mirror of
https://github.com/apple/swift.git
synced 2025-12-25 12:15:36 +01:00
We don't need to serialize the protocol's superclass, we can compute it from the generic signature. Previously, we would drop the superclass while serializing because we didn't check the generic signature in SuperclassTypeRequest, which would cause us to cache `NULL` when we called `setSuperclass` for a protocol with a superclass constraint. Fixes rdar://50526401
2415 lines
86 KiB
C++
2415 lines
86 KiB
C++
//===--- NameLookup.cpp - Swift Name Lookup Routines ----------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements interfaces for performing name lookup.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/NameLookup.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/ASTVisitor.h"
|
|
#include "swift/AST/ClangModuleLoader.h"
|
|
#include "swift/AST/DebuggerClient.h"
|
|
#include "swift/AST/ExistentialLayout.h"
|
|
#include "swift/AST/GenericSignature.h"
|
|
#include "swift/AST/LazyResolver.h"
|
|
#include "swift/AST/Initializer.h"
|
|
#include "swift/AST/NameLookupRequests.h"
|
|
#include "swift/AST/ParameterList.h"
|
|
#include "swift/AST/ReferencedNameTracker.h"
|
|
#include "swift/Basic/SourceManager.h"
|
|
#include "swift/Basic/Statistic.h"
|
|
#include "swift/Basic/STLExtras.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/TinyPtrVector.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#define DEBUG_TYPE "namelookup"
|
|
|
|
using namespace swift;
|
|
using namespace swift::namelookup;
|
|
|
|
void VisibleDeclConsumer::anchor() {}
|
|
void VectorDeclConsumer::anchor() {}
|
|
void NamedDeclConsumer::anchor() {}
|
|
|
|
ValueDecl *LookupResultEntry::getBaseDecl() const {
|
|
if (BaseDC == nullptr)
|
|
return nullptr;
|
|
|
|
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(BaseDC))
|
|
return AFD->getImplicitSelfDecl();
|
|
|
|
if (auto *PBI = dyn_cast<PatternBindingInitializer>(BaseDC)) {
|
|
auto *selfDecl = PBI->getImplicitSelfDecl();
|
|
assert(selfDecl);
|
|
return selfDecl;
|
|
}
|
|
|
|
auto *nominalDecl = BaseDC->getSelfNominalTypeDecl();
|
|
assert(nominalDecl);
|
|
return nominalDecl;
|
|
}
|
|
|
|
void DebuggerClient::anchor() {}
|
|
|
|
void AccessFilteringDeclConsumer::foundDecl(
|
|
ValueDecl *D, DeclVisibilityKind reason,
|
|
DynamicLookupInfo dynamicLookupInfo) {
|
|
if (D->isInvalid())
|
|
return;
|
|
if (!D->isAccessibleFrom(DC))
|
|
return;
|
|
|
|
ChainedConsumer.foundDecl(D, reason, dynamicLookupInfo);
|
|
}
|
|
|
|
void LookupResultEntry::print(llvm::raw_ostream& out) const {
|
|
getValueDecl()->print(out);
|
|
if (auto dc = getBaseDecl()) {
|
|
out << "\nbase: ";
|
|
dc->print(out);
|
|
out << "\n";
|
|
} else
|
|
out << "\n(no-base)\n";
|
|
}
|
|
|
|
|
|
bool swift::removeOverriddenDecls(SmallVectorImpl<ValueDecl*> &decls) {
|
|
if (decls.size() < 2)
|
|
return false;
|
|
|
|
llvm::SmallPtrSet<ValueDecl*, 8> overridden;
|
|
for (auto decl : decls) {
|
|
// Don't look at the overrides of operators in protocols. The global
|
|
// lookup of operators means that we can find overriding operators that
|
|
// aren't relevant to the types in hand, and will fail to type check.
|
|
if (isa<ProtocolDecl>(decl->getDeclContext())) {
|
|
if (auto func = dyn_cast<FuncDecl>(decl))
|
|
if (func->isOperator())
|
|
continue;
|
|
}
|
|
|
|
while (auto overrides = decl->getOverriddenDecl()) {
|
|
overridden.insert(overrides);
|
|
|
|
// Because initializers from Objective-C base classes have greater
|
|
// visibility than initializers written in Swift classes, we can
|
|
// have a "break" in the set of declarations we found, where
|
|
// C.init overrides B.init overrides A.init, but only C.init and
|
|
// A.init are in the chain. Make sure we still remove A.init from the
|
|
// set in this case.
|
|
if (decl->getFullName().getBaseName() == DeclBaseName::createConstructor()) {
|
|
/// FIXME: Avoid the possibility of an infinite loop by fixing the root
|
|
/// cause instead (incomplete circularity detection).
|
|
assert(decl != overrides && "Circular class inheritance?");
|
|
decl = overrides;
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If no methods were overridden, we're done.
|
|
if (overridden.empty()) return false;
|
|
|
|
// Erase any overridden declarations
|
|
bool anyOverridden = false;
|
|
decls.erase(std::remove_if(decls.begin(), decls.end(),
|
|
[&](ValueDecl *decl) -> bool {
|
|
if (overridden.count(decl) > 0) {
|
|
anyOverridden = true;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}),
|
|
decls.end());
|
|
|
|
return anyOverridden;
|
|
}
|
|
|
|
enum class ConstructorComparison {
|
|
Worse,
|
|
Same,
|
|
Better,
|
|
};
|
|
|
|
/// Determines whether \p ctor1 is a "better" initializer than \p ctor2.
|
|
static ConstructorComparison compareConstructors(ConstructorDecl *ctor1,
|
|
ConstructorDecl *ctor2,
|
|
const swift::ASTContext &ctx) {
|
|
bool available1 = !ctor1->getAttrs().isUnavailable(ctx);
|
|
bool available2 = !ctor2->getAttrs().isUnavailable(ctx);
|
|
|
|
// An unavailable initializer is always worse than an available initializer.
|
|
if (available1 < available2)
|
|
return ConstructorComparison::Worse;
|
|
|
|
if (available1 > available2)
|
|
return ConstructorComparison::Better;
|
|
|
|
CtorInitializerKind kind1 = ctor1->getInitKind();
|
|
CtorInitializerKind kind2 = ctor2->getInitKind();
|
|
|
|
if (kind1 > kind2)
|
|
return ConstructorComparison::Worse;
|
|
|
|
if (kind1 < kind2)
|
|
return ConstructorComparison::Better;
|
|
|
|
return ConstructorComparison::Same;
|
|
}
|
|
|
|
/// Given a set of declarations whose names and signatures have matched,
|
|
/// figure out which of these declarations have been shadowed by others.
|
|
static void recordShadowedDeclsAfterSignatureMatch(
|
|
ArrayRef<ValueDecl *> decls,
|
|
const ModuleDecl *curModule,
|
|
llvm::SmallPtrSetImpl<ValueDecl *> &shadowed) {
|
|
assert(decls.size() > 1 && "Nothing collided");
|
|
|
|
// Compare each declaration to every other declaration. This is
|
|
// unavoidably O(n^2) in the number of declarations, but because they
|
|
// all have the same signature, we expect n to remain small.
|
|
ASTContext &ctx = curModule->getASTContext();
|
|
for (unsigned firstIdx : indices(decls)) {
|
|
auto firstDecl = decls[firstIdx];
|
|
auto firstModule = firstDecl->getModuleContext();
|
|
auto firstSig = firstDecl->getOverloadSignature();
|
|
for (unsigned secondIdx : range(firstIdx + 1, decls.size())) {
|
|
// Determine whether one module takes precedence over another.
|
|
auto secondDecl = decls[secondIdx];
|
|
auto secondModule = secondDecl->getModuleContext();
|
|
|
|
// Swift 4 compatibility hack: Don't shadow properties defined in
|
|
// extensions of generic types with properties defined elsewhere.
|
|
// This is due to the fact that in Swift 4, we only gave custom overload
|
|
// types to properties in extensions of generic types, otherwise we
|
|
// used the null type.
|
|
if (!ctx.isSwiftVersionAtLeast(5)) {
|
|
auto secondSig = secondDecl->getOverloadSignature();
|
|
if (firstSig.IsVariable && secondSig.IsVariable)
|
|
if (firstSig.InExtensionOfGenericType !=
|
|
secondSig.InExtensionOfGenericType)
|
|
continue;
|
|
}
|
|
|
|
// If one declaration is in a protocol or extension thereof and the
|
|
// other is not, prefer the one that is not.
|
|
if ((bool)firstDecl->getDeclContext()->getSelfProtocolDecl() !=
|
|
(bool)secondDecl->getDeclContext()->getSelfProtocolDecl()) {
|
|
if (firstDecl->getDeclContext()->getSelfProtocolDecl()) {
|
|
shadowed.insert(firstDecl);
|
|
break;
|
|
} else {
|
|
shadowed.insert(secondDecl);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If one declaration is available and the other is not, prefer the
|
|
// available one.
|
|
if (firstDecl->getAttrs().isUnavailable(ctx) !=
|
|
secondDecl->getAttrs().isUnavailable(ctx)) {
|
|
if (firstDecl->getAttrs().isUnavailable(ctx)) {
|
|
shadowed.insert(firstDecl);
|
|
break;
|
|
} else {
|
|
shadowed.insert(secondDecl);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Don't apply module-shadowing rules to members of protocol types.
|
|
if (isa<ProtocolDecl>(firstDecl->getDeclContext()) ||
|
|
isa<ProtocolDecl>(secondDecl->getDeclContext()))
|
|
continue;
|
|
|
|
// Prefer declarations in the current module over those in another
|
|
// module.
|
|
// FIXME: This is a hack. We should query a (lazily-built, cached)
|
|
// module graph to determine shadowing.
|
|
if ((firstModule == curModule) != (secondModule == curModule)) {
|
|
// If the first module is the current module, the second declaration
|
|
// is shadowed by the first.
|
|
if (firstModule == curModule) {
|
|
shadowed.insert(secondDecl);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, the first declaration is shadowed by the second. There is
|
|
// no point in continuing to compare the first declaration to others.
|
|
shadowed.insert(firstDecl);
|
|
break;
|
|
}
|
|
|
|
// Prefer declarations in the any module over those in the standard
|
|
// library module.
|
|
if (auto swiftModule = ctx.getStdlibModule()) {
|
|
if ((firstModule == swiftModule) != (secondModule == swiftModule)) {
|
|
// If the second module is the standard library module, the second
|
|
// declaration is shadowed by the first.
|
|
if (secondModule == swiftModule) {
|
|
shadowed.insert(secondDecl);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, the first declaration is shadowed by the second. There is
|
|
// no point in continuing to compare the first declaration to others.
|
|
shadowed.insert(firstDecl);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// The Foundation overlay introduced Data.withUnsafeBytes, which is
|
|
// treated as being ambiguous with SwiftNIO's Data.withUnsafeBytes
|
|
// extension. Apply a special-case name shadowing rule to use the
|
|
// latter rather than the former, which be the consequence of a more
|
|
// significant change to name shadowing in the future.
|
|
if (auto owningStruct1
|
|
= firstDecl->getDeclContext()->getSelfStructDecl()) {
|
|
if (auto owningStruct2
|
|
= secondDecl->getDeclContext()->getSelfStructDecl()) {
|
|
if (owningStruct1 == owningStruct2 &&
|
|
owningStruct1->getName().is("Data") &&
|
|
isa<FuncDecl>(firstDecl) && isa<FuncDecl>(secondDecl) &&
|
|
firstDecl->getFullName() == secondDecl->getFullName() &&
|
|
firstDecl->getBaseName().userFacingName() == "withUnsafeBytes") {
|
|
// If the second module is the Foundation module and the first
|
|
// is the NIOFoundationCompat module, the second is shadowed by the
|
|
// first.
|
|
if (firstDecl->getModuleContext()->getName()
|
|
.is("NIOFoundationCompat") &&
|
|
secondDecl->getModuleContext()->getName().is("Foundation")) {
|
|
shadowed.insert(secondDecl);
|
|
continue;
|
|
}
|
|
|
|
// If it's the other way around, the first declaration is shadowed
|
|
// by the second.
|
|
if (secondDecl->getModuleContext()->getName()
|
|
.is("NIOFoundationCompat") &&
|
|
firstDecl->getModuleContext()->getName().is("Foundation")) {
|
|
shadowed.insert(firstDecl);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Prefer declarations in an overlay to similar declarations in
|
|
// the Clang module it customizes.
