Files
swift-mirror/lib/Sema/MiscDiagnostics.cpp
Pavel Yaskevich 2480c99dee [Distributed] Generate thunk for accessor as a regular method
It used to be an accessor but that is not required because
SILDeclRef controls mangling which is the most imprortant
and could be used to emit the right reference.
2022-06-29 17:57:58 -07:00

5405 lines
196 KiB
C++

//===--- MiscDiagnostics.cpp - AST-Level Diagnostics ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements AST-level diagnostics.
//
//===----------------------------------------------------------------------===//
#include "MiscDiagnostics.h"
#include "TypeCheckAvailability.h"
#include "TypeCheckConcurrency.h"
#include "TypeChecker.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Basic/Statistic.h"
#include "swift/Basic/StringExtras.h"
#include "swift/Parse/Lexer.h"
#include "swift/Parse/Parser.h"
#include "swift/Sema/ConstraintSystem.h"
#include "swift/Sema/IDETypeChecking.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/SaveAndRestore.h"
#define DEBUG_TYPE "Sema"
using namespace swift;
using namespace constraints;
/// Return true if this expression is an implicit promotion from T to T?.
static Expr *isImplicitPromotionToOptional(Expr *E) {
if (E->isImplicit())
if (auto IIOE = dyn_cast<InjectIntoOptionalExpr>(
E->getSemanticsProvidingExpr()))
return IIOE->getSubExpr();
return nullptr;
}
bool BaseDiagnosticWalker::walkToDeclPre(Decl *D) {
return isa<ClosureExpr>(D->getDeclContext())
? shouldWalkIntoDeclInClosureContext(D)
: false;
}
bool BaseDiagnosticWalker::shouldWalkIntoDeclInClosureContext(Decl *D) {
auto *closure = dyn_cast<ClosureExpr>(D->getDeclContext());
assert(closure);
if (closure->isSeparatelyTypeChecked())
return false;
// Let's not walk into declarations contained in a multi-statement
// closure because they'd be handled via `typeCheckDecl` that runs
// syntactic diagnostics.
if (!closure->hasSingleExpressionBody()) {
// Since pattern bindings get their types through solution application,
// `typeCheckDecl` doesn't touch initializers (because they are already
// fully type-checked), so pattern bindings have to be allowed to be
// walked to diagnose syntactic issues.
return isa<PatternBindingDecl>(D);
}
return true;
}
/// Diagnose syntactic restrictions of expressions.
///
/// - Module values may only occur as part of qualification.
/// - Metatype names cannot generally be used as values: they need a "T.self"
/// qualification unless used in narrow case (e.g. T() for construction).
/// - '_' may only exist on the LHS of an assignment expression.
/// - warn_unqualified_access values must not be accessed except via qualified
/// lookup.
/// - Partial application of some decls isn't allowed due to implementation
/// limitations.
/// - "&" (aka InOutExpressions) may only exist directly in function call
/// argument lists.
/// - 'self.init' and 'super.init' cannot be wrapped in a larger expression
/// or statement.
/// - Warn about promotions to optional in specific syntactic forms.
/// - Error about collection literals that default to Any collections in
/// invalid positions.
/// - Marker protocols cannot occur as the type of an as? or is expression.
/// - KeyPath expressions cannot refer to effectful properties / subscripts
///
static void diagSyntacticUseRestrictions(const Expr *E, const DeclContext *DC,
bool isExprStmt) {
class DiagnoseWalker : public BaseDiagnosticWalker {
SmallPtrSet<Expr*, 4> AlreadyDiagnosedMetatypes;
SmallPtrSet<DeclRefExpr*, 4> AlreadyDiagnosedBitCasts;
bool IsExprStmt;
public:
ASTContext &Ctx;
const DeclContext *DC;
DiagnoseWalker(const DeclContext *DC, bool isExprStmt)
: IsExprStmt(isExprStmt), Ctx(DC->getASTContext()), DC(DC) {}
std::pair<bool, Pattern*> walkToPatternPre(Pattern *P) override {
return { false, P };
}
bool walkToTypeReprPre(TypeRepr *T) override { return true; }
bool shouldWalkCaptureInitializerExpressions() override { return true; }
bool shouldWalkIntoTapExpression() override { return false; }
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
// See through implicit conversions of the expression. We want to be able
// to associate the parent of this expression with the ultimate callee.
auto Base = E;
while (auto Conv = dyn_cast<ImplicitConversionExpr>(Base))
Base = Conv->getSubExpr();
if (auto *DRE = dyn_cast<DeclRefExpr>(Base)) {
// Verify metatype uses.
if (isa<TypeDecl>(DRE->getDecl())) {
if (isa<ModuleDecl>(DRE->getDecl()))
checkUseOfModule(DRE);
else
checkUseOfMetaTypeName(Base);
}
// Verify warn_unqualified_access uses.
checkUnqualifiedAccessUse(DRE);
// Verify that special decls are eliminated.
checkForDeclWithSpecialTypeCheckingSemantics(DRE);
// Verify that `unsafeBitCast` isn't misused.
checkForSuspiciousBitCasts(DRE, nullptr);
}
if (auto *MRE = dyn_cast<MemberRefExpr>(Base)) {
if (isa<TypeDecl>(MRE->getMember().getDecl()))
checkUseOfMetaTypeName(Base);
}
if (isa<TypeExpr>(Base))
checkUseOfMetaTypeName(Base);
if (auto *KPE = dyn_cast<KeyPathExpr>(E)) {
// raise an error if this KeyPath contains an effectful member.
checkForEffectfulKeyPath(KPE);
}
// Check function calls, looking through implicit conversions on the
// function and inspecting the arguments directly.
if (auto *Call = dyn_cast<ApplyExpr>(E)) {
// Warn about surprising implicit optional promotions.
checkOptionalPromotions(Call);
// Check the callee, looking through implicit conversions.
auto base = Call->getFn();
unsigned uncurryLevel = 0;
while (auto conv = dyn_cast<ImplicitConversionExpr>(base))
base = conv->getSubExpr();
const auto findDynamicMemberRefExpr =
[](Expr *e) -> DynamicMemberRefExpr* {
if (auto open = dyn_cast<OpenExistentialExpr>(e)) {
return dyn_cast<DynamicMemberRefExpr>(open->getSubExpr());
}
return nullptr;
};
if (auto force = dyn_cast<ForceValueExpr>(base)) {
if (auto ref = findDynamicMemberRefExpr(force->getSubExpr()))
base = ref;
} else if (auto bind = dyn_cast<BindOptionalExpr>(base)) {
if (auto ref = findDynamicMemberRefExpr(bind->getSubExpr()))
base = ref;
}
while (auto ignoredBase = dyn_cast<DotSyntaxBaseIgnoredExpr>(base))
base = ignoredBase->getRHS();
ConcreteDeclRef callee;
if (auto *calleeDRE = dyn_cast<DeclRefExpr>(base)) {
checkForSuspiciousBitCasts(calleeDRE, Call);
callee = calleeDRE->getDeclRef();
// Otherwise, try to drill down through member calls for the purposes
// of argument-matching code below.
} else if (auto selfApply = dyn_cast<SelfApplyExpr>(base)) {
++uncurryLevel;
base = selfApply->getSemanticFn();
if (auto calleeDRE = dyn_cast<DeclRefExpr>(base))
callee = calleeDRE->getDeclRef();
// Otherwise, check for a dynamic member.
} else if (auto dynamicMRE = dyn_cast<DynamicMemberRefExpr>(base)) {
++uncurryLevel;
callee = dynamicMRE->getMember();
}
if (callee) {
auto *args = Call->getArgs();
for (auto idx : indices(*args)) {
auto *arg = args->getExpr(idx);
checkMagicIdentifierMismatch(callee, uncurryLevel, idx, arg);
// InOutExprs can be wrapped in some implicit casts.
Expr *unwrapped = arg;
if (auto *IIO = dyn_cast<InjectIntoOptionalExpr>(arg))
unwrapped = IIO->getSubExpr();
if (isa<InOutToPointerExpr>(unwrapped) ||
isa<ArrayToPointerExpr>(unwrapped) ||
isa<ErasureExpr>(unwrapped)) {
auto operand =
cast<ImplicitConversionExpr>(unwrapped)->getSubExpr();
if (auto *IOE = dyn_cast<InOutExpr>(operand))
operand = IOE->getSubExpr();
// Also do some additional work based on how the function uses
// the argument.
checkConvertedPointerArgument(callee, uncurryLevel, idx,
unwrapped, operand);
}
}
}
}
// If we have an assignment expression, scout ahead for acceptable _'s.
if (auto *AE = dyn_cast<AssignExpr>(E)) {
auto destExpr = AE->getDest();
// If the user is assigning the result of a function that returns
// Void to _ then warn, because that is redundant.
if (auto DAE = dyn_cast<DiscardAssignmentExpr>(destExpr)) {
if (auto CE = dyn_cast<CallExpr>(AE->getSrc())) {
if (isa_and_nonnull<FuncDecl>(CE->getCalledValue()) &&
CE->getType()->isVoid()) {
Ctx.Diags
.diagnose(DAE->getLoc(),
diag::discard_expr_void_result_redundant)
.fixItRemoveChars(DAE->getStartLoc(),
AE->getSrc()->getStartLoc());
}
}
}
}
// Diagnose 'self.init' or 'super.init' nested in another expression
// or closure.
if (auto *rebindSelfExpr = dyn_cast<RebindSelfInConstructorExpr>(E)) {
if (!Parent.isNull() || !IsExprStmt || DC->getParent()->isLocalContext()) {
bool isChainToSuper;
(void)rebindSelfExpr->getCalledConstructor(isChainToSuper);
Ctx.Diags.diagnose(E->getLoc(), diag::init_delegation_nested,
isChainToSuper, !IsExprStmt);
}
}
// Diagnose single-element tuple expressions.
if (auto *tupleExpr = dyn_cast<TupleExpr>(E)) {
if (tupleExpr->getNumElements() == 1) {
Ctx.Diags.diagnose(tupleExpr->getElementNameLoc(0),
diag::tuple_single_element)
.fixItRemoveChars(tupleExpr->getElementNameLoc(0),
tupleExpr->getElement(0)->getStartLoc());
}
}
auto diagnoseDuplicateLabels = [&](SourceLoc loc,
ArrayRef<Identifier> labels) {
llvm::SmallDenseSet<Identifier> names;
names.reserve(labels.size());
for (auto name : labels) {
if (name.empty())
continue;
auto inserted = names.insert(name).second;
if (!inserted) {
Ctx.Diags.diagnose(loc, diag::tuple_duplicate_label);
return;
}
}
};
// FIXME: Duplicate labels on enum payloads should be diagnosed
// when declared, not when called.
if (auto *CE = dyn_cast_or_null<CallExpr>(E)) {
auto calledValue = CE->getCalledValue();
if (calledValue && isa<EnumElementDecl>(calledValue)) {
auto *args = CE->getArgs();
SmallVector<Identifier, 4> scratch;
diagnoseDuplicateLabels(args->getLoc(),
args->getArgumentLabels(scratch));
}
}
// Diagnose tuple expressions with duplicate element label.
if (auto *tupleExpr = dyn_cast<TupleExpr>(E)) {
diagnoseDuplicateLabels(tupleExpr->getLoc(),
tupleExpr->getElementNames());
}
// Diagnose checked casts that involve marker protocols.
if (auto cast = dyn_cast<CheckedCastExpr>(E)) {
checkCheckedCastExpr(cast);
}
return { true, E };
}
/// Visit each component of the keypath and emit a diagnostic if they
/// refer to a member that has effects.
void checkForEffectfulKeyPath(KeyPathExpr *keyPath) {
for (const auto &component : keyPath->getComponents()) {
if (component.hasDeclRef()) {
auto decl = component.getDeclRef().getDecl();
if (auto asd = dyn_cast<AbstractStorageDecl>(decl)) {
if (auto getter = asd->getEffectfulGetAccessor()) {
Ctx.Diags.diagnose(component.getLoc(),
diag::effectful_keypath_component,
asd->getDescriptiveKind());
Ctx.Diags.diagnose(asd->getLoc(), diag::kind_declared_here,
asd->getDescriptiveKind());
}
}
}
}
}
void checkCheckedCastExpr(CheckedCastExpr *cast) {
if (!isa<ConditionalCheckedCastExpr>(cast) && !isa<IsExpr>(cast))
return;
Type castType = cast->getCastType();
if (!castType || !castType->isExistentialType())
return;
auto layout = castType->getExistentialLayout();
for (auto proto : layout.getProtocols()) {
if (proto->isMarkerProtocol()) {
Ctx.Diags.diagnose(cast->getLoc(), diag::marker_protocol_cast,
proto->getName());
}
}
}
static Expr *lookThroughArgument(Expr *arg) {
while (1) {
if (auto conv = dyn_cast<ImplicitConversionExpr>(arg))
arg = conv->getSubExpr();
else if (auto *PE = dyn_cast<ParenExpr>(arg))
arg = PE->getSubExpr();
else
break;
}
return arg;
}
void checkConvertedPointerArgument(ConcreteDeclRef callee,
unsigned uncurryLevel,
unsigned argIndex,
Expr *pointerExpr,
Expr *storage) {
if (!isPointerIdentityArgument(callee, uncurryLevel, argIndex))
return;
// Flag that the argument is non-accessing.
if (auto inout = dyn_cast<InOutToPointerExpr>(pointerExpr)) {
inout->setNonAccessing(true);
} else if (auto array = dyn_cast<ArrayToPointerExpr>(pointerExpr)) {
array->setNonAccessing(true);
}
// TODO: warn if taking the address of 'storage' will definitely
// yield a temporary address.
}
/// Is the given call argument, known to be of pointer type, just used
/// for its pointer identity?
bool isPointerIdentityArgument(ConcreteDeclRef ref, unsigned uncurryLevel,
unsigned argIndex) {
// FIXME: derive this from an attribute instead of hacking it based
// on the target name!
auto decl = ref.getDecl();
// Assume that == and != are non-accessing uses.
if (decl->isOperator()) {
auto op = decl->getBaseName();
if (op == "==" || op == "!=")
return true;
return false;
}
// NSObject.addObserver(_:forKeyPath:options:context:)
if (uncurryLevel == 1 && argIndex == 3) {
return decl->getName().isCompoundName("addObserver",
{ "", "forKeyPath",
"options", "context" });
}
// NSObject.removeObserver(_:forKeyPath:context:)
if (uncurryLevel == 1 && argIndex == 2) {
return decl->getName().isCompoundName("removeObserver",
{ "", "forKeyPath", "context" });
}
return false;
}
/// We have a collection literal with a defaulted type, e.g. of [Any]. Emit
/// an error if it was inferred to this type in an invalid context, which is
/// one in which the parent expression is not itself a collection literal.
void checkTypeDefaultedCollectionExpr(CollectionExpr *c) {
// If the parent is a non-expression, or is not itself a literal, then
// produce an error with a fixit to add the type as an explicit
// annotation.
if (c->getNumElements() == 0)
Ctx.Diags.diagnose(c->getLoc(), diag::collection_literal_empty)
.highlight(c->getSourceRange());
else {
assert(c->getType()->hasTypeRepr() &&
"a defaulted type should always be printable");
Ctx.Diags.diagnose(c->getLoc(), diag::collection_literal_heterogeneous,
c->getType())
.highlight(c->getSourceRange())
.fixItInsertAfter(c->getEndLoc(), " as " + c->getType()->getString());
}
}
void checkMagicIdentifierMismatch(ConcreteDeclRef callee,
unsigned uncurryLevel,
unsigned argIndex,
Expr *arg) {
// We only care about args in the arg list.
if (uncurryLevel != (callee.getDecl()->hasCurriedSelf() ? 1 : 0))
return;
// Get underlying params for both callee and caller, if declared.
auto *calleeParam = getParameterAt(callee.getDecl(), argIndex);
auto *callerParam = dyn_cast_or_null<ParamDecl>(
arg->getReferencedDecl(/*stopAtParenExpr=*/true).getDecl()
);
// (Otherwise, we don't need to do anything.)
if (!calleeParam || !callerParam)
return;
auto calleeDefaultArg = getMagicIdentifierDefaultArgKind(calleeParam);
auto callerDefaultArg = getMagicIdentifierDefaultArgKind(callerParam);
// If one of the parameters doesn't have a default arg, or they're both
// compatible, everything's fine.
if (!calleeDefaultArg || !callerDefaultArg ||
areMagicIdentifiersCompatible(*calleeDefaultArg, *callerDefaultArg))
return;
StringRef calleeDefaultArgString =
MagicIdentifierLiteralExpr::getKindString(*calleeDefaultArg);
StringRef callerDefaultArgString =
MagicIdentifierLiteralExpr::getKindString(*callerDefaultArg);
// Emit main warning
Ctx.Diags.diagnose(arg->getLoc(), diag::default_magic_identifier_mismatch,
callerParam->getName(), callerDefaultArgString,
calleeParam->getName(), calleeDefaultArgString);
// Add "change caller default arg" fixit
SourceLoc callerDefaultArgLoc =
callerParam->getStructuralDefaultExpr()->getLoc();
Ctx.Diags.diagnose(callerDefaultArgLoc,
diag::change_caller_default_to_match_callee,
callerParam->getName(), calleeDefaultArgString)
.fixItReplace(callerDefaultArgLoc, calleeDefaultArgString);
// Add "silence with parens" fixit
Ctx.Diags.diagnose(arg->getLoc(),
diag::silence_default_magic_identifier_mismatch)
.fixItInsert(arg->getStartLoc(), "(")
.fixItInsertAfter(arg->getEndLoc(), ")");
// Point to callee parameter
Ctx.Diags.diagnose(calleeParam, diag::decl_declared_here,
calleeParam->getName());
}
Optional<MagicIdentifierLiteralExpr::Kind>
getMagicIdentifierDefaultArgKind(const ParamDecl *param) {
switch (param->getDefaultArgumentKind()) {
#define MAGIC_IDENTIFIER(NAME, STRING, SYNTAX_KIND) \
case DefaultArgumentKind::NAME: \
return MagicIdentifierLiteralExpr::Kind::NAME;
#include "swift/AST/MagicIdentifierKinds.def"
case DefaultArgumentKind::None:
case DefaultArgumentKind::Normal:
case DefaultArgumentKind::Inherited:
case DefaultArgumentKind::NilLiteral:
case DefaultArgumentKind::EmptyArray:
case DefaultArgumentKind::EmptyDictionary:
case DefaultArgumentKind::StoredProperty:
return None;
}
llvm_unreachable("Unhandled DefaultArgumentKind in "
"getMagicIdentifierDefaultArgKind");
}
static bool
areMagicIdentifiersCompatible(MagicIdentifierLiteralExpr::Kind a,
MagicIdentifierLiteralExpr::Kind b) {
if (a == b)
return true;
// The rest of this handles special compatibility rules between the
// `*SpelledAsFile` cases and various other File-related cases.
//
// The way we're going to do this is a bit magical. We will arrange the
// cases in MagicIdentifierLiteralExpr::Kind so that they sort in
// this order:
//
// #fileID < Swift 6 #file < #filePath < Swift 5 #file < others
//
// Before we continue, let's verify that this holds.
using Kind = MagicIdentifierLiteralExpr::Kind;
static_assert(Kind::FileID < Kind::FileIDSpelledAsFile,
"#fileID < Swift 6 #file");
static_assert(Kind::FileIDSpelledAsFile < Kind::FilePath,
"Swift 6 #file < #filePath");
static_assert(Kind::FilePath < Kind::FilePathSpelledAsFile,
"#filePath < Swift 5 #file");
static_assert(Kind::FilePathSpelledAsFile < Kind::Line,
"Swift 5 #file < #line");
static_assert(Kind::FilePathSpelledAsFile < Kind::Column,
"Swift 5 #file < #column");
static_assert(Kind::FilePathSpelledAsFile < Kind::Function,
"Swift 5 #file < #function");
static_assert(Kind::FilePathSpelledAsFile < Kind::DSOHandle,
"Swift 5 #file < #dsohandle");
// The rules are all commutative, so we will take the greater of the two
// kinds.
auto maxKind = std::max(a, b);
// Both Swift 6 #file and Swift 5 #file are greater than all of the cases
// they're compatible with. So if `maxCase` is one of those two, the other
// case must have been compatible with it!
return maxKind == Kind::FileIDSpelledAsFile ||
maxKind == Kind::FilePathSpelledAsFile;
}
void checkUseOfModule(DeclRefExpr *E) {
// Allow module values as a part of:
// - ignored base expressions;
// - expressions that failed to type check.
if (auto *ParentExpr = Parent.getAsExpr()) {
if (isa<DotSyntaxBaseIgnoredExpr>(ParentExpr) ||
isa<UnresolvedDotExpr>(ParentExpr))
return;
}
Ctx.Diags.diagnose(E->getStartLoc(), diag::value_of_module_type);
}
// Diagnose metatype values that don't appear as part of a property,
// method, or constructor reference.
void checkUseOfMetaTypeName(Expr *E) {
// If we've already checked this at a higher level, we're done.
if (!AlreadyDiagnosedMetatypes.insert(E).second)
return;
// In Swift < 6 warn about plain type name passed as an
// argument to a subscript, dynamic subscript, or ObjC
// literal since it used to be accepted.
DiagnosticBehavior behavior = DiagnosticBehavior::Error;
if (auto *ParentExpr = Parent.getAsExpr()) {
if (ParentExpr->isValidParentOfTypeExpr(E))
return;
if (!Ctx.LangOpts.isSwiftVersionAtLeast(6)) {
if (isa<SubscriptExpr>(ParentExpr) ||
isa<DynamicSubscriptExpr>(ParentExpr) ||
isa<ObjectLiteralExpr>(ParentExpr)) {
auto *argList = ParentExpr->getArgs();
assert(argList);
if (argList->isUnlabeledUnary())
behavior = DiagnosticBehavior::Warning;
}
}
}
// Is this a protocol metatype?
