Files
swift-mirror/lib/Frontend/CompilerInvocation.cpp
Xi Ge 2dcb33bb00 Frontend: allow specifying a different target triple for internal clang instance to use
Before this change, we always use the Swift target triple to instantiate the internal
Clang instance. When loading a Swift module from the textual interface, we may pick up
a lower target triple to use to build the Swift module because the target is hard-coded
in the textual interface file. This implies we may end up building multiple versions of the
same Clang module, one for each target triple of the loading Swift module.

This change adds a new frontend flag -clang-target to allow clients to specify a
consistent clang target to use across the Swift module boundaries. This value won't change
because it's not part of .swiftinterface files.

swift-driver should pass down -clang-target for each frontend invocation, and its value should be
identical to -target.

Related to: rdar://72480261
2021-06-06 07:58:21 -07:00

2092 lines
80 KiB
C++

//===--- CompilerInvocation.cpp - CompilerInvocation methods --------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/Frontend/Frontend.h"
#include "ArgsToFrontendOptionsConverter.h"
#include "swift/AST/DiagnosticsFrontend.h"
#include "swift/Basic/Platform.h"
#include "swift/Option/Options.h"
#include "swift/Option/SanitizerOptions.h"
#include "swift/Strings.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Option/Arg.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Option/Option.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/LineIterator.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Process.h"
using namespace swift;
using namespace llvm::opt;
/// The path for Swift libraries in the OS on Darwin.
#define DARWIN_OS_LIBRARY_PATH "/usr/lib/swift"
static constexpr const char *const localeCodes[] = {
#define SUPPORTED_LOCALE(Code, Language) #Code,
#include "swift/AST/LocalizationLanguages.def"
};
swift::CompilerInvocation::CompilerInvocation() {
setTargetTriple(llvm::sys::getDefaultTargetTriple());
}
void CompilerInvocation::computeRuntimeResourcePathFromExecutablePath(
StringRef mainExecutablePath, bool shared,
llvm::SmallVectorImpl<char> &runtimeResourcePath) {
runtimeResourcePath.append(mainExecutablePath.begin(),
mainExecutablePath.end());
llvm::sys::path::remove_filename(runtimeResourcePath); // Remove /swift
llvm::sys::path::remove_filename(runtimeResourcePath); // Remove /bin
appendSwiftLibDir(runtimeResourcePath, shared);
}
void CompilerInvocation::appendSwiftLibDir(llvm::SmallVectorImpl<char> &path,
bool shared) {
llvm::sys::path::append(path, "lib", shared ? "swift" : "swift_static");
}
void CompilerInvocation::setMainExecutablePath(StringRef Path) {
FrontendOpts.MainExecutablePath = Path.str();
llvm::SmallString<128> LibPath;
computeRuntimeResourcePathFromExecutablePath(
Path, FrontendOpts.UseSharedResourceFolder, LibPath);
setRuntimeResourcePath(LibPath.str());
llvm::SmallString<128> DiagnosticDocsPath(Path);
llvm::sys::path::remove_filename(DiagnosticDocsPath); // Remove /swift
llvm::sys::path::remove_filename(DiagnosticDocsPath); // Remove /bin
llvm::sys::path::append(DiagnosticDocsPath, "share", "doc", "swift",
"diagnostics");
DiagnosticOpts.DiagnosticDocumentationPath = std::string(DiagnosticDocsPath.str());
// Compute the path to the diagnostic translations in the toolchain/build.
llvm::SmallString<128> DiagnosticMessagesDir(Path);
llvm::sys::path::remove_filename(DiagnosticMessagesDir); // Remove /swift
llvm::sys::path::remove_filename(DiagnosticMessagesDir); // Remove /bin
llvm::sys::path::append(DiagnosticMessagesDir, "share", "swift", "diagnostics");
DiagnosticOpts.LocalizationPath = std::string(DiagnosticMessagesDir.str());
}
static std::string
getVersionedPrebuiltModulePath(Optional<llvm::VersionTuple> sdkVer,
StringRef defaultPrebuiltPath) {
if (!sdkVer.hasValue())
return defaultPrebuiltPath.str();
std::string versionStr = sdkVer->getAsString();
StringRef vs = versionStr;
do {
SmallString<64> pathWithSDKVer = defaultPrebuiltPath;
llvm::sys::path::append(pathWithSDKVer, vs);
if (llvm::sys::fs::exists(pathWithSDKVer)) {
return pathWithSDKVer.str().str();
} else if (vs.endswith(".0")) {
vs = vs.substr(0, vs.size() - 2);
} else {
return defaultPrebuiltPath.str();
}
} while(true);
}
std::string CompilerInvocation::computePrebuiltCachePath(
StringRef RuntimeResourcePath, llvm::Triple target,
Optional<llvm::VersionTuple> sdkVer) {
SmallString<64> defaultPrebuiltPath{RuntimeResourcePath};
StringRef platform;
if (tripleIsMacCatalystEnvironment(target)) {
// The prebuilt cache for macCatalyst is the same as the one for macOS, not
// iOS or a separate location of its own.