|
|
if (firstDecl->hasClangNode() != secondDecl->hasClangNode()) {
|
|
auto clangLoader = ctx.getClangModuleLoader();
|
|
if (!clangLoader) continue;
|
|
|
|
if (clangLoader->isInOverlayModuleForImportedModule(
|
|
firstDecl->getDeclContext(),
|
|
secondDecl->getDeclContext())) {
|
|
shadowed.insert(secondDecl);
|
|
continue;
|
|
}
|
|
|
|
if (clangLoader->isInOverlayModuleForImportedModule(
|
|
secondDecl->getDeclContext(),
|
|
firstDecl->getDeclContext())) {
|
|
shadowed.insert(firstDecl);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Look through the given set of declarations (that all have the same name),
|
|
/// recording those that are shadowed by another declaration in the
|
|
/// \c shadowed set.
|
|
static void recordShadowedDeclsForImportedInits(
|
|
ArrayRef<ConstructorDecl *> ctors,
|
|
llvm::SmallPtrSetImpl<ValueDecl *> &shadowed) {
|
|
assert(ctors.size() > 1 && "No collisions");
|
|
|
|
ASTContext &ctx = ctors.front()->getASTContext();
|
|
|
|
// Find the "best" constructor with this signature.
|
|
ConstructorDecl *bestCtor = ctors[0];
|
|
for (auto ctor : ctors.slice(1)) {
|
|
auto comparison = compareConstructors(ctor, bestCtor, ctx);
|
|
if (comparison == ConstructorComparison::Better)
|
|
bestCtor = ctor;
|
|
}
|
|
|
|
// Shadow any initializers that are worse.
|
|
for (auto ctor : ctors) {
|
|
auto comparison = compareConstructors(ctor, bestCtor, ctx);
|
|
if (comparison == ConstructorComparison::Worse)
|
|
shadowed.insert(ctor);
|
|
}
|
|
}
|
|
|
|
/// Look through the given set of declarations (that all have the same name),
|
|
/// recording those that are shadowed by another declaration in the
|
|
/// \c shadowed set.
|
|
static void recordShadowedDecls(ArrayRef<ValueDecl *> decls,
|
|
const ModuleDecl *curModule,
|
|
llvm::SmallPtrSetImpl<ValueDecl *> &shadowed) {
|
|
if (decls.size() < 2)
|
|
return;
|
|
|
|
auto typeResolver = decls[0]->getASTContext().getLazyResolver();
|
|
|
|
// Categorize all of the declarations based on their overload signatures.
|
|
llvm::SmallDenseMap<CanType, llvm::TinyPtrVector<ValueDecl *>> collisions;
|
|
llvm::SmallVector<CanType, 2> collisionTypes;
|
|
llvm::SmallDenseMap<NominalTypeDecl *, llvm::TinyPtrVector<ConstructorDecl *>>
|
|
importedInitializerCollisions;
|
|
llvm::TinyPtrVector<NominalTypeDecl *> importedInitializerCollectionTypes;
|
|
|
|
for (auto decl : decls) {
|
|
// Specifically keep track of imported initializers, which can come from
|
|
// Objective-C init methods, Objective-C factory methods, renamed C
|
|
// functions, or be synthesized by the importer.
|
|
if (decl->hasClangNode() ||
|
|
(isa<NominalTypeDecl>(decl->getDeclContext()) &&
|
|
cast<NominalTypeDecl>(decl->getDeclContext())->hasClangNode())) {
|
|
if (auto ctor = dyn_cast<ConstructorDecl>(decl)) {
|
|
auto nominal = ctor->getDeclContext()->getSelfNominalTypeDecl();
|
|
auto &knownInits = importedInitializerCollisions[nominal];
|
|
if (knownInits.size() == 1) {
|
|
importedInitializerCollectionTypes.push_back(nominal);
|
|
}
|
|
knownInits.push_back(ctor);
|
|
}
|
|
}
|
|
|
|
CanType signature;
|
|
|
|
if (!isa<TypeDecl>(decl)) {
|
|
// We need an interface type here.
|
|
if (typeResolver)
|
|
typeResolver->resolveDeclSignature(decl);
|
|
|
|
// If the decl is currently being validated, this is likely a recursive
|
|
// reference and we'll want to skip ahead so as to avoid having its type
|
|
// attempt to desugar itself.
|
|
if (!decl->hasValidSignature())
|
|
continue;
|
|
|
|
// FIXME: the canonical type makes a poor signature, because we don't
|
|
// canonicalize away default arguments.
|
|
signature = decl->getInterfaceType()->getCanonicalType();
|
|
|
|
// FIXME: The type of a variable or subscript doesn't include
|
|
// enough context to distinguish entities from different
|
|
// constrained extensions, so use the overload signature's
|
|
// type. This is layering a partial fix upon a total hack.
|
|
if (auto asd = dyn_cast<AbstractStorageDecl>(decl))
|
|
signature = asd->getOverloadSignatureType();
|
|
} else if (decl->getDeclContext()->isTypeContext()) {
|
|
// Do not apply shadowing rules for member types.
|
|
continue;
|
|
}
|
|
|
|
// Record this declaration based on its signature.
|
|
auto &known = collisions[signature];
|
|
if (known.size() == 1) {
|
|
collisionTypes.push_back(signature);
|
|
}
|
|
known.push_back(decl);
|
|
}
|
|
|
|
// Check whether we have shadowing for signature collisions.
|
|
for (auto signature : collisionTypes) {
|
|
recordShadowedDeclsAfterSignatureMatch(collisions[signature], curModule,
|
|
shadowed);
|
|
}
|
|
|
|
// Check whether we have shadowing for imported initializer collisions.
|
|
for (auto nominal : importedInitializerCollectionTypes) {
|
|
recordShadowedDeclsForImportedInits(importedInitializerCollisions[nominal],
|
|
shadowed);
|
|
}
|
|
}
|
|
|
|
bool swift::removeShadowedDecls(SmallVectorImpl<ValueDecl*> &decls,
|
|
const ModuleDecl *curModule) {
|
|
// Collect declarations with the same (full) name.
|
|
llvm::SmallDenseMap<DeclName, llvm::TinyPtrVector<ValueDecl *>>
|
|
collidingDeclGroups;
|
|
bool anyCollisions = false;
|
|
for (auto decl : decls) {
|
|
// Record this declaration based on its full name.
|
|
auto &knownDecls = collidingDeclGroups[decl->getFullName()];
|
|
if (!knownDecls.empty())
|
|
anyCollisions = true;
|
|
|
|
knownDecls.push_back(decl);
|
|
}
|
|
|
|
// If nothing collided, we're done.
|
|
if (!anyCollisions)
|
|
return false;
|
|
|
|
// Walk through the declarations again, marking any declarations that shadow.
|
|
llvm::SmallPtrSet<ValueDecl *, 4> shadowed;
|
|
for (auto decl : decls) {
|
|
auto known = collidingDeclGroups.find(decl->getFullName());
|
|
if (known == collidingDeclGroups.end()) {
|
|
// We already handled this group.
|
|
continue;
|
|
}
|
|
|
|
recordShadowedDecls(known->second, curModule, shadowed);
|
|
collidingDeclGroups.erase(known);
|
|
}
|
|
|
|
// If no declarations were shadowed, we're done.
|
|
if (shadowed.empty())
|
|
return false;
|
|
|
|
// Remove shadowed declarations from the list of declarations.
|
|
bool anyRemoved = false;
|
|
decls.erase(std::remove_if(decls.begin(), decls.end(),
|
|
[&](ValueDecl *vd) {
|
|
if (shadowed.count(vd) > 0) {
|
|
anyRemoved = true;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}),
|
|
decls.end());
|
|
|
|
return anyRemoved;
|
|
}
|
|
|
|
namespace {
|
|
enum class DiscriminatorMatch {
|
|
NoDiscriminator,
|
|
Matches,
|
|
Different
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static DiscriminatorMatch matchDiscriminator(Identifier discriminator,
|
|
const ValueDecl *value) {
|
|
if (value->getFormalAccess() > AccessLevel::FilePrivate)
|
|
return DiscriminatorMatch::NoDiscriminator;
|
|
|
|
auto containingFile =
|
|
dyn_cast<FileUnit>(value->getDeclContext()->getModuleScopeContext());
|
|
if (!containingFile)
|
|
return DiscriminatorMatch::Different;
|
|
|
|
if (discriminator == containingFile->getDiscriminatorForPrivateValue(value))
|
|
return DiscriminatorMatch::Matches;
|
|
|
|
return DiscriminatorMatch::Different;
|
|
}
|
|
|
|
static DiscriminatorMatch
|
|
matchDiscriminator(Identifier discriminator,
|
|
LookupResultEntry lookupResult) {
|
|
return matchDiscriminator(discriminator, lookupResult.getValueDecl());
|
|
}
|
|
|
|
template <typename Result>
|
|
void namelookup::filterForDiscriminator(SmallVectorImpl<Result> &results,
|
|
DebuggerClient *debugClient) {
|
|
if (debugClient == nullptr)
|
|
return;
|
|
Identifier discriminator = debugClient->getPreferredPrivateDiscriminator();
|
|
if (discriminator.empty())
|
|
return;
|
|
|
|
auto lastMatchIter = std::find_if(results.rbegin(), results.rend(),
|
|
[discriminator](Result next) -> bool {
|
|
return
|
|
matchDiscriminator(discriminator, next) == DiscriminatorMatch::Matches;
|
|
});
|
|
if (lastMatchIter == results.rend())
|
|
return;
|
|
|
|
Result lastMatch = *lastMatchIter;
|
|
|
|
auto newEnd = std::remove_if(results.begin(), lastMatchIter.base()-1,
|
|
[discriminator](Result next) -> bool {
|
|
return
|
|
matchDiscriminator(discriminator, next) == DiscriminatorMatch::Different;
|
|
});
|
|
results.erase(newEnd, results.end());
|
|
results.push_back(lastMatch);
|
|
}
|
|
|
|
template void namelookup::filterForDiscriminator<LookupResultEntry>(
|
|
SmallVectorImpl<LookupResultEntry> &results, DebuggerClient *debugClient);
|
|
|
|
void namelookup::recordLookupOfTopLevelName(DeclContext *topLevelContext,
|
|
DeclName name, bool isCascading) {
|
|
auto SF = dyn_cast<SourceFile>(topLevelContext);
|
|
if (!SF)
|
|
return;
|
|
auto *nameTracker = SF->getReferencedNameTracker();
|
|
if (!nameTracker)
|
|
return;
|
|
nameTracker->addTopLevelName(name.getBaseName(), isCascading);
|
|
}
|
|
|
|
|
|
/// Retrieve the set of type declarations that are directly referenced from
|
|
/// the given parsed type representation.
|
|
static DirectlyReferencedTypeDecls
|
|
directReferencesForTypeRepr(Evaluator &evaluator,
|
|
ASTContext &ctx, TypeRepr *typeRepr,
|
|
DeclContext *dc);
|
|
|
|
/// Retrieve the set of type declarations that are directly referenced from
|
|
/// the given type.
|
|
static DirectlyReferencedTypeDecls directReferencesForType(Type type);
|
|
|
|
/// Given a set of type declarations, find all of the nominal type declarations
|
|
/// that they reference, looking through typealiases as appropriate.
|
|
static TinyPtrVector<NominalTypeDecl *>
|
|
resolveTypeDeclsToNominal(Evaluator &evaluator,
|
|
ASTContext &ctx,
|
|
ArrayRef<TypeDecl *> typeDecls,
|
|
SmallVectorImpl<ModuleDecl *> &modulesFound,
|
|
bool &anyObject);
|
|
|
|
SelfBounds
|
|
SelfBoundsFromWhereClauseRequest::evaluate(
|
|
Evaluator &evaluator,
|
|
llvm::PointerUnion<TypeDecl *, ExtensionDecl *> decl) const {
|
|
auto *typeDecl = decl.dyn_cast<TypeDecl *>();
|
|
auto *protoDecl = dyn_cast_or_null<ProtocolDecl>(typeDecl);
|
|
auto *extDecl = decl.dyn_cast<ExtensionDecl *>();
|
|
|
|
DeclContext *dc = protoDecl ? (DeclContext *)protoDecl : (DeclContext *)extDecl;
|
|
|
|
// A protocol or extension 'where' clause can reference associated types of
|
|
// the protocol itself, so we have to start unqualified lookup from 'dc'.
|
|
//
|
|
// However, the right hand side of a 'Self' conformance constraint must be
|
|
// resolved before unqualified lookup into 'dc' can work, so we make an
|
|
// exception here and begin lookup from the parent context instead.
|
|
auto *lookupDC = dc->getParent();
|
|
auto requirements = protoDecl ? protoDecl->getTrailingWhereClause()
|
|
: extDecl->getTrailingWhereClause();
|
|
|
|
ASTContext &ctx = dc->getASTContext();
|
|
|
|
SelfBounds result;
|
|
|
|
if (requirements == nullptr)
|
|
return result;
|
|
|
|
for (const auto &req : requirements->getRequirements()) {
|
|
// We only care about type constraints.
|
|
if (req.getKind() != RequirementReprKind::TypeConstraint)
|
|
continue;
|
|
|
|
// The left-hand side of the type constraint must be 'Self'.