Ctx.Diags.diagnose(E->getStartLoc(), diag::value_of_metatype_type)
.limitBehavior(behavior);
// Add fix-it to insert '()', only if this is a metatype of
// non-existential type and has any initializers.
bool isExistential = false;
if (auto metaTy = E->getType()->getAs<MetatypeType>()) {
auto instanceTy = metaTy->getInstanceType();
isExistential = instanceTy->isExistentialType();
if (!isExistential &&
instanceTy->mayHaveMembers() &&
!TypeChecker::lookupMember(const_cast<DeclContext *>(DC), instanceTy,
DeclNameRef::createConstructor()).empty()) {
Ctx.Diags.diagnose(E->getEndLoc(), diag::add_parens_to_type)
.fixItInsertAfter(E->getEndLoc(), "()");
}
}
// Add fix-it to insert ".self".
auto diag = Ctx.Diags.diagnose(E->getEndLoc(), diag::add_self_to_type);
if (E->canAppendPostfixExpression()) {
diag.fixItInsertAfter(E->getEndLoc(), ".self");
} else {
diag.fixItInsert(E->getStartLoc(), "(");
diag.fixItInsertAfter(E->getEndLoc(), ").self");
}
}
void checkUnqualifiedAccessUse(const DeclRefExpr *DRE) {
const Decl *D = DRE->getDecl();
if (!D->getAttrs().hasAttribute<WarnUnqualifiedAccessAttr>())
return;
if (auto *parentExpr = Parent.getAsExpr()) {
if (auto *ignoredBase = dyn_cast<DotSyntaxBaseIgnoredExpr>(parentExpr)){
if (!ignoredBase->isImplicit())
return;
}
if (auto *calledBase = dyn_cast<DotSyntaxCallExpr>(parentExpr)) {
if (!calledBase->isImplicit())
return;
}
}
const auto *VD = cast<ValueDecl>(D);
const TypeDecl *declParent =
VD->getDeclContext()->getSelfNominalTypeDecl();
if (!declParent) {
// If the declaration has been validated but not fully type-checked,
// the attribute might be applied to something invalid.
if (!VD->getDeclContext()->isModuleScopeContext())
return;
declParent = VD->getDeclContext()->getParentModule();
}
Ctx.Diags.diagnose(DRE->getLoc(), diag::warn_unqualified_access,
VD->getBaseIdentifier(),
VD->getDescriptiveKind(),
declParent->getDescriptiveKind(),
declParent->getName());
Ctx.Diags.diagnose(VD, diag::decl_declared_here, VD->getName());
if (VD->getDeclContext()->isTypeContext()) {
Ctx.Diags.diagnose(DRE->getLoc(), diag::fix_unqualified_access_member)
.fixItInsert(DRE->getStartLoc(), "self.");
}
DeclContext *topLevelSubcontext = DC->getModuleScopeContext();
auto descriptor = UnqualifiedLookupDescriptor(
DeclNameRef(VD->getBaseName()), topLevelSubcontext, SourceLoc());
auto lookup = evaluateOrDefault(Ctx.evaluator,
UnqualifiedLookupRequest{descriptor}, {});
// Group results by module. Pick an arbitrary result from each module.
llvm::SmallDenseMap<const ModuleDecl*,const ValueDecl*,4> resultsByModule;
for (auto &result : lookup) {
const ValueDecl *value = result.getValueDecl();
resultsByModule.insert(std::make_pair(value->getModuleContext(),value));
}
// Sort by module name.
using ModuleValuePair = std::pair<const ModuleDecl *, const ValueDecl *>;
SmallVector<ModuleValuePair, 4> sortedResults{
resultsByModule.begin(), resultsByModule.end()
};
llvm::array_pod_sort(sortedResults.begin(), sortedResults.end(),
[](const ModuleValuePair *lhs,
const ModuleValuePair *rhs) {
return lhs->first->getName().compare(rhs->first->getName());
});
auto topLevelDiag = diag::fix_unqualified_access_top_level;
if (sortedResults.size() > 1)
topLevelDiag = diag::fix_unqualified_access_top_level_multi;
for (const ModuleValuePair &pair : sortedResults) {
DescriptiveDeclKind k = pair.second->getDescriptiveKind();
SmallString<32> namePlusDot = pair.first->getName().str();
namePlusDot.push_back('.');
Ctx.Diags.diagnose(DRE->getLoc(), topLevelDiag,
namePlusDot, k, pair.first->getName())
.fixItInsert(DRE->getStartLoc(), namePlusDot);
}
}
void checkForDeclWithSpecialTypeCheckingSemantics(const DeclRefExpr *DRE) {
// Referencing type(of:) and other decls with special type-checking
// behavior as functions is not implemented. Maybe we could wrap up the
// special-case behavior in a closure someday...
if (TypeChecker::getDeclTypeCheckingSemantics(DRE->getDecl())
!= DeclTypeCheckingSemantics::Normal) {
Ctx.Diags.diagnose(DRE->getLoc(), diag::unsupported_special_decl_ref,
DRE->getDecl()->getBaseIdentifier());
}
}
enum BitcastableNumberKind {
BNK_None = 0,
BNK_Int8,
BNK_Int16,
BNK_Int32,
BNK_Int64,
BNK_Int,
BNK_UInt8,
BNK_UInt16,
BNK_UInt32,
BNK_UInt64,
BNK_UInt,
BNK_Float,
BNK_Double,
};
BitcastableNumberKind getBitcastableNumberKind(Type t) const {
auto decl = t->getNominalOrBoundGenericNominal();
#define MATCH_DECL(type) \
if (decl == Ctx.get##type##Decl()) \
return BNK_##type;
MATCH_DECL(Int8)
MATCH_DECL(Int16)
MATCH_DECL(Int32)
MATCH_DECL(Int64)
MATCH_DECL(Int)
MATCH_DECL(UInt8)
MATCH_DECL(UInt16)
MATCH_DECL(UInt32)
MATCH_DECL(UInt64)
MATCH_DECL(UInt)
MATCH_DECL(Float)
MATCH_DECL(Double)
#undef MATCH_DECL
return BNK_None;
}
static constexpr unsigned BNKPair(BitcastableNumberKind a,
BitcastableNumberKind b) {
return (a << 8) | b;
}
void checkForSuspiciousBitCasts(DeclRefExpr *DRE,
Expr *Parent = nullptr) {
if (DRE->getDecl() != Ctx.getUnsafeBitCast())
return;
if (DRE->getDeclRef().getSubstitutions().empty())
return;
// Don't check the same use of unsafeBitCast twice.
if (!AlreadyDiagnosedBitCasts.insert(DRE).second)
return;
auto subMap = DRE->getDeclRef().getSubstitutions();
auto fromTy = subMap.getReplacementTypes()[0];
auto toTy = subMap.getReplacementTypes()[1];
// Warn about `unsafeBitCast` formulations that are undefined behavior
// or have better-defined alternative APIs that can be used instead.
// If we have a parent ApplyExpr that calls bitcast, extract the argument
// for fixits.
Expr *subExpr = nullptr;
CharSourceRange removeBeforeRange, removeAfterRange;
if (auto apply = dyn_cast_or_null<ApplyExpr>(Parent)) {
subExpr = apply->getArgs()->getExpr(0);
// Determine the fixit range from the start of the application to
// the first argument, `unsafeBitCast(`
removeBeforeRange = CharSourceRange(Ctx.SourceMgr, DRE->getLoc(),
subExpr->getStartLoc());
// Determine the fixit range from the end of the first argument to
// the end of the application, `, to: T.self)`
removeAfterRange = CharSourceRange(Ctx.SourceMgr,
Lexer::getLocForEndOfToken(Ctx.SourceMgr,
subExpr->getEndLoc()),
Lexer::getLocForEndOfToken(Ctx.SourceMgr,
apply->getEndLoc()));
}
// Casting to the same type or a superclass is a no-op.
if (toTy->isEqual(fromTy) ||
toTy->isExactSuperclassOf(fromTy)) {
auto d = Ctx.Diags.diagnose(DRE->getLoc(), diag::bitcasting_is_no_op,
fromTy, toTy);
if (subExpr) {
d.fixItRemoveChars(removeBeforeRange.getStart(),
removeBeforeRange.getEnd())
.fixItRemoveChars(removeAfterRange.getStart(),
removeAfterRange.getEnd());
}
return;
}
if (auto fromFnTy = fromTy->getAs<FunctionType>()) {
if (auto toFnTy = toTy->getAs<FunctionType>()) {
// Casting a nonescaping function to escaping is UB.
// `withoutActuallyEscaping` ought to be used instead.
if (fromFnTy->isNoEscape() && !toFnTy->isNoEscape()) {
Ctx.Diags.diagnose(DRE->getLoc(), diag::bitcasting_away_noescape,
fromTy, toTy);
}
// Changing function representation (say, to try to force a
// @convention(c) function pointer to exist) is also unlikely to work.
if (fromFnTy->getRepresentation() != toFnTy->getRepresentation()) {
Ctx.Diags.diagnose(DRE->getLoc(),
diag::bitcasting_to_change_function_rep, fromTy,
toTy);
}
return;
}
}
// Unchecked casting to a subclass is better done by unsafeDowncast.
if (fromTy->isBindableToSuperclassOf(toTy)) {
Ctx.Diags.diagnose(DRE->getLoc(), diag::bitcasting_to_downcast,
fromTy, toTy)
.fixItReplace(DRE->getNameLoc().getBaseNameLoc(),
"unsafeDowncast");
return;
}
// Casting among pointer types should use the Unsafe*Pointer APIs for
// rebinding typed memory or accessing raw memory instead.
PointerTypeKind fromPTK, toPTK;
Type fromPointee = fromTy->getAnyPointerElementType(fromPTK);
Type toPointee = toTy->getAnyPointerElementType(toPTK);
if (fromPointee && toPointee) {
// Casting to a pointer to the same type or UnsafeRawPointer can use
// normal initializers on the destination type.
if (toPointee->isEqual(fromPointee)
|| isRawPointerKind(toPTK)) {
auto d = Ctx.Diags.diagnose(DRE->getLoc(),
diag::bitcasting_to_change_pointer_kind,
fromTy, toTy,
toTy->getStructOrBoundGenericStruct()->getName());
if (subExpr) {
StringRef before, after;
switch (toPTK) {
case PTK_UnsafePointer:
// UnsafePointer(mutablePointer)
before = "UnsafePointer(";
after = ")";
break;
case PTK_UnsafeMutablePointer:
case PTK_AutoreleasingUnsafeMutablePointer:
before = "UnsafeMutablePointer(mutating: ";
after = ")";
break;
case PTK_UnsafeRawPointer:
// UnsafeRawPointer(pointer)
before = "UnsafeRawPointer(";
after = ")";
break;
case PTK_UnsafeMutableRawPointer:
// UnsafeMutableRawPointer(mutating: rawPointer)
before = fromPTK == PTK_UnsafeMutablePointer
? "UnsafeMutableRawPointer("
: "UnsafeMutableRawPointer(mutating: ";
after = ")";
break;
}
d.fixItReplaceChars(removeBeforeRange.getStart(),
removeBeforeRange.getEnd(),
before)
.fixItReplaceChars(removeAfterRange.getStart(),
removeAfterRange.getEnd(),
after);
}
return;
}
// Casting to a different typed pointer type should use
// withMemoryRebound.
if (!isRawPointerKind(fromPTK) && !isRawPointerKind(toPTK)) {
Ctx.Diags.diagnose(DRE->getLoc(),
diag::bitcasting_to_change_pointee_type,
fromTy, toTy);
return;
}
// Casting a raw pointer to a typed pointer should bind the memory
// (or assume it's already bound).
assert(isRawPointerKind(fromPTK) && !isRawPointerKind(toPTK)
&& "unhandled cast combo?!");
Ctx.Diags.diagnose(DRE->getLoc(),
diag::bitcasting_to_give_type_to_raw_pointer,
fromTy, toTy);
if (subExpr) {
SmallString<64> fixitBuf;
{
llvm::raw_svector_ostream os(fixitBuf);
os << ".assumingMemoryBound(to: ";
toPointee->print(os);
os << ".self)";
}
Ctx.Diags.diagnose(DRE->getLoc(),
diag::bitcast_assume_memory_rebound,
toPointee)
.fixItRemoveChars(removeBeforeRange.getStart(),
removeBeforeRange.getEnd())
.fixItReplaceChars(removeAfterRange.getStart(),
removeAfterRange.getEnd(),
fixitBuf);
fixitBuf.clear();
{
llvm::raw_svector_ostream os(fixitBuf);
os << ".bindMemory(to: ";
toPointee->print(os);
os << ".self, capacity: <""#capacity#"">)";
}
Ctx.Diags.diagnose(DRE->getLoc(),
diag::bitcast_bind_memory,
toPointee)
.fixItRemoveChars(removeBeforeRange.getStart(),
removeBeforeRange.getEnd())
.fixItReplaceChars(removeAfterRange.getStart(),
removeAfterRange.getEnd(),
fixitBuf);
}
return;
}
StringRef replaceBefore, replaceAfter;
Optional<Diag<Type, Type>> diagID;
SmallString<64> replaceBeforeBuf;
// Bitcasting among numeric types should use `bitPattern:` initializers.
auto fromBNK = getBitcastableNumberKind(fromTy);
auto toBNK = getBitcastableNumberKind(toTy);
if (fromBNK && toBNK) {
switch (BNKPair(fromBNK, toBNK)) {
// Combos that can be bitPattern-ed with a constructor
case BNKPair(BNK_Int8, BNK_UInt8):
case BNKPair(BNK_UInt8, BNK_Int8):
case BNKPair(BNK_Int16, BNK_UInt16):
case BNKPair(BNK_UInt16, BNK_Int16):
case BNKPair(BNK_Int32, BNK_UInt32):
case BNKPair(BNK_UInt32, BNK_Int32):
case BNKPair(BNK_Int64, BNK_UInt64):
case BNKPair(BNK_UInt64, BNK_Int64):
case BNKPair(BNK_Int, BNK_UInt):
case BNKPair(BNK_UInt, BNK_Int):
case BNKPair(BNK_UInt32, BNK_Float):
case BNKPair(BNK_UInt64, BNK_Double):
diagID = diag::bitcasting_for_number_bit_pattern_init;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << "(bitPattern: ";
}
replaceBefore = replaceBeforeBuf;
replaceAfter = ")";
break;
// Combos that can be bitPattern-ed with a constructor and sign flip
case BNKPair(BNK_Int32, BNK_Float):
case BNKPair(BNK_Int64, BNK_Double):
diagID = diag::bitcasting_for_number_bit_pattern_init;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << "(bitPattern: ";
if (fromBNK == BNK_Int32)
os << "UInt32(bitPattern: ";
else
os << "UInt64(bitPattern: ";
}
replaceBefore = replaceBeforeBuf;
replaceAfter = "))";
break;
// Combos that can be bitPattern-ed with a property
case BNKPair(BNK_Float, BNK_UInt32):
case BNKPair(BNK_Double, BNK_UInt64):
diagID = diag::bitcasting_for_number_bit_pattern_property;
replaceAfter = ".bitPattern";
break;
// Combos that can be bitPattern-ed with a property and sign flip
case BNKPair(BNK_Float, BNK_Int32):
case BNKPair(BNK_Double, BNK_Int64):
diagID = diag::bitcasting_for_number_bit_pattern_property;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << "(bitPattern: ";
}
replaceBefore = replaceBeforeBuf;
replaceAfter = ")";
break;
// Combos that can be bitPattern-ed with a constructor once (U)Int is
// converted to a sized type.
case BNKPair(BNK_UInt, BNK_Float):
case BNKPair(BNK_Int, BNK_UInt32):
case BNKPair(BNK_UInt, BNK_Int32):
case BNKPair(BNK_Int, BNK_UInt64):
case BNKPair(BNK_UInt, BNK_Int64):
case BNKPair(BNK_UInt, BNK_Double):
diagID = diag::bitcasting_for_number_bit_pattern_init;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << "(bitPattern: ";
if (fromBNK == BNK_Int)
os << "Int";
else
os << "UInt";
if (toBNK == BNK_Float
|| toBNK == BNK_Int32
|| toBNK == BNK_UInt32)
os << "32(";
else
os << "64(";
}
replaceBefore = replaceBeforeBuf;
replaceAfter = "))";
break;
case BNKPair(BNK_Int, BNK_Float):
case BNKPair(BNK_Int, BNK_Double):
diagID = diag::bitcasting_for_number_bit_pattern_init;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << "(bitPattern: UInt";
if (toBNK == BNK_Float
|| toBNK == BNK_Int32
|| toBNK == BNK_UInt32)
os << "32(bitPattern: Int32(";
else
os << "64(bitPattern: Int64(";
}
replaceBefore = replaceBeforeBuf;
replaceAfter = ")))";
break;
// Combos that can be bitPattern-ed then converted from a sized type
// to (U)Int.
case BNKPair(BNK_Int32, BNK_UInt):
case BNKPair(BNK_UInt32, BNK_Int):
case BNKPair(BNK_Int64, BNK_UInt):
case BNKPair(BNK_UInt64, BNK_Int):
diagID = diag::bitcasting_for_number_bit_pattern_init;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << "(";
if (toBNK == BNK_UInt)
os << "UInt";
else
os << "Int";
if (fromBNK == BNK_Int32 || fromBNK == BNK_UInt32)
os << "32(bitPattern: ";
else
os << "64(bitPattern: ";
}
replaceBefore = replaceBeforeBuf;
replaceAfter = "))";
break;
case BNKPair(BNK_Float, BNK_UInt):
case BNKPair(BNK_Double, BNK_UInt):
diagID = diag::bitcasting_for_number_bit_pattern_property;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << "(";
}
replaceBefore = replaceBeforeBuf;
replaceAfter = ".bitPattern)";
break;
case BNKPair(BNK_Float, BNK_Int):
case BNKPair(BNK_Double, BNK_Int):
diagID = diag::bitcasting_for_number_bit_pattern_property;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << "(bitPattern: UInt(";
}
replaceBefore = replaceBeforeBuf;
replaceAfter = ".bitPattern))";
break;
// Combos that should be done with a value-preserving initializer.
case BNKPair(BNK_Int, BNK_Int32):
case BNKPair(BNK_Int, BNK_Int64):
case BNKPair(BNK_UInt, BNK_UInt32):
case BNKPair(BNK_UInt, BNK_UInt64):
case BNKPair(BNK_Int32, BNK_Int):
case BNKPair(BNK_Int64, BNK_Int):
case BNKPair(BNK_UInt32, BNK_UInt):
case BNKPair(BNK_UInt64, BNK_UInt):
diagID = diag::bitcasting_to_change_from_unsized_to_sized_int;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << '(';
}
replaceBefore = replaceBeforeBuf;
replaceAfter = ")";
break;
default:
// Leave other combos alone.
break;
}
}
// Casting a pointer to an int or back should also use bitPattern
// initializers.
if (fromPointee && toBNK) {
switch (toBNK) {
case BNK_UInt:
case BNK_Int:
diagID = diag::bitcasting_for_number_bit_pattern_init;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << "(bitPattern: ";
}
replaceBefore = replaceBeforeBuf;
replaceAfter = ")";
break;
case BNK_UInt64:
case BNK_UInt32:
case BNK_Int64:
case BNK_Int32:
diagID = diag::bitcasting_for_number_bit_pattern_init;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << '(';
if (toBNK == BNK_UInt32 || toBNK == BNK_UInt64)
os << "UInt(bitPattern: ";
else
os << "Int(bitPattern: ";
}
replaceBefore = replaceBeforeBuf;
replaceAfter = "))";
break;
default:
break;
}
}
if (fromBNK && toPointee) {
switch (fromBNK) {
case BNK_UInt:
case BNK_Int:
diagID = diag::bitcasting_for_number_bit_pattern_init;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << "(bitPattern: ";
}
replaceBefore = replaceBeforeBuf;
replaceAfter = ")";
break;
case BNK_UInt64:
case BNK_UInt32:
case BNK_Int64:
case BNK_Int32:
diagID = diag::bitcasting_for_number_bit_pattern_init;
{
llvm::raw_svector_ostream os(replaceBeforeBuf);
toTy->print(os);
os << "(bitPattern: ";
if (fromBNK == BNK_Int32 || fromBNK == BNK_Int64)
os << "Int(";
else
os << "UInt(";
}
replaceBefore = replaceBeforeBuf;
replaceAfter = "))";
break;
default:
break;
}
}
if (diagID) {
auto d = Ctx.Diags.diagnose(DRE->getLoc(), *diagID, fromTy, toTy);
if (subExpr) {
d.fixItReplaceChars(removeBeforeRange.getStart(),
removeBeforeRange.getEnd(),
replaceBefore);
d.fixItReplaceChars(removeAfterRange.getStart(),
removeAfterRange.getEnd(),
replaceAfter);
}
}
}
/// Return true if this is a 'nil' literal. This looks
/// like this if the type is Optional<T>:
///
/// (dot_syntax_call_expr implicit type='Int?'
/// (declref_expr implicit decl=Optional.none)
/// (type_expr type=Int?))
///
/// Or like this if it is any other ExpressibleByNilLiteral type:
///
/// (nil_literal_expr)
///
bool isTypeCheckedOptionalNil(Expr *E) {
if (dyn_cast<NilLiteralExpr>(E)) return true;
auto CE = dyn_cast<ApplyExpr>(E->getSemanticsProvidingExpr());
if (!CE || !CE->isImplicit())
return false;
// First case -- Optional.none
if (auto DRE = dyn_cast<DeclRefExpr>(CE->getSemanticFn()))
return DRE->getDecl() == Ctx.getOptionalNoneDecl();
return false;
}
/// Warn about surprising implicit optional promotions involving operands to
/// calls. Specifically, we warn about these expressions when the 'x'
/// operand is implicitly promoted to optional:
///
/// x ?? y
/// x == nil // also !=
///
void checkOptionalPromotions(ApplyExpr *call) {
// We only care about binary expressions.
auto *BE = dyn_cast<BinaryExpr>(call);
if (!BE) return;
// Dig out the function we're calling.
auto fnExpr = call->getSemanticFn();
if (auto dotSyntax = dyn_cast<DotSyntaxCallExpr>(fnExpr))
fnExpr = dotSyntax->getSemanticFn();
auto DRE = dyn_cast<DeclRefExpr>(fnExpr);
if (!DRE || !DRE->getDecl()->isOperator())
return;
auto lhs = BE->getLHS();
auto rhs = BE->getRHS();
auto calleeName = DRE->getDecl()->getBaseName();
Expr *subExpr = nullptr;
if (calleeName == "??" &&
(subExpr = isImplicitPromotionToOptional(lhs))) {
Ctx.Diags.diagnose(DRE->getLoc(), diag::use_of_qq_on_non_optional_value,
subExpr->getType())
.highlight(lhs->getSourceRange())
.fixItRemove(SourceRange(DRE->getLoc(), rhs->getEndLoc()));
return;
}
if (calleeName == "==" || calleeName == "!=" ||
calleeName == "===" || calleeName == "!==") {
if (((subExpr = isImplicitPromotionToOptional(lhs)) &&
isTypeCheckedOptionalNil(rhs)) ||
(isTypeCheckedOptionalNil(lhs) &&
(subExpr = isImplicitPromotionToOptional(rhs)))) {
bool isTrue = calleeName == "!=" || calleeName == "!==";
Ctx.Diags.diagnose(DRE->getLoc(), diag::nonoptional_compare_to_nil,
subExpr->getType(), isTrue)
.highlight(lhs->getSourceRange())
.highlight(rhs->getSourceRange());
return;
}
}
}
};
DiagnoseWalker Walker(DC, isExprStmt);
const_cast<Expr *>(E)->walk(Walker);
// Diagnose uses of collection literals with defaulted types at the top
// level.
if (auto collection
= dyn_cast<CollectionExpr>(E->getSemanticsProvidingExpr())) {
if (collection->isTypeDefaulted()) {
Walker.checkTypeDefaultedCollectionExpr(
const_cast<CollectionExpr *>(collection));
}
}
}
/// Diagnose recursive use of properties within their own accessors
static void diagRecursivePropertyAccess(const Expr *E, const DeclContext *DC) {
auto fn = dyn_cast<AccessorDecl>(DC);
if (!fn)
return;
auto var = dyn_cast<VarDecl>(fn->getStorage());
if (!var) // Ignore subscripts
return;
class DiagnoseWalker : public ASTWalker {
ASTContext &Ctx;
VarDecl *Var;
const AccessorDecl *Accessor;
public:
explicit DiagnoseWalker(VarDecl *var, const AccessorDecl *Accessor)
: Ctx(var->getASTContext()), Var(var), Accessor(Accessor) {}
/// Return true if this is an implicit reference to self.
static bool isImplicitSelfUse(Expr *E) {
auto *DRE = dyn_cast<DeclRefExpr>(E);
return DRE && DRE->isImplicit() && isa<VarDecl>(DRE->getDecl()) &&
cast<VarDecl>(DRE->getDecl())->isSelfParameter();
}
bool shouldWalkIntoSeparatelyCheckedClosure(ClosureExpr *expr) override {
return false;
}
bool shouldWalkCaptureInitializerExpressions() override { return true; }
bool shouldWalkIntoTapExpression() override { return false; }
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
Expr *subExpr;
bool isStore = false;
if (auto *AE = dyn_cast<AssignExpr>(E)) {
subExpr = AE->getDest();
// If we couldn't flatten this expression, don't explode.
if (!subExpr)
return { true, E };
isStore = true;
} else if (auto *IOE = dyn_cast<InOutExpr>(E)) {
subExpr = IOE->getSubExpr();
isStore = true;
} else {
subExpr = E;
}
if (auto *BOE = dyn_cast<BindOptionalExpr>(subExpr))
subExpr = BOE;
if (auto *DRE = dyn_cast<DeclRefExpr>(subExpr)) {
if (DRE->getDecl() == Var) {
// Handle local and top-level computed variables.
if (DRE->getAccessSemantics() == AccessSemantics::Ordinary) {
bool shouldDiagnose = false;
// Warn about any property access in the getter.
if (Accessor->isGetter())
shouldDiagnose = !isStore;
// Warn about stores in the setter, but allow loads.
if (Accessor->isSetter())
shouldDiagnose = isStore;
// But silence the warning if the base was explicitly qualified.
auto parentAsExpr = Parent.getAsExpr();
if (isa_and_nonnull<DotSyntaxBaseIgnoredExpr>(parentAsExpr))
shouldDiagnose = false;
if (shouldDiagnose) {
Ctx.Diags.diagnose(subExpr->getLoc(),
diag::recursive_accessor_reference,
Var->getName(), Accessor->isSetter());
}
}
// If this is a direct store in a "willSet", we reject this because
// it is about to get overwritten.
if (isStore &&
DRE->getAccessSemantics() == AccessSemantics::DirectToStorage &&
Accessor->getAccessorKind() == AccessorKind::WillSet) {
Ctx.Diags.diagnose(E->getLoc(), diag::store_in_willset,
Var->getName());
}
}
} else if (auto *MRE = dyn_cast<MemberRefExpr>(subExpr)) {
// Handle instance and type computed variables.
