ARCBBStateInfoHandle &DataHandle) {
|
|
bool HasAtLeastOnePred = false;
|
|
llvm::SmallVector<SILBasicBlock *, 4> BBThatNeedInsertPts;
|
|
|
|
SILBasicBlock *BB = DataHandle.getBB();
|
|
ARCBBState &BBState = DataHandle.getState();
|
|
|
|
// For each successor of BB...
|
|
for (SILBasicBlock *PredBB : BB->getPredecessorBlocks()) {
|
|
|
|
// Try to look up the data handle for it. If we don't have any such state,
|
|
// then the predecessor must be unreachable from the entrance and thus is
|
|
// uninteresting to us.
|
|
auto PredDataHandle = getTopDownBBState(PredBB);
|
|
if (!PredDataHandle)
|
|
continue;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Merging Pred: " << PredDataHandle->getID()
|
|
<< "\n");
|
|
|
|
// If the predecessor is the head of a backedge in our traversal, clear any
|
|
// state we are tracking now and clear the state of the basic block. There
|
|
// is some sort of control flow here that we do not understand.
|
|
if (PredDataHandle->isBackedge(BB)) {
|
|
BBState.clear();
|
|
break;
|
|
}
|
|
|
|
ARCBBState &PredBBState = PredDataHandle->getState();
|
|
|
|
// If we found the state but the state is for a trap BB, skip it. Trap BBs
|
|
// leak all reference counts and do not reference semantic objects
|
|
// in any manner.
|
|
//
|
|
// TODO: I think this is a copy paste error, since we a trap BB should have
|
|
// an unreachable at its end. See if this can be removed.
|
|
if (PredBBState.isTrapBB())
|
|
continue;
|
|
|
|
if (HasAtLeastOnePred) {
|
|
BBState.mergePredTopDown(PredBBState);
|
|
continue;
|
|
}
|
|
|
|
BBState.initPredTopDown(PredBBState);
|
|
HasAtLeastOnePred = true;
|
|
}
|
|
}
|
|
|
|
bool ARCSequenceDataflowEvaluator::processTopDown() {
|
|
bool NestingDetected = false;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "<<<< Processing Top Down! >>>>\n");
|
|
|
|
// For each BB in our reverse post order...
|
|
for (auto *BB : POA->get(&F)->getReversePostOrder()) {
|
|
// We should always have a value here.
|
|
auto BBDataHandle = getTopDownBBState(BB).getValue();
|
|
|
|
// This will always succeed since we have an entry for each BB in our RPOT.
|
|
//
|
|
// TODO: When data handles are introduced, print that instead. This code
|
|
// should not be touching BBIDs directly.
|
|
LLVM_DEBUG(llvm::dbgs() << "Processing BB#: " << BBDataHandle.getID()
|
|
<< "\n");
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Merging Predecessors!\n");
|
|
mergePredecessors(BBDataHandle);
|
|
|
|
// Then perform the basic block optimization.
|
|
NestingDetected |= processBBTopDown(BBDataHandle.getState());
|
|
}
|
|
|
|
return NestingDetected;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Bottom Up Dataflow
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// This is temporary code duplication. This will be removed when Loop ARC is
|
|
// finished and Block ARC is removed.
|
|
static bool isARCSignificantTerminator(TermInst *TI) {
|
|
switch (TI->getTermKind()) {
|
|
case TermKind::UnreachableInst:
|
|
// br is a forwarding use for its arguments. It cannot in of itself extend
|
|
// the lifetime of an object (just like a phi-node) cannot.
|
|
case TermKind::BranchInst:
|
|
// A cond_br is a forwarding use for its non-operand arguments in a similar
|
|
// way to br. Its operand must be an i1 that has a different lifetime from any
|
|
// ref counted object.
|
|
case TermKind::CondBranchInst:
|
|
return false;
|
|
// Be conservative for now. These actually perform some sort of operation
|
|
// against the operand or can use the value in some way.
|
|
case TermKind::ThrowInst:
|
|
case TermKind::ReturnInst:
|
|
case TermKind::UnwindInst:
|
|
case TermKind::YieldInst:
|
|
case TermKind::TryApplyInst:
|
|
case TermKind::SwitchValueInst:
|
|
case TermKind::SwitchEnumInst:
|
|
case TermKind::SwitchEnumAddrInst:
|
|
case TermKind::DynamicMethodBranchInst:
|
|
case TermKind::CheckedCastBranchInst:
|
|
case TermKind::CheckedCastValueBranchInst:
|
|
case TermKind::CheckedCastAddrBranchInst:
|
|
return true;
|
|
}
|
|
|
|
llvm_unreachable("Unhandled TermKind in switch.");
|
|
}
|
|
|
|
/// Analyze a single BB for refcount inc/dec instructions.
|
|
///
|
|
/// If anything was found it will be added to DecToIncStateMap.