|
|
bool isSelfLHS = false;
|
|
if (auto typeRepr = req.getSubjectRepr()) {
|
|
if (auto identTypeRepr = dyn_cast<SimpleIdentTypeRepr>(typeRepr))
|
|
isSelfLHS = (identTypeRepr->getIdentifier() == ctx.Id_Self);
|
|
} else if (Type type = req.getSubject()) {
|
|
isSelfLHS = type->isEqual(dc->getSelfInterfaceType());
|
|
}
|
|
if (!isSelfLHS)
|
|
continue;
|
|
|
|
// Resolve the right-hand side.
|
|
DirectlyReferencedTypeDecls rhsDecls;
|
|
if (auto typeRepr = req.getConstraintRepr()) {
|
|
rhsDecls = directReferencesForTypeRepr(evaluator, ctx, typeRepr, lookupDC);
|
|
} else if (Type type = req.getConstraint()) {
|
|
rhsDecls = directReferencesForType(type);
|
|
}
|
|
|
|
SmallVector<ModuleDecl *, 2> modulesFound;
|
|
auto rhsNominals = resolveTypeDeclsToNominal(evaluator, ctx, rhsDecls,
|
|
modulesFound,
|
|
result.anyObject);
|
|
result.decls.insert(result.decls.end(),
|
|
rhsNominals.begin(),
|
|
rhsNominals.end());
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
SelfBounds swift::getSelfBoundsFromWhereClause(
|
|
llvm::PointerUnion<TypeDecl *, ExtensionDecl *> decl) {
|
|
auto *typeDecl = decl.dyn_cast<TypeDecl *>();
|
|
auto *extDecl = decl.dyn_cast<ExtensionDecl *>();
|
|
auto &ctx = typeDecl ? typeDecl->getASTContext()
|
|
: extDecl->getASTContext();
|
|
return evaluateOrDefault(ctx.evaluator,
|
|
SelfBoundsFromWhereClauseRequest{decl}, {});
|
|
}
|
|
|
|
TinyPtrVector<TypeDecl *>
|
|
TypeDeclsFromWhereClauseRequest::evaluate(Evaluator &evaluator,
|
|
ExtensionDecl *ext) const {
|
|
ASTContext &ctx = ext->getASTContext();
|
|
|
|
TinyPtrVector<TypeDecl *> result;
|
|
for (const auto &req : ext->getGenericParams()->getTrailingRequirements()) {
|
|
auto resolve = [&](TypeLoc loc) {
|
|
DirectlyReferencedTypeDecls decls;
|
|
if (auto *typeRepr = loc.getTypeRepr())
|
|
decls = directReferencesForTypeRepr(evaluator, ctx, typeRepr, ext);
|
|
else if (Type type = loc.getType())
|
|
decls = directReferencesForType(type);
|
|
|
|
result.insert(result.end(), decls.begin(), decls.end());
|
|
};
|
|
|
|
switch (req.getKind()) {
|
|
case RequirementReprKind::TypeConstraint:
|
|
resolve(req.getSubjectLoc());
|
|
resolve(req.getConstraintLoc());
|
|
break;
|
|
|
|
case RequirementReprKind::SameType:
|
|
resolve(req.getFirstTypeLoc());
|
|
resolve(req.getSecondTypeLoc());
|
|
break;
|
|
|
|
case RequirementReprKind::LayoutConstraint:
|
|
resolve(req.getSubjectLoc());
|
|
break;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
|
|
#pragma mark Member lookup table
|
|
|
|
void LazyMemberLoader::anchor() {}
|
|
|
|
void LazyConformanceLoader::anchor() {}
|
|
|
|
/// Lookup table used to store members of a nominal type (and its extensions)
|
|
/// for fast retrieval.
|
|
class swift::MemberLookupTable {
|
|
/// The last extension that was included within the member lookup table's
|
|
/// results.
|
|
ExtensionDecl *LastExtensionIncluded = nullptr;
|
|
|
|
/// The type of the internal lookup table.
|
|
typedef llvm::DenseMap<DeclName, llvm::TinyPtrVector<ValueDecl *>>
|
|
LookupTable;
|
|
|
|
/// Lookup table mapping names to the set of declarations with that name.
|
|
LookupTable Lookup;
|
|
|
|
public:
|
|
/// Create a new member lookup table.
|
|
explicit MemberLookupTable(ASTContext &ctx);
|
|
|
|
/// Update a lookup table with members from newly-added extensions.
|
|
void updateLookupTable(NominalTypeDecl *nominal);
|
|
|
|
/// Add the given member to the lookup table.
|
|
void addMember(Decl *members);
|
|
|
|
/// Add the given members to the lookup table.
|
|
void addMembers(DeclRange members);
|
|
|
|
/// Iterator into the lookup table.
|
|
typedef LookupTable::iterator iterator;
|
|
|
|
iterator begin() { return Lookup.begin(); }
|
|
iterator end() { return Lookup.end(); }
|
|
|
|
iterator find(DeclName name) {
|
|
return Lookup.find(name);
|
|
}
|
|
|
|
void dump(llvm::raw_ostream &os) const {
|
|
os << "LastExtensionIncluded:\n";
|
|
if (LastExtensionIncluded)
|
|
LastExtensionIncluded->printContext(os, 2);
|
|
else
|
|
os << " nullptr\n";
|
|
|
|
os << "Lookup:\n ";
|
|
for (auto &pair : Lookup) {
|
|
pair.getFirst().print(os) << ":\n ";
|
|
for (auto &decl : pair.getSecond()) {
|
|
os << "- ";
|
|
decl->dumpRef(os);
|
|
os << "\n ";
|
|
}
|
|
}
|
|
os << "\n";
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_DEPRECATED(void dump() const LLVM_ATTRIBUTE_USED,
|
|
"only for use within the debugger") {
|
|
dump(llvm::errs());
|
|
}
|
|
|
|
// Mark all Decls in this table as not-resident in a table, drop
|
|
// references to them. Should only be called when this was not fully-populated
|
|
// from an IterableDeclContext.
|
|
void clear() {
|
|
// LastExtensionIncluded would only be non-null if this was populated from
|
|
// an IterableDeclContext (though it might still be null in that case).
|
|
assert(LastExtensionIncluded == nullptr);
|
|
for (auto const &i : Lookup) {
|
|
for (auto d : i.getSecond()) {
|
|
d->setAlreadyInLookupTable(false);
|
|
}
|
|
}
|
|
Lookup.clear();
|
|
}
|
|
|
|
// Only allow allocation of member lookup tables using the allocator in
|
|
// ASTContext or by doing a placement new.
|
|
void *operator new(size_t Bytes, ASTContext &C,
|
|
unsigned Alignment = alignof(MemberLookupTable)) {
|
|
return C.Allocate(Bytes, Alignment);
|
|
}
|
|
void *operator new(size_t Bytes, void *Mem) {
|
|
assert(Mem);
|
|
return Mem;
|
|
}
|
|
};
|
|
|
|
namespace {
|
|
/// Stores the set of Objective-C methods with a given selector within the
|
|
/// Objective-C method lookup table.
|
|
struct StoredObjCMethods {
|
|
/// The generation count at which this list was last updated.
|
|
unsigned Generation = 0;
|
|
|
|
/// The set of methods with the given selector.
|
|
llvm::TinyPtrVector<AbstractFunctionDecl *> Methods;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Class member lookup table, which is a member lookup table with a second
|
|
/// table for lookup based on Objective-C selector.
|
|
class ClassDecl::ObjCMethodLookupTable
|
|
: public llvm::DenseMap<std::pair<ObjCSelector, char>,
|
|
StoredObjCMethods>
|
|
{
|
|
public:
|
|
// Only allow allocation of member lookup tables using the allocator in
|
|
// ASTContext or by doing a placement new.
|
|
void *operator new(size_t Bytes, ASTContext &C,
|
|
unsigned Alignment = alignof(MemberLookupTable)) {
|
|
return C.Allocate(Bytes, Alignment);
|
|
}
|
|
void *operator new(size_t Bytes, void *Mem) {
|
|
assert(Mem);
|
|
return Mem;
|
|
}
|
|
};
|
|
|
|
MemberLookupTable::MemberLookupTable(ASTContext &ctx) {
|
|
// Register a cleanup with the ASTContext to call the lookup table
|
|
// destructor.
|
|
ctx.addCleanup([this]() {
|
|
this->~MemberLookupTable();
|
|
});
|
|
}
|
|
|
|
void MemberLookupTable::addMember(Decl *member) {
|
|
// Only value declarations matter.
|
|
auto vd = dyn_cast<ValueDecl>(member);
|
|
if (!vd)
|
|
return;
|
|
|
|
// @_implements members get added under their declared name.
|
|
auto A = vd->getAttrs().getAttribute<ImplementsAttr>();
|
|
|
|
// Unnamed entities w/o @_implements synonyms cannot be found by name lookup.
|
|
if (!A && !vd->hasName())
|
|
return;
|
|
|
|
// If this declaration is already in the lookup table, don't add it
|
|
// again.
|
|
if (vd->isAlreadyInLookupTable()) {
|
|
return;
|
|
}
|
|
vd->setAlreadyInLookupTable();
|
|
|
|
// Add this declaration to the lookup set under its compound name and simple
|
|
// name.
|
|
vd->getFullName().addToLookupTable(Lookup, vd);
|
|
|
|
// And if given a synonym, under that name too.
|
|
if (A)
|
|
A->getMemberName().addToLookupTable(Lookup, vd);
|
|
}
|
|
|
|
void MemberLookupTable::addMembers(DeclRange members) {
|
|
for (auto member : members) {
|
|
addMember(member);
|
|
}
|
|
}
|
|
|
|
void MemberLookupTable::updateLookupTable(NominalTypeDecl *nominal) {
|
|
// If the last extension we included is the same as the last known extension,
|
|
// we're already up-to-date.
|
|
if (LastExtensionIncluded == nominal->LastExtension)
|
|
return;
|
|
|
|
// Add members from each of the extensions that we have not yet visited.
|
|
for (auto next = LastExtensionIncluded
|
|
? LastExtensionIncluded->NextExtension.getPointer()
|
|
: nominal->FirstExtension;
|
|
next;
|
|
(LastExtensionIncluded = next,next = next->NextExtension.getPointer())) {
|
|
addMembers(next->getMembers());
|
|
}
|
|
}
|
|
|
|
void NominalTypeDecl::addedMember(Decl *member) {
|
|
// Remember if we added a destructor.
|
|
if (auto *CD = dyn_cast<ClassDecl>(this))
|
|
if (isa<DestructorDecl>(member))
|
|
CD->setHasDestructor();
|
|
|
|
// If we have a lookup table, add the new member to it.
|
|
if (LookupTable.getPointer()) {
|
|
LookupTable.getPointer()->addMember(member);
|
|
}
|
|
}
|
|
|
|
void NominalTypeDecl::addedExtension(ExtensionDecl * ext) {
|
|
if (hasLazyMembers())
|
|
setLookupTablePopulated(false);
|
|
}
|
|
|
|
void ExtensionDecl::addedMember(Decl *member) {
|
|
if (NextExtension.getInt()) {
|
|
auto nominal = getExtendedNominal();
|
|
if (!nominal)
|
|
return;
|
|
|
|
if (nominal->LookupTable.getPointer() &&
|
|
nominal->isLookupTablePopulated()) {
|
|
// Make sure we have the complete list of extensions.
|
|
// FIXME: This is completely unnecessary. We want to determine whether
|
|
// our own extension has already been included in the lookup table.
|
|
(void)nominal->getExtensions();
|
|
|
|
nominal->LookupTable.getPointer()->addMember(member);
|
|
}
|
|
}
|
|
}
|
|
|
|
// For lack of anywhere more sensible to put it, here's a diagram of the pieces
|
|
// involved in finding members and extensions of a NominalTypeDecl.