// Find MemberRefExprs that have an implicit "self" base.
if (MRE->getMember().getDecl() == Var &&
isa<DeclRefExpr>(MRE->getBase()) &&
isImplicitSelfUse(MRE->getBase())) {
if (MRE->getAccessSemantics() == AccessSemantics::Ordinary) {
bool shouldDiagnose = false;
// Warn about any property access in the getter.
if (Accessor->isGetter())
shouldDiagnose = !isStore;
// Warn about stores in the setter, but allow loads.
if (Accessor->isSetter())
shouldDiagnose = isStore;
if (shouldDiagnose) {
Ctx.Diags.diagnose(subExpr->getLoc(),
diag::recursive_accessor_reference,
Var->getName(), Accessor->isSetter());
Ctx.Diags.diagnose(subExpr->getLoc(),
diag::recursive_accessor_reference_silence)
.fixItInsert(subExpr->getStartLoc(), "self.");
}
}
// If this is a direct store in a "willSet", we reject this because
// it is about to get overwritten.
if (isStore &&
MRE->getAccessSemantics() == AccessSemantics::DirectToStorage &&
Accessor->getAccessorKind() == AccessorKind::WillSet) {
Ctx.Diags.diagnose(subExpr->getLoc(), diag::store_in_willset,
Var->getName());
}
}
}
return { true, E };
}
};
DiagnoseWalker walker(var, fn);
const_cast<Expr *>(E)->walk(walker);
}
/// Look for any property references in closures that lack a 'self.' qualifier.
/// Within a closure, we require that the source code contain 'self.' explicitly
/// (or that the closure explicitly capture 'self' in the capture list) because
/// 'self' is captured, not the property value. This is a common source of
/// confusion, so we force an explicit self.
static void diagnoseImplicitSelfUseInClosure(const Expr *E,
const DeclContext *DC) {
class DiagnoseWalker : public BaseDiagnosticWalker {
ASTContext &Ctx;
SmallVector<AbstractClosureExpr *, 4> Closures;
public:
explicit DiagnoseWalker(ASTContext &ctx, AbstractClosureExpr *ACE)
: Ctx(ctx), Closures() {
if (ACE)
Closures.push_back(ACE);
}
static bool isEnclosingSelfReference(VarDecl *var,
const AbstractClosureExpr *inClosure) {
if (var->isSelfParameter())
return true;
// Capture variables have a DC of the parent function.
if (inClosure && var->isSelfParamCapture() &&
var->getDeclContext() != inClosure->getParent())
return true;
return false;
}
/// Return true if this is an implicit reference to self which is required
/// to be explicit in an escaping closure. Metatype references and value
/// type references are excluded.
static bool isImplicitSelfParamUseLikelyToCauseCycle(Expr *E,
const AbstractClosureExpr *inClosure) {
auto *DRE = dyn_cast<DeclRefExpr>(E);
if (!DRE || !DRE->isImplicit())
return false;
auto var = dyn_cast<VarDecl>(DRE->getDecl());
if (!var || !isEnclosingSelfReference(var, inClosure))
return false;
// Defensive check for type. If the expression doesn't have type here, it
// should have been diagnosed somewhere else.
Type ty = DRE->getType();
assert(ty && "Implicit self parameter ref without type");
if (!ty)
return false;
// Metatype self captures don't extend the lifetime of an object.
if (ty->is<MetatypeType>())
return false;
// If self does not have reference semantics, it is very unlikely that
// capturing it will create a reference cycle.
if (!ty->hasReferenceSemantics())
return false;
return true;
}
/// Return true if this is a closure expression that will require explicit
/// use or capture of "self." for qualification of member references.
static bool isClosureRequiringSelfQualification(
const AbstractClosureExpr *CE) {
// If the closure's type was inferred to be noescape, then it doesn't
// need qualification.
if (AnyFunctionRef(const_cast<AbstractClosureExpr *>(CE))
.isKnownNoEscape())
return false;
if (auto autoclosure = dyn_cast<AutoClosureExpr>(CE)) {
if (autoclosure->getThunkKind() == AutoClosureExpr::Kind::AsyncLet)
return false;
}
// If the closure was used in a context where it's explicitly stated
// that it does not need "self." qualification, don't require it.
if (auto closure = dyn_cast<ClosureExpr>(CE)) {
if (closure->allowsImplicitSelfCapture())
return false;
}
return true;
}
bool shouldWalkCaptureInitializerExpressions() override { return true; }
bool shouldWalkIntoTapExpression() override { return false; }
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
if (auto *CE = dyn_cast<AbstractClosureExpr>(E)) {
// If this is a potentially-escaping closure expression, start looking
// for references to self if we aren't already.
if (isClosureRequiringSelfQualification(CE))
Closures.push_back(CE);
}
// If we aren't in a closure, no diagnostics will be produced.
if (Closures.size() == 0)
return { true, E };
auto &Diags = Ctx.Diags;
// Diagnostics should correct the innermost closure
auto *ACE = Closures[Closures.size() - 1];
assert(ACE);
// Until Swift 6, only emit a warning when we get this with an
// explicit capture, since we used to not diagnose this at all.
auto shouldOnlyWarn = [&](Expr *selfRef) {
// We know that isImplicitSelfParamUseLikelyToCauseCycle is true,
// which means all these casts are valid.
return !cast<VarDecl>(cast<DeclRefExpr>(selfRef)->getDecl())
->isSelfParameter();
};
SourceLoc memberLoc = SourceLoc();
if (auto *MRE = dyn_cast<MemberRefExpr>(E))
if (isImplicitSelfParamUseLikelyToCauseCycle(MRE->getBase(), ACE)) {
auto baseName = MRE->getMember().getDecl()->getBaseName();
memberLoc = MRE->getLoc();
Diags.diagnose(memberLoc,
diag::property_use_in_closure_without_explicit_self,
baseName.getIdentifier())
.warnUntilSwiftVersionIf(shouldOnlyWarn(MRE->getBase()), 6);
}
// Handle method calls with a specific diagnostic + fixit.
if (auto *DSCE = dyn_cast<DotSyntaxCallExpr>(E))
if (isImplicitSelfParamUseLikelyToCauseCycle(DSCE->getBase(), ACE) &&
isa<DeclRefExpr>(DSCE->getFn())) {
auto MethodExpr = cast<DeclRefExpr>(DSCE->getFn());
memberLoc = DSCE->getLoc();
Diags.diagnose(DSCE->getLoc(),
diag::method_call_in_closure_without_explicit_self,
MethodExpr->getDecl()->getBaseIdentifier())
.warnUntilSwiftVersionIf(shouldOnlyWarn(DSCE->getBase()), 6);
}
if (memberLoc.isValid()) {
emitFixIts(Diags, memberLoc, ACE);
return { false, E };
}
// Catch any other implicit uses of self with a generic diagnostic.
if (isImplicitSelfParamUseLikelyToCauseCycle(E, ACE))
Diags.diagnose(E->getLoc(), diag::implicit_use_of_self_in_closure)
.warnUntilSwiftVersionIf(shouldOnlyWarn(E), 6);
return { true, E };
}
Expr *walkToExprPost(Expr *E) override {
if (auto *CE = dyn_cast<AbstractClosureExpr>(E)) {
if (isClosureRequiringSelfQualification(CE)) {
assert(Closures.size() > 0);
Closures.pop_back();
}
}
return E;
}
/// Emit any fix-its for this error.
void emitFixIts(DiagnosticEngine &Diags,
SourceLoc memberLoc,
const AbstractClosureExpr *ACE) {
// This error can be fixed by either capturing self explicitly (if in an
// explicit closure), or referencing self explicitly.
if (auto *CE = dyn_cast<const ClosureExpr>(ACE)) {
if (diagnoseAlmostMatchingCaptures(Diags, memberLoc, CE)) {
// Bail on the rest of the diagnostics. Offering the option to
// capture 'self' explicitly will result in an error, and using
// 'self.' explicitly will be accessing something other than the
// self param.
// FIXME: We could offer a special fixit in the [weak self] case to insert 'self?.'...
return;
}
emitFixItsForExplicitClosure(Diags, memberLoc, CE);
} else {
// If this wasn't an explicit closure, just offer the fix-it to
// reference self explicitly.
Diags.diagnose(memberLoc, diag::note_reference_self_explicitly)
.fixItInsert(memberLoc, "self.");
}
}
/// Diagnose any captures which might have been an attempt to capture
/// \c self strongly, but do not actually enable implicit \c self. Returns
/// whether there were any such captures to diagnose.
bool diagnoseAlmostMatchingCaptures(DiagnosticEngine &Diags,
SourceLoc memberLoc,
const ClosureExpr *closureExpr) {
// If we've already captured something with the name "self" other than
// the actual self param, offer special diagnostics.
if (auto *VD = closureExpr->getCapturedSelfDecl()) {
// Either this is a weak capture of self...
if (VD->getType()->is<WeakStorageType>()) {
Diags.diagnose(VD->getLoc(), diag::note_self_captured_weakly);
// ...or something completely different.
} else {
Diags.diagnose(VD->getLoc(), diag::note_other_self_capture);
}
return true;
}
return false;
}
/// Emit fix-its for invalid use of implicit \c self in an explicit closure.
/// The error can be solved by capturing self explicitly,
/// or by using \c self. explicitly.
void emitFixItsForExplicitClosure(DiagnosticEngine &Diags,
SourceLoc memberLoc,
const ClosureExpr *closureExpr) {
Diags.diagnose(memberLoc, diag::note_reference_self_explicitly)
.fixItInsert(memberLoc, "self.");
auto diag = Diags.diagnose(closureExpr->getLoc(),
diag::note_capture_self_explicitly);
// There are four different potential fix-its to offer based on the
// closure signature:
// 1. There is an existing capture list which already has some
// entries. We need to insert 'self' into the capture list along
// with a separating comma.
// 2. There is an existing capture list, but it is empty (just '[]').
// We can just insert 'self'.
// 3. Arguments or types are already specified in the signature,
// but there is no existing capture list. We will need to insert
// the capture list, but 'in' will already be present.
// 4. The signature empty so far. We must insert the full capture
// list as well as 'in'.
const auto brackets = closureExpr->getBracketRange();
if (brackets.isValid()) {
emitInsertSelfIntoCaptureListFixIt(brackets, diag);
}
else {
emitInsertNewCaptureListFixIt(closureExpr, diag);
}
}
/// Emit a fix-it for inserting \c self into in existing capture list, along
/// with a trailing comma if needed. The fix-it will be attached to the
/// provided diagnostic \c diag.
void emitInsertSelfIntoCaptureListFixIt(SourceRange brackets,
InFlightDiagnostic &diag) {
// Look for any non-comment token. If there's anything before the
// closing bracket, we assume that it is a valid capture list entry and
// insert 'self,'. If it wasn't a valid entry, then we will at least not
// be introducing any new errors/warnings...
const auto locAfterBracket = brackets.Start.getAdvancedLoc(1);
const auto nextAfterBracket =
Lexer::getTokenAtLocation(Ctx.SourceMgr, locAfterBracket,
CommentRetentionMode::None);
if (nextAfterBracket.getLoc() != brackets.End)
diag.fixItInsertAfter(brackets.Start, "self, ");
else
diag.fixItInsertAfter(brackets.Start, "self");
}
/// Emit a fix-it for inserting a capture list into a closure that does not
/// already have one, along with a trailing \c in if necessary. The fix-it
/// will be attached to the provided diagnostic \c diag.
void emitInsertNewCaptureListFixIt(const ClosureExpr *closureExpr,
InFlightDiagnostic &diag) {
if (closureExpr->getInLoc().isValid()) {
diag.fixItInsertAfter(closureExpr->getLoc(), " [self]");
return;
}
// If there's a (non-comment) token immediately following the
// opening brace of the closure, we may need to pad the fix-it
// with a space.
const auto nextLoc = closureExpr->getLoc().getAdvancedLoc(1);
const auto next =
Lexer::getTokenAtLocation(Ctx.SourceMgr, nextLoc,
CommentRetentionMode::None);
std::string trailing = next.getLoc() == nextLoc ? " " : "";
diag.fixItInsertAfter(closureExpr->getLoc(), " [self] in" + trailing);
}
};
AbstractClosureExpr *ACE = nullptr;
if (DC->isLocalContext()) {
while (DC->getParent()->isLocalContext() && !ACE) {
if (auto *closure = dyn_cast<AbstractClosureExpr>(DC))
if (DiagnoseWalker::isClosureRequiringSelfQualification(closure))
ACE = const_cast<AbstractClosureExpr *>(closure);
DC = DC->getParent();
}
}
auto &ctx = DC->getASTContext();
const_cast<Expr *>(E)->walk(DiagnoseWalker(ctx, ACE));
}
bool TypeChecker::getDefaultGenericArgumentsString(
SmallVectorImpl<char> &buf,
const swift::GenericTypeDecl *typeDecl,
llvm::function_ref<Type(const GenericTypeParamDecl *)> getPreferredType) {
llvm::raw_svector_ostream genericParamText{buf};
genericParamText << "<";
auto printGenericParamSummary =
[&](GenericTypeParamType *genericParamTy) {
const GenericTypeParamDecl *genericParam = genericParamTy->getDecl();
if (Type result = getPreferredType(genericParam)) {
result.print(genericParamText);
return;
}
auto contextTy = typeDecl->mapTypeIntoContext(genericParamTy);
if (auto archetypeTy = contextTy->getAs<ArchetypeType>()) {
SmallVector<Type, 2> members;
bool hasExplicitAnyObject = archetypeTy->requiresClass();
if (auto superclass = archetypeTy->getSuperclass()) {
hasExplicitAnyObject = false;
members.push_back(superclass);
}
for (auto proto : archetypeTy->getConformsTo()) {
members.push_back(proto->getDeclaredInterfaceType());
if (proto->requiresClass())
hasExplicitAnyObject = false;
}
if (hasExplicitAnyObject)
members.push_back(typeDecl->getASTContext().getAnyObjectConstraint());
auto type = ProtocolCompositionType::get(typeDecl->getASTContext(),
members, hasExplicitAnyObject);
if (type->isObjCExistentialType() || type->isAny()) {
genericParamText << type;
return;
}
genericParamText << "<#" << genericParam->getName() << ": ";
genericParamText << type << "#>";
return;
}
genericParamText << contextTy;
};
llvm::interleave(typeDecl->getInnermostGenericParamTypes(),
printGenericParamSummary,
[&] { genericParamText << ", "; });
genericParamText << ">";
return true;
}
/// Diagnose an argument labeling issue, returning true if we successfully
/// diagnosed the issue.
bool swift::diagnoseArgumentLabelError(ASTContext &ctx,
const ArgumentList *argList,
ArrayRef<Identifier> newNames,
bool isSubscript,
InFlightDiagnostic *existingDiag) {
Optional<InFlightDiagnostic> diagOpt;
auto getDiag = [&]() -> InFlightDiagnostic & {
if (existingDiag)
return *existingDiag;
return *diagOpt;
};
auto &diags = ctx.Diags;
argList = argList->getOriginalArgs();
// Figure out how many extraneous, missing, and wrong labels are in
// the call.
unsigned numExtra = 0, numMissing = 0, numWrong = 0;
unsigned n = std::max(argList->size(), (unsigned)newNames.size());
llvm::SmallString<16> missingBuffer;
llvm::SmallString<16> extraBuffer;
for (unsigned i = 0; i != n; ++i) {
// oldName and newName are
// - None if i is out of bounds for the argument list
// - nullptr for an argument without a label
// - have a value if the argument has a label
Optional<Identifier> oldName;
if (i < argList->size())
oldName = argList->getLabel(i);
Optional<Identifier> newName;
if (i < newNames.size())
newName = newNames[i];
assert(oldName || newName && "We can't have oldName and newName out of "
"bounds, otherwise n would be smaller");
if (oldName == newName || argList->isUnlabeledTrailingClosureIndex(i))
continue;
if (!oldName.hasValue() && newName.hasValue()) {
++numMissing;
missingBuffer += newName->str();
missingBuffer += ':';
} else if (oldName.hasValue() && !newName.hasValue()) {
++numExtra;
extraBuffer += oldName->str();
extraBuffer += ':';
} else if (oldName->empty()) {
// In the cases from here onwards oldValue and newValue are not null
++numMissing;
missingBuffer += newName->str();
missingBuffer += ":";
} else if (newName->empty()) {
++numExtra;
extraBuffer += oldName->str();
extraBuffer += ':';
} else {
++numWrong;
}
}
// Emit the diagnostic.
assert(numMissing > 0 || numExtra > 0 || numWrong > 0);
llvm::SmallString<16> haveBuffer; // note: diagOpt has references to this
llvm::SmallString<16> expectedBuffer; // note: diagOpt has references to this
// If we had any wrong labels, or we have both missing and extra labels,
// emit the catch-all "wrong labels" diagnostic.
if (!existingDiag) {
bool plural = (numMissing + numExtra + numWrong) > 1;
if (numWrong > 0 || (numMissing > 0 && numExtra > 0)) {
for (unsigned i = 0, n = argList->size(); i != n; ++i) {
auto haveName = argList->getLabel(i);
if (haveName.empty())
haveBuffer += '_';
else
haveBuffer += haveName.str();
haveBuffer += ':';
}
for (auto expected : newNames) {
if (expected.empty())
expectedBuffer += '_';
else
expectedBuffer += expected.str();
expectedBuffer += ':';
}
StringRef haveStr = haveBuffer;
StringRef expectedStr = expectedBuffer;
diagOpt.emplace(diags.diagnose(argList->getLoc(),
diag::wrong_argument_labels,
plural, haveStr, expectedStr,
isSubscript));
} else if (numMissing > 0) {
StringRef missingStr = missingBuffer;
diagOpt.emplace(diags.diagnose(argList->getLoc(),
diag::missing_argument_labels,
plural, missingStr, isSubscript));
} else {
assert(numExtra > 0);
StringRef extraStr = extraBuffer;
diagOpt.emplace(diags.diagnose(argList->getLoc(),
diag::extra_argument_labels,
plural, extraStr, isSubscript));
}
}
// Emit Fix-Its to correct the names.
auto &diag = getDiag();
for (unsigned i = 0, n = argList->size(); i != n; ++i) {
Identifier oldName = argList->getLabel(i);
Identifier newName;
if (i < newNames.size())
newName = newNames[i];
if (oldName == newName || argList->isUnlabeledTrailingClosureIndex(i))
continue;
if (newName.empty()) {
// If this is a labeled trailing closure, we need to replace with '_'.
if (argList->isLabeledTrailingClosureIndex(i)) {
diag.fixItReplace(argList->getLabelLoc(i), "_");
continue;
}
// Otherwise, delete the old name.
diag.fixItRemoveChars(argList->getLabelLoc(i),
argList->getExpr(i)->getStartLoc());
continue;
}
bool newNameIsReserved = !canBeArgumentLabel(newName.str());
llvm::SmallString<16> newStr;
if (newNameIsReserved)
newStr += "`";
newStr += newName.str();
if (newNameIsReserved)
newStr += "`";
// If the argument was previously unlabeled, insert the new label. Note that
// we don't do this for labeled trailing closures as they write unlabeled
// args as '_:', and therefore need replacement.
if (oldName.empty() && !argList->isLabeledTrailingClosureIndex(i)) {
// Insert the name.
newStr += ": ";
diag.fixItInsert(argList->getExpr(i)->getStartLoc(), newStr);
continue;
}
// Change the name.
diag.fixItReplace(argList->getLabelLoc(i), newStr);
}
// If the diagnostic is local, flush it before returning.