|
|
///
|
|
/// NestingDetected will be set to indicate that the block needs to be
|
|
/// reanalyzed if code motion occurs.
|
|
///
|
|
/// An epilogue release is a release that post dominates all other uses of a
|
|
/// pointer in a function that implies that the pointer is alive up to that
|
|
/// point. We "freeze" (i.e. do not attempt to remove or move) such releases if
|
|
/// FreezeOwnedArgEpilogueReleases is set. This is useful since in certain cases
|
|
/// due to dataflow issues, we cannot properly propagate the last use
|
|
/// information. Instead we run an extra iteration of the ARC optimizer with
|
|
/// this enabled in a side table so the information gets propagated everywhere in
|
|
/// the CFG.
|
|
bool ARCSequenceDataflowEvaluator::processBBBottomUp(
|
|
ARCBBState &BBState, bool FreezeOwnedArgEpilogueReleases) {
|
|
LLVM_DEBUG(llvm::dbgs() << ">>>> Bottom Up!\n");
|
|
SILBasicBlock &BB = BBState.getBB();
|
|
|
|
bool NestingDetected = false;
|
|
|
|
BottomUpDataflowRCStateVisitor<ARCBBState> DataflowVisitor(
|
|
RCIA, EAFI, BBState, FreezeOwnedArgEpilogueReleases, IncToDecStateMap,
|
|
SetFactory);
|
|
|
|
// For each terminator instruction I in BB visited in reverse...
|
|
for (auto II = std::next(BB.rbegin()), IE = BB.rend(); II != IE;) {
|
|
SILInstruction &I = *II;
|
|
++II;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "VISITING:\n " << I);
|
|
|
|
auto Result = DataflowVisitor.visit(&I);
|
|
|
|
// If this instruction can have no further effects on another instructions,
|
|
// continue. This happens for instance if we have cleared all of the state
|
|
// we are tracking.
|
|
if (Result.Kind == RCStateTransitionDataflowResultKind::NoEffects)
|
|
continue;
|
|
|
|
// Make sure that we propagate out whether or not nesting was detected.
|
|
NestingDetected |= Result.NestingDetected;
|
|
|
|
// This SILValue may be null if we were unable to find a specific RCIdentity
|
|
// that the instruction "visits".
|
|
SILValue Op = Result.RCIdentity;
|
|
|
|
// For all other (reference counted value, ref count state) we are
|
|
// tracking...
|
|
for (auto &OtherState : BBState.getBottomupStates()) {
|
|
// If the other state's value is blotted, skip it.
|
|
if (!OtherState.hasValue())
|
|
continue;
|
|
|
|
// If this is the state associated with the instruction that we are
|
|
// currently visiting, bail.
|
|
if (Op && OtherState->first == Op)
|
|
continue;
|
|
|
|
OtherState->second.updateForSameLoopInst(&I, SetFactory, AA);
|
|
}
|
|
}
|
|
|
|
// This is ignoring the possibility that we may have a loop with an
|
|
// interesting terminator but for which, we are going to clear all state
|
|
// (since it is a loop boundary). We may in such a case, be too conservative
|
|
// with our other predecessors. Luckily this cannot happen since cond_br is
|
|
// the only terminator that allows for critical edges and all other
|
|
// "interesting terminators" always having multiple successors. This means
|
|
// that this block could not have multiple predecessors since otherwise, the
|
|
// edge would be broken.
|
|
llvm::TinyPtrVector<SILInstruction *> PredTerminators;
|
|
for (SILBasicBlock *PredBB : BB.getPredecessorBlocks()) {
|
|
auto *TermInst = PredBB->getTerminator();
|
|
if (!isARCSignificantTerminator(TermInst))
|
|
continue;
|
|
PredTerminators.push_back(TermInst);
|
|
}
|
|
|
|
for (auto &OtherState : BBState.getBottomupStates()) {
|
|
// If the other state's value is blotted, skip it.
|
|
if (!OtherState.hasValue())
|
|
continue;
|
|
|
|
OtherState->second.updateForPredTerminators(PredTerminators,
|
|
SetFactory, AA);
|
|
}
|
|
|
|
return NestingDetected;
|
|
}
|
|
|
|
void
|
|
ARCSequenceDataflowEvaluator::
|
|
mergeSuccessors(ARCBBStateInfoHandle &DataHandle) {
|
|
SILBasicBlock *BB = DataHandle.getBB();
|
|
ARCBBState &BBState = DataHandle.getState();
|
|
|
|
// For each successor of BB...
|
|
ArrayRef<SILSuccessor> Succs = BB->getSuccessors();
|
|
bool HasAtLeastOneSucc = false;
|
|
for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
|
|
// If it does not have a basic block associated with it...
|
|
auto *SuccBB = Succs[i].getBB();
|
|
|
|
// Skip it.