|
|
//
|
|
// ┌────────────────────────────┬─┐
|
|
// │IterableDeclContext │ │ ┌─────────────────────────────┐
|
|
// │------------------- │ │ │┌───────────────┬┐ ▼
|
|
// │Decl *LastDecl ───────────┼─┼─────┘│Decl ││ ┌───────────────┬┐
|
|
// │Decl *FirstDecl ───────────┼─┼─────▶│---- ││ │Decl ││
|
|
// │ │ │ │Decl *NextDecl├┼─▶│---- ││
|
|
// │bool HasLazyMembers │ │ ├───────────────┘│ │Decl *NextDecl ││
|
|
// │IterableDeclContextKind Kind│ │ │ │ ├───────────────┘│
|
|
// │ │ │ │ValueDecl │ │ │
|
|
// ├────────────────────────────┘ │ │--------- │ │ValueDecl │
|
|
// │ │ │DeclName Name │ │--------- │
|
|
// │NominalTypeDecl │ └────────────────┘ │DeclName Name │
|
|
// │--------------- │ ▲ └────────────────┘
|
|
// │ExtensionDecl *FirstExtension─┼────────┐ │ ▲
|
|
// │ExtensionDecl *LastExtension ─┼───────┐│ │ └───┐
|
|
// │ │ ││ └──────────────────────┐│
|
|
// │MemberLookupTable *LookupTable├─┐ ││ ││
|
|
// │bool LookupTableComplete │ │ ││ ┌─────────────────┐ ││
|
|
// └──────────────────────────────┘ │ ││ │ExtensionDecl │ ││
|
|
// │ ││ │------------- │ ││
|
|
// ┌─────────────┘ │└────▶│ExtensionDecl │ ││
|
|
// │ │ │ *NextExtension ├──┐ ││
|
|
// ▼ │ └─────────────────┘ │ ││
|
|
// ┌─────────────────────────────────────┐│ ┌─────────────────┐ │ ││
|
|
// │MemberLookupTable ││ │ExtensionDecl │ │ ││
|
|
// │----------------- ││ │------------- │ │ ││
|
|
// │ExtensionDecl *LastExtensionIncluded ├┴─────▶│ExtensionDecl │◀─┘ ││
|
|
// │ │ │ *NextExtension │ ││
|
|
// │┌───────────────────────────────────┐│ └─────────────────┘ ││
|
|
// ││DenseMap<Declname, ...> LookupTable││ ││
|
|
// ││-----------------------------------││ ┌──────────────────────────┐ ││
|
|
// ││[NameA] TinyPtrVector<ValueDecl *> ││ │TinyPtrVector<ValueDecl *>│ ││
|
|
// ││[NameB] TinyPtrVector<ValueDecl *> ││ │--------------------------│ ││
|
|
// ││[NameC] TinyPtrVector<ValueDecl *>─┼┼─▶│[0] ValueDecl * ─────┼─┘│
|
|
// │└───────────────────────────────────┘│ │[1] ValueDecl * ─────┼──┘
|
|
// └─────────────────────────────────────┘ └──────────────────────────┘
|
|
//
|
|
// The HasLazyMembers, Kind, and LookupTableComplete fields are packed into
|
|
// PointerIntPairs so don't go grepping for them; but for purposes of
|
|
// illustration they are effectively their own fields.
|
|
//
|
|
// MemberLookupTable is populated en-masse when the IterableDeclContext's
|
|
// (IDC's) list of Decls is populated. But MemberLookupTable can also be
|
|
// populated incrementally by one-name-at-a-time lookups by lookupDirect, in
|
|
// which case those Decls are _not_ added to the IDC's list. They are cached in
|
|
// the loader they come from, lifecycle-wise, and are added to the
|
|
// MemberLookupTable to accelerate subsequent retrieval, but the IDC is not
|
|
// considered populated until someone calls getMembers().
|
|
//
|
|
// If the IDC list is later populated and/or an extension is added _after_
|
|
// MemberLookupTable is constructed (and possibly has entries in it),
|
|
// MemberLookupTable is purged and reconstructed from IDC's list.
|
|
//
|
|
// In all lookup routines, the 'ignoreNewExtensions' flag means that
|
|
// lookup should only use the set of extensions already observed.
|
|
|
|
static bool
|
|
populateLookupTableEntryFromLazyIDCLoader(ASTContext &ctx,
|
|
MemberLookupTable &LookupTable,
|
|
DeclName name,
|
|
IterableDeclContext *IDC) {
|
|
if (IDC->isLoadingLazyMembers()) {
|
|
return false;
|
|
}
|
|
IDC->setLoadingLazyMembers(true);
|
|
auto ci = ctx.getOrCreateLazyIterableContextData(IDC,
|
|
/*lazyLoader=*/nullptr);
|
|
if (auto res = ci->loader->loadNamedMembers(IDC, name.getBaseName(),
|
|
ci->memberData)) {
|
|
IDC->setLoadingLazyMembers(false);
|
|
if (auto s = ctx.Stats) {
|
|
++s->getFrontendCounters().NamedLazyMemberLoadSuccessCount;
|
|
}
|
|
for (auto d : *res) {
|
|
LookupTable.addMember(d);
|
|
}
|
|
return false;
|
|
} else {
|
|
IDC->setLoadingLazyMembers(false);
|
|
if (auto s = ctx.Stats) {
|
|
++s->getFrontendCounters().NamedLazyMemberLoadFailureCount;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static void populateLookupTableEntryFromCurrentMembersWithoutLoading(
|
|
ASTContext &ctx, MemberLookupTable &LookupTable, DeclName name,
|
|
IterableDeclContext *IDC) {
|
|
for (auto m : IDC->getCurrentMembersWithoutLoading()) {
|
|
if (auto v = dyn_cast<ValueDecl>(m)) {
|
|
if (v->getFullName().matchesRef(name.getBaseName())) {
|
|
LookupTable.addMember(m);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool
|
|
populateLookupTableEntryFromExtensions(ASTContext &ctx,
|
|
MemberLookupTable &table,
|
|
NominalTypeDecl *nominal,
|
|
DeclName name,
|
|
bool ignoreNewExtensions) {
|
|
if (!ignoreNewExtensions) {
|
|
for (auto e : nominal->getExtensions()) {
|
|
if (e->wasDeserialized() || e->hasClangNode()) {
|
|
if (populateLookupTableEntryFromLazyIDCLoader(ctx, table,
|
|
name, e)) {
|
|
return true;
|
|
}
|
|
} else {
|
|
populateLookupTableEntryFromCurrentMembersWithoutLoading(ctx, table,
|
|
name, e);
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool NominalTypeDecl::isLookupTablePopulated() const {
|
|
return LookupTable.getInt();
|
|
}
|
|
|
|
void NominalTypeDecl::setLookupTablePopulated(bool value) {
|
|
LookupTable.setInt(value);
|
|
}
|
|
|
|
void NominalTypeDecl::prepareLookupTable(bool ignoreNewExtensions) {
|
|
// If we haven't allocated the lookup table yet, do so now.
|
|
if (!LookupTable.getPointer()) {
|
|
auto &ctx = getASTContext();
|
|
LookupTable.setPointer(new (ctx) MemberLookupTable(ctx));
|
|
}
|
|
|
|
if (hasLazyMembers()) {
|
|
// Lazy members: if the table needs population, populate the table _only
|
|
// from those members already in the IDC member list_ such as implicits or
|
|
// globals-as-members, then update table entries from the extensions that
|
|
// have the same names as any such initial-population members.
|
|
if (!isLookupTablePopulated()) {
|
|
setLookupTablePopulated(true);
|
|
LookupTable.getPointer()->addMembers(getCurrentMembersWithoutLoading());
|
|
|
|
llvm::SetVector<DeclName> baseNamesPresent;
|
|
for (auto entry : *LookupTable.getPointer()) {
|
|
baseNamesPresent.insert(entry.getFirst().getBaseName());
|
|
}
|
|
|
|
for (auto baseName : baseNamesPresent) {
|
|
populateLookupTableEntryFromExtensions(getASTContext(),
|
|
*LookupTable.getPointer(),
|
|
this, baseName,
|
|
ignoreNewExtensions);
|
|
}
|
|
}
|
|
|
|
} else {
|
|
// No lazy members: if the table needs population, populate the table
|
|
// en-masse; and in either case update the extensions.
|
|
if (!isLookupTablePopulated()) {
|
|
setLookupTablePopulated(true);
|
|
LookupTable.getPointer()->addMembers(getMembers());
|
|
}
|
|
if (!ignoreNewExtensions) {
|
|
LookupTable.getPointer()->updateLookupTable(this);
|
|
}
|
|
}
|
|
}
|
|
|
|
void NominalTypeDecl::makeMemberVisible(ValueDecl *member) {
|
|
if (!LookupTable.getPointer()) {
|
|
auto &ctx = getASTContext();
|
|
LookupTable.setPointer(new (ctx) MemberLookupTable(ctx));
|
|
}
|
|
|
|
LookupTable.getPointer()->addMember(member);
|
|
}
|
|
|
|
|
|
static TinyPtrVector<ValueDecl *>
|
|
maybeFilterOutAttrImplements(TinyPtrVector<ValueDecl *> decls,
|
|
DeclName name,
|
|
bool includeAttrImplements) {
|
|
if (includeAttrImplements)
|
|
return decls;
|
|
TinyPtrVector<ValueDecl*> result;
|
|
for (auto V : decls) {
|
|
// Filter-out any decl that doesn't have the name we're looking for
|
|
// (asserting as a consistency-check that such entries all have
|
|
// @_implements attrs for the name!)
|
|
if (V->getFullName().matchesRef(name)) {
|
|
result.push_back(V);
|
|
} else {
|
|
auto A = V->getAttrs().getAttribute<ImplementsAttr>();
|
|
assert(A && A->getMemberName().matchesRef(name));
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
TinyPtrVector<ValueDecl *> NominalTypeDecl::lookupDirect(
|
|
DeclName name,
|
|
OptionSet<LookupDirectFlags> flags) {
|
|
ASTContext &ctx = getASTContext();
|
|
if (auto s = ctx.Stats) {
|
|
++s->getFrontendCounters().NominalTypeLookupDirectCount;
|
|
}
|
|
|
|
// We only use NamedLazyMemberLoading when a user opts-in and we have
|
|
// not yet loaded all the members into the IDC list in the first place.
|
|
bool useNamedLazyMemberLoading = (ctx.LangOpts.NamedLazyMemberLoading &&
|
|
hasLazyMembers());
|
|
|
|
bool ignoreNewExtensions =
|
|
flags.contains(LookupDirectFlags::IgnoreNewExtensions);
|
|
|
|
bool includeAttrImplements =
|
|
flags.contains(LookupDirectFlags::IncludeAttrImplements);
|
|
|
|
// FIXME: At present, lazy member is not able to find inherited constructors
|
|
// in imported classes, because SwiftDeclConverter::importInheritedConstructors()
|
|
// is only called via ClangImporter::Implementation::loadAllMembers().
|
|
if (hasClangNode() &&
|
|
name.getBaseName() == DeclBaseName::createConstructor())
|
|
useNamedLazyMemberLoading = false;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << getNameStr() << ".lookupDirect("
|
|
<< name << ", " << ignoreNewExtensions << ")"
|
|
<< ", isLookupTablePopulated()=" << isLookupTablePopulated()
|
|
<< ", hasLazyMembers()=" << hasLazyMembers()
|
|
<< ", useNamedLazyMemberLoading=" << useNamedLazyMemberLoading
|
|
<< "\n");
|
|
|
|
// We check the LookupTable at most twice, possibly treating a miss in the
|
|
// first try as a cache-miss that we then do a cache-fill on, and retry.
|
|
for (int i = 0; i < 2; ++i) {
|
|
|
|
// First, if we're _not_ doing NamedLazyMemberLoading, we make sure we've
|
|
// populated the IDC and brought it up to date with any extensions. This
|
|
// will flip the hasLazyMembers() flag to false as well.
|
|
if (!useNamedLazyMemberLoading) {
|
|
// It's possible that the lookup table exists but has information in it
|
|
// that is either currently out of date or soon to be out of date.
|
|
// This can happen two ways:
|
|
//
|
|
// - We've not yet indexed the members we have (isLookupTablePopulated()
|
|
// is zero).
|
|
//
|
|
// - We've still got more lazy members left to load; this can happen
|
|
// even if we _did_ index some members.
|
|
//
|
|
// In either of these cases, we want to reset the table to empty and
|
|
// mark it as needing reconstruction.
|
|
if (LookupTable.getPointer() &&
|
|
(hasLazyMembers() || !isLookupTablePopulated())) {
|
|
LookupTable.getPointer()->clear();
|
|
setLookupTablePopulated(false);
|
|
}
|
|
|
|
(void)getMembers();
|
|
|
|
// Make sure we have the complete list of members (in this nominal and in
|
|
// all extensions).
|
|
if (!ignoreNewExtensions) {
|
|
for (auto E : getExtensions())
|
|
(void)E->getMembers();
|
|
}
|
|
}
|
|
|
|
// Next, in all cases, prepare the lookup table for use, possibly
|
|
// repopulating it from the IDC if the IDC member list has just grown.
|
|
prepareLookupTable(ignoreNewExtensions);
|
|
|
|
// Look for a declaration with this name.
|
|
auto known = LookupTable.getPointer()->find(name);
|
|
|
|
// We found something; return it.
|
|
if (known != LookupTable.getPointer()->end())
|
|
return maybeFilterOutAttrImplements(known->second, name,
|
|
includeAttrImplements);
|
|
|
|
// If we have no more second chances, stop now.