// This makes sure it's emitted before the message text buffers are destroyed.
diagOpt.reset();
return true;
}
static const Expr *lookThroughExprsToImmediateDeallocation(const Expr *E) {
// Look through various expressions that don't affect the fact that the user
// will be assigning a class instance that will be immediately deallocated.
while (true) {
E = E->getValueProvidingExpr();
// We don't currently deal with tuple destructuring.
if (isa<DestructureTupleExpr>(E))
return E;
// If we have a TupleElementExpr with a child TupleExpr, dig into that
// element.
if (auto *TEE = dyn_cast<TupleElementExpr>(E)) {
auto *subExpr = lookThroughExprsToImmediateDeallocation(TEE->getBase());
if (auto *TE = dyn_cast<TupleExpr>(subExpr)) {
auto *element = TE->getElements()[TEE->getFieldNumber()];
return lookThroughExprsToImmediateDeallocation(element);
}
return subExpr;
}
if (auto *ICE = dyn_cast<ImplicitConversionExpr>(E)) {
E = ICE->getSubExpr();
continue;
}
if (auto *CE = dyn_cast<CoerceExpr>(E)) {
E = CE->getSubExpr();
continue;
}
if (auto *OEE = dyn_cast<OpenExistentialExpr>(E)) {
E = OEE->getSubExpr();
continue;
}
// Look through optional evaluations, we still want to diagnose on
// things like initializers called through optional chaining and the
// unwrapping of failable initializers.
if (auto *OEE = dyn_cast<OptionalEvaluationExpr>(E)) {
E = OEE->getSubExpr();
continue;
}
if (auto *OBE = dyn_cast<BindOptionalExpr>(E)) {
E = OBE->getSubExpr();
continue;
}
if (auto *FOE = dyn_cast<ForceValueExpr>(E)) {
E = FOE->getSubExpr();
continue;
}
if (auto *ATE = dyn_cast<AnyTryExpr>(E)) {
E = ATE->getSubExpr();
continue;
}
if (auto *DSBIE = dyn_cast<DotSyntaxBaseIgnoredExpr>(E)) {
E = DSBIE->getRHS();
continue;
}
return E;
}
}
static void diagnoseUnownedImmediateDeallocationImpl(ASTContext &ctx,
const VarDecl *varDecl,
const Expr *initExpr,
SourceLoc diagLoc,
SourceRange diagRange) {
auto *ownershipAttr =
varDecl->getAttrs().getAttribute<ReferenceOwnershipAttr>();
if (!ownershipAttr || ownershipAttr->isInvalid())
return;
// Only diagnose for non-owning ownerships such as 'weak' and 'unowned'.
// Zero is the default/strong ownership strength.
if (ReferenceOwnership::Strong == ownershipAttr->get() ||
isLessStrongThan(ReferenceOwnership::Strong, ownershipAttr->get()))
return;
// Try to find a call to a constructor.
initExpr = lookThroughExprsToImmediateDeallocation(initExpr);
auto *CE = dyn_cast<CallExpr>(initExpr);
if (!CE)
return;
auto *CRCE = dyn_cast<ConstructorRefCallExpr>(CE->getFn());
if (!CRCE)
return;
auto *DRE = dyn_cast<DeclRefExpr>(CRCE->getFn());
if (!DRE)
return;
auto *constructorDecl = dyn_cast<ConstructorDecl>(DRE->getDecl());
if (!constructorDecl)
return;
// Make sure the constructor constructs an instance that allows ownership.
// This is to ensure we don't diagnose on constructors such as
// Optional.init(nilLiteral:).
auto selfType = constructorDecl->getDeclContext()->getSelfTypeInContext();
if (!selfType->allowsOwnership())
return;
// This must stay in sync with
// diag::unowned_assignment_immediate_deallocation.
enum {
SK_Variable = 0,
SK_Property
} storageKind = SK_Variable;
if (varDecl->getDeclContext()->isTypeContext())
storageKind = SK_Property;
// TODO: The DiagnoseLifetimeIssuesPass prints a similar warning in this
// situation. We should only print one warning.
ctx.Diags.diagnose(diagLoc, diag::unowned_assignment_immediate_deallocation,
varDecl->getName(), ownershipAttr->get(),
unsigned(storageKind))
.highlight(diagRange);
ctx.Diags.diagnose(diagLoc, diag::unowned_assignment_requires_strong)
.highlight(diagRange);
ctx.Diags.diagnose(varDecl, diag::decl_declared_here, varDecl->getName());
}
void swift::diagnoseUnownedImmediateDeallocation(ASTContext &ctx,
const AssignExpr *assignExpr) {
auto *destExpr = assignExpr->getDest()->getValueProvidingExpr();
auto *initExpr = assignExpr->getSrc();
// Try to find a referenced VarDecl.
const VarDecl *VD = nullptr;
if (auto *DRE = dyn_cast<DeclRefExpr>(destExpr)) {
VD = dyn_cast<VarDecl>(DRE->getDecl());
} else if (auto *MRE = dyn_cast<MemberRefExpr>(destExpr)) {
VD = dyn_cast<VarDecl>(MRE->getMember().getDecl());
}
if (VD)
diagnoseUnownedImmediateDeallocationImpl(ctx, VD, initExpr,
assignExpr->getLoc(),
initExpr->getSourceRange());
}
void swift::diagnoseUnownedImmediateDeallocation(ASTContext &ctx,
const Pattern *pattern,
SourceLoc equalLoc,
const Expr *initExpr) {
pattern = pattern->getSemanticsProvidingPattern();
if (auto *TP = dyn_cast<TuplePattern>(pattern)) {
initExpr = lookThroughExprsToImmediateDeallocation(initExpr);
// If we've found a matching tuple initializer with the same number of
// elements as our pattern, diagnose each element individually.
auto TE = dyn_cast<TupleExpr>(initExpr);
if (TE && TE->getNumElements() == TP->getNumElements()) {
for (unsigned i = 0, e = TP->getNumElements(); i != e; ++i) {
const TuplePatternElt &elt = TP->getElement(i);
const Pattern *subPattern = elt.getPattern();
Expr *subInitExpr = TE->getElement(i);
diagnoseUnownedImmediateDeallocation(ctx, subPattern, equalLoc,
subInitExpr);
}
}
} else if (auto *NP = dyn_cast<NamedPattern>(pattern)) {
diagnoseUnownedImmediateDeallocationImpl(ctx, NP->getDecl(), initExpr,
equalLoc,
initExpr->getSourceRange());
}
}
namespace {
enum NoteKind_t {
FixItReplace,
FixItInsert,
};
static bool fixItOverrideDeclarationTypesImpl(
ValueDecl *decl, const ValueDecl *base,
SmallVectorImpl<std::tuple<NoteKind_t, SourceRange, std::string>> &notes) {
// For now, just rewrite cases where the base uses a value type and the
// override uses a reference type, and the value type is bridged to the
// reference type. This is a way to migrate code that makes use of types
// that previously were not bridged to value types.
auto checkValueReferenceType =
[&](Type overrideTy, ParamDecl::Specifier overrideSpec,
Type baseTy, ParamDecl::Specifier baseSpec,
SourceRange typeRange) -> bool {
if (typeRange.isInvalid())
return false;
auto normalizeType = [](Type &ty, ParamDecl::Specifier spec) -> Type {
Type normalizedTy = ty;
if (Type unwrappedTy = normalizedTy->getOptionalObjectType())
normalizedTy = unwrappedTy;
if (spec == ParamDecl::Specifier::InOut)
ty = InOutType::get(ty);
return normalizedTy;
};
// Is the base type bridged?
Type normalizedBaseTy = normalizeType(baseTy, baseSpec);
const DeclContext *DC = decl->getDeclContext();
ASTContext &ctx = decl->getASTContext();
// ...and just knowing that it's bridged isn't good enough if we don't
// know what it's bridged /to/. Also, don't do this check for trivial
// bridging---that doesn't count.
Type bridged;
if (normalizedBaseTy->isAny()) {
bridged = ctx.getAnyObjectType();
} else {
bridged = ctx.getBridgedToObjC(DC, normalizedBaseTy);
}
if (!bridged || bridged->isEqual(normalizedBaseTy))
return false;
// ...and is it bridged to the overridden type?
Type normalizedOverrideTy = normalizeType(overrideTy, overrideSpec);
if (!bridged->isEqual(normalizedOverrideTy)) {
// If both are nominal types, check again, ignoring generic arguments.
auto *overrideNominal = normalizedOverrideTy->getAnyNominal();
if (!overrideNominal || bridged->getAnyNominal() != overrideNominal) {
return false;
}
}
Type newOverrideTy = baseTy;
// Preserve optionality if we're dealing with a simple type.
if (Type unwrappedTy = newOverrideTy->getOptionalObjectType())
newOverrideTy = unwrappedTy;
if (overrideTy->getOptionalObjectType())
newOverrideTy = OptionalType::get(newOverrideTy);
SmallString<32> baseTypeBuf;
llvm::raw_svector_ostream baseTypeStr(baseTypeBuf);
PrintOptions options;
options.SynthesizeSugarOnTypes = true;
newOverrideTy->print(baseTypeStr, options);
notes.emplace_back(FixItReplace, typeRange, baseTypeStr.str().str());
return true;
};
// Check if overriding fails because we lack @escaping attribute on the function
// type repr.
auto checkTypeMissingEscaping = [&](Type overrideTy, Type baseTy,
SourceRange typeRange) -> bool {
// Fix-it needs position to apply.
if (typeRange.isInvalid())
return false;
auto overrideFnTy = overrideTy->getAs<AnyFunctionType>();
auto baseFnTy = baseTy->getAs<AnyFunctionType>();
// Both types should be function.
if (overrideFnTy && baseFnTy &&
// The overriding function type should be no escaping.
overrideFnTy->getExtInfo().isNoEscape() &&
// The overridden function type should be escaping.
!baseFnTy->getExtInfo().isNoEscape()) {
notes.emplace_back(FixItInsert, typeRange, "@escaping ");
return true;
}
return false;
};
auto checkType = [&](Type overrideTy, ParamDecl::Specifier overrideSpec,
Type baseTy, ParamDecl::Specifier baseSpec,
SourceRange typeRange) -> bool {
return checkValueReferenceType(overrideTy, overrideSpec,
baseTy, baseSpec, typeRange) ||
checkTypeMissingEscaping(overrideTy, baseTy, typeRange);
};
if (auto *param = dyn_cast<ParamDecl>(decl)) {
SourceRange typeRange = param->getTypeSourceRangeForDiagnostics();
auto *baseParam = cast<ParamDecl>(base);
return checkType(param->getInterfaceType(), param->getSpecifier(),
baseParam->getInterfaceType(), baseParam->getSpecifier(),
typeRange);
}
if (auto *var = dyn_cast<VarDecl>(decl)) {
SourceRange typeRange = var->getTypeSourceRangeForDiagnostics();
auto *baseVar = cast<VarDecl>(base);
return checkType(var->getInterfaceType(), ParamDecl::Specifier::Default,
baseVar->getInterfaceType(), ParamDecl::Specifier::Default,
typeRange);
}
if (auto *fn = dyn_cast<AbstractFunctionDecl>(decl)) {
auto *baseFn = cast<AbstractFunctionDecl>(base);
bool fixedAny = false;
if (fn->getParameters()->size() ==
baseFn->getParameters()->size()) {
for_each(*fn->getParameters(),
*baseFn->getParameters(),
[&](ParamDecl *param, const ParamDecl *baseParam) {
fixedAny |= fixItOverrideDeclarationTypesImpl(param, baseParam, notes);
});
}
if (auto *method = dyn_cast<FuncDecl>(decl)) {
auto resultType = method->mapTypeIntoContext(
method->getResultInterfaceType());
auto *baseMethod = cast<FuncDecl>(base);
auto baseResultType = baseMethod->mapTypeIntoContext(
baseMethod->getResultInterfaceType());
fixedAny |= checkType(resultType, ParamDecl::Specifier::Default,
baseResultType, ParamDecl::Specifier::Default,
method->getResultTypeSourceRange());
}
return fixedAny;
}
if (auto *subscript = dyn_cast<SubscriptDecl>(decl)) {
auto *baseSubscript = cast<SubscriptDecl>(base);
bool fixedAny = false;
if (subscript->getIndices()->size() ==
baseSubscript->getIndices()->size()) {
for_each(*subscript->getIndices(),
*baseSubscript->getIndices(),
[&](ParamDecl *param, const ParamDecl *baseParam) {
fixedAny |= fixItOverrideDeclarationTypesImpl(param, baseParam, notes);
});
}
auto resultType = subscript->getDeclContext()->mapTypeIntoContext(
subscript->getElementInterfaceType());
auto baseResultType = baseSubscript->getDeclContext()->mapTypeIntoContext(
baseSubscript->getElementInterfaceType());
fixedAny |= checkType(resultType, ParamDecl::Specifier::Default,
baseResultType, ParamDecl::Specifier::Default,
subscript->getElementTypeSourceRange());
return fixedAny;
}
llvm_unreachable("unknown overridable member");
}
}
bool swift::computeFixitsForOverriddenDeclaration(
ValueDecl *decl, const ValueDecl *base,
llvm::function_ref<Optional<InFlightDiagnostic>(bool)> diag) {
SmallVector<std::tuple<NoteKind_t, SourceRange, std::string>, 4> Notes;
bool hasNotes = ::fixItOverrideDeclarationTypesImpl(decl, base, Notes);
Optional<InFlightDiagnostic> diagnostic = diag(hasNotes);
if (!diagnostic) return hasNotes;
for (const auto &note : Notes) {
if (std::get<0>(note) == FixItReplace) {
diagnostic->fixItReplace(std::get<1>(note), std::get<2>(note));
} else {
diagnostic->fixItInsert(std::get<1>(note).Start, std::get<2>(note));
}
}
return hasNotes;
}
//===----------------------------------------------------------------------===//
// Per func/init diagnostics
//===----------------------------------------------------------------------===//
namespace {
class VarDeclUsageChecker : public ASTWalker {
DeclContext *DC;
DiagnosticEngine &Diags;
// Keep track of some information about a variable.
enum {
RK_Defined = 1, ///< Whether it was ever defined in this scope.
RK_Read = 2, ///< Whether it was ever read.
RK_Written = 4, ///< Whether it was ever written or passed inout.
RK_CaptureList = 8 ///< Var is an entry in a capture list.
};
/// These are all of the variables that we are tracking. VarDecls get added
/// to this when the declaration is seen. We use a MapVector to keep the
/// diagnostics emission in deterministic order.
llvm::SmallMapVector<VarDecl*, unsigned, 32> VarDecls;
/// This is a mapping from an OpaqueValue to the expression that initialized
/// it.
llvm::SmallDenseMap<OpaqueValueExpr *, Expr *> OpaqueValueMap;
/// The first reference to the given property.
llvm::SmallDenseMap<VarDecl *, Expr *> AssociatedGetterRefExpr;
/// This is a mapping from VarDecls to the if/while/guard statement that they
/// occur in, when they are in a pattern in a StmtCondition.
llvm::SmallDenseMap<VarDecl*, LabeledConditionalStmt*> StmtConditionForVD;
#ifndef NDEBUG
llvm::SmallPtrSet<Expr*, 32> AllExprsSeen;
#endif
bool sawError = false;
VarDeclUsageChecker(const VarDeclUsageChecker &) = delete;
void operator=(const VarDeclUsageChecker &) = delete;
public:
VarDeclUsageChecker(DeclContext *DC,
DiagnosticEngine &Diags) : DC(DC), Diags(Diags) {}
// After we have scanned the entire region, diagnose variables that could be
// declared with a narrower usage kind.
~VarDeclUsageChecker() override;
/// Check to see if the specified VarDecl is part of a larger
/// PatternBindingDecl, where some other bound variable was mutated. In this
/// case we don't want to generate a "variable never mutated" warning, because
/// it would require splitting up the destructuring of the tuple, which is
/// more code turmoil than the warning is worth.
bool isVarDeclPartOfPBDThatHadSomeMutation(VarDecl *VD) {
auto *PBD = VD->getParentPatternBinding();
if (!PBD) return false;
bool sawMutation = false;
for (auto idx : range(PBD->getNumPatternEntries())) {
PBD->getPattern(idx)->forEachVariable([&](VarDecl *VD) {
auto it = VarDecls.find(VD);
sawMutation |= it != VarDecls.end() && (it->second & RK_Written);
});
}
return sawMutation;
}
bool shouldTrackVarDecl(VarDecl *VD) {
// If the variable is implicit, ignore it.
if (VD->isImplicit() || VD->getLoc().isInvalid())
return false;
// If the variable is computed, ignore it.
if (!VD->hasStorage())
return false;
// If the variable was invalid, ignore it and notice that the code is
// malformed.
if (VD->isInvalid()) {
sawError = true;
return false;
}
// If the variable is already unnamed, ignore it.
if (!VD->hasName() || VD->getName().str() == "_")
return false;
return true;
}
void addMark(Decl *D, unsigned Flag) {
auto *vd = dyn_cast<VarDecl>(D);
if (!vd) return;
VarDecls[vd] |= Flag;
}
void markBaseOfStorageUse(Expr *E, ConcreteDeclRef decl, unsigned flags);
void markBaseOfStorageUse(Expr *E, bool isMutating);
void markStoredOrInOutExpr(Expr *E, unsigned Flags);
// We generally walk into declarations, other than types and nested functions.
// FIXME: peek into capture lists of nested functions.
bool walkToDeclPre(Decl *D) override {
if (isa<TypeDecl>(D))
return false;
// The body of #if clauses are not walked into, we need custom processing
// for them.
if (auto *ICD = dyn_cast<IfConfigDecl>(D))
handleIfConfig(ICD);
// If this is a VarDecl, then add it to our list of things to track.
if (auto *vd = dyn_cast<VarDecl>(D)) {
if (shouldTrackVarDecl(vd)) {
unsigned flags = RK_Defined;
if (vd->isCaptureList())
flags |= RK_CaptureList;
if (auto childVd = vd->getCorrespondingCaseBodyVariable()) {
// Child vars are never in capture lists.
assert(flags == RK_Defined);
addMark(childVd.get(), flags);
}
addMark(vd, flags);
}
}
// Don't walk into implicit accessors, since eg. an observer's setter
// references the variable, but we don't want to consider it as a real
// "use".
if (isa<AccessorDecl>(D) && D->isImplicit())
return false;
if (auto *afd = dyn_cast<AbstractFunctionDecl>(D)) {
// If this AFD is a setter, track the parameter and the getter for
// the containing property so if newValue isn't used but the getter is used
// an error can be reported.
if (auto FD = dyn_cast<AccessorDecl>(afd)) {
if (FD->getAccessorKind() == AccessorKind::Set) {
if (isa<VarDecl>(FD->getStorage())) {
auto arguments = FD->getParameters();
VarDecls[arguments->get(0)] = RK_Defined;
}
}
}
if (afd->isBodyTypeChecked())
return true;
// Don't walk into a body that has not yet been type checked. This should
// only occur for top-level code.
VarDecls.clear();
return false;
}
if (auto *TLCD = dyn_cast<TopLevelCodeDecl>(D)) {
// If this is a TopLevelCodeDecl, scan for global variables
auto *body = TLCD->getBody();
for (auto node : body->getElements()) {
if (node.is<Decl *>()) {
// Flag all variables in a PatternBindingDecl
Decl *D = node.get<Decl *>();
auto *PBD = dyn_cast<PatternBindingDecl>(D);
if (!PBD) continue;
for (auto idx : range(PBD->getNumPatternEntries())) {
PBD->getPattern(idx)->forEachVariable([&](VarDecl *VD) {
VarDecls[VD] = RK_Read|RK_Written|RK_Defined;
});
}
} else if (node.is<Stmt *>()) {
// Flag all variables in guard statements
Stmt *S = node.get<Stmt *>();
auto *GS = dyn_cast<GuardStmt>(S);
if (!GS) continue;
for (StmtConditionElement SCE : GS->getCond()) {
if (auto pattern = SCE.getPatternOrNull()) {
pattern->forEachVariable([&](VarDecl *VD) {
VarDecls[VD] = RK_Read|RK_Written|RK_Defined;
});
}
}
}
}
}
// Note that we ignore the initialization behavior of PatternBindingDecls,
// but we do want to walk into them, because we want to see any uses or
// other things going on in the initializer expressions.
return true;
}
/// The heavy lifting happens when visiting expressions.
std::pair<bool, Expr *> walkToExprPre(Expr *E) override;
/// handle #if directives.
void handleIfConfig(IfConfigDecl *ICD);
/// Custom handling for statements.
std::pair<bool, Stmt *> walkToStmtPre(Stmt *S) override {
// Keep track of an association between vardecls and the StmtCondition that
// they are bound in for IfStmt, GuardStmt, WhileStmt, etc.
if (auto LCS = dyn_cast<LabeledConditionalStmt>(S)) {
for (auto &cond : LCS->getCond())
if (auto pat = cond.getPatternOrNull()) {
pat->forEachVariable([&](VarDecl *VD) {
StmtConditionForVD[VD] = LCS;
});
}
}
// A fallthrough dest case's bound variable means the source case's
// var of the same name is read.
if (auto *fallthroughStmt = dyn_cast<FallthroughStmt>(S)) {
if (auto *sourceCase = fallthroughStmt->getFallthroughSource()) {
SmallVector<VarDecl *, 4> sourceVars;
auto sourcePattern = sourceCase->getCaseLabelItems()[0].getPattern();
sourcePattern->collectVariables(sourceVars);
auto destCase = fallthroughStmt->getFallthroughDest();
auto destPattern = destCase->getCaseLabelItems()[0].getPattern();
destPattern->forEachVariable([&](VarDecl *V) {
if (!V->hasName())
return;
for (auto *var : sourceVars) {
if (var->hasName() && var->getName() == V->getName()) {
VarDecls[var] |= RK_Read;
break;
}
}
});
}
}
// Make sure that we setup our case body variables.
if (auto *caseStmt = dyn_cast<CaseStmt>(S)) {
for (auto *vd : caseStmt->getCaseBodyVariablesOrEmptyArray()) {
VarDecls[vd] |= RK_Defined;
}
}
return { true, S };
}
};
/// An AST walker that determines the underlying type of an opaque return decl
/// from its associated function body.
class OpaqueUnderlyingTypeChecker : public ASTWalker {
using Candidate = std::tuple<Expr *, SubstitutionMap, /*isUnique=*/bool>;
using AvailabilityContext = IfStmt *;
ASTContext &Ctx;
AbstractFunctionDecl *Implementation;
OpaqueTypeDecl *OpaqueDecl;
BraceStmt *Body;
/// A set of all candidates with unique signatures.
SmallPtrSet<const void *, 4> UniqueSignatures;
/// Represents a current availability context. `nullptr` means that
/// there are no restrictions.
AvailabilityContext CurrentAvailability = nullptr;
/// All of the candidates together with their availability.
///
/// If a candidate is found in non-`if #available` context or
/// `if #available` has other dynamic conditions, it covers 'all'
/// versions and the context is set to `nullptr`.
SmallVector<std::pair<AvailabilityContext, Candidate>, 4> Candidates;
bool HasInvalidReturn = false;
public:
OpaqueUnderlyingTypeChecker(AbstractFunctionDecl *Implementation,
OpaqueTypeDecl *OpaqueDecl, BraceStmt *Body)
: Ctx(Implementation->getASTContext()), Implementation(Implementation),
OpaqueDecl(OpaqueDecl), Body(Body) {}
void check() {
Body->walk(*this);
// If given function has any invalid `return`s in the body
// let's not try to validate the types, since it wouldn't
// be accurate.
if (HasInvalidReturn)
return;
// If there are no candidates, then the body has no return statements, and
// we have nothing to infer the underlying type from.
if (Candidates.empty()) {
Implementation->diagnose(diag::opaque_type_no_underlying_type_candidates);
// We try to find if the last element of the `Body` multi element
// `BraceStmt` is an expression that produces a value that satisfies all
// the opaque type requirements and if that is the case, it means we can
// suggest a fix-it note to add an explicit `return`.
if (Body->getNumElements() > 1) {
auto element = Body->getLastElement();
// Let's see if the last statement would make for a valid return value.
if (auto expr = element.dyn_cast<Expr *>()) {
bool conforms = llvm::all_of(OpaqueDecl->getOpaqueInterfaceGenericSignature().getRequirements(),
[&expr, this](auto requirement) {
if (requirement.getKind() == RequirementKind::Conformance) {
auto conformance =
TypeChecker::conformsToProtocol(expr->getType()->getRValueType(),
requirement.getProtocolDecl(),
Implementation->getModuleContext(),
/*allowMissing=*/ false);
return !conformance.isInvalid();
}
// If we encounter any requirements other than `Conformance`, we do
// not attempt to type check the expression.
return false;
});
// If all requirements are fulfilled, we offer to insert `return` to
// fix the issue.
if (conforms) {
Ctx.Diags
.diagnose(expr->getStartLoc(),
diag::opaque_type_missing_return_last_expr_note)
.fixItInsert(expr->getStartLoc(), "return ");
}
}
}
return;
}
if (Candidates.size() == 1) {
finalizeUnique(Candidates.front().second);
return;
}
// Check whether all of the underlying type candidates match up.