platform = "macosx";
} else {
platform = getPlatformNameForTriple(target);
}
llvm::sys::path::append(defaultPrebuiltPath, platform, "prebuilt-modules");
// If the SDK version is given, we should check if SDK-versioned prebuilt
// module cache is available and use it if so.
return getVersionedPrebuiltModulePath(sdkVer, defaultPrebuiltPath);
}
void CompilerInvocation::setDefaultPrebuiltCacheIfNecessary() {
if (!FrontendOpts.PrebuiltModuleCachePath.empty())
return;
if (SearchPathOpts.RuntimeResourcePath.empty())
return;
FrontendOpts.PrebuiltModuleCachePath = computePrebuiltCachePath(
SearchPathOpts.RuntimeResourcePath, LangOpts.Target, LangOpts.SDKVersion);
if (!FrontendOpts.PrebuiltModuleCachePath.empty())
return;
StringRef anchor = "prebuilt-modules";
assert(((StringRef)FrontendOpts.PrebuiltModuleCachePath).contains(anchor));
auto pair = ((StringRef)FrontendOpts.PrebuiltModuleCachePath).split(anchor);
FrontendOpts.BackupModuleInterfaceDir =
(llvm::Twine(pair.first) + "preferred-interfaces" + pair.second).str();
}
static void updateRuntimeLibraryPaths(SearchPathOptions &SearchPathOpts,
llvm::Triple &Triple) {
llvm::SmallString<128> LibPath(SearchPathOpts.RuntimeResourcePath);
StringRef LibSubDir = getPlatformNameForTriple(Triple);
if (tripleIsMacCatalystEnvironment(Triple))
LibSubDir = "maccatalyst";
llvm::sys::path::append(LibPath, LibSubDir);
SearchPathOpts.RuntimeLibraryPaths.clear();
SearchPathOpts.RuntimeLibraryPaths.push_back(std::string(LibPath.str()));
if (Triple.isOSDarwin())
SearchPathOpts.RuntimeLibraryPaths.push_back(DARWIN_OS_LIBRARY_PATH);
// Set up the import paths containing the swiftmodules for the libraries in
// RuntimeLibraryPath.
SearchPathOpts.RuntimeLibraryImportPaths.clear();
// If this is set, we don't want any runtime import paths.
if (SearchPathOpts.SkipRuntimeLibraryImportPaths)
return;
SearchPathOpts.RuntimeLibraryImportPaths.push_back(std::string(LibPath.str()));
// This is compatibility for <=5.3
if (!Triple.isOSDarwin()) {
llvm::sys::path::append(LibPath, swift::getMajorArchitectureName(Triple));
SearchPathOpts.RuntimeLibraryImportPaths.push_back(std::string(LibPath.str()));
}
if (!SearchPathOpts.SDKPath.empty()) {
if (tripleIsMacCatalystEnvironment(Triple)) {
LibPath = SearchPathOpts.SDKPath;
llvm::sys::path::append(LibPath, "System", "iOSSupport");
llvm::sys::path::append(LibPath, "usr", "lib", "swift");
SearchPathOpts.RuntimeLibraryImportPaths.push_back(std::string(LibPath.str()));
}
LibPath = SearchPathOpts.SDKPath;
llvm::sys::path::append(LibPath, "usr", "lib", "swift");
if (!Triple.isOSDarwin()) {
llvm::sys::path::append(LibPath, getPlatformNameForTriple(Triple));
llvm::sys::path::append(LibPath, swift::getMajorArchitectureName(Triple));
}
SearchPathOpts.RuntimeLibraryImportPaths.push_back(std::string(LibPath.str()));
}
}
static void
setIRGenOutputOptsFromFrontendOptions(IRGenOptions &IRGenOpts,
const FrontendOptions &FrontendOpts) {
// Set the OutputKind for the given Action.