|
|
if (!useNamedLazyMemberLoading || i > 0)
|
|
break;
|
|
|
|
// If we get here, we had a cache-miss and _are_ using
|
|
// NamedLazyMemberLoading. Try to populate a _single_ entry in the
|
|
// MemberLookupTable from both this nominal and all of its extensions, and
|
|
// retry. Any failure to load here flips the useNamedLazyMemberLoading to
|
|
// false, and we fall back to loading all members during the retry.
|
|
auto &Table = *LookupTable.getPointer();
|
|
if (populateLookupTableEntryFromLazyIDCLoader(ctx, Table,
|
|
name, this) ||
|
|
populateLookupTableEntryFromExtensions(ctx, Table, this, name,
|
|
ignoreNewExtensions)) {
|
|
useNamedLazyMemberLoading = false;
|
|
}
|
|
}
|
|
|
|
// None of our attempts found anything.
|
|
return { };
|
|
}
|
|
|
|
void ClassDecl::createObjCMethodLookup() {
|
|
assert(!ObjCMethodLookup && "Already have an Objective-C member table");
|
|
auto &ctx = getASTContext();
|
|
ObjCMethodLookup = new (ctx) ObjCMethodLookupTable();
|
|
|
|
// Register a cleanup with the ASTContext to call the lookup table
|
|
// destructor.
|
|
ctx.addCleanup([this]() {
|
|
this->ObjCMethodLookup->~ObjCMethodLookupTable();
|
|
});
|
|
}
|
|
|
|
MutableArrayRef<AbstractFunctionDecl *>
|
|
ClassDecl::lookupDirect(ObjCSelector selector, bool isInstance) {
|
|
if (!ObjCMethodLookup) {
|
|
createObjCMethodLookup();
|
|
}
|
|
|
|
// If any modules have been loaded since we did the search last (or if we
|
|
// hadn't searched before), look in those modules, too.
|
|
auto &stored = (*ObjCMethodLookup)[{selector, isInstance}];
|
|
ASTContext &ctx = getASTContext();
|
|
if (ctx.getCurrentGeneration() > stored.Generation) {
|
|
ctx.loadObjCMethods(this, selector, isInstance, stored.Generation,
|
|
stored.Methods);
|
|
stored.Generation = ctx.getCurrentGeneration();
|
|
}
|
|
|
|
return { stored.Methods.begin(), stored.Methods.end() };
|
|
}
|
|
|
|
void ClassDecl::recordObjCMethod(AbstractFunctionDecl *method,
|
|
ObjCSelector selector) {
|
|
if (!ObjCMethodLookup) {
|
|
createObjCMethodLookup();
|
|
}
|
|
|
|
// Record the method.
|
|
bool isInstanceMethod = method->isObjCInstanceMethod();
|
|
auto &vec = (*ObjCMethodLookup)[{selector, isInstanceMethod}].Methods;
|
|
|
|
// Check whether we have a duplicate. This only checks more than one
|
|
// element in ill-formed code, so the linear search is acceptable.
|
|
if (std::find(vec.begin(), vec.end(), method) != vec.end())
|
|
return;
|
|
|
|
if (auto *sf = method->getParentSourceFile()) {
|
|
if (vec.size() == 1) {
|
|
// We have a conflict.
|
|
sf->ObjCMethodConflicts.push_back(std::make_tuple(this, selector,
|
|
isInstanceMethod));
|
|
} if (vec.empty()) {
|
|
sf->ObjCMethodList.push_back(method);
|
|
}
|
|
}
|
|
|
|
vec.push_back(method);
|
|
}
|
|
|
|
/// Configure name lookup for the given declaration context and options.
|
|
///
|
|
/// This utility is used by qualified name lookup.
|
|
static void configureLookup(const DeclContext *dc,
|
|
NLOptions &options,
|
|
ReferencedNameTracker *&tracker,
|
|
bool &isLookupCascading) {
|
|
auto &ctx = dc->getASTContext();
|
|
if (ctx.isAccessControlDisabled())
|
|
options |= NL_IgnoreAccessControl;
|
|
|
|
// Find the dependency tracker we'll need for this lookup.
|
|
tracker = nullptr;
|
|
if (auto containingSourceFile =
|
|
dyn_cast<SourceFile>(dc->getModuleScopeContext())) {
|
|
tracker = containingSourceFile->getReferencedNameTracker();
|
|
}
|
|
|
|
auto checkLookupCascading = [dc, options]() -> Optional<bool> {
|
|
switch (static_cast<unsigned>(options & NL_KnownDependencyMask)) {
|
|
case 0:
|
|
return dc->isCascadingContextForLookup(
|
|
/*functionsAreNonCascading=*/false);
|
|
case NL_KnownNonCascadingDependency:
|
|
return false;
|
|
case NL_KnownCascadingDependency:
|
|
return true;
|
|
case NL_KnownNoDependency:
|
|
return None;
|
|
default:
|
|
// FIXME: Use llvm::CountPopulation_64 when that's declared constexpr.
|
|
#if defined(__clang__) || defined(__GNUC__)
|
|
static_assert(__builtin_popcountll(NL_KnownDependencyMask) == 2,
|
|
"mask should only include four values");
|
|
#endif
|
|
llvm_unreachable("mask only includes four values");
|
|
}
|
|
};
|
|
|
|
// Determine whether a lookup here will cascade.
|
|
isLookupCascading = false;
|
|
if (tracker) {
|
|
if (auto maybeLookupCascade = checkLookupCascading())
|
|
isLookupCascading = maybeLookupCascade.getValue();
|
|
else
|
|
tracker = nullptr;
|
|
}
|
|
}
|
|
|
|
/// Determine whether the given declaration is an acceptable lookup
|
|
/// result when searching from the given DeclContext.
|
|
static bool isAcceptableLookupResult(const DeclContext *dc,
|
|
NLOptions options,
|
|
ValueDecl *decl,
|
|
bool onlyCompleteObjectInits) {
|
|
// Filter out designated initializers, if requested.
|
|
if (onlyCompleteObjectInits) {
|
|
if (auto ctor = dyn_cast<ConstructorDecl>(decl)) {
|
|
if (isa<ClassDecl>(ctor->getDeclContext()) && !ctor->isInheritable())
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Ignore stub implementations.
|
|
if (auto ctor = dyn_cast<ConstructorDecl>(decl)) {
|
|
if (ctor->hasStubImplementation())
|
|
return false;
|
|
}
|
|
|
|
// Check access.
|
|
if (!(options & NL_IgnoreAccessControl)) {
|
|
return decl->isAccessibleFrom(dc);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void namelookup::pruneLookupResultSet(const DeclContext *dc, NLOptions options,
|
|
SmallVectorImpl<ValueDecl *> &decls) {
|
|
// If we're supposed to remove overridden declarations, do so now.
|
|
if (options & NL_RemoveOverridden)
|
|
removeOverriddenDecls(decls);
|
|
|
|
// If we're supposed to remove shadowed/hidden declarations, do so now.
|
|
ModuleDecl *M = dc->getParentModule();
|
|
if (options & NL_RemoveNonVisible)
|
|
removeShadowedDecls(decls, M);
|
|
|
|
filterForDiscriminator(decls, M->getDebugClient());
|
|
}
|
|
|
|
/// Inspect the given type to determine which nominal type declarations it
|
|
/// directly references, to facilitate name lookup into those types.
|
|
static void extractDirectlyReferencedNominalTypes(
|
|
Type type, SmallVectorImpl<NominalTypeDecl *> &decls) {
|
|
if (auto nominal = type->getAnyNominal()) {
|
|
decls.push_back(nominal);
|
|
return;
|
|
}
|
|
|
|
if (auto unbound = type->getAs<UnboundGenericType>()) {
|
|
if (auto nominal = dyn_cast<NominalTypeDecl>(unbound->getDecl()))
|
|
decls.push_back(nominal);
|
|
return;
|
|
}
|
|
|
|
if (auto archetypeTy = type->getAs<ArchetypeType>()) {
|
|
// Look in the protocols to which the archetype conforms (always).
|
|
for (auto proto : archetypeTy->getConformsTo())
|
|
decls.push_back(proto);
|
|
|
|
// Look into the superclasses of this archetype.
|
|
if (auto superclass = archetypeTy->getSuperclass()) {
|
|
if (auto superclassDecl = superclass->getClassOrBoundGenericClass())
|
|
decls.push_back(superclassDecl);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (auto compositionTy = type->getAs<ProtocolCompositionType>()) {
|
|
auto layout = compositionTy->getExistentialLayout();
|
|
|
|
for (auto proto : layout.getProtocols()) {
|
|
auto *protoDecl = proto->getDecl();
|
|
decls.push_back(protoDecl);
|
|
}
|
|
|
|
if (auto superclass = layout.explicitSuperclass) {
|
|
auto *superclassDecl = superclass->getClassOrBoundGenericClass();
|
|
if (superclassDecl)
|
|
decls.push_back(superclassDecl);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("Not a type containing nominal types?");
|
|
}
|
|
|
|
bool DeclContext::lookupQualified(Type type,
|
|
DeclName member,
|
|
NLOptions options,
|
|
LazyResolver *typeResolver,
|
|
SmallVectorImpl<ValueDecl *> &decls) const {
|
|
using namespace namelookup;
|
|
assert(decls.empty() && "additive lookup not supported");
|
|
|
|
// Handle AnyObject lookup.
|
|
if (type->isAnyObject())
|
|
return lookupAnyObject(member, options, decls);
|
|
|
|
// Handle lookup in a module.
|
|
if (auto moduleTy = type->getAs<ModuleType>())
|
|
return lookupQualified(moduleTy->getModule(), member, options, decls);
|
|
|
|
// Figure out which nominal types we will look into.
|
|
SmallVector<NominalTypeDecl *, 4> nominalTypesToLookInto;
|
|
extractDirectlyReferencedNominalTypes(type, nominalTypesToLookInto);
|
|
|
|
return lookupQualified(nominalTypesToLookInto, member, options, decls);
|
|
}
|
|
|
|
bool DeclContext::lookupQualified(ArrayRef<NominalTypeDecl *> typeDecls,
|
|
DeclName member,
|
|
NLOptions options,
|
|
SmallVectorImpl<ValueDecl *> &decls) const {
|
|
using namespace namelookup;
|
|
assert(decls.empty() && "additive lookup not supported");
|
|
|
|
// Configure lookup and dig out the tracker.
|
|
ReferencedNameTracker *tracker = nullptr;
|
|
bool isLookupCascading;
|
|
configureLookup(this, options, tracker, isLookupCascading);
|
|
|
|
// Tracking for the nominal types we'll visit.
|
|
SmallVector<NominalTypeDecl *, 4> stack;
|
|
llvm::SmallPtrSet<NominalTypeDecl *, 4> visited;
|
|
bool sawClassDecl = false;
|
|
|
|
// Add the given nominal type to the stack.
|
|
auto addNominalType = [&](NominalTypeDecl *nominal) {
|
|
if (!visited.insert(nominal).second)
|
|
return false;
|
|
|
|
if (isa<ClassDecl>(nominal))
|
|
sawClassDecl = true;
|
|
|
|
stack.push_back(nominal);
|
|
return true;
|
|
};
|
|
|
|
// Add all of the nominal types to the stack.
|
|
for (auto nominal : typeDecls) {
|
|
addNominalType(nominal);
|
|
}
|
|
|
|
// Whether we only want to return complete object initializers.
|
|
bool onlyCompleteObjectInits = false;
|
|
|
|
// Visit all of the nominal types we know about, discovering any others
|
|
// we need along the way.
|
|
auto &ctx = getASTContext();
|
|
auto typeResolver = ctx.getLazyResolver();
|
|
bool wantProtocolMembers = (options & NL_ProtocolMembers);
|
|
while (!stack.empty()) {
|
|
auto current = stack.back();
|
|
stack.pop_back();
|
|
|
|
if (tracker)
|
|
tracker->addUsedMember({current, member.getBaseName()},isLookupCascading);
|
|
|
|
// Make sure we've resolved implicit members, if we need them.
|
|
if (typeResolver) {
|
|
if (member.getBaseName() == DeclBaseName::createConstructor())
|
|
typeResolver->resolveImplicitConstructors(current);
|
|
|
|
typeResolver->resolveImplicitMember(current, member);
|
|
}
|
|
|
|
// Look for results within the current nominal type and its extensions.
|
|
bool currentIsProtocol = isa<ProtocolDecl>(current);
|
|
auto flags = OptionSet<NominalTypeDecl::LookupDirectFlags>();
|
|
if (options & NL_IncludeAttributeImplements)
|
|
flags |= NominalTypeDecl::LookupDirectFlags::IncludeAttrImplements;
|
|
for (auto decl : current->lookupDirect(member, flags)) {
|
|
// If we're performing a type lookup, don't even attempt to validate
|
|
// the decl if its not a type.