// TODO [OPAQUE SUPPORT]: diagnose multiple opaque types
// There is a single unique signature, which means that all returns
// matched.
if (llvm::count_if(Candidates, [](const auto &entry) {
const auto &candidate = entry.second;
return std::get<2>(candidate); // isUnique field.
}) == 1) {
finalizeUnique(Candidates.front().second);
return;
}
SmallVector<Candidate, 4> universallyUniqueCandidates;
for (const auto &entry : Candidates) {
AvailabilityContext availability = entry.first;
const auto &candidate = entry.second;
// Unique candidate without availability context.
if (!availability && std::get<2>(candidate))
universallyUniqueCandidates.push_back(candidate);
}
// TODO(diagnostics): Need a tailored diagnostic for this case.
if (universallyUniqueCandidates.empty()) {
Implementation->diagnose(diag::opaque_type_no_underlying_type_candidates);
return;
}
// If there is a single universally available unique candidate
// the underlying type would have to be determined at runtime
// based on the results of availability checks.
if (universallyUniqueCandidates.size() == 1) {
finalizeOpaque(universallyUniqueCandidates.front());
return;
}
// A list of all mismatches discovered across all candidates.
// If there are any mismatches in availability contexts, they
// are not diagnosed but propagated to the declaration.
Optional<std::pair<unsigned, GenericTypeParamType *>> mismatch;
auto opaqueParams = OpaqueDecl->getOpaqueGenericParams();
SubstitutionMap underlyingSubs = std::get<1>(Candidates.front().second);
for (auto index : indices(opaqueParams)) {
auto *genericParam = opaqueParams[index];
Type underlyingType = Type(genericParam).subst(underlyingSubs);
bool found = false;
for (const auto &candidate : universallyUniqueCandidates) {
Type otherType = Type(genericParam).subst(std::get<1>(candidate));
if (!underlyingType->isEqual(otherType)) {
mismatch.emplace(index, genericParam);
found = true;
break;
}
}
if (found)
break;
}
assert(mismatch.hasValue());
if (auto genericParam =
OpaqueDecl->getExplicitGenericParam(mismatch->first)) {
Implementation
->diagnose(
diag::opaque_type_mismatched_underlying_type_candidates_named,
genericParam->getName())
.highlight(genericParam->getLoc());
} else {
TypeRepr *opaqueRepr =
OpaqueDecl->getOpaqueReturnTypeReprs()[mismatch->first];
Implementation
->diagnose(diag::opaque_type_mismatched_underlying_type_candidates,
opaqueRepr)
.highlight(opaqueRepr->getSourceRange());
}
for (const auto &candidate : universallyUniqueCandidates) {
Ctx.Diags.diagnose(std::get<0>(candidate)->getLoc(),
diag::opaque_type_underlying_type_candidate_here,
Type(mismatch->second).subst(std::get<1>(candidate)));
}
}
bool isSelfReferencing(const Candidate &candidate) {
auto substitutions = std::get<1>(candidate);
// The underlying type can't be defined recursively
// in terms of the opaque type itself.
auto opaqueTypeInContext = Implementation->mapTypeIntoContext(
OpaqueDecl->getDeclaredInterfaceType());
for (auto genericParam : OpaqueDecl->getOpaqueGenericParams()) {
auto underlyingType = Type(genericParam).subst(substitutions);
auto isSelfReferencing = underlyingType.findIf(
[&](Type t) -> bool { return t->isEqual(opaqueTypeInContext); });
if (isSelfReferencing) {
Ctx.Diags.diagnose(std::get<0>(candidate)->getLoc(),
diag::opaque_type_self_referential_underlying_type,
underlyingType);
return true;
}
}
return false;
}
// A single unique underlying substitution.
void finalizeUnique(const Candidate &candidate) {
// If we have one successful candidate, then save it as the underlying
// substitutions of the opaque decl.
OpaqueDecl->setUniqueUnderlyingTypeSubstitutions(
std::get<1>(candidate).mapReplacementTypesOutOfContext());
}
// There is no clear winner here since there are candidates within
// limited availability contexts.
void finalizeOpaque(const Candidate &universallyAvailable) {
SmallVector<OpaqueTypeDecl::ConditionallyAvailableSubstitutions *, 4>
conditionalSubstitutions;
for (const auto &entry : Candidates) {
auto availabilityContext = entry.first;
const auto &candidate = entry.second;
if (!availabilityContext)
continue;
SmallVector<VersionRange, 4> conditions;
llvm::transform(availabilityContext->getCond(),
std::back_inserter(conditions),
[&](const StmtConditionElement &elt) {
return elt.getAvailability()->getAvailableRange();
});
conditionalSubstitutions.push_back(
OpaqueTypeDecl::ConditionallyAvailableSubstitutions::get(
Ctx, conditions,
std::get<1>(candidate).mapReplacementTypesOutOfContext()));
}
// Add universally available choice as the last one.
conditionalSubstitutions.push_back(
OpaqueTypeDecl::ConditionallyAvailableSubstitutions::get(
Ctx, {VersionRange::empty()},
std::get<1>(universallyAvailable)
.mapReplacementTypesOutOfContext()));
OpaqueDecl->setConditionallyAvailableSubstitutions(
conditionalSubstitutions);
}
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
if (auto underlyingToOpaque = dyn_cast<UnderlyingToOpaqueExpr>(E)) {
auto key =
underlyingToOpaque->substitutions.getCanonical().getOpaqueValue();
auto isUnique = UniqueSignatures.insert(key).second;
auto candidate =
std::make_tuple(underlyingToOpaque->getSubExpr(),
underlyingToOpaque->substitutions, isUnique);
if (isSelfReferencing(candidate)) {
HasInvalidReturn = true;
return {false, nullptr};
}
Candidates.push_back({CurrentAvailability, candidate});
return {false, E};
}
return {true, E};
}
std::pair<bool, Stmt *> walkToStmtPre(Stmt *S) override {
if (auto *If = dyn_cast<IfStmt>(S)) {
if (Parent.getAsStmt() != Body) {
// If this is not a top-level `if`, let's drop
// contextual information that has been set previously.
CurrentAvailability = nullptr;
return {true, S};
}
// If this is `if #available` statement with no other dynamic
// conditions, let's check if it returns opaque type directly.
if (llvm::all_of(If->getCond(), [&](const auto &condition) {
return condition.getKind() ==
StmtConditionElement::CK_Availability &&
!condition.getAvailability()->isUnavailability();
})) {
// Check return statement directly with availability context set.
if (auto *Then = dyn_cast<BraceStmt>(If->getThenStmt())) {
llvm::SaveAndRestore<ParentTy> parent(Parent, Then);
for (auto element : Then->getElements()) {
auto *Return = getAsStmt<ReturnStmt>(element);
// If this is not a direct return statement, walk into it
// without setting contextual availability because we want
// to find all `return`s.
if (!(Return && Return->hasResult())) {
element.walk(*this);
continue;
}
// Note that we are about to walk into a return statement
// that is located in a `if #available` without any other
// conditions.
llvm::SaveAndRestore<AvailabilityContext> context(
CurrentAvailability, If);
Return->getResult()->walk(*this);
}
}
// Walk the else branch directly as well.
if (auto *Else = If->getElseStmt()) {
llvm::SaveAndRestore<ParentTy> parent(Parent, If);
Else->walk(*this);
}
return {false, S};
}
}
if (auto *RS = dyn_cast<ReturnStmt>(S)) {
if (RS->hasResult()) {
auto resultTy = RS->getResult()->getType();
// If expression associated with return statement doesn't have
// a type or type has an error, checking opaque types is going
// to produce incorrect diagnostics.
HasInvalidReturn |= resultTy.isNull() || resultTy->hasError();
}
}
return {true, S};
}
// Don't descend into nested decls.
bool walkToDeclPre(Decl *D) override {
return false;
}
};
class ReturnTypePlaceholderReplacer : public ASTWalker {
FuncDecl *Implementation;
BraceStmt *Body;
SmallVector<Type, 4> Candidates;
bool HasInvalidReturn = false;
public:
ReturnTypePlaceholderReplacer(FuncDecl *Implementation, BraceStmt *Body)
: Implementation(Implementation), Body(Body) {}
void check() {
auto *resultRepr = Implementation->getResultTypeRepr();
if (!resultRepr) {
return;
}
Implementation->getASTContext()
.Diags
.diagnose(resultRepr->getLoc(),
diag::placeholder_type_not_allowed_in_return_type)
.highlight(resultRepr->getSourceRange());
Body->walk(*this);
// If given function has any invalid returns in the body
// let's not try to validate the types, since it wouldn't
// be accurate.
if (HasInvalidReturn)
return;
auto writtenType = Implementation->getResultInterfaceType();
llvm::SmallPtrSet<TypeBase *, 8> seenTypes;
for (auto candidate : Candidates) {
if (!seenTypes.insert(candidate.getPointer()).second) {
continue;
}
TypeChecker::notePlaceholderReplacementTypes(writtenType, candidate);
}
}
std::pair<bool, Expr *> walkToExprPre(Expr *E) override { return {true, E}; }
std::pair<bool, Stmt *> walkToStmtPre(Stmt *S) override {
if (auto *RS = dyn_cast<ReturnStmt>(S)) {
if (RS->hasResult()) {
auto resultTy = RS->getResult()->getType();
HasInvalidReturn |= resultTy.isNull() || resultTy->hasError();
Candidates.push_back(resultTy);
}
}
return {true, S};
}
// Don't descend into nested decls.
bool walkToDeclPre(Decl *D) override { return false; }
};
} // end anonymous namespace
// After we have scanned the entire region, diagnose variables that could be
// declared with a narrower usage kind.
VarDeclUsageChecker::~VarDeclUsageChecker() {
// If we saw an ErrorExpr somewhere in the body, then we have a malformed AST
// and we know stuff got dropped. Instead of producing these diagnostics,
// lets let the bigger issues get resolved first.
if (sawError)
return;
for (auto p : VarDecls) {
VarDecl *var;
unsigned access;
std::tie(var, access) = p;
// If the variable was not defined in this scope, we can safely ignore it.
if (!(access & RK_Defined))
continue;
if (auto *caseStmt =
dyn_cast_or_null<CaseStmt>(var->getRecursiveParentPatternStmt())) {
// Only diagnose VarDecls from the first CaseLabelItem in CaseStmts, as
// the remaining items must match it anyway.
auto caseItems = caseStmt->getCaseLabelItems();
assert(!caseItems.empty() &&
"If we have any case stmt var decls, we should have a case item");
if (!caseItems.front().getPattern()->containsVarDecl(var))
continue;
auto *childVar = var->getCorrespondingCaseBodyVariable().get();
access |= VarDecls[childVar];
}
// If the setter parameter is not used, but the property is read, report
// a warning. Otherwise, parameters should not generate usage warnings. It
// is common to name a parameter and not use it (e.g. because you are an
// override or want the named keyword, etc). Warning to rewrite it to _ is
// more annoying than it is useful.
if (auto param = dyn_cast<ParamDecl>(var)) {
auto FD = dyn_cast<AccessorDecl>(param->getDeclContext());
if (FD && FD->getAccessorKind() == AccessorKind::Set) {
auto VD = dyn_cast<VarDecl>(FD->getStorage());
if ((access & RK_Read) == 0) {
auto found = AssociatedGetterRefExpr.find(VD);
if (found != AssociatedGetterRefExpr.end()) {
auto *DRE = found->second;
Diags.diagnose(DRE->getLoc(), diag::unused_setter_parameter,
var->getName());
Diags.diagnose(DRE->getLoc(), diag::fixit_for_unused_setter_parameter,
var->getName())
.fixItReplace(DRE->getSourceRange(), var->getName().str());
}
}
}
continue;
}
// If this is a 'let' value, any stores to it are actually initializations,
// not mutations.
auto isWrittenLet = false;
if (var->isLet()) {
isWrittenLet = (access & RK_Written) != 0;
access &= ~RK_Written;
}
// If this variable has WeakStorageType, then it can be mutated in ways we
// don't know.
if (var->getType()->is<WeakStorageType>())
access |= RK_Written;
// Diagnose variables that were never used (other than their
// initialization).
//
if ((access & (RK_Read|RK_Written)) == 0) {
// If this is a member in a capture list, just say it is unused. We could
// produce a fixit hint with a parent map, but this is a lot of effort for
// a narrow case.
if (access & RK_CaptureList) {
Diags.diagnose(var->getLoc(), diag::capture_never_used,
var->getName());
continue;
}
// If the source of the VarDecl is a trivial PatternBinding with only a
// single binding, rewrite the whole thing into an assignment.
// let x = foo()
// ->
// _ = foo()
if (auto *pbd = var->getParentPatternBinding()) {
if (pbd->getSingleVar() == var && pbd->getInit(0) != nullptr &&
!isa<TypedPattern>(pbd->getPattern(0))) {
unsigned varKind = var->isLet();
SourceRange replaceRange(
pbd->getStartLoc(),
pbd->getPattern(0)->getEndLoc());
Diags.diagnose(var->getLoc(), diag::pbd_never_used,
var->getName(), varKind)
.fixItReplace(replaceRange, "_");
continue;
}
}
// If the variable is defined in a pattern in an if/while/guard statement,
// see if we can produce a tuned fixit. When we have something like:
//
// if let x = <expr> {
//
// we prefer to rewrite it to:
//
// if <expr> != nil {
//
if (auto SC = StmtConditionForVD[var]) {
// We only handle the "if let" case right now, since it is vastly the
// most common situation that people run into.
if (SC->getCond().size() == 1) {
auto pattern = SC->getCond()[0].getPattern();
if (auto OSP = dyn_cast<OptionalSomePattern>(pattern))
if (auto LP = dyn_cast<BindingPattern>(OSP->getSubPattern()))
if (isa<NamedPattern>(LP->getSubPattern())) {
auto initExpr = SC->getCond()[0].getInitializer();
if (initExpr->getStartLoc().isValid()) {
unsigned noParens = initExpr->canAppendPostfixExpression();
// If the subexpr is an "as?" cast, we can rewrite it to
// be an "is" test.
ConditionalCheckedCastExpr *CCE = nullptr;
// initExpr can be wrapped inside parens or try expressions.
if (auto ccExpr = dyn_cast<ConditionalCheckedCastExpr>(
initExpr->getValueProvidingExpr())) {
if (!ccExpr->isImplicit()) {
CCE = ccExpr;
noParens = true;
}
}
// In cases where the value is optional, the cast expr is
// wrapped inside OptionalEvaluationExpr. Unwrap it to get
// ConditionalCheckedCastExpr.
if (auto oeExpr = dyn_cast<OptionalEvaluationExpr>(
initExpr->getValueProvidingExpr())) {
if (auto ccExpr = dyn_cast<ConditionalCheckedCastExpr>(
oeExpr->getSubExpr()->getValueProvidingExpr())) {
if (!ccExpr->isImplicit()) {
CCE = ccExpr;
noParens = true;
}
}
}
auto diagIF = Diags.diagnose(var->getLoc(),
diag::pbd_never_used_stmtcond,
var->getName());
auto introducerLoc = SC->getCond()[0].getIntroducerLoc();
diagIF.fixItReplaceChars(introducerLoc,
initExpr->getStartLoc(),
&"("[noParens]);
if (CCE) {
// If this was an "x as? T" check, rewrite it to "x is T".
diagIF.fixItReplace(SourceRange(CCE->getLoc(),
CCE->getQuestionLoc()),
"is");
} else {
diagIF.fixItInsertAfter(initExpr->getEndLoc(),
&") != nil"[noParens]);
}
continue;
}
}
}
}
// If the variable is defined in a pattern that isn't one of the usual
// conditional statements, try to detect and rewrite "simple" binding
// patterns:
// case .pattern(let x):
// ->
// case .pattern(_):
if (auto *pattern = var->getParentPattern()) {
BindingPattern *foundVP = nullptr;
pattern->forEachNode([&](Pattern *P) {
if (auto *VP = dyn_cast<BindingPattern>(P))
if (VP->getSingleVar() == var)
foundVP = VP;
});
if (foundVP) {
unsigned varKind = var->isLet();
Diags
.diagnose(var->getLoc(), diag::variable_never_used,
var->getName(), varKind)
.fixItReplace(foundVP->getSourceRange(), "_");
continue;
}
}
// Otherwise, this is something more complex, perhaps
// let (a,b) = foo()
if (isWrittenLet) {
Diags.diagnose(var->getLoc(),
diag::immutable_value_never_used_but_assigned,
var->getName());
} else {
unsigned varKind = var->isLet();
// Just rewrite the one variable with a _.
Diags.diagnose(var->getLoc(), diag::variable_never_used,
var->getName(), varKind)
.fixItReplace(var->getLoc(), "_");
}
continue;
}
// If this is a mutable 'var', and it was never written to, suggest
// upgrading to 'let'.
if (!var->isLet() && (access & RK_Written) == 0 &&
// Don't warn if we have something like "let (x,y) = ..." and 'y' was
// never mutated, but 'x' was.
!isVarDeclPartOfPBDThatHadSomeMutation(var)) {
SourceLoc FixItLoc;
// Try to find the location of the 'var' so we can produce a fixit. If
// this is a simple PatternBinding, use its location.
if (auto *PBD = var->getParentPatternBinding()) {
if (PBD->getSingleVar() == var)
FixItLoc = PBD->getLoc();
} else if (auto *pattern = var->getParentPattern()) {
BindingPattern *foundVP = nullptr;
pattern->forEachNode([&](Pattern *P) {
if (auto *VP = dyn_cast<BindingPattern>(P))
if (VP->getSingleVar() == var)
foundVP = VP;
});
if (foundVP && !foundVP->isLet())
FixItLoc = foundVP->getLoc();
}
// If this is a parameter explicitly marked 'var', remove it.
if (FixItLoc.isInvalid()) {
Diags.diagnose(var->getLoc(), diag::variable_never_mutated,
var->getName(), true);
}
else {
bool suggestLet = true;
if (auto *stmt = var->getRecursiveParentPatternStmt()) {
// Don't try to suggest 'var' -> 'let' conversion
// in case of 'for' loop because it's an implicitly
// immutable context.
suggestLet = !isa<ForEachStmt>(stmt);
}
auto diag = Diags.diagnose(var->getLoc(), diag::variable_never_mutated,
var->getName(), suggestLet);
if (suggestLet)
diag.fixItReplace(FixItLoc, "let");
else
diag.fixItRemove(FixItLoc);
continue;
}
}
// If this is a variable that was only written to, emit a warning.
if ((access & RK_Read) == 0) {
Diags.diagnose(var->getLoc(), diag::variable_never_read, var->getName());
continue;
}
}
}
/// Handle a use of "x.y" or "x[0]" where 'base' is the expression for x and
/// 'decl' is the property or subscript.
///
/// TODO: Rip this out and just rely on LValueAccessKind.
void VarDeclUsageChecker::markBaseOfStorageUse(Expr *base, ConcreteDeclRef decl,
unsigned flags) {
// If the base is an rvalue, then we know that this is a non-mutating access.
// Note that we can have mutating accesses even when the base has class or
// metatype type due to protocols and protocol extensions.
if (!base->getType()->hasLValueType() &&
!base->isSemanticallyInOutExpr()) {
base->walk(*this);
return;
}
// Compute whether this access is to a mutating member.
auto *ASD = dyn_cast_or_null<AbstractStorageDecl>(decl.getDecl());
bool isMutating = false;
if (!ASD) {
// If there's no abstract storage declaration (which should hopefully
// only happen with invalid code), treat the base access as mutating if
// the subobject is being mutated and the base type is not a class
// or metatype.
if (flags & RK_Written) {
Type type = base->getType()->getRValueType()->getInOutObjectType();
if (!type->isAnyClassReferenceType() && !type->is<AnyMetatypeType>())
isMutating = true;
}
} else {
// Otherwise, consider whether the accessors are mutating.
if (flags & RK_Read)
isMutating |= ASD->isGetterMutating();
if (flags & RK_Written)
isMutating |= ASD->isSettable(nullptr) && ASD->isSetterMutating();
}
markBaseOfStorageUse(base, isMutating);
}
void VarDeclUsageChecker::markBaseOfStorageUse(Expr *base, bool isMutating) {
// CSApply sometimes wraps the base in an InOutExpr just because the
// base is an l-value; look through that so we can get more precise
// checking.
if (auto *ioe = dyn_cast<InOutExpr>(base))
base = ioe->getSubExpr();
if (!isMutating) {
base->walk(*this);
return;
}
// Otherwise this is a read and write of the base.
return markStoredOrInOutExpr(base, RK_Written|RK_Read);
}
void VarDeclUsageChecker::markStoredOrInOutExpr(Expr *E, unsigned Flags) {
// Sema leaves some subexpressions null, which seems really unfortunate. It
// should replace them with ErrorExpr.
if (E == nullptr || !E->getType() || E->getType()->hasError()) {
sawError = true;
return;
}
// Ignore parens and other easy cases.
E = E->getSemanticsProvidingExpr();
// If we found a decl that is being assigned to, then mark it.
if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
addMark(DRE->getDecl(), Flags);
return;
}
if (auto *TE = dyn_cast<TupleExpr>(E)) {
for (auto &elt : TE->getElements())
markStoredOrInOutExpr(elt, Flags);
return;
}
// If this is an assignment into a mutating subscript lvalue expr, then we
// are mutating the base expression. We also need to visit the index
// expressions as loads though.
if (auto *SE = dyn_cast<SubscriptExpr>(E)) {
// The arguments of a subscript are evaluated as rvalues.