|
|
if (!SuccBB)
|
|
continue;
|
|
|
|
// If the BB is the head of a backedge in our traversal, we have
|
|
// hit a loop boundary. In that case, add any instructions we are
|
|
// tracking or instructions that we have seen to the banned
|
|
// instruction list. Clear the instructions we are tracking
|
|
// currently, but leave that we saw a release on them. In a post
|
|
// order, we know that all of a BB's successors will always be
|
|
// visited before the BB, implying we will know if conservatively
|
|
// we saw a release on the pointer going down all paths.
|
|
if (DataHandle.isBackedge(SuccBB)) {
|
|
BBState.clear();
|
|
break;
|
|
}
|
|
|
|
// Otherwise, lookup the BBState associated with the successor and merge
|
|
// the successor in. We know this will always succeed.
|
|
auto SuccDataHandle = *getBottomUpBBState(SuccBB);
|
|
|
|
ARCBBState &SuccBBState = SuccDataHandle.getState();
|
|
|
|
if (SuccBBState.isTrapBB())
|
|
continue;
|
|
|
|
if (HasAtLeastOneSucc) {
|
|
BBState.mergeSuccBottomUp(SuccBBState);
|
|
continue;
|
|
}
|
|
|
|
BBState.initSuccBottomUp(SuccBBState);
|
|
HasAtLeastOneSucc = true;
|
|
}
|
|
}
|
|
|
|
bool ARCSequenceDataflowEvaluator::processBottomUp(
|
|
bool FreezeOwnedArgEpilogueReleases) {
|
|
bool NestingDetected = false;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "<<<< Processing Bottom Up! >>>>\n");
|
|
|
|
// For each BB in our post order...
|
|
for (auto *BB : POA->get(&F)->getPostOrder()) {
|
|
// Grab the BBState associated with it and set it to be the current BB.
|
|
auto BBDataHandle = *getBottomUpBBState(BB);
|
|
|
|
// This will always succeed since we have an entry for each BB in our post
|
|
// order.
|
|
LLVM_DEBUG(llvm::dbgs() << "Processing BB#: " << BBDataHandle.getID()
|
|
<< "\n");
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Merging Successors!\n");
|
|
mergeSuccessors(BBDataHandle);
|
|
|
|
// Then perform the basic block optimization.
|
|
NestingDetected |= processBBBottomUp(BBDataHandle.getState(),
|
|
FreezeOwnedArgEpilogueReleases);
|
|
}
|
|
|
|
return NestingDetected;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top Level ARC Sequence Dataflow Evaluator
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ARCSequenceDataflowEvaluator::ARCSequenceDataflowEvaluator(
|
|
SILFunction &F, AliasAnalysis *AA, PostOrderAnalysis *POA,
|
|
RCIdentityFunctionInfo *RCIA, EpilogueARCFunctionInfo *EAFI,
|
|
ProgramTerminationFunctionInfo *PTFI,
|
|
BlotMapVector<SILInstruction *, TopDownRefCountState> &DecToIncStateMap,
|
|
BlotMapVector<SILInstruction *, BottomUpRefCountState> &IncToDecStateMap)
|
|
: F(F), AA(AA), POA(POA), RCIA(RCIA), EAFI(EAFI),
|
|
DecToIncStateMap(DecToIncStateMap), IncToDecStateMap(IncToDecStateMap),
|
|
Allocator(), SetFactory(Allocator),
|
|
// We use a malloced pointer here so we don't need to expose
|
|
// ARCBBStateInfo in the header.
|
|
BBStateInfo(new ARCBBStateInfo(&F, POA, PTFI)) {}
|
|
|
|
bool ARCSequenceDataflowEvaluator::run(bool FreezeOwnedReleases) {
|
|
bool NestingDetected = processBottomUp(FreezeOwnedReleases);
|
|
NestingDetected |= processTopDown();
|
|
return NestingDetected;
|
|
}
|
|
|
|
// We put the destructor here so we don't need to expose the type of
|
|
// BBStateInfo to the outside world.
|
|
ARCSequenceDataflowEvaluator::~ARCSequenceDataflowEvaluator() = default;
|
|
|
|
void ARCSequenceDataflowEvaluator::clear() { BBStateInfo->clear(); }
|
|
|
|
llvm::Optional<ARCBBStateInfoHandle>
|
|
ARCSequenceDataflowEvaluator::getBottomUpBBState(SILBasicBlock *BB) {
|
|
return BBStateInfo->getBottomUpBBHandle(BB);
|
|
}
|
|
|
|
llvm::Optional<ARCBBStateInfoHandle>
|
|
ARCSequenceDataflowEvaluator::getTopDownBBState(SILBasicBlock *BB) {
|
|
return BBStateInfo->getTopDownBBHandle(BB);
|
|
}
|