|
|
if ((options & NL_OnlyTypes) && !isa<TypeDecl>(decl))
|
|
continue;
|
|
|
|
if (isAcceptableLookupResult(this, options, decl,
|
|
onlyCompleteObjectInits))
|
|
decls.push_back(decl);
|
|
}
|
|
|
|
// Visit superclass.
|
|
if (auto classDecl = dyn_cast<ClassDecl>(current)) {
|
|
// If we're looking for initializers, only look at the superclass if the
|
|
// current class permits inheritance. Even then, only find complete
|
|
// object initializers.
|
|
bool visitSuperclass = true;
|
|
if (member.getBaseName() == DeclBaseName::createConstructor()) {
|
|
if (classDecl->inheritsSuperclassInitializers(typeResolver))
|
|
onlyCompleteObjectInits = true;
|
|
else
|
|
visitSuperclass = false;
|
|
}
|
|
|
|
if (visitSuperclass) {
|
|
if (auto superclassDecl = classDecl->getSuperclassDecl())
|
|
if (visited.insert(superclassDecl).second)
|
|
stack.push_back(superclassDecl);
|
|
}
|
|
}
|
|
|
|
// If we're not looking at a protocol and we're not supposed to
|
|
// visit the protocols that this type conforms to, skip the next
|
|
// step.
|
|
if (!wantProtocolMembers && !currentIsProtocol)
|
|
continue;
|
|
|
|
SmallVector<ProtocolDecl *, 4> protocols;
|
|
|
|
if (auto *protoDecl = dyn_cast<ProtocolDecl>(current)) {
|
|
// If we haven't seen a class declaration yet, look into the protocol.
|
|
if (!sawClassDecl) {
|
|
if (auto superclassDecl = protoDecl->getSuperclassDecl()) {
|
|
visited.insert(superclassDecl);
|
|
stack.push_back(superclassDecl);
|
|
}
|
|
}
|
|
|
|
// Collect inherited protocols.
|
|
for (auto inheritedProto : protoDecl->getInheritedProtocols()) {
|
|
addNominalType(inheritedProto);
|
|
}
|
|
} else {
|
|
// Collect the protocols to which the nominal type conforms.
|
|
for (auto proto : current->getAllProtocols()) {
|
|
if (visited.insert(proto).second) {
|
|
stack.push_back(proto);
|
|
}
|
|
}
|
|
|
|
// For a class, we don't need to visit the protocol members of the
|
|
// superclass: that's already handled.
|
|
if (isa<ClassDecl>(current))
|
|
wantProtocolMembers = false;
|
|
}
|
|
}
|
|
|
|
pruneLookupResultSet(this, options, decls);
|
|
if (auto *debugClient = this->getParentModule()->getDebugClient()) {
|
|
debugClient->finishLookupInNominals(this, typeDecls, member, options,
|
|
decls);
|
|
}
|
|
// We're done. Report success/failure.
|
|
return !decls.empty();
|
|
}
|
|
|
|
bool DeclContext::lookupQualified(ModuleDecl *module, DeclName member,
|
|
NLOptions options,
|
|
SmallVectorImpl<ValueDecl *> &decls) const {
|
|
using namespace namelookup;
|
|
|
|
// Configure lookup and dig out the tracker.
|
|
ReferencedNameTracker *tracker = nullptr;
|
|
bool isLookupCascading;
|
|
configureLookup(this, options, tracker, isLookupCascading);
|
|
|
|
ASTContext &ctx = getASTContext();
|
|
auto topLevelScope = getModuleScopeContext();
|
|
if (module == topLevelScope->getParentModule()) {
|
|
if (tracker) {
|
|
recordLookupOfTopLevelName(topLevelScope, member, isLookupCascading);
|
|
}
|
|
lookupInModule(module, /*accessPath=*/{}, member, decls,
|
|
NLKind::QualifiedLookup, ResolutionKind::Overloadable,
|
|
ctx.getLazyResolver(), topLevelScope);
|
|
} else {
|
|
// Note: This is a lookup into another module. Unless we're compiling
|
|
// multiple modules at once, or if the other module re-exports this one,
|
|
// it shouldn't be possible to have a dependency from that module on
|
|
// anything in this one.
|
|
|
|
// Perform the lookup in all imports of this module.
|
|
forAllVisibleModules(this,
|
|
[&](const ModuleDecl::ImportedModule &import) -> bool {
|
|
if (import.second != module)
|
|
return true;
|
|
lookupInModule(import.second, import.first, member, decls,
|
|
NLKind::QualifiedLookup, ResolutionKind::Overloadable,
|
|
ctx.getLazyResolver(), topLevelScope);
|
|
// If we're able to do an unscoped lookup, we see everything. No need
|
|
// to keep going.
|
|
return !import.first.empty();
|
|
});
|
|
}
|
|
|
|
llvm::SmallPtrSet<ValueDecl *, 4> knownDecls;
|
|
decls.erase(std::remove_if(decls.begin(), decls.end(),
|
|
[&](ValueDecl *vd) -> bool {
|
|
// If we're performing a type lookup, skip non-types.
|
|
if ((options & NL_OnlyTypes) && !isa<TypeDecl>(vd))
|
|
return true;
|
|
|
|
return !knownDecls.insert(vd).second;
|
|
}), decls.end());
|
|
|
|
pruneLookupResultSet(this, options, decls);
|
|
|
|
if (auto *debugClient = this->getParentModule()->getDebugClient()) {
|
|
debugClient->finishLookupInModule(this, module, member, options, decls);
|
|
}
|
|
// We're done. Report success/failure.
|
|
return !decls.empty();
|
|
}
|
|
|
|
bool DeclContext::lookupAnyObject(DeclName member, NLOptions options,
|
|
SmallVectorImpl<ValueDecl *> &decls) const {
|
|
using namespace namelookup;
|
|
assert(decls.empty() && "additive lookup not supported");
|
|
|
|
// Configure lookup and dig out the tracker.
|
|
ReferencedNameTracker *tracker = nullptr;
|
|
bool isLookupCascading;
|
|
configureLookup(this, options, tracker, isLookupCascading);
|
|
|
|
// Record this lookup.
|
|
if (tracker)
|
|
tracker->addDynamicLookupName(member.getBaseName(), isLookupCascading);
|
|
|
|
// Type-only lookup won't find anything on AnyObject.
|
|
if (options & NL_OnlyTypes)
|
|
return false;
|
|
|
|
// Collect all of the visible declarations.
|
|
SmallVector<ValueDecl *, 4> allDecls;
|
|
forAllVisibleModules(this, [&](ModuleDecl::ImportedModule import) {
|
|
import.second->lookupClassMember(import.first, member, allDecls);
|
|
});
|
|
|
|
// For each declaration whose context is not something we've
|
|
// already visited above, add it to the list of declarations.
|
|
llvm::SmallPtrSet<ValueDecl *, 4> knownDecls;
|
|
for (auto decl : allDecls) {
|
|
// If the declaration is not @objc, it cannot be called dynamically.
|
|
if (!decl->isObjC())
|
|
continue;
|
|
|
|
// If the declaration has an override, name lookup will also have
|
|
// found the overridden method. Skip this declaration, because we
|
|
// prefer the overridden method.
|
|
if (decl->getOverriddenDecl())
|
|
continue;
|
|
|
|
auto dc = decl->getDeclContext();
|
|
auto nominal = dc->getSelfNominalTypeDecl();
|
|
assert(nominal && "Couldn't find nominal type?");
|
|
(void)nominal;
|
|
|
|
// If we didn't see this declaration before, and it's an acceptable
|
|
// result, add it to the list.
|
|
// declaration to the list.
|
|
if (knownDecls.insert(decl).second &&
|
|
isAcceptableLookupResult(this, options, decl,
|
|
/*onlyCompleteObjectInits=*/false))
|
|
decls.push_back(decl);
|
|
}
|
|
|
|
pruneLookupResultSet(this, options, decls);
|
|
if (auto *debugClient = this->getParentModule()->getDebugClient()) {
|
|
debugClient->finishLookupInAnyObject(this, member, options, decls);
|
|
}
|
|
// We're done. Report success/failure.
|
|
return !decls.empty();
|
|
}
|
|
|
|
void DeclContext::lookupAllObjCMethods(
|
|
ObjCSelector selector,
|
|
SmallVectorImpl<AbstractFunctionDecl *> &results) const {
|
|
// Collect all of the methods with this selector.
|
|
forAllVisibleModules(this, [&](ModuleDecl::ImportedModule import) {
|
|
import.second->lookupObjCMethods(selector, results);
|
|
});
|
|
|
|
// Filter out duplicates.
|
|
llvm::SmallPtrSet<AbstractFunctionDecl *, 8> visited;
|
|
results.erase(
|
|
std::remove_if(results.begin(), results.end(),
|
|
[&](AbstractFunctionDecl *func) -> bool {
|
|
return !visited.insert(func).second;
|
|
}),
|
|
results.end());
|
|
}
|
|
|
|
/// Given a set of type declarations, find all of the nominal type declarations
|
|
/// that they reference, looking through typealiases as appropriate.
|
|
static TinyPtrVector<NominalTypeDecl *>
|
|
resolveTypeDeclsToNominal(Evaluator &evaluator,
|
|
ASTContext &ctx,
|
|
ArrayRef<TypeDecl *> typeDecls,
|
|
SmallVectorImpl<ModuleDecl *> &modulesFound,
|
|
bool &anyObject,
|
|
llvm::SmallPtrSetImpl<TypeAliasDecl *> &typealiases) {
|
|
TinyPtrVector<NominalTypeDecl *> nominalDecls;
|
|
|
|
for (auto typeDecl : typeDecls) {
|
|
// Nominal type declarations get copied directly.
|
|
if (auto nominalDecl = dyn_cast<NominalTypeDecl>(typeDecl)) {
|
|
nominalDecls.push_back(nominalDecl);
|
|
continue;
|
|
}
|
|
|
|
// Recursively resolve typealiases.
|
|
if (auto typealias = dyn_cast<TypeAliasDecl>(typeDecl)) {
|
|
// FIXME: Ad hoc recursion breaking, so we don't look through the
|
|
// same typealias multiple times.
|
|
if (!typealiases.insert(typealias).second)
|
|
continue;
|
|
|
|
auto underlyingTypeReferences = evaluateOrDefault(evaluator,
|
|
UnderlyingTypeDeclsReferencedRequest{typealias}, {});
|
|
|
|
auto underlyingNominalReferences
|
|
= resolveTypeDeclsToNominal(evaluator, ctx, underlyingTypeReferences,
|
|
modulesFound, anyObject, typealiases);
|
|
nominalDecls.insert(nominalDecls.end(),
|
|
underlyingNominalReferences.begin(),
|
|
underlyingNominalReferences.end());
|
|
|
|
// Recognize Swift.AnyObject directly.
|
|
if (typealias->getName().is("AnyObject")) {
|
|
// TypeRepr version: Builtin.AnyObject
|
|
if (auto typeRepr = typealias->getUnderlyingTypeLoc().getTypeRepr()) {
|
|
if (auto compound = dyn_cast<CompoundIdentTypeRepr>(typeRepr)) {
|
|
auto components = compound->getComponents();
|
|
if (components.size() == 2 &&
|
|
components[0]->getIdentifier().is("Builtin") &&
|
|
components[1]->getIdentifier().is("AnyObject")) {
|
|
anyObject = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Type version: an empty class-bound existential.
|
|
if (auto type = typealias->getUnderlyingTypeLoc().getType()) {
|
|
if (type->isAnyObject())
|
|
anyObject = true;
|
|
}
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// Keep track of modules we see.
|
|
if (auto module = dyn_cast<ModuleDecl>(typeDecl)) {
|
|
modulesFound.push_back(module);
|
|
continue;
|
|
}
|
|
|
|
// Make sure we didn't miss some interesting kind of type declaration.
|
|
assert(isa<AbstractTypeParamDecl>(typeDecl));
|
|
}
|
|
|
|
return nominalDecls;
|
|
}
|
|
|
|
static TinyPtrVector<NominalTypeDecl *>
|
|
resolveTypeDeclsToNominal(Evaluator &evaluator,
|
|
ASTContext &ctx,
|
|
ArrayRef<TypeDecl *> typeDecls,
|
|
SmallVectorImpl<ModuleDecl *> &modulesFound,
|
|
bool &anyObject) {
|
|
llvm::SmallPtrSet<TypeAliasDecl *, 4> typealiases;
|
|
return resolveTypeDeclsToNominal(evaluator, ctx, typeDecls, modulesFound,
|
|
anyObject, typealiases);
|
|
}
|
|
|
|
/// Perform unqualified name lookup for types at the given location.