SE->getArgs()->walk(*this);
markBaseOfStorageUse(SE->getBase(), SE->getDecl(), Flags);
return;
}
// Likewise for key path applications. An application of a WritableKeyPath
// reads and writes its base; an application of a ReferenceWritableKeyPath
// only reads its base; the other KeyPath types cannot be written at all.
if (auto *KPA = dyn_cast<KeyPathApplicationExpr>(E)) {
KPA->getKeyPath()->walk(*this);
bool isMutating =
(Flags & RK_Written) &&
KPA->getKeyPath()->getType()->isWritableKeyPath();
markBaseOfStorageUse(KPA->getBase(), isMutating);
return;
}
if (auto *ioe = dyn_cast<InOutExpr>(E))
return markStoredOrInOutExpr(ioe->getSubExpr(), RK_Written|RK_Read);
if (auto *MRE = dyn_cast<MemberRefExpr>(E)) {
markBaseOfStorageUse(MRE->getBase(), MRE->getMember(), Flags);
return;
}
if (auto *TEE = dyn_cast<TupleElementExpr>(E))
return markStoredOrInOutExpr(TEE->getBase(), Flags);
if (auto *FVE = dyn_cast<ForceValueExpr>(E))
return markStoredOrInOutExpr(FVE->getSubExpr(), Flags);
if (auto *BOE = dyn_cast<BindOptionalExpr>(E))
return markStoredOrInOutExpr(BOE->getSubExpr(), Flags);
// Bind existential expressions.
if (auto *OEE = dyn_cast<OpenExistentialExpr>(E)) {
OpaqueValueMap[OEE->getOpaqueValue()] = OEE->getExistentialValue();
return markStoredOrInOutExpr(OEE->getSubExpr(), Flags);
}
// If this is an OpaqueValueExpr that we've seen a mapping for, jump to the
// mapped value.
if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
if (auto *expr = OpaqueValueMap[OVE])
return markStoredOrInOutExpr(expr, Flags);
// If we don't know what kind of expression this is, assume it's a reference
// and mark it as a read.
E->walk(*this);
}
/// The heavy lifting happens when visiting expressions.
std::pair<bool, Expr *> VarDeclUsageChecker::walkToExprPre(Expr *E) {
STATISTIC(VarDeclUsageCheckerExprVisits,
"# of times VarDeclUsageChecker::walkToExprPre is called");
++VarDeclUsageCheckerExprVisits;
// Sema leaves some subexpressions null, which seems really unfortunate. It
// should replace them with ErrorExpr.
if (E == nullptr || !E->getType() || E->getType()->hasError()) {
sawError = true;
return { false, E };
}
assert(AllExprsSeen.insert(E).second && "duplicate traversal");
// If this is a DeclRefExpr found in a random place, it is a load of the
// vardecl.
if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
addMark(DRE->getDecl(), RK_Read);
// If the Expression is a read of a getter, track for diagnostics
if (auto VD = dyn_cast<VarDecl>(DRE->getDecl())) {
AssociatedGetterRefExpr.insert(std::make_pair(VD, DRE));
}
}
// If the Expression is a member reference, see if it is a read of the getter
// to track for diagnostics.
if (auto *MRE = dyn_cast<MemberRefExpr>(E)) {
if (auto VD = dyn_cast<VarDecl>(MRE->getMember().getDecl())) {
AssociatedGetterRefExpr.insert(std::make_pair(VD, MRE));
markBaseOfStorageUse(MRE->getBase(), MRE->getMember(), RK_Read);
return { false, E };
}
}
if (auto SE = dyn_cast<SubscriptExpr>(E)) {
SE->getArgs()->walk(*this);
markBaseOfStorageUse(SE->getBase(), SE->getDecl(), RK_Read);
return { false, E };
}
// If this is an AssignExpr, see if we're mutating something that we know
// about.
if (auto *assign = dyn_cast<AssignExpr>(E)) {
markStoredOrInOutExpr(assign->getDest(), RK_Written);
// Don't walk into the LHS of the assignment, only the RHS.
assign->getSrc()->walk(*this);
return { false, E };
}
// '&x' is a read and write of 'x'.
if (auto *io = dyn_cast<InOutExpr>(E)) {
markStoredOrInOutExpr(io->getSubExpr(), RK_Read|RK_Written);
// Don't bother walking into this.
return { false, E };
}
// If we see an OpenExistentialExpr, remember the mapping for its OpaqueValue
// and only walk the subexpr.
if (auto *oee = dyn_cast<OpenExistentialExpr>(E)) {
OpaqueValueMap[oee->getOpaqueValue()] = oee->getExistentialValue();
oee->getSubExpr()->walk(*this);
return { false, E };
}
// Visit bindings.
if (auto ove = dyn_cast<OpaqueValueExpr>(E)) {
if (auto mapping = OpaqueValueMap.lookup(ove))
mapping->walk(*this);
return { false, E };
}
// If we saw an ErrorExpr, take note of this.
if (isa<ErrorExpr>(E))
sawError = true;
return { true, E };
}
/// handle #if directives. All of the active clauses are already walked by the
/// AST walker, but we also want to handle the inactive ones to avoid false
/// positives.
void VarDeclUsageChecker::handleIfConfig(IfConfigDecl *ICD) {
struct ConservativeDeclMarker : public ASTWalker {
VarDeclUsageChecker &VDUC;
SourceFile *SF;
ConservativeDeclMarker(VarDeclUsageChecker &VDUC)
: VDUC(VDUC), SF(VDUC.DC->getParentSourceFile()) {}
Expr *walkToExprPost(Expr *E) override {
// If we see a bound reference to a decl in an inactive #if block, then
// conservatively mark it read and written. This will silence "variable
// unused" and "could be marked let" warnings for it.
if (auto *DRE = dyn_cast<DeclRefExpr>(E))
VDUC.addMark(DRE->getDecl(), RK_Read|RK_Written);
else if (auto *declRef = dyn_cast<UnresolvedDeclRefExpr>(E)) {
auto name = declRef->getName();
auto loc = declRef->getLoc();
if (name.isSimpleName() && loc.isValid()) {
auto *varDecl = dyn_cast_or_null<VarDecl>(
ASTScope::lookupSingleLocalDecl(SF, name.getFullName(), loc));
if (varDecl)
VDUC.addMark(varDecl, RK_Read|RK_Written);
}
}
return E;
}
};
for (auto &clause : ICD->getClauses()) {
// Active clauses are handled by the normal AST walk.
if (clause.isActive) continue;
for (auto elt : clause.Elements)
elt.walk(ConservativeDeclMarker(*this));
}
}
/// Apply the warnings managed by VarDeclUsageChecker to the top level
/// code declarations that haven't been checked yet.
void swift::
performTopLevelDeclDiagnostics(TopLevelCodeDecl *TLCD) {
auto &ctx = TLCD->getDeclContext()->getASTContext();
VarDeclUsageChecker checker(TLCD, ctx.Diags);
TLCD->walk(checker);
}
/// Perform diagnostics for func/init/deinit declarations.
void swift::performAbstractFuncDeclDiagnostics(AbstractFunctionDecl *AFD) {
// Don't produce these diagnostics for implicitly generated code.
if (AFD->getLoc().isInvalid() || AFD->isImplicit() || AFD->isInvalid())
return;
// Check for unused variables, as well as variables that are could be
// declared as constants. Skip local functions though, since they will
// be checked as part of their parent function or TopLevelCodeDecl.
if (!AFD->getDeclContext()->isLocalContext()) {
auto &ctx = AFD->getDeclContext()->getASTContext();
VarDeclUsageChecker checker(AFD, ctx.Diags);
AFD->walk(checker);
}
auto *body = AFD->getBody();
// If the function has an opaque return type, check the return expressions
// to determine the underlying type.
if (auto opaqueResultTy = AFD->getOpaqueResultTypeDecl()) {
OpaqueUnderlyingTypeChecker(AFD, opaqueResultTy, body).check();
} else if (auto accessor = dyn_cast<AccessorDecl>(AFD)) {
if (accessor->isGetter()) {
if (auto opaqueResultTy
= accessor->getStorage()->getOpaqueResultTypeDecl()) {
OpaqueUnderlyingTypeChecker(AFD, opaqueResultTy, body).check();
}
}
} else if (auto *FD = dyn_cast<FuncDecl>(AFD)) {
auto resultIFaceTy = FD->getResultInterfaceType();
// If the result has a placeholder, we need to try to use the contextual
// type inferred in the body to replace it.
if (resultIFaceTy && resultIFaceTy->hasPlaceholder()) {
ReturnTypePlaceholderReplacer(FD, body).check();
}
}
}
// Perform MiscDiagnostics on Switch Statements.
static void checkSwitch(ASTContext &ctx, const SwitchStmt *stmt,
DeclContext *DC) {
// We want to warn about "case .Foo, .Bar where 1 != 100:" since the where
// clause only applies to the second case, and this is surprising.
for (auto cs : stmt->getCases()) {
TypeChecker::checkExistentialTypes(ctx, cs, DC);
// The case statement can have multiple case items, each can have a where.
// If we find a "where", and there is a preceding item without a where, and
// if they are on the same source line, then warn.
auto items = cs->getCaseLabelItems();
// Don't do any work for the vastly most common case.
if (items.size() == 1) continue;
// Ignore the first item, since it can't have preceding ones.
for (unsigned i = 1, e = items.size(); i != e; ++i) {
// Must have a where clause.
auto where = items[i].getGuardExpr();
if (!where)
continue;
// Preceding item must not.
if (items[i-1].getGuardExpr())
continue;
// Must be on the same source line.
auto prevLoc = items[i-1].getStartLoc();
auto thisLoc = items[i].getStartLoc();
if (prevLoc.isInvalid() || thisLoc.isInvalid())
continue;
auto &SM = ctx.SourceMgr;
auto prevLineCol = SM.getLineAndColumnInBuffer(prevLoc);
if (SM.getLineAndColumnInBuffer(thisLoc).first != prevLineCol.first)
continue;
ctx.Diags.diagnose(items[i].getWhereLoc(), diag::where_on_one_item)
.highlight(items[i].getPattern()->getSourceRange())
.highlight(where->getSourceRange());
// Whitespace it out to the same column as the previous item.
std::string whitespace(prevLineCol.second-1, ' ');
ctx.Diags.diagnose(thisLoc, diag::add_where_newline)
.fixItInsert(thisLoc, "\n"+whitespace);
auto whereRange = SourceRange(items[i].getWhereLoc(),
where->getEndLoc());
auto charRange = Lexer::getCharSourceRangeFromSourceRange(SM, whereRange);
auto whereText = SM.extractText(charRange);
ctx.Diags.diagnose(prevLoc, diag::duplicate_where)
.fixItInsertAfter(items[i-1].getEndLoc(), " " + whereText.str())
.highlight(items[i-1].getSourceRange());
}
}
}
void swift::fixItEncloseTrailingClosure(ASTContext &ctx,
InFlightDiagnostic &diag,
const CallExpr *call,
Identifier closureLabel) {
auto *argList = call->getArgs()->getOriginalArgs();
assert(argList->size() >= 1 && "must have at least one argument");
SmallString<32> replacement;
SourceLoc lastLoc;
SourceRange closureRange;
if (argList->isUnary()) {
closureRange = argList->getExpr(0)->getSourceRange();
lastLoc = argList->getLParenLoc(); // e.g funcName() { 1 }
if (!lastLoc.isValid()) {
// Bare trailing closure: e.g. funcName { 1 }
replacement = "(";
lastLoc = call->getFn()->getEndLoc();
}
} else {
// Tuple + trailing closure: e.g. funcName(x: 1) { 1 }
auto numElements = argList->size();
closureRange = argList->getExpr(numElements - 1)->getSourceRange();
lastLoc = argList->getExpr(numElements - 2)->getEndLoc();
replacement = ", ";
}
// Add argument label of the closure.
if (!closureLabel.empty()) {
replacement += closureLabel.str();
replacement += ": ";
}
lastLoc = Lexer::getLocForEndOfToken(ctx.SourceMgr, lastLoc);
diag
.fixItReplaceChars(lastLoc, closureRange.Start, replacement)
.fixItInsertAfter(closureRange.End, ")");
}
// Perform checkStmtConditionTrailingClosure for single expression.
static void checkStmtConditionTrailingClosure(ASTContext &ctx, const Expr *E) {
if (E == nullptr || isa<ErrorExpr>(E)) return;
// Walk into expressions which might have invalid trailing closures
class DiagnoseWalker : public ASTWalker {
ASTContext &Ctx;
void diagnoseIt(const CallExpr *E) {
// FIXME: We ought to handle multiple trailing closures here (SR-15055)
auto *args = E->getArgs()->getOriginalArgs();
if (args->getNumTrailingClosures() != 1)
return;
auto closureArg = *args->getFirstTrailingClosure();
auto *closureExpr = closureArg.getExpr();
auto closureTy = closureExpr->getType();
// Ignore invalid argument type. Some diagnostics are already emitted.
if (!closureTy || closureTy->hasError())
return;
// Figure out the label of the parameter the closure is being passed to.
// This will be present in the type-checked argument list (but not the
// original), so search it for the relevant argument, looking into
// variadic expansions if necessary.
Identifier label;
for (auto arg : *E->getArgs()) {
if (arg.getExpr() == closureExpr) {
label = arg.getLabel();
break;
}
if (auto *varg = dyn_cast<VarargExpansionExpr>(arg.getExpr())) {
if (auto *array = dyn_cast<ArrayExpr>(varg->getSubExpr())) {
if (!array->getElements().empty() &&
array->getElements()[0] == closureExpr) {
label = arg.getLabel();
break;
}
}
}
}
auto diag = Ctx.Diags.diagnose(closureExpr->getStartLoc(),
diag::trailing_closure_requires_parens);
fixItEncloseTrailingClosure(Ctx, diag, E, label);
}
public:
DiagnoseWalker(ASTContext &ctx) : Ctx(ctx) { }
bool shouldWalkIntoSeparatelyCheckedClosure(ClosureExpr *expr) override {
return false;
}
bool shouldWalkCaptureInitializerExpressions() override { return true; }
bool shouldWalkIntoTapExpression() override { return false; }
std::pair<bool, ArgumentList *>
walkToArgumentListPre(ArgumentList *args) override {
// Don't walk into an explicit argument list, as trailing closures that
// appear in child arguments are fine.
return {args->isImplicit(), args};
}
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
switch (E->getKind()) {
case ExprKind::Paren:
case ExprKind::Tuple:
case ExprKind::Array:
case ExprKind::Dictionary:
case ExprKind::InterpolatedStringLiteral:
case ExprKind::Closure:
// If a trailing closure appears as a child of one of these types of
// expression, don't diagnose it as there is no ambiguity.
return {E->isImplicit(), E};
case ExprKind::Call:
diagnoseIt(cast<CallExpr>(E));
break;
default:
break;
}
return {true, E};
}
};
DiagnoseWalker Walker(ctx);
const_cast<Expr *>(E)->walk(Walker);
}
/// Diagnose trailing closure in statement-conditions.
///
/// Conditional statements, including 'for' or `switch` doesn't allow ambiguous
/// trailing closures in these conditions part. Even if the parser can recover
/// them, we force them to disambiguate.
//
/// E.g.:
/// if let _ = arr?.map {$0+1} { ... }
/// for _ in numbers.filter {$0 > 4} { ... }
static void checkStmtConditionTrailingClosure(ASTContext &ctx, const Stmt *S) {
if (auto LCS = dyn_cast<LabeledConditionalStmt>(S)) {
for (auto elt : LCS->getCond()) {
if (elt.getKind() == StmtConditionElement::CK_PatternBinding) {
checkStmtConditionTrailingClosure(ctx, elt.getInitializer());
if (auto *exprPattern = dyn_cast<ExprPattern>(elt.getPattern())) {
checkStmtConditionTrailingClosure(ctx, exprPattern->getMatchExpr());
}
} else if (elt.getKind() == StmtConditionElement::CK_Boolean)
checkStmtConditionTrailingClosure(ctx, elt.getBoolean());
// No trailing closure for CK_Availability: e.g. `if #available() {}`.
}
} else if (auto SS = dyn_cast<SwitchStmt>(S)) {
checkStmtConditionTrailingClosure(ctx, SS->getSubjectExpr());
} else if (auto FES = dyn_cast<ForEachStmt>(S)) {
checkStmtConditionTrailingClosure(ctx, FES->getParsedSequence());
checkStmtConditionTrailingClosure(ctx, FES->getWhere());
} else if (auto DCS = dyn_cast<DoCatchStmt>(S)) {
for (auto CS : DCS->getCatches())
for (auto &LabelItem : CS->getCaseLabelItems())
checkStmtConditionTrailingClosure(ctx, LabelItem.getGuardExpr());
}
}
namespace {
class ObjCSelectorWalker : public ASTWalker {
ASTContext &Ctx;
const DeclContext *DC;
Type SelectorTy;
/// Determine whether a reference to the given method via its
/// enclosing class/protocol is ambiguous (and, therefore, needs to
/// be disambiguated with a coercion).
bool isSelectorReferenceAmbiguous(AbstractFunctionDecl *method) {
// Determine the name we would search for. If there are no
// argument names, our lookup will be based solely on the base
// name.
DeclName lookupName = method->getName();
if (lookupName.getArgumentNames().empty())
lookupName = lookupName.getBaseName();
// Look for members with the given name.
auto nominal = method->getDeclContext()->getSelfNominalTypeDecl();
auto result = TypeChecker::lookupMember(
const_cast<DeclContext *>(DC), nominal->getDeclaredInterfaceType(),
DeclNameRef(lookupName), defaultMemberLookupOptions);
// If we didn't find multiple methods, there is no ambiguity.
if (result.size() < 2) return false;
// If we found more than two methods, it's ambiguous.
if (result.size() > 2) return true;
// Dig out the methods.
auto firstMethod = dyn_cast<FuncDecl>(result[0].getValueDecl());
auto secondMethod = dyn_cast<FuncDecl>(result[1].getValueDecl());
if (!firstMethod || !secondMethod) return true;
// If one is a static/class method and the other is not...
if (firstMethod->isStatic() == secondMethod->isStatic()) return true;
// ... overload resolution will prefer the static method. Check
// that it has the correct selector. We don't even care that it's
// the same method we're asking for, just that it has the right
// selector.
FuncDecl *staticMethod =
firstMethod->isStatic() ? firstMethod : secondMethod;
return staticMethod->getObjCSelector() != method->getObjCSelector();
}
public:
ObjCSelectorWalker(const DeclContext *dc, Type selectorTy)
: Ctx(dc->getASTContext()), DC(dc), SelectorTy(selectorTy) { }
bool shouldWalkIntoSeparatelyCheckedClosure(ClosureExpr *expr) override {
return false;
}
bool shouldWalkCaptureInitializerExpressions() override { return true; }
bool shouldWalkIntoTapExpression() override { return false; }
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
auto *stringLiteral = dyn_cast<StringLiteralExpr>(expr);
bool fromStringLiteral = false;
bool hadParens = false;
if (stringLiteral) {
// Is this a string literal that has type 'Selector'.
if (!stringLiteral->getType() ||
!stringLiteral->getType()->isEqual(SelectorTy))
return { true, expr };
fromStringLiteral = true;
// FIXME: hadParens
} else {
// Is this an initialization of 'Selector'?
auto call = dyn_cast<CallExpr>(expr);
if (!call) return { true, expr };
// That produce Selectors.
if (!call->getType() || !call->getType()->isEqual(SelectorTy))
return { true, expr };
// Via a constructor.
ConstructorDecl *ctor = nullptr;
if (auto ctorRefCall = dyn_cast<ConstructorRefCallExpr>(call->getFn())) {
if (auto ctorRef = dyn_cast<DeclRefExpr>(ctorRefCall->getFn()))
ctor = dyn_cast<ConstructorDecl>(ctorRef->getDecl());
else if (auto otherCtorRef =
dyn_cast<OtherConstructorDeclRefExpr>(ctorRefCall->getFn()))
ctor = otherCtorRef->getDecl();
}
if (!ctor) return { true, expr };
// Make sure the constructor is within Selector.
auto ctorContextType = ctor->getDeclContext()
->getSelfNominalTypeDecl()
->getDeclaredType();
if (!ctorContextType || !ctorContextType->isEqual(SelectorTy))
return { true, expr };
auto argNames = ctor->getName().getArgumentNames();
if (argNames.size() != 1) return { true, expr };
// Is this the init(stringLiteral:) initializer or init(_:) initializer?
if (argNames[0] == Ctx.Id_stringLiteral)
fromStringLiteral = true;
else if (!argNames[0].empty())
return { true, expr };
auto *arg = call->getArgs()->getUnaryExpr();
if (!arg)
return { true, expr };
// Track whether we had parentheses around the string literal.
if (auto paren = dyn_cast<ParenExpr>(arg)) {
hadParens = true;
arg = paren->getSubExpr();
}
// Check whether we have a string literal.
stringLiteral = dyn_cast<StringLiteralExpr>(arg);
if (!stringLiteral) return { true, expr };
}
/// Retrieve the parent expression that coerces to Selector, if
/// there is one.
auto getParentCoercion = [&]() -> CoerceExpr * {
auto parentExpr = Parent.getAsExpr();
if (!parentExpr) return nullptr;
auto coerce = dyn_cast<CoerceExpr>(parentExpr);
if (!coerce) return nullptr;
if (coerce->getType() && coerce->getType()->isEqual(SelectorTy))
return coerce;
return nullptr;
};
// Local function that adds the constructor syntax around string
// literals implicitly treated as a Selector.
auto addSelectorConstruction = [&](InFlightDiagnostic &diag) {
if (!fromStringLiteral) return;
// Introduce the beginning part of the Selector construction.
diag.fixItInsert(stringLiteral->getLoc(), "Selector(");
if (auto coerce = getParentCoercion()) {
// If the string literal was coerced to Selector, replace the
// coercion with the ")".
SourceLoc endLoc = Lexer::getLocForEndOfToken(Ctx.SourceMgr,
expr->getEndLoc());
diag.fixItReplace(SourceRange(endLoc, coerce->getEndLoc()), ")");
} else {
// Otherwise, just insert the closing ")".
diag.fixItInsertAfter(stringLiteral->getEndLoc(), ")");
}
};
// Try to parse the string literal as an Objective-C selector, and complain
// if it isn't one.
auto selector = ObjCSelector::parse(Ctx, stringLiteral->getValue());
if (!selector) {
auto diag = Ctx.Diags.diagnose(stringLiteral->getLoc(),
diag::selector_literal_invalid);
diag.highlight(stringLiteral->getSourceRange());
addSelectorConstruction(diag);
return { true, expr };
}
// Look for methods with this selector.
SmallVector<AbstractFunctionDecl *, 8> allMethods;
DC->lookupAllObjCMethods(*selector, allMethods);
// If we didn't find any methods, complain.
if (allMethods.empty()) {
// If this was Selector(("selector-name")), suppress, the
// diagnostic.
if (!fromStringLiteral && hadParens)
return { true, expr };
{
auto diag = Ctx.Diags.diagnose(stringLiteral->getLoc(),
diag::selector_literal_undeclared,
*selector);
addSelectorConstruction(diag);
}
// If the result was from a Selector("selector-name"), add a
// separate note that suggests wrapping the selector in
// parentheses to silence the warning.
if (!fromStringLiteral) {
Ctx.Diags.diagnose(stringLiteral->getLoc(),
diag::selector_construction_suppress_warning)
.fixItInsert(stringLiteral->getStartLoc(), "(")
.fixItInsertAfter(stringLiteral->getEndLoc(), ")");
}
return { true, expr };
}
// Find the "best" method that has this selector, so we can report
// that.