IRGenOpts.OutputKind = [](FrontendOptions::ActionType Action) {
switch (Action) {
case FrontendOptions::ActionType::EmitIRGen:
return IRGenOutputKind::LLVMAssemblyBeforeOptimization;
case FrontendOptions::ActionType::EmitIR:
return IRGenOutputKind::LLVMAssemblyAfterOptimization;
case FrontendOptions::ActionType::EmitBC:
return IRGenOutputKind::LLVMBitcode;
case FrontendOptions::ActionType::EmitAssembly:
return IRGenOutputKind::NativeAssembly;
case FrontendOptions::ActionType::Immediate:
return IRGenOutputKind::Module;
case FrontendOptions::ActionType::EmitObject:
default:
// Just fall back to emitting an object file. If we aren't going to run
// IRGen, it doesn't really matter what we put here anyways.
return IRGenOutputKind::ObjectFile;
}
}(FrontendOpts.RequestedAction);
// If we're in JIT mode, set the requisite flags.
if (FrontendOpts.RequestedAction == FrontendOptions::ActionType::Immediate) {
IRGenOpts.UseJIT = true;
IRGenOpts.DebugInfoLevel = IRGenDebugInfoLevel::Normal;
IRGenOpts.DebugInfoFormat = IRGenDebugInfoFormat::DWARF;
}
}
static void
setBridgingHeaderFromFrontendOptions(ClangImporterOptions &ImporterOpts,
const FrontendOptions &FrontendOpts) {
if (FrontendOpts.RequestedAction != FrontendOptions::ActionType::EmitPCH)
return;
// If there aren't any inputs, there's nothing to do.
if (!FrontendOpts.InputsAndOutputs.hasInputs())
return;
// If we aren't asked to output a bridging header, we don't need to set this.
if (ImporterOpts.PrecompiledHeaderOutputDir.empty())
return;
ImporterOpts.BridgingHeader =
FrontendOpts.InputsAndOutputs.getFilenameOfFirstInput();
}
void CompilerInvocation::setRuntimeResourcePath(StringRef Path) {
SearchPathOpts.RuntimeResourcePath = Path.str();
updateRuntimeLibraryPaths(SearchPathOpts, LangOpts.Target);
}
void CompilerInvocation::setTargetTriple(StringRef Triple) {
setTargetTriple(llvm::Triple(Triple));
}
void CompilerInvocation::setTargetTriple(const llvm::Triple &Triple) {
LangOpts.setTarget(Triple);
updateRuntimeLibraryPaths(SearchPathOpts, LangOpts.Target);
}
void CompilerInvocation::setSDKPath(const std::string &Path) {
SearchPathOpts.SDKPath = Path;
updateRuntimeLibraryPaths(SearchPathOpts, LangOpts.Target);
}
static bool ParseFrontendArgs(
FrontendOptions &opts, ArgList &args, DiagnosticEngine &diags,
SmallVectorImpl<std::unique_ptr<llvm::MemoryBuffer>> *buffers) {
ArgsToFrontendOptionsConverter converter(diags, args, opts);
return converter.convert(buffers);
}
static void diagnoseSwiftVersion(Optional<version::Version> &vers, Arg *verArg,
ArgList &Args, DiagnosticEngine &diags) {
// General invalid version error
diags.diagnose(SourceLoc(), diag::error_invalid_arg_value,
verArg->getAsString(Args), verArg->getValue());
// Note valid versions.
auto validVers = version::Version::getValidEffectiveVersions();
auto versStr = "'" + llvm::join(validVers, "', '") + "'";
diags.diagnose(SourceLoc(), diag::note_valid_swift_versions, versStr);
}
/// Create a new Regex instance out of the string value in \p RpassArg.
/// It returns a pointer to the newly generated Regex instance.
static std::shared_ptr<llvm::Regex>
generateOptimizationRemarkRegex(DiagnosticEngine &Diags, ArgList &Args,
Arg *RpassArg) {
StringRef Val = RpassArg->getValue();
std::string RegexError;
std::shared_ptr<llvm::Regex> Pattern = std::make_shared<llvm::Regex>(Val);
if (!Pattern->isValid(RegexError)) {
Diags.diagnose(SourceLoc(), diag::error_optimization_remark_pattern,
RegexError, RpassArg->getAsString(Args));
Pattern.reset();
}
return Pattern;
}
// Lifted from the clang driver.
static void PrintArg(raw_ostream &OS, const char *Arg, StringRef TempDir) {
const bool Escape = std::strpbrk(Arg, "\"\\$ ");
if (!TempDir.empty()) {
llvm::SmallString<256> ArgPath{Arg};
llvm::sys::fs::make_absolute(ArgPath);
llvm::sys::path::native(ArgPath);
llvm::SmallString<256> TempPath{TempDir};
llvm::sys::fs::make_absolute(TempPath);
llvm::sys::path::native(TempPath);
if (StringRef(ArgPath).startswith(TempPath)) {
// Don't write temporary file names in the debug info. This would prevent
// incremental llvm compilation because we would generate different IR on
// every compiler invocation.