|
|
static DirectlyReferencedTypeDecls
|
|
directReferencesForUnqualifiedTypeLookup(ASTContext &ctx, DeclName name,
|
|
SourceLoc loc, DeclContext *dc) {
|
|
DirectlyReferencedTypeDecls results;
|
|
UnqualifiedLookup::Options options = UnqualifiedLookup::Flags::TypeLookup;
|
|
UnqualifiedLookup lookup(name, dc, ctx.getLazyResolver(), loc, options);
|
|
for (const auto &result : lookup.Results) {
|
|
if (auto typeDecl = dyn_cast<TypeDecl>(result.getValueDecl()))
|
|
results.push_back(typeDecl);
|
|
}
|
|
|
|
return results;
|
|
}
|
|
|
|
/// Perform qualified name lookup for types.
|
|
static DirectlyReferencedTypeDecls
|
|
directReferencesForQualifiedTypeLookup(Evaluator &evaluator,
|
|
ASTContext &ctx,
|
|
ArrayRef<TypeDecl *> baseTypes,
|
|
DeclName name,
|
|
DeclContext *dc) {
|
|
DirectlyReferencedTypeDecls result;
|
|
auto addResults = [&result](ArrayRef<ValueDecl *> found){
|
|
for (auto decl : found){
|
|
assert(isa<TypeDecl>(decl) &&
|
|
"Lookup should only have found type declarations");
|
|
result.push_back(cast<TypeDecl>(decl));
|
|
}
|
|
};
|
|
|
|
{
|
|
// Look into the base types.
|
|
SmallVector<ValueDecl *, 4> members;
|
|
auto options = NL_RemoveNonVisible | NL_OnlyTypes;
|
|
|
|
// Look through the type declarations we were given, resolving them down
|
|
// to nominal type declarations, module declarations, and
|
|
SmallVector<ModuleDecl *, 2> moduleDecls;
|
|
bool anyObject = false;
|
|
auto nominalTypeDecls =
|
|
resolveTypeDeclsToNominal(ctx.evaluator, ctx, baseTypes, moduleDecls,
|
|
anyObject);
|
|
|
|
dc->lookupQualified(nominalTypeDecls, name, options, members);
|
|
|
|
// Search all of the modules.
|
|
for (auto module : moduleDecls) {
|
|
auto innerOptions = options;
|
|
innerOptions &= ~NL_RemoveOverridden;
|
|
innerOptions &= ~NL_RemoveNonVisible;
|
|
dc->lookupQualified(module, name, innerOptions, members);
|
|
}
|
|
|
|
addResults(members);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Determine the types directly referenced by the given identifier type.
|
|
static DirectlyReferencedTypeDecls
|
|
directReferencesForIdentTypeRepr(Evaluator &evaluator,
|
|
ASTContext &ctx, IdentTypeRepr *ident,
|
|
DeclContext *dc) {
|
|
DirectlyReferencedTypeDecls current;
|
|
|
|
bool firstComponent = true;
|
|
for (const auto &component : ident->getComponentRange()) {
|
|
// If we already set a declaration, use it.
|
|
if (auto typeDecl = component->getBoundDecl()) {
|
|
current = {1, typeDecl};
|
|
continue;
|
|
}
|
|
|
|
// For the first component, perform unqualified name lookup.
|
|
if (current.empty()) {
|
|
current =
|
|
directReferencesForUnqualifiedTypeLookup(ctx,
|
|
component->getIdentifier(),
|
|
component->getIdLoc(),
|
|
dc);
|
|
|
|
// If we didn't find anything, fail now.
|
|
if (current.empty())
|
|
return current;
|
|
|
|
firstComponent = false;
|
|
continue;
|
|
}
|
|
|
|
// For subsequent components, perform qualified name lookup.
|
|
current =
|
|
directReferencesForQualifiedTypeLookup(evaluator, ctx, current,
|
|
component->getIdentifier(), dc);
|
|
if (current.empty())
|
|
return current;
|
|
}
|
|
|
|
return current;
|
|
}
|
|
|
|
static DirectlyReferencedTypeDecls
|
|
directReferencesForTypeRepr(Evaluator &evaluator,
|
|
ASTContext &ctx, TypeRepr *typeRepr,
|
|
DeclContext *dc) {
|
|
switch (typeRepr->getKind()) {
|
|
case TypeReprKind::Array:
|
|
return {1, ctx.getArrayDecl()};
|
|
|
|
case TypeReprKind::Attributed: {
|
|
auto attributed = cast<AttributedTypeRepr>(typeRepr);
|
|
return directReferencesForTypeRepr(evaluator, ctx,
|
|
attributed->getTypeRepr(), dc);
|
|
}
|
|
|
|
case TypeReprKind::Composition: {
|
|
DirectlyReferencedTypeDecls result;
|
|
auto composition = cast<CompositionTypeRepr>(typeRepr);
|
|
for (auto component : composition->getTypes()) {
|
|
auto componentResult =
|
|
directReferencesForTypeRepr(evaluator, ctx, component, dc);
|
|
result.insert(result.end(),
|
|
componentResult.begin(),
|
|
componentResult.end());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
case TypeReprKind::CompoundIdent:
|
|
case TypeReprKind::GenericIdent:
|
|
case TypeReprKind::SimpleIdent:
|
|
return directReferencesForIdentTypeRepr(evaluator, ctx,
|
|
cast<IdentTypeRepr>(typeRepr), dc);
|
|
|
|
case TypeReprKind::Dictionary:
|
|
return { 1, ctx.getDictionaryDecl()};
|
|
|
|
case TypeReprKind::Tuple: {
|
|
auto tupleRepr = cast<TupleTypeRepr>(typeRepr);
|
|
if (tupleRepr->isParenType()) {
|
|
return directReferencesForTypeRepr(evaluator, ctx,
|
|
tupleRepr->getElementType(0), dc);
|
|
}
|
|
return { };
|
|
}
|
|
|
|
case TypeReprKind::Error:
|
|
case TypeReprKind::Function:
|
|
case TypeReprKind::InOut:
|
|
case TypeReprKind::Metatype:
|
|
case TypeReprKind::Owned:
|
|
case TypeReprKind::Protocol:
|
|
case TypeReprKind::Shared:
|
|
case TypeReprKind::SILBox:
|
|
return { };
|
|
|
|
case TypeReprKind::OpaqueReturn:
|
|
return { };
|
|
|
|
case TypeReprKind::Fixed:
|
|
llvm_unreachable("Cannot get fixed TypeReprs in name lookup");
|
|
|
|
case TypeReprKind::Optional:
|
|
case TypeReprKind::ImplicitlyUnwrappedOptional:
|
|
return { 1, ctx.getOptionalDecl() };
|
|
}
|
|
llvm_unreachable("unhandled kind");
|
|
}
|
|
|
|
static DirectlyReferencedTypeDecls directReferencesForType(Type type) {
|
|
// If it's a typealias, return that.
|
|
if (auto aliasType = dyn_cast<TypeAliasType>(type.getPointer()))
|
|
return { 1, aliasType->getDecl() };
|
|
|
|
// If there is a generic declaration, return it.
|
|
if (auto genericDecl = type->getAnyGeneric())
|
|
return { 1, genericDecl };
|
|
|
|
if (type->isExistentialType()) {
|
|
DirectlyReferencedTypeDecls result;
|
|
const auto &layout = type->getExistentialLayout();
|
|
|
|
// Superclass.
|
|
if (auto superclassType = layout.explicitSuperclass) {
|
|
if (auto superclassDecl = superclassType->getAnyGeneric()) {
|
|
result.push_back(superclassDecl);
|
|
}
|
|
}
|
|
|
|
// Protocols.
|
|
for (auto protocolTy : layout.getProtocols())
|
|
result.push_back(protocolTy->getDecl());
|
|
return result;
|
|
}
|
|
|
|
return { };
|
|
}
|
|
|
|
DirectlyReferencedTypeDecls InheritedDeclsReferencedRequest::evaluate(
|
|
Evaluator &evaluator,
|
|
llvm::PointerUnion<TypeDecl *, ExtensionDecl *> decl,
|
|
unsigned index) const {
|
|
|
|
// Prefer syntactic information when we have it.
|
|
TypeLoc &typeLoc = getTypeLoc(decl, index);
|
|
if (auto typeRepr = typeLoc.getTypeRepr()) {
|
|
// Figure out the context in which name lookup will occur.
|
|
DeclContext *dc;
|
|
if (auto typeDecl = decl.dyn_cast<TypeDecl *>())
|
|
dc = typeDecl->getInnermostDeclContext();
|
|
else
|
|
dc = decl.get<ExtensionDecl *>();
|
|
|
|
return directReferencesForTypeRepr(evaluator, dc->getASTContext(), typeRepr,
|
|
dc);
|
|
}
|
|
|
|
// Fall back to semantic types.
|
|
// FIXME: In the long run, we shouldn't need this. Non-syntactic results
|
|
// should be cached.
|
|
if (auto type = typeLoc.getType()) {
|
|
return directReferencesForType(type);
|
|
}
|
|
|
|
return { };
|
|
}
|
|
|
|
DirectlyReferencedTypeDecls UnderlyingTypeDeclsReferencedRequest::evaluate(
|
|
Evaluator &evaluator,
|
|
TypeAliasDecl *typealias) const {
|
|
// Prefer syntactic information when we have it.
|
|
if (auto typeRepr = typealias->getUnderlyingTypeLoc().getTypeRepr()) {
|
|
return directReferencesForTypeRepr(evaluator, typealias->getASTContext(),
|
|
typeRepr, typealias);
|
|
}
|
|
|
|
// Fall back to semantic types.
|
|
// FIXME: In the long run, we shouldn't need this. Non-syntactic results
|
|
// should be cached.
|
|
if (auto type = typealias->getUnderlyingTypeLoc().getType()) {
|
|
return directReferencesForType(type);
|
|
}
|
|
|
|
return { };
|
|
}
|
|
|
|
/// Evaluate a superclass declaration request.
|
|
llvm::Expected<ClassDecl *>
|
|
SuperclassDeclRequest::evaluate(Evaluator &evaluator,
|
|
NominalTypeDecl *subject) const {
|
|
auto &Ctx = subject->getASTContext();
|
|
|
|
// Protocols may get their superclass bound from a `where Self : Superclass`
|
|
// clause.
|
|
if (auto *proto = dyn_cast<ProtocolDecl>(subject)) {
|
|
// If the protocol came from a serialized module, compute the superclass via
|
|
// its generic signature.
|
|
if (proto->wasDeserialized()) {
|
|
auto superTy = proto->getGenericSignature()
|
|
->getSuperclassBound(proto->getSelfInterfaceType());
|
|
if (superTy)
|
|
return superTy->getClassOrBoundGenericClass();
|
|
}
|
|
|
|
// Otherwise check the where clause.
|
|
auto selfBounds = getSelfBoundsFromWhereClause(proto);
|
|
for (auto inheritedNominal : selfBounds.decls)
|
|
if (auto classDecl = dyn_cast<ClassDecl>(inheritedNominal))
|
|
return classDecl;
|
|
}
|
|
|
|
for (unsigned i : indices(subject->getInherited())) {
|
|
// Find the inherited declarations referenced at this position.
|
|
auto inheritedTypes = evaluateOrDefault(evaluator,
|
|
InheritedDeclsReferencedRequest{subject, i}, {});
|
|
|
|
// Resolve those type declarations to nominal type declarations.
|
|
SmallVector<ModuleDecl *, 2> modulesFound;
|
|
bool anyObject = false;
|
|
auto inheritedNominalTypes
|
|
= resolveTypeDeclsToNominal(evaluator, Ctx,
|
|
inheritedTypes, modulesFound, anyObject);
|
|
|
|
// Look for a class declaration.
|
|
for (auto inheritedNominal : inheritedNominalTypes) {
|
|
if (auto classDecl = dyn_cast<ClassDecl>(inheritedNominal))
|
|
return classDecl;
|
|
}
|
|
}
|
|
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
llvm::Expected<NominalTypeDecl *>
|
|
ExtendedNominalRequest::evaluate(Evaluator &evaluator,
|
|
ExtensionDecl *ext) const {
|
|
DirectlyReferencedTypeDecls referenced;
|
|
ASTContext &ctx = ext->getASTContext();
|
|
|
|
// Prefer syntactic information when we have it.
|
|
TypeLoc &typeLoc = ext->getExtendedTypeLoc();
|
|
if (auto typeRepr = typeLoc.getTypeRepr()) {
|
|
referenced = directReferencesForTypeRepr(evaluator, ctx, typeRepr, ext);
|
|
} else if (auto type = typeLoc.getType()) {
|
|
// Fall back to semantic types.
|
|
// FIXME: In the long run, we shouldn't need this. Non-syntactic results
|
|
// should be cached.
|
|
referenced = directReferencesForType(type);
|
|
}
|
|
|
|
// Resolve those type declarations to nominal type declarations.