AbstractFunctionDecl *bestMethod = nullptr;
for (auto method : allMethods) {
// If this is the first method, use it.
if (!bestMethod) {
bestMethod = method;
continue;
}
// If referencing the best method would produce an ambiguity and
// referencing the new method would not, we have a new "best".
if (isSelectorReferenceAmbiguous(bestMethod) &&
!isSelectorReferenceAmbiguous(method)) {
bestMethod = method;
continue;
}
// If this method is within a protocol...
if (auto proto = method->getDeclContext()->getSelfProtocolDecl()) {
// If the best so far is not from a protocol, or is from a
// protocol that inherits this protocol, we have a new best.
auto bestProto = bestMethod->getDeclContext()->getSelfProtocolDecl();
if (!bestProto || bestProto->inheritsFrom(proto))
bestMethod = method;
continue;
}
// This method is from a class.
auto classDecl = method->getDeclContext()->getSelfClassDecl();
// If the best method was from a protocol, keep it.
auto bestClassDecl = bestMethod->getDeclContext()->getSelfClassDecl();
if (!bestClassDecl) continue;
// If the best method was from a subclass of the place where
// this method was declared, we have a new best.
if (classDecl->isSuperclassOf(bestClassDecl)) {
bestMethod = method;
}
}
// If we have a best method, reference it.
if (bestMethod) {
// Form the replacement #selector expression.
SmallString<32> replacement;
{
llvm::raw_svector_ostream out(replacement);
auto nominal = bestMethod->getDeclContext()->getSelfNominalTypeDecl();
out << "#selector(";
DeclName name;
auto bestAccessor = dyn_cast<AccessorDecl>(bestMethod);
if (bestAccessor) {
switch (bestAccessor->getAccessorKind()) {
case AccessorKind::Get:
out << "getter: ";
name = bestAccessor->getStorage()->getName();
break;
case AccessorKind::Set:
case AccessorKind::WillSet:
case AccessorKind::DidSet:
out << "setter: ";
name = bestAccessor->getStorage()->getName();
break;
case AccessorKind::Address:
case AccessorKind::MutableAddress:
case AccessorKind::Read:
case AccessorKind::Modify:
llvm_unreachable("cannot be @objc");
}
} else {
name = bestMethod->getName();
}
auto typeName = nominal->getName().str();
// If we're inside a type Foo (or an extension of it) and the suggestion
// is going to be #selector(Foo.bar) (or #selector(SuperclassOfFoo.bar),
// then suggest the more natural #selector(self.bar) instead.
if (auto containingTypeContext = DC->getInnermostTypeContext()) {
auto methodNominalType = nominal->getDeclaredType();
auto outerNomType = containingTypeContext->getSelfNominalTypeDecl()
->getDeclaredType();
if (methodNominalType->isEqual(outerNomType) ||
methodNominalType->isExactSuperclassOf(outerNomType))
typeName = "self";
}
out << typeName << "." << name.getBaseName();
auto argNames = name.getArgumentNames();
// Only print the parentheses if there are some argument
// names, because "()" would indicate a call.
if (!argNames.empty()) {
out << "(";
for (auto argName : argNames) {
if (argName.empty()) out << "_";
else out << argName.str();
out << ":";
}
out << ")";
}
// If there will be an ambiguity when referring to the method,
// introduce a coercion to resolve it to the method we found.
if (!bestAccessor && isSelectorReferenceAmbiguous(bestMethod)) {
if (auto fnType =
bestMethod->getInterfaceType()->getAs<FunctionType>()) {
// For static/class members, drop the metatype argument.
if (bestMethod->isStatic())
fnType = fnType->getResult()->getAs<FunctionType>();
// Coerce to this type.
assert(fnType->hasTypeRepr() &&
"Objective-C methods should always have printable types");
out << " as ";
fnType->print(out);
}
}
out << ")";
}
// Emit the diagnostic.
SourceRange replacementRange = expr->getSourceRange();
if (auto coerce = getParentCoercion())
replacementRange.End = coerce->getEndLoc();
Ctx.Diags
.diagnose(expr->getLoc(),
fromStringLiteral
? diag::selector_literal_deprecated_suggest
: diag::selector_construction_suggest)
.fixItReplace(replacementRange, replacement);
return { true, expr };
}
// If we couldn't pick a method to use for #selector, just wrap
// the string literal in Selector(...).
if (fromStringLiteral) {
auto diag = Ctx.Diags.diagnose(stringLiteral->getLoc(),
diag::selector_literal_deprecated);
addSelectorConstruction(diag);
return { true, expr };
}
return { true, expr };
}
};
} // end anonymous namespace
static void diagDeprecatedObjCSelectors(const DeclContext *dc,
const Expr *expr) {
auto selectorTy = dc->getASTContext().getSelectorType();
if (!selectorTy) return;
const_cast<Expr *>(expr)->walk(ObjCSelectorWalker(dc, selectorTy));
}
/// Skip over syntactic patterns that aren't typed patterns.
static Pattern *skipNonTypeSyntacticPatterns(Pattern *pattern) {
if (auto *pp = dyn_cast<ParenPattern>(pattern))
return skipNonTypeSyntacticPatterns(pp->getSubPattern());
if (auto *vp = dyn_cast<BindingPattern>(pattern))
return skipNonTypeSyntacticPatterns(vp->getSubPattern());
return pattern;
}
/// Diagnose things like this, where 'i' is an Int, not an Int?
/// if let x: Int = i {
static void
checkImplicitPromotionsInCondition(const StmtConditionElement &cond,
ASTContext &ctx) {
auto *p = cond.getPatternOrNull();
if (!p) return;
if (auto *subExpr = isImplicitPromotionToOptional(cond.getInitializer())) {
// If the subexpression was actually optional, then the pattern must be
// checking for a type, which forced it to be promoted to a double optional
// type.
if (auto ooType = subExpr->getType()->getOptionalObjectType()) {
if (auto OSP = dyn_cast<OptionalSomePattern>(p)) {
// Check for 'if let' to produce a tuned diagnostic.
if (auto *TP = dyn_cast<TypedPattern>(OSP->getSubPattern())) {
ctx.Diags.diagnose(cond.getIntroducerLoc(),
diag::optional_check_promotion,
subExpr->getType())
.highlight(subExpr->getSourceRange())
.fixItReplace(TP->getTypeRepr()->getSourceRange(),
ooType->getString());
return;
}
}
ctx.Diags.diagnose(cond.getIntroducerLoc(),
diag::optional_pattern_match_promotion,
subExpr->getType(), cond.getInitializer()->getType())
.highlight(subExpr->getSourceRange());
return;
}
// Check for 'if let' to produce a tuned diagnostic.
if (isa<OptionalSomePattern>(skipNonTypeSyntacticPatterns(p))) {
ctx.Diags.diagnose(
cond.getIntroducerLoc(),
p->isImplicit()
? diag::condition_optional_element_pattern_not_valid_type
: diag::optional_element_pattern_not_valid_type,
subExpr->getType())
.highlight(subExpr->getSourceRange());
return;
}
ctx.Diags.diagnose(cond.getIntroducerLoc(),
diag::optional_check_nonoptional,
subExpr->getType())
.highlight(subExpr->getSourceRange());
}
}
static void diagnoseUnintendedOptionalBehavior(const Expr *E,
const DeclContext *DC) {
if (!E || isa<ErrorExpr>(E) || !E->getType())
return;
class UnintendedOptionalBehaviorWalker : public ASTWalker {
ASTContext &Ctx;
SmallPtrSet<Expr *, 16> IgnoredExprs;
class OptionalToAnyCoercion {
public:
Type DestType;
CoerceExpr *ParentCoercion;
bool shouldSuppressDiagnostic() {
// If we have a parent CoerceExpr that has the same type as our
// Optional-to-Any coercion, don't emit a diagnostic.
return ParentCoercion && ParentCoercion->getType()->isEqual(DestType);
}
};
/// Returns true iff a coercion from srcType to destType is an
/// Optional-to-Any coercion.
bool isOptionalToAnyCoercion(Type srcType, Type destType) {
size_t difference = 0;
return isOptionalToAnyCoercion(srcType, destType, difference);
}
/// Returns true iff a coercion from srcType to destType is an
/// Optional-to-Any coercion. On returning true, the value of 'difference'
/// will be the difference in the levels of optionality.
bool isOptionalToAnyCoercion(Type srcType, Type destType,
size_t &difference) {
SmallVector<Type, 4> destOptionals;
auto destValueType =
destType->lookThroughAllOptionalTypes(destOptionals);
if (!destValueType->isAny())
return false;
SmallVector<Type, 4> srcOptionals;
srcType->lookThroughAllOptionalTypes(srcOptionals);
if (srcOptionals.size() > destOptionals.size()) {
difference = srcOptionals.size() - destOptionals.size();
return true;
} else {
return false;
}
}
/// Returns true iff the collection upcast coercion is an Optional-to-Any
/// coercion.
bool isOptionalToAnyCoercion(CollectionUpcastConversionExpr::ConversionPair
conversion) {
if (!conversion.OrigValue || !conversion.Conversion)
return false;
auto srcType = conversion.OrigValue->getType();
auto destType = conversion.Conversion->getType();
return isOptionalToAnyCoercion(srcType, destType);
}
/// Looks through OptionalEvaluationExprs and InjectIntoOptionalExprs to
/// find a child ErasureExpr, returning nullptr if no such child is found.
/// Any intermediate OptionalEvaluationExprs will be marked as ignored.
ErasureExpr *findErasureExprThroughOptionalInjections(Expr *E) {
while (true) {
if (auto *next = dyn_cast<OptionalEvaluationExpr>(E)) {
// We don't want to re-visit any intermediate optional evaluations.
IgnoredExprs.insert(next);
E = next->getSubExpr();
} else if (auto *next = dyn_cast<InjectIntoOptionalExpr>(E)) {
E = next->getSubExpr();
} else {
break;
}
}
return dyn_cast<ErasureExpr>(E);
}
void emitSilenceOptionalAnyWarningWithCoercion(Expr *E, Type destType) {
assert(destType->hasTypeRepr() &&
"coercion to Any should always be printable");
SmallString<16> coercionString;
coercionString += " as ";
coercionString += destType->getWithoutParens()->getString();
Ctx.Diags.diagnose(E->getLoc(), diag::silence_optional_to_any,
destType, coercionString.substr(1))
.highlight(E->getSourceRange())
.fixItInsertAfter(E->getEndLoc(), coercionString);
}
static bool hasImplicitlyUnwrappedResult(Expr *E) {
auto *decl = getDeclForImplicitlyUnwrappedExpr(E);
return decl && decl->isImplicitlyUnwrappedOptional();
}
static ValueDecl *getDeclForImplicitlyUnwrappedExpr(Expr *E) {
E = E->getValueProvidingExpr();
// Look through implicit conversions like loads, derived-to-base
// conversion, etc.
if (auto *ICE = dyn_cast<ImplicitConversionExpr>(E)) {
E = ICE->getSubExpr();
}
if (auto *subscript = dyn_cast<SubscriptExpr>(E)) {
if (subscript->hasDecl())
return subscript->getDecl().getDecl();
return nullptr;
}
if (auto *memberRef = dyn_cast<MemberRefExpr>(E))
return memberRef->getMember().getDecl();
if (auto *declRef = dyn_cast<DeclRefExpr>(E))
return declRef->getDecl();
if (auto *apply = dyn_cast<ApplyExpr>(E)) {
auto *decl = apply->getCalledValue();
if (isa_and_nonnull<AbstractFunctionDecl>(decl))
return decl;
}
return nullptr;
}
void visitErasureExpr(ErasureExpr *E, OptionalToAnyCoercion coercion) {
if (coercion.shouldSuppressDiagnostic())
return;
auto subExpr = E->getSubExpr();
// Look through any BindOptionalExprs, as the coercion may have started
// from a higher level of optionality.
while (auto *bindExpr = dyn_cast<BindOptionalExpr>(subExpr))
subExpr = bindExpr->getSubExpr();
// Do not warn on coercions from implicitly unwrapped optionals
// for Swift versions less than 5.
if (!Ctx.isSwiftVersionAtLeast(5) &&
hasImplicitlyUnwrappedResult(subExpr))
return;
// We're taking the source type from the child of any BindOptionalExprs,
// and the destination from the parent of any
// (InjectIntoOptional/OptionalEvaluation)Exprs in order to take into
// account any bindings that need to be done for nested Optional-to-Any
// coercions, e.g Int??? to Any?.
auto srcType = subExpr->getType();
auto destType = coercion.DestType;
size_t optionalityDifference = 0;
if (!isOptionalToAnyCoercion(srcType, destType, optionalityDifference))
return;
// If we're implicitly unwrapping from IUO to Any then emit a custom
// diagnostic
if (hasImplicitlyUnwrappedResult(subExpr)) {
if (auto decl = getDeclForImplicitlyUnwrappedExpr(subExpr)) {
Ctx.Diags.diagnose(subExpr->getStartLoc(), diag::iuo_to_any_coercion,
/* from */ srcType, /* to */ destType)
.highlight(subExpr->getSourceRange());
auto noteDiag = isa<FuncDecl>(decl)
? diag::iuo_to_any_coercion_note_func_result
: diag::iuo_to_any_coercion_note;
Ctx.Diags.diagnose(decl->getLoc(), noteDiag,
decl->getDescriptiveKind(), decl->getName());
}
} else {
Ctx.Diags.diagnose(subExpr->getStartLoc(),
diag::optional_to_any_coercion,
/* from */ srcType, /* to */ destType)
.highlight(subExpr->getSourceRange());
}
if (optionalityDifference == 1) {
Ctx.Diags.diagnose(subExpr->getLoc(), diag::default_optional_to_any)
.highlight(subExpr->getSourceRange())
.fixItInsertAfter(subExpr->getEndLoc(), " ?? <#default value#>");
}
SmallString<4> forceUnwrapString;
for (size_t i = 0; i < optionalityDifference; ++i)
forceUnwrapString += "!";
Ctx.Diags.diagnose(subExpr->getLoc(), diag::force_optional_to_any)
.highlight(subExpr->getSourceRange())
.fixItInsertAfter(subExpr->getEndLoc(), forceUnwrapString);
emitSilenceOptionalAnyWarningWithCoercion(subExpr, destType);
}
void visitCollectionUpcastExpr(CollectionUpcastConversionExpr *E,
OptionalToAnyCoercion coercion) {
// We only need to consider the valueConversion, as the Key type of a
// Dictionary cannot be implicitly coerced to Any.
auto valueConversion = E->getValueConversion();
// We're handling the coercion of the entire collection, so we don't need
// to re-visit a nested ErasureExpr for the value.
if (auto conversionExpr = valueConversion.Conversion)
if (auto *erasureExpr =
findErasureExprThroughOptionalInjections(conversionExpr))
IgnoredExprs.insert(erasureExpr);
if (coercion.shouldSuppressDiagnostic() ||
!isOptionalToAnyCoercion(valueConversion))
return;
auto subExpr = E->getSubExpr();
Ctx.Diags.diagnose(subExpr->getStartLoc(), diag::optional_to_any_coercion,
/* from */ subExpr->getType(), /* to */ E->getType())
.highlight(subExpr->getSourceRange());
emitSilenceOptionalAnyWarningWithCoercion(subExpr, E->getType());
}
void visitPossibleOptionalToAnyExpr(Expr *E,
OptionalToAnyCoercion coercion) {
if (auto *upcastExpr =
dyn_cast<CollectionUpcastConversionExpr>(E)) {
visitCollectionUpcastExpr(upcastExpr, coercion);
} else if (auto *erasureExpr = dyn_cast<ErasureExpr>(E)) {
visitErasureExpr(erasureExpr, coercion);
} else if (auto *optionalEvalExpr = dyn_cast<OptionalEvaluationExpr>(E)) {
// The ErasureExpr could be nested within optional injections and
// bindings, such as is the case for e.g Int??? to Any?. Try and find
// and visit it directly, making sure we don't re-visit it later.
auto subExpr = optionalEvalExpr->getSubExpr();
if (auto *erasureExpr =
findErasureExprThroughOptionalInjections(subExpr)) {
visitErasureExpr(erasureExpr, coercion);
IgnoredExprs.insert(erasureExpr);
}
}
}
enum class UnintendedInterpolationKind: bool {
Optional,
Function
};
void visitInterpolatedStringLiteralExpr(InterpolatedStringLiteralExpr *E) {
E->forEachSegment(Ctx,
[&](bool isInterpolation, CallExpr *segment) -> void {
if (isInterpolation) {
diagnoseIfUnintendedInterpolation(segment,
UnintendedInterpolationKind::Optional);
diagnoseIfUnintendedInterpolation(segment,
UnintendedInterpolationKind::Function);
}
});
}
void diagnoseIfUnintendedInterpolation(CallExpr *segment,
UnintendedInterpolationKind kind) {
if (interpolationWouldBeUnintended(segment->getCalledValue(), kind))
if (auto firstArg =
getFirstArgIfUnintendedInterpolation(segment->getArgs(), kind))
diagnoseUnintendedInterpolation(firstArg, kind);
}
bool interpolationWouldBeUnintended(ConcreteDeclRef appendMethod,
UnintendedInterpolationKind kind) {
ValueDecl * fnDecl = appendMethod.getDecl();
// If things aren't set up right, just hope for the best.
if (!fnDecl || fnDecl->isInvalid())
return false;
// If the decl expects an optional, that's fine.
auto uncurriedType = fnDecl->getInterfaceType()->getAs<AnyFunctionType>();
auto curriedType = uncurriedType->getResult()->getAs<AnyFunctionType>();
// I don't know why you'd use a zero-arg interpolator, but it obviously
// doesn't interpolate an optional.
if (curriedType->getNumParams() == 0)
return false;
// If the first parameter explicitly accepts the type, this method
// presumably doesn't want us to warn about optional use.
auto firstParamType =
curriedType->getParams().front().getPlainType()->getRValueType();
if (kind == UnintendedInterpolationKind::Optional) {
if (firstParamType->getOptionalObjectType())
return false;
} else {
if (firstParamType->is<AnyFunctionType>())
return false;
}
return true;
}
Expr *
getFirstArgIfUnintendedInterpolation(ArgumentList *args,
UnintendedInterpolationKind kind) {
// Just check the first argument, which is usually the value
// being interpolated.
if (args->empty())
return nullptr;
auto *firstArg = args->getExpr(0);
// Allow explicit casts.
if (isa<ExplicitCastExpr>(firstArg->getSemanticsProvidingExpr()))
return nullptr;
// If we don't have a type, assume the best.
if (!firstArg->getType() || firstArg->getType()->hasError())
return nullptr;
// Bail out if we don't have an optional.
if (kind == UnintendedInterpolationKind::Optional) {
if (!firstArg->getType()->getRValueType()->getOptionalObjectType())
return nullptr;
}
else if (kind == UnintendedInterpolationKind::Function) {
if (!firstArg->getType()->getRValueType()->is<AnyFunctionType>())
return nullptr;
}
return firstArg;
}
void diagnoseUnintendedInterpolation(Expr * arg, UnintendedInterpolationKind kind) {
Ctx.Diags
.diagnose(arg->getStartLoc(),
diag::debug_description_in_string_interpolation_segment,
(bool)kind)
.highlight(arg->getSourceRange());
// Suggest 'String(describing: <expr>)'.
auto argStart = arg->getStartLoc();
Ctx.Diags
.diagnose(
arg->getLoc(),
diag::silence_debug_description_in_interpolation_segment_call)
.highlight(arg->getSourceRange())
.fixItInsert(argStart, "String(describing: ")
.fixItInsertAfter(arg->getEndLoc(), ")");
if (kind == UnintendedInterpolationKind::Optional) {
// Suggest inserting a default value.
Ctx.Diags.diagnose(arg->getLoc(), diag::default_optional_to_any)
.highlight(arg->getSourceRange())
.fixItInsertAfter(arg->getEndLoc(), " ?? <#default value#>");
}
}
bool shouldWalkIntoSeparatelyCheckedClosure(ClosureExpr *expr) override {
return false;
}
bool shouldWalkCaptureInitializerExpressions() override { return true; }
bool shouldWalkIntoTapExpression() override { return false; }
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
if (!E || isa<ErrorExpr>(E) || !E->getType())
return { false, E };
if (IgnoredExprs.count(E))
return { true, E };
if (auto *literal = dyn_cast<InterpolatedStringLiteralExpr>(E)) {
visitInterpolatedStringLiteralExpr(literal);
} else if (auto *coercion = dyn_cast<CoerceExpr>(E)) {
// If we come across a CoerceExpr, visit its subExpr with the coercion
// as the parent, making sure we don't re-visit the subExpr later.
auto subExpr = coercion->getSubExpr();
visitPossibleOptionalToAnyExpr(subExpr,
{ subExpr->getType(), coercion });
IgnoredExprs.insert(subExpr);
} else {
visitPossibleOptionalToAnyExpr(E, { E->getType(), nullptr });
}
return { true, E };
}
public:
UnintendedOptionalBehaviorWalker(ASTContext &ctx) : Ctx(ctx) { }
};
UnintendedOptionalBehaviorWalker Walker(DC->getASTContext());
const_cast<Expr *>(E)->walk(Walker);
}
static void diagnoseDeprecatedWritableKeyPath(const Expr *E,
const DeclContext *DC) {
if (!E || isa<ErrorExpr>(E) || !E->getType())
return;
class DeprecatedWritableKeyPathWalker : public ASTWalker {
ASTContext &Ctx;
const DeclContext *DC;
void visitKeyPathApplicationExpr(KeyPathApplicationExpr *E) {
bool isWrite = false;
if (auto *P = Parent.getAsExpr())
if (auto *AE = dyn_cast<AssignExpr>(P))
if (AE->getDest() == E)
isWrite = true;
if (!isWrite)
return;
if (auto *keyPathExpr = dyn_cast<KeyPathExpr>(E->getKeyPath())) {
if (!keyPathExpr->getType()->isWritableKeyPath() &&
!keyPathExpr->getType()->isReferenceWritableKeyPath())
return;
assert(keyPathExpr->getComponents().size() > 0);
auto &component = keyPathExpr->getComponents().back();
if (component.getKind() == KeyPathExpr::Component::Kind::Property) {
auto *storage =
cast<AbstractStorageDecl>(component.getDeclRef().getDecl());
if (!storage->isSettable(nullptr) ||
!storage->isSetterAccessibleFrom(DC)) {
Ctx.Diags.diagnose(keyPathExpr->getLoc(),
swift::diag::expr_deprecated_writable_keypath,
storage->getName());
}
}
}
}
bool shouldWalkIntoSeparatelyCheckedClosure(ClosureExpr *expr) override {
return false;
}
bool shouldWalkCaptureInitializerExpressions() override { return true; }
bool shouldWalkIntoTapExpression() override { return false; }
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
if (!E || isa<ErrorExpr>(E) || !E->getType())
return {false, E};
if (auto *KPAE = dyn_cast<KeyPathApplicationExpr>(E)) {
visitKeyPathApplicationExpr(KPAE);
return {true, E};
}
return {true, E};
}
public:
DeprecatedWritableKeyPathWalker(const DeclContext *DC)
: Ctx(DC->getASTContext()), DC(DC) {}
};
DeprecatedWritableKeyPathWalker Walker(DC);
const_cast<Expr *>(E)->walk(Walker);
}
static void maybeDiagnoseCallToKeyValueObserveMethod(const Expr *E,
const DeclContext *DC) {
class KVOObserveCallWalker : public ASTWalker {
const ASTContext &C;
public:
KVOObserveCallWalker(ASTContext &ctx) : C(ctx) {}
void maybeDiagnoseCallExpr(CallExpr *expr) {
auto fn = expr->getCalledValue();
if (!fn)
return;
if (fn->getModuleContext()->getName() != C.Id_Foundation)
return;
if (!fn->getName().isCompoundName("observe",
{"", "options", "changeHandler"}))
return;
auto *args = expr->getArgs();
auto firstArg = dyn_cast<KeyPathExpr>(args->getExpr(0));
if (!firstArg)
return;
auto lastComponent = firstArg->getComponents().back();
if (lastComponent.getKind() != KeyPathExpr::Component::Kind::Property)
return;
auto property = lastComponent.getDeclRef().getDecl();
if (!property)
return;
auto propertyVar = cast<VarDecl>(property);
if (propertyVar->shouldUseObjCDispatch() ||
(propertyVar->isObjC() &&
propertyVar->getParsedAccessor(AccessorKind::Set)))
return;
C.Diags
.diagnose(expr->getLoc(),
diag::observe_keypath_property_not_objc_dynamic,
property->getName(), fn->getName())
.highlight(lastComponent.getLoc());
}
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
if (!E || isa<ErrorExpr>(E) || !E->getType())
return {false, E};
if (auto *CE = dyn_cast<CallExpr>(E)) {
maybeDiagnoseCallExpr(CE);
return {false, E};
}
return {true, E};
}
};
KVOObserveCallWalker Walker(DC->getASTContext());
const_cast<Expr *>(E)->walk(Walker);
}
static void diagnoseExplicitUseOfLazyVariableStorage(const Expr *E,
const DeclContext *DC) {
class ExplicitLazyVarStorageAccessFinder : public ASTWalker {
const ASTContext &C;
public:
ExplicitLazyVarStorageAccessFinder(ASTContext &ctx) : C(ctx) {}
void tryDiagnoseExplicitLazyStorageVariableUse(MemberRefExpr *MRE) {
if (MRE->isImplicit()) {
return;
}
auto VD = dyn_cast<VarDecl>(MRE->getMember().getDecl());
if (!VD) {
return;
}
auto sourceFileKind = VD->getDeclContext()->getParentSourceFile();
if (!sourceFileKind) {
return;
}
if (sourceFileKind->Kind != SourceFileKind::Library &&
sourceFileKind->Kind != SourceFileKind::Main) {
return;
}
if (VD->isLazyStorageProperty()) {
C.Diags.diagnose(MRE->getLoc(), diag::lazy_var_storage_access);
}
}
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
if (!E || isa<ErrorExpr>(E) || !E->getType())
return {false, E};
if (auto *MRE = dyn_cast<MemberRefExpr>(E)) {
tryDiagnoseExplicitLazyStorageVariableUse(MRE);
return {false, E};
}
return {true, E};
}
};
ExplicitLazyVarStorageAccessFinder Walker(DC->getASTContext());
const_cast<Expr *>(E)->walk(Walker);
}
static void diagnoseComparisonWithNaN(const Expr *E, const DeclContext *DC) {
class ComparisonWithNaNFinder : public ASTWalker {
const ASTContext &C;
const DeclContext *DC;
public:
ComparisonWithNaNFinder(const DeclContext *dc)
: C(dc->getASTContext()), DC(dc) {}
void tryDiagnoseComparisonWithNaN(BinaryExpr *BE) {
ValueDecl *comparisonDecl = nullptr;
// Dig out the function declaration.
if (auto Fn = BE->getFn()) {
if (auto DSCE = dyn_cast<DotSyntaxCallExpr>(Fn)) {
comparisonDecl = DSCE->getCalledValue();
} else {
comparisonDecl = BE->getCalledValue();
}
}
// Bail out if it isn't a function.
if (!comparisonDecl || !isa<FuncDecl>(comparisonDecl)) {
return;
}
// We're only interested in comparison functions like == or <=.
auto comparisonDeclName = comparisonDecl->getBaseIdentifier();
if (!comparisonDeclName.isStandardComparisonOperator()) {
return;
}
auto *firstArg = BE->getLHS();
auto *secondArg = BE->getRHS();
// Make sure that both arguments are valid before doing anything else,
// this helps us to debug reports of crashes in `conformsToKnownProtocol`
// referencing arguments (rdar://78920375).
//
// Since this diagnostic should only be run on type-checked AST,
// it's unclear what caused one of the arguments to have null type.
assert(firstArg->getType() && "Expected valid type for first argument");
assert(secondArg->getType() && "Expected valid type for second argument");
// Both arguments must conform to FloatingPoint protocol.
if (!TypeChecker::conformsToKnownProtocol(firstArg->getType(),
KnownProtocolKind::FloatingPoint,
DC->getParentModule()) ||
!TypeChecker::conformsToKnownProtocol(secondArg->getType(),
KnownProtocolKind::FloatingPoint,
DC->getParentModule())) {
return;
}
// Convenience utility to extract argument decl.
auto extractArgumentDecl = [&](Expr *arg) -> ValueDecl * {
if (auto DRE = dyn_cast<DeclRefExpr>(arg)) {
return DRE->getDecl();
} else if (auto MRE = dyn_cast<MemberRefExpr>(arg)) {
return MRE->getMember().getDecl();
}
return nullptr;
};
// Dig out the declarations for the arguments.
auto *firstVal = extractArgumentDecl(firstArg);
auto *secondVal = extractArgumentDecl(secondArg);
// If we can't find declarations for both arguments, bail out,
// because one of them has to be '.nan'.
if (!firstArg && !secondArg) {
return;
}
// Convenience utility to check if this is a 'nan' variable.
auto isNanDecl = [&](ValueDecl *VD) {
return VD && isa<VarDecl>(VD) && VD->getBaseIdentifier().is("nan");
};
// Diagnose comparison with '.nan'.
//
// If the comparison is done using '<=', '<', '==', '>', '>=', then
// the result is always false. If the comparison is done using '!=',
// then the result is always true.
//
// Emit a different diagnostic which doesn't mention using '.isNaN' if
// the comparison isn't done using '==' or '!=' or if both sides are
// '.nan'.
if (isNanDecl(firstVal) && isNanDecl(secondVal)) {
C.Diags.diagnose(BE->getLoc(), diag::nan_comparison_both_nan,
comparisonDeclName.str(), comparisonDeclName.is("!="));
} else if (isNanDecl(firstVal) || isNanDecl(secondVal)) {
if (comparisonDeclName.is("==") || comparisonDeclName.is("!=")) {
auto exprStr =
C.SourceMgr
.extractText(Lexer::getCharSourceRangeFromSourceRange(
C.SourceMgr, firstArg->getSourceRange()))
.str();
auto prefix = exprStr;
if (comparisonDeclName.is("!=")) {
prefix = "!" + prefix;
}
C.Diags.diagnose(BE->getLoc(), diag::nan_comparison,
comparisonDeclName, comparisonDeclName.is("!="),
prefix, exprStr);
} else {
C.Diags.diagnose(BE->getLoc(), diag::nan_comparison_without_isnan,
comparisonDeclName, comparisonDeclName.is("!="));
}
}
}
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
if (!E || isa<ErrorExpr>(E) || !E->getType())
return {false, E};
if (auto *BE = dyn_cast<BinaryExpr>(E)) {
tryDiagnoseComparisonWithNaN(BE);
return {false, E};
}
return {true, E};
}
};
ComparisonWithNaNFinder Walker(DC);
const_cast<Expr *>(E)->walk(Walker);
}
static void diagUnqualifiedAccessToMethodNamedSelf(const Expr *E,
const DeclContext *DC) {
if (!E || isa<ErrorExpr>(E) || !E->getType())
return;
class DiagnoseWalker : public ASTWalker {
ASTContext &Ctx;
const DeclContext *DC;
public:
DiagnoseWalker(const DeclContext *DC) : Ctx(DC->getASTContext()), DC(DC) {}
bool shouldWalkIntoSeparatelyCheckedClosure(ClosureExpr *expr) override {
return false;
}
bool shouldWalkIntoTapExpression() override { return false; }
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
if (!E || isa<ErrorExpr>(E) || !E->getType())
return {false, E};
auto *DRE = dyn_cast<DeclRefExpr>(E);
// If this is not an explicit 'self' reference, let's keep searching.
if (!DRE || DRE->isImplicit())
return {true, E};
// If this not 'self' or it's not a function reference, it's unrelated.
if (!(DRE->getDecl()->getBaseName() == Ctx.Id_self &&
DRE->getType()->is<AnyFunctionType>()))
return {true, E};
auto typeContext = DC->getInnermostTypeContext();
// Use of 'self' in enums is not confusable.
if (!typeContext || typeContext->getSelfEnumDecl())
return {true, E};
// self(...) is not easily confusable.
if (auto *parentExpr = Parent.getAsExpr()) {
if (isa<CallExpr>(parentExpr))
return {true, E};
// Explicit call to a static method 'self' of some type is not
// confusable.
if (isa<DotSyntaxCallExpr>(parentExpr) && !parentExpr->isImplicit())
return {true, E};
}
auto baseType = typeContext->getDeclaredInterfaceType();
auto baseTypeString = baseType.getString();
Ctx.Diags.diagnose(E->getLoc(), diag::self_refers_to_method,
baseTypeString);
Ctx.Diags
.diagnose(E->getLoc(), diag::fix_unqualified_access_member_named_self,
baseTypeString)
.fixItInsert(E->getLoc(), diag::insert_type_qualification, baseType);
return {true, E};
}
};
DiagnoseWalker Walker(DC);
const_cast<Expr *>(E)->walk(Walker);
}
namespace {
class CompletionHandlerUsageChecker final : public ASTWalker {
ASTContext &ctx;
public:
CompletionHandlerUsageChecker(ASTContext &ctx) : ctx(ctx) {}
bool walkToDeclPre(Decl *D) override { return !isa<PatternBindingDecl>(D); }
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
if (expr->getType().isNull())
return {false, expr}; // Something failed to typecheck, bail out
if (auto *closure = dyn_cast<ClosureExpr>(expr))
return {closure->isBodyAsync(), closure};
if (auto *call = dyn_cast<ApplyExpr>(expr)) {
if (auto *fn = dyn_cast<DeclRefExpr>(call->getFn())) {
if (auto *afd = dyn_cast<AbstractFunctionDecl>(fn->getDecl())) {
auto *asyncFunc = afd->getAsyncAlternative();
if (!asyncFunc)
return {false, call};
ctx.Diags.diagnose(call->getLoc(), diag::warn_use_async_alternative);
if (auto *accessor = dyn_cast<AccessorDecl>(asyncFunc)) {
SmallString<32> name;
llvm::raw_svector_ostream os(name);
accessor->printUserFacingName(os);
ctx.Diags.diagnose(asyncFunc->getLoc(),
diag::descriptive_decl_declared_here, name);
} else {
ctx.Diags.diagnose(asyncFunc->getLoc(), diag::decl_declared_here,
asyncFunc->getName());
}
}
}
}
return {true, expr};
}
};
} // namespace
void swift::checkFunctionAsyncUsage(AbstractFunctionDecl *decl) {
if (!decl->isAsyncContext())
return;
CompletionHandlerUsageChecker checker(decl->getASTContext());
BraceStmt *body = decl->getBody();
if (body)
body->walk(checker);
}
void swift::checkPatternBindingDeclAsyncUsage(PatternBindingDecl *decl) {
CompletionHandlerUsageChecker checker(decl->getASTContext());
for (Expr *init : decl->initializers()) {
if (auto closure = dyn_cast_or_null<ClosureExpr>(init))
closure->walk(checker);
}
}
//===----------------------------------------------------------------------===//
// High-level entry points.
//===----------------------------------------------------------------------===//
/// Emit diagnostics for syntactic restrictions on a given expression.
void swift::performSyntacticExprDiagnostics(const Expr *E,
const DeclContext *DC,
bool isExprStmt,
bool disableExprAvailabilityChecking) {
auto &ctx = DC->getASTContext();
TypeChecker::diagnoseSelfAssignment(E);
diagSyntacticUseRestrictions(E, DC, isExprStmt);
diagRecursivePropertyAccess(E, DC);
diagnoseImplicitSelfUseInClosure(E, DC);
diagnoseUnintendedOptionalBehavior(E, DC);
maybeDiagnoseCallToKeyValueObserveMethod(E, DC);
diagnoseExplicitUseOfLazyVariableStorage(E, DC);
diagnoseComparisonWithNaN(E, DC);
if (!ctx.isSwiftVersionAtLeast(5))
diagnoseDeprecatedWritableKeyPath(E, DC);
if (!ctx.LangOpts.DisableAvailabilityChecking && !disableExprAvailabilityChecking)
diagnoseExprAvailability(E, const_cast<DeclContext*>(DC));
if (ctx.LangOpts.EnableObjCInterop)
diagDeprecatedObjCSelectors(DC, E);
diagnoseConstantArgumentRequirement(E, DC);
diagUnqualifiedAccessToMethodNamedSelf(E, DC);
}
void swift::performStmtDiagnostics(const Stmt *S, DeclContext *DC) {
auto &ctx = DC->getASTContext();
TypeChecker::checkExistentialTypes(ctx, const_cast<Stmt *>(S), DC);
if (auto switchStmt = dyn_cast<SwitchStmt>(S))
checkSwitch(ctx, switchStmt, DC);
checkStmtConditionTrailingClosure(ctx, S);
// Check for implicit optional promotions in stmt-condition patterns.
if (auto *lcs = dyn_cast<LabeledConditionalStmt>(S))
for (const auto &elt : lcs->getCond())
checkImplicitPromotionsInCondition(elt, ctx);
if (!ctx.LangOpts.DisableAvailabilityChecking)
diagnoseStmtAvailability(S, const_cast<DeclContext*>(DC));
}
//===----------------------------------------------------------------------===//
// Utility functions
//===----------------------------------------------------------------------===//
void swift::fixItAccess(InFlightDiagnostic &diag, ValueDecl *VD,
AccessLevel desiredAccess, bool isForSetter,
bool shouldUseDefaultAccess) {
StringRef fixItString;
switch (desiredAccess) {
case AccessLevel::Private: fixItString = "private "; break;
case AccessLevel::FilePrivate: fixItString = "fileprivate "; break;
case AccessLevel::Internal: fixItString = "internal "; break;
case AccessLevel::Public: fixItString = "public "; break;
case AccessLevel::Open: fixItString = "open "; break;
}
DeclAttributes &attrs = VD->getAttrs();
AbstractAccessControlAttr *attr;
if (isForSetter) {
attr = attrs.getAttribute<SetterAccessAttr>();
cast<AbstractStorageDecl>(VD)->overwriteSetterAccess(desiredAccess);
} else {
attr = attrs.getAttribute<AccessControlAttr>();
VD->overwriteAccess(desiredAccess);
if (auto *ASD = dyn_cast<AbstractStorageDecl>(VD)) {
if (auto *getter = ASD->getAccessor(AccessorKind::Get))
getter->overwriteAccess(desiredAccess);
if (auto *setterAttr = attrs.getAttribute<SetterAccessAttr>()) {
if (setterAttr->getAccess() > desiredAccess)
fixItAccess(diag, VD, desiredAccess, true);
} else {
ASD->overwriteSetterAccess(desiredAccess);
}
}
}
if (isForSetter && VD->getFormalAccess() == desiredAccess) {
assert(attr);
attr->setInvalid();
// Remove the setter attribute.
diag.fixItRemove(attr->Range);
} else if (attr) {
// If the formal access already matches the desired access, the problem
// must be in a parent scope. Don't emit a fix-it.
// FIXME: It's also possible for access to already be /broader/ than what's
// desired, in which case the problem is also in a parent scope. However,
// this function is sometimes called to make access narrower, so assuming
// that a broader scope is acceptable breaks some diagnostics.
if (attr->getAccess() != desiredAccess) {
if (shouldUseDefaultAccess) {
// Remove the attribute if replacement is not preferred.
diag.fixItRemove(attr->getRange());
} else {
// This uses getLocation() instead of getRange() because we don't want to
// replace the "(set)" part of a setter attribute.
diag.fixItReplace(attr->getLocation(), fixItString.drop_back());
}
attr->setInvalid();
}
} else if (auto *override = VD->getAttrs().getAttribute<OverrideAttr>()) {
// Insert the access in front of 'override', if it exists, in order to
// match the same keyword order as produced by method autocompletion.
diag.fixItInsert(override->getLocation(), fixItString);
} else if (auto var = dyn_cast<VarDecl>(VD)) {
if (auto PBD = var->getParentPatternBinding())
diag.fixItInsert(PBD->getStartLoc(), fixItString);
} else {
diag.fixItInsert(VD->getStartLoc(), fixItString);
}
}
/// Retrieve the type name to be used for determining whether we can
/// omit needless words.
static OmissionTypeName getTypeNameForOmission(Type type) {
if (!type)
return "";
ASTContext &ctx = type->getASTContext();
auto objcBoolType = ctx.getObjCBoolType();
/// Determine the options associated with the given type.
auto getOptions = [&](Type type) {
// Look for Boolean types.
OmissionTypeOptions options;
// Look for Boolean types.
if (type->isBool()) {
// Swift.Bool
options |= OmissionTypeFlags::Boolean;
} else if (objcBoolType && type->isEqual(objcBoolType)) {
// ObjectiveC.ObjCBool
options |= OmissionTypeFlags::Boolean;
}
return options;
};
do {
// Look through typealiases.
if (auto aliasTy = dyn_cast<TypeAliasType>(type.getPointer())) {
type = aliasTy->getSinglyDesugaredType();
continue;
}
// Strip off lvalue/inout types.
Type newType = type->getWithoutSpecifierType();
if (newType.getPointer() != type.getPointer()) {
type = newType;
continue;
}
// Look through reference-storage types.
newType = type->getReferenceStorageReferent();
if (newType.getPointer() != type.getPointer()) {
type = newType;
continue;
}
// Look through parentheses.
type = type->getWithoutParens();
// Look through optionals.
if (auto optObjectTy = type->getOptionalObjectType()) {
type = optObjectTy;
continue;
}
break;
} while (true);
// Nominal types.
if (auto nominal = type->getAnyNominal()) {
// If we have a collection, get the element type.
if (auto bound = type->getAs<BoundGenericType>()) {
auto args = bound->getGenericArgs();
if (!args.empty() && (bound->isArray() || bound->isSet())) {
return OmissionTypeName(nominal->getName().str(),
getOptions(bound),
getTypeNameForOmission(args[0]).Name);
}
}
// AnyObject -> "Object".
if (type->isAnyObject())
return "Object";
return OmissionTypeName(nominal->getName().str(), getOptions(type));
}
// Generic type parameters.
if (auto genericParamTy = type->getAs<GenericTypeParamType>()) {
if (auto genericParam = genericParamTy->getDecl())
return genericParam->getName().str();
return "";
}
// Dependent members.
if (auto dependentMemberTy = type->getAs<DependentMemberType>()) {
return dependentMemberTy->getName().str();
}
// Archetypes.
if (auto archetypeTy = type->getAs<ArchetypeType>()) {
return archetypeTy->getName().str();
}
// Function types.
if (auto funcTy = type->getAs<AnyFunctionType>()) {
if (funcTy->getRepresentation() == AnyFunctionType::Representation::Block)
return "Block";
return "Function";
}
return "";
}
Optional<DeclName> TypeChecker::omitNeedlessWords(AbstractFunctionDecl *afd) {
auto &Context = afd->getASTContext();
if (afd->isInvalid() || isa<DestructorDecl>(afd))
return None;
const DeclName name = afd->getName();
if (!name)
return None;
// String'ify the arguments.
StringRef baseNameStr = name.getBaseName().userFacingName();
SmallVector<StringRef, 4> argNameStrs;
for (auto arg : name.getArgumentNames()) {
if (arg.empty())
argNameStrs.push_back("");
else
argNameStrs.push_back(arg.str());
}
// String'ify the parameter types.
SmallVector<OmissionTypeName, 4> paramTypes;
// Always look at the parameters in the last parameter list.
for (auto param : *afd->getParameters()) {
paramTypes.push_back(getTypeNameForOmission(param->getInterfaceType())
.withDefaultArgument(param->isDefaultArgument()));
}
// Handle contextual type, result type, and returnsSelf.
Type contextType = afd->getDeclContext()->getDeclaredInterfaceType();
Type resultType;
bool returnsSelf = afd->hasDynamicSelfResult();
if (auto func = dyn_cast<FuncDecl>(afd)) {
resultType = func->getResultInterfaceType();
resultType = func->mapTypeIntoContext(resultType);
} else if (isa<ConstructorDecl>(afd)) {
resultType = contextType;
}
// Figure out the first parameter name.
StringRef firstParamName;
auto params = afd->getParameters();
if (params->size() != 0 && !params->get(0)->getName().empty())
firstParamName = params->get(0)->getName().str();
StringScratchSpace scratch;
if (!swift::omitNeedlessWords(baseNameStr, argNameStrs, firstParamName,
getTypeNameForOmission(resultType),
getTypeNameForOmission(contextType),
paramTypes, returnsSelf, false,
/*allPropertyNames=*/nullptr,
None, None, scratch))
return None;
/// Retrieve a replacement identifier.
auto getReplacementIdentifier = [&](StringRef name,
DeclBaseName old) -> DeclBaseName{
if (name.empty())
return Identifier();
if (!old.empty() && name == old.userFacingName())
return old;
return Context.getIdentifier(name);
};
auto newBaseName = getReplacementIdentifier(
baseNameStr, name.getBaseName());
SmallVector<Identifier, 4> newArgNames;
auto oldArgNames = name.getArgumentNames();
for (unsigned i = 0, n = argNameStrs.size(); i != n; ++i) {
auto argBaseName = getReplacementIdentifier(argNameStrs[i],
oldArgNames[i]);
newArgNames.push_back(argBaseName.getIdentifier());
}
return DeclName(Context, newBaseName, newArgNames);
}
Optional<Identifier> TypeChecker::omitNeedlessWords(VarDecl *var) {
auto &Context = var->getASTContext();
if (var->isInvalid())
return None;
if (var->getName().empty())
return None;
auto name = var->getName().str();
// Dig out the context type.
Type contextType = var->getDeclContext()->getDeclaredInterfaceType();
if (!contextType)
return None;
// Dig out the type of the variable.
Type type = var->getValueInterfaceType();
while (auto optObjectTy = type->getOptionalObjectType())
type = optObjectTy;
// Omit needless words.
StringScratchSpace scratch;
OmissionTypeName typeName = getTypeNameForOmission(var->getInterfaceType());
OmissionTypeName contextTypeName = getTypeNameForOmission(contextType);
if (::omitNeedlessWords(name, { }, "", typeName, contextTypeName, { },
/*returnsSelf=*/false, true,
/*allPropertyNames=*/nullptr, None, None, scratch)) {
return Context.getIdentifier(name);
}
return None;
}
bool swift::diagnoseUnhandledThrowsInAsyncContext(DeclContext *dc,
ForEachStmt *forEach) {
if (!forEach->getAwaitLoc().isValid())
return false;
auto conformanceRef = forEach->getSequenceConformance();
if (conformanceRef.hasEffect(EffectKind::Throws) &&
forEach->getTryLoc().isInvalid()) {
auto &ctx = dc->getASTContext();
ctx.Diags
.diagnose(forEach->getAwaitLoc(), diag::throwing_call_unhandled, "call")
.fixItInsert(forEach->getAwaitLoc(), "try");
return true;
}
return false;
}