|
|
SmallVector<ModuleDecl *, 2> modulesFound;
|
|
bool anyObject = false;
|
|
auto nominalTypes
|
|
= resolveTypeDeclsToNominal(evaluator, ctx, referenced, modulesFound,
|
|
anyObject);
|
|
return nominalTypes.empty() ? nullptr : nominalTypes.front();
|
|
}
|
|
|
|
llvm::Expected<NominalTypeDecl *>
|
|
CustomAttrNominalRequest::evaluate(Evaluator &evaluator,
|
|
CustomAttr *attr, DeclContext *dc) const {
|
|
// Find the types referenced by the custom attribute.
|
|
auto &ctx = dc->getASTContext();
|
|
TypeLoc &typeLoc = attr->getTypeLoc();
|
|
DirectlyReferencedTypeDecls decls;
|
|
if (auto typeRepr = typeLoc.getTypeRepr()) {
|
|
decls = directReferencesForTypeRepr(
|
|
evaluator, ctx, typeRepr, dc);
|
|
} else if (Type type = typeLoc.getType()) {
|
|
decls = directReferencesForType(type);
|
|
}
|
|
|
|
// Dig out the nominal type declarations.
|
|
SmallVector<ModuleDecl *, 2> modulesFound;
|
|
bool anyObject = false;
|
|
auto nominals = resolveTypeDeclsToNominal(evaluator, ctx, decls,
|
|
modulesFound, anyObject);
|
|
if (nominals.size() == 1 && !isa<ProtocolDecl>(nominals.front()))
|
|
return nominals.front();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void swift::getDirectlyInheritedNominalTypeDecls(
|
|
llvm::PointerUnion<TypeDecl *, ExtensionDecl *> decl,
|
|
unsigned i,
|
|
llvm::SmallVectorImpl<std::pair<SourceLoc, NominalTypeDecl *>> &result,
|
|
bool &anyObject) {
|
|
auto typeDecl = decl.dyn_cast<TypeDecl *>();
|
|
auto extDecl = decl.dyn_cast<ExtensionDecl *>();
|
|
|
|
ASTContext &ctx = typeDecl ? typeDecl->getASTContext()
|
|
: extDecl->getASTContext();
|
|
|
|
// Find inherited declarations.
|
|
auto referenced = evaluateOrDefault(ctx.evaluator,
|
|
InheritedDeclsReferencedRequest{decl, i}, {});
|
|
|
|
// Resolve those type declarations to nominal type declarations.
|
|
SmallVector<ModuleDecl *, 2> modulesFound;
|
|
auto nominalTypes
|
|
= resolveTypeDeclsToNominal(ctx.evaluator, ctx, referenced, modulesFound,
|
|
anyObject);
|
|
|
|
// Dig out the source location
|
|
// FIXME: This is a hack. We need cooperation from
|
|
// InheritedDeclsReferencedRequest to make this work.
|
|
SourceLoc loc;
|
|
if (TypeRepr *typeRepr = typeDecl ? typeDecl->getInherited()[i].getTypeRepr()
|
|
: extDecl->getInherited()[i].getTypeRepr()){
|
|
loc = typeRepr->getLoc();
|
|
}
|
|
|
|
// Form the result.
|
|
for (auto nominal : nominalTypes) {
|
|
result.push_back({loc, nominal});
|
|
}
|
|
}
|
|
|
|
SmallVector<std::pair<SourceLoc, NominalTypeDecl *>, 4>
|
|
swift::getDirectlyInheritedNominalTypeDecls(
|
|
llvm::PointerUnion<TypeDecl *, ExtensionDecl *> decl,
|
|
bool &anyObject) {
|
|
auto typeDecl = decl.dyn_cast<TypeDecl *>();
|
|
auto extDecl = decl.dyn_cast<ExtensionDecl *>();
|
|
|
|
// Gather results from all of the inherited types.
|
|
unsigned numInherited = typeDecl ? typeDecl->getInherited().size()
|
|
: extDecl->getInherited().size();
|
|
SmallVector<std::pair<SourceLoc, NominalTypeDecl *>, 4> result;
|
|
for (unsigned i : range(numInherited)) {
|
|
getDirectlyInheritedNominalTypeDecls(decl, i, result, anyObject);
|
|
}
|
|
|
|
auto *protoDecl = dyn_cast_or_null<ProtocolDecl>(typeDecl);
|
|
if (protoDecl == nullptr)
|
|
return result;
|
|
|
|
// FIXME: Refactor SelfBoundsFromWhereClauseRequest to dig out
|
|
// the source location.
|
|
SourceLoc loc = SourceLoc();
|
|
auto selfBounds = getSelfBoundsFromWhereClause(decl);
|
|
anyObject |= selfBounds.anyObject;
|
|
|
|
for (auto inheritedNominal : selfBounds.decls)
|
|
result.emplace_back(loc, inheritedNominal);
|
|
|
|
return result;
|
|
}
|
|
|
|
void FindLocalVal::checkPattern(const Pattern *Pat, DeclVisibilityKind Reason) {
|
|
switch (Pat->getKind()) {
|
|
case PatternKind::Tuple:
|
|
for (auto &field : cast<TuplePattern>(Pat)->getElements())
|
|
checkPattern(field.getPattern(), Reason);
|
|
return;
|
|
case PatternKind::Paren:
|
|
case PatternKind::Typed:
|
|
case PatternKind::Var:
|
|
return checkPattern(Pat->getSemanticsProvidingPattern(), Reason);
|
|
case PatternKind::Named:
|
|
return checkValueDecl(cast<NamedPattern>(Pat)->getDecl(), Reason);
|
|
case PatternKind::EnumElement: {
|
|
auto *OP = cast<EnumElementPattern>(Pat);
|
|
if (OP->hasSubPattern())
|
|
checkPattern(OP->getSubPattern(), Reason);
|
|
return;
|
|
}
|
|
case PatternKind::OptionalSome:
|
|
checkPattern(cast<OptionalSomePattern>(Pat)->getSubPattern(), Reason);
|
|
return;
|
|
|
|
case PatternKind::Is: {
|
|
auto *isPat = cast<IsPattern>(Pat);
|
|
if (isPat->hasSubPattern())
|
|
checkPattern(isPat->getSubPattern(), Reason);
|
|
return;
|
|
}
|
|
|
|
// Handle non-vars.
|
|
case PatternKind::Bool:
|
|
case PatternKind::Expr:
|
|
case PatternKind::Any:
|
|
return;
|
|
}
|
|
}
|
|
|
|
void FindLocalVal::checkParameterList(const ParameterList *params) {
|
|
for (auto param : *params) {
|
|
checkValueDecl(param, DeclVisibilityKind::FunctionParameter);
|
|
}
|
|
}
|
|
|
|
void FindLocalVal::checkGenericParams(GenericParamList *Params) {
|
|
if (!Params)
|
|
return;
|
|
|
|
for (auto P : *Params)
|
|
checkValueDecl(P, DeclVisibilityKind::GenericParameter);
|
|
}
|
|
|
|
void FindLocalVal::checkSourceFile(const SourceFile &SF) {
|
|
for (Decl *D : SF.Decls)
|
|
if (auto *TLCD = dyn_cast<TopLevelCodeDecl>(D))
|
|
visitBraceStmt(TLCD->getBody(), /*isTopLevel=*/true);
|
|
}
|
|
|
|
void FindLocalVal::checkStmtCondition(const StmtCondition &Cond) {
|
|
SourceLoc start = SourceLoc();
|
|
for (auto entry : Cond) {
|
|
if (start.isInvalid())
|
|
start = entry.getStartLoc();
|
|
if (auto *P = entry.getPatternOrNull()) {
|
|
SourceRange previousConditionsToHere = SourceRange(start, entry.getEndLoc());
|
|
if (!isReferencePointInRange(previousConditionsToHere))
|
|
checkPattern(P, DeclVisibilityKind::LocalVariable);
|
|
}
|
|
}
|
|
}
|
|
|
|
void FindLocalVal::visitIfStmt(IfStmt *S) {
|
|
if (!isReferencePointInRange(S->getSourceRange()))
|
|
return;
|
|
|
|
if (!S->getElseStmt() ||
|
|
!isReferencePointInRange(S->getElseStmt()->getSourceRange())) {
|
|
checkStmtCondition(S->getCond());
|
|
}
|
|
|
|
visit(S->getThenStmt());
|
|
if (S->getElseStmt())
|
|
visit(S->getElseStmt());
|
|
}
|
|
|
|
void FindLocalVal::visitGuardStmt(GuardStmt *S) {
|
|
if (SM.isBeforeInBuffer(Loc, S->getStartLoc()))
|
|
return;
|
|
|
|
// Names in the guard aren't visible until after the body.
|
|
if (!isReferencePointInRange(S->getBody()->getSourceRange()))
|
|
checkStmtCondition(S->getCond());
|
|
|
|
visit(S->getBody());
|
|
}
|
|
|
|
void FindLocalVal::visitWhileStmt(WhileStmt *S) {
|
|
if (!isReferencePointInRange(S->getSourceRange()))
|
|
return;
|
|
|
|
checkStmtCondition(S->getCond());
|
|
visit(S->getBody());
|
|
}
|
|
void FindLocalVal::visitRepeatWhileStmt(RepeatWhileStmt *S) {
|
|
visit(S->getBody());
|
|
}
|
|
void FindLocalVal::visitDoStmt(DoStmt *S) {
|
|
visit(S->getBody());
|
|
}
|
|
|
|
void FindLocalVal::visitForEachStmt(ForEachStmt *S) {
|
|
if (!isReferencePointInRange(S->getSourceRange()))
|
|
return;
|
|
visit(S->getBody());
|
|
if (!isReferencePointInRange(S->getSequence()->getSourceRange()))
|
|
checkPattern(S->getPattern(), DeclVisibilityKind::LocalVariable);
|
|
}
|
|
|
|
void FindLocalVal::visitBraceStmt(BraceStmt *S, bool isTopLevelCode) {
|
|
if (isTopLevelCode) {
|
|
if (SM.isBeforeInBuffer(Loc, S->getStartLoc()))
|
|
return;
|
|
} else {
|
|
if (!isReferencePointInRange(S->getSourceRange()))
|
|
return;
|
|
}
|
|
|
|
for (auto elem : S->getElements()) {
|
|
if (auto *S = elem.dyn_cast<Stmt*>())
|
|
visit(S);
|
|
}
|
|
for (auto elem : S->getElements()) {
|
|
if (auto *D = elem.dyn_cast<Decl*>()) {
|
|
if (auto *VD = dyn_cast<ValueDecl>(D))
|
|
checkValueDecl(VD, DeclVisibilityKind::LocalVariable);
|
|
}
|
|
}
|
|
}
|
|
|
|
void FindLocalVal::visitSwitchStmt(SwitchStmt *S) {
|
|
if (!isReferencePointInRange(S->getSourceRange()))
|
|
return;
|
|
for (CaseStmt *C : S->getCases()) {
|
|
visit(C);
|
|
}
|
|
}
|
|
|
|
void FindLocalVal::visitCaseStmt(CaseStmt *S) {
|
|
if (!isReferencePointInRange(S->getSourceRange()))
|
|
return;
|
|
// Pattern names aren't visible in the patterns themselves,
|
|
// just in the body or in where guards.
|
|
bool inPatterns = isReferencePointInRange(S->getLabelItemsRange());
|
|
auto items = S->getCaseLabelItems();
|
|
if (inPatterns) {
|
|
for (const auto &CLI : items) {
|
|
auto guard = CLI.getGuardExpr();
|
|
if (guard && isReferencePointInRange(guard->getSourceRange())) {
|
|
checkPattern(CLI.getPattern(), DeclVisibilityKind::LocalVariable);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!inPatterns && !items.empty()) {
|
|
for (auto *vd : S->getCaseBodyVariablesOrEmptyArray()) {
|
|
checkValueDecl(vd, DeclVisibilityKind::LocalVariable);
|
|
}
|
|
}
|
|
visit(S->getBody());
|
|
}
|
|
|
|
void FindLocalVal::visitDoCatchStmt(DoCatchStmt *S) {
|
|
if (!isReferencePointInRange(S->getSourceRange()))
|
|
return;
|
|
visit(S->getBody());
|
|
visitCatchClauses(S->getCatches());
|
|
}
|
|
void FindLocalVal::visitCatchClauses(ArrayRef<CatchStmt*> clauses) {
|
|
// TODO: some sort of binary search?
|
|
for (auto clause : clauses) {
|
|
visitCatchStmt(clause);
|
|
}
|
|
}
|
|
void FindLocalVal::visitCatchStmt(CatchStmt *S) {
|
|
if (!isReferencePointInRange(S->getSourceRange()))
|
|
return;
|
|
// Names in the pattern aren't visible until after the pattern.
|
|
if (!isReferencePointInRange(S->getErrorPattern()->getSourceRange()))
|
|
checkPattern(S->getErrorPattern(), DeclVisibilityKind::LocalVariable);
|
|
visit(S->getBody());
|
|
}
|