Arg = "<temporary-file>";
}
}
if (!Escape) {
OS << Arg;
return;
}
// Quote and escape. This isn't really complete, but good enough.
OS << '"';
while (const char c = *Arg++) {
if (c == '"' || c == '\\' || c == '$')
OS << '\\';
OS << c;
}
OS << '"';
}
static void ParseModuleInterfaceArgs(ModuleInterfaceOptions &Opts,
ArgList &Args) {
using namespace options;
Opts.PreserveTypesAsWritten |=
Args.hasArg(OPT_module_interface_preserve_types_as_written);
Opts.PrintFullConvention |=
Args.hasArg(OPT_experimental_print_full_convention);
Opts.ExperimentalSPIImports |=
Args.hasArg(OPT_experimental_spi_imports);
Opts.DebugPrintInvalidSyntax |=
Args.hasArg(OPT_debug_emit_invalid_swiftinterface_syntax);
if (const Arg *A = Args.getLastArg(OPT_library_level)) {
StringRef contents = A->getValue();
if (contents == "spi") {
Opts.PrintSPIs = true;
}
}
}
/// Save a copy of any flags marked as ModuleInterfaceOption, if running
/// in a mode that is going to emit a .swiftinterface file.
static void SaveModuleInterfaceArgs(ModuleInterfaceOptions &Opts,
FrontendOptions &FOpts,
ArgList &Args, DiagnosticEngine &Diags) {
if (!FOpts.InputsAndOutputs.hasModuleInterfaceOutputPath())
return;
ArgStringList RenderedArgs;
ArgStringList RenderedArgsIgnorable;
for (auto A : Args) {
if (A->getOption().hasFlag(options::ModuleInterfaceOptionIgnorable)) {
A->render(Args, RenderedArgsIgnorable);
} else if (A->getOption().hasFlag(options::ModuleInterfaceOption)) {
A->render(Args, RenderedArgs);
}
}
{
llvm::raw_string_ostream OS(Opts.Flags);
interleave(RenderedArgs,
[&](const char *Argument) { PrintArg(OS, Argument, StringRef()); },
[&] { OS << " "; });
}
{
llvm::raw_string_ostream OS(Opts.IgnorableFlags);
interleave(RenderedArgsIgnorable,
[&](const char *Argument) { PrintArg(OS, Argument, StringRef()); },
[&] { OS << " "; });
}
}
static bool ParseLangArgs(LangOptions &Opts, ArgList &Args,
DiagnosticEngine &Diags,
const FrontendOptions &FrontendOpts) {
using namespace options;
bool HadError = false;
if (auto A = Args.getLastArg(OPT_swift_version)) {
auto vers = version::Version::parseVersionString(
A->getValue(), SourceLoc(), &Diags);
bool isValid = false;
if (vers.hasValue()) {
if (auto effectiveVers = vers.getValue().getEffectiveLanguageVersion()) {
Opts.EffectiveLanguageVersion = effectiveVers.getValue();
isValid = true;
}
}
if (!isValid)
diagnoseSwiftVersion(vers, A, Args, Diags);
}
if (auto A = Args.getLastArg(OPT_package_description_version)) {
auto vers = version::Version::parseVersionString(
A->getValue(), SourceLoc(), &Diags);
if (vers.hasValue()) {
Opts.PackageDescriptionVersion = vers.getValue();
} else {
return true;
}
}
Opts.AttachCommentsToDecls |= Args.hasArg(OPT_dump_api_path);
Opts.UseMalloc |= Args.hasArg(OPT_use_malloc);
Opts.DiagnosticsEditorMode |= Args.hasArg(OPT_diagnostics_editor_mode,
OPT_serialize_diagnostics_path);
Opts.EnableExperimentalStaticAssert |=
Args.hasArg(OPT_enable_experimental_static_assert);
Opts.EnableExperimentalConcurrency |=
Args.hasArg(OPT_enable_experimental_concurrency);
Opts.EnableExperimentalDistributed |=
Args.hasArg(OPT_enable_experimental_distributed);
Opts.EnableInferPublicSendable |=
Args.hasFlag(OPT_enable_infer_public_concurrent_value,
OPT_disable_infer_public_concurrent_value,
false);
Opts.EnableExperimentalFlowSensitiveConcurrentCaptures |=
Args.hasArg(OPT_enable_experimental_flow_sensitive_concurrent_captures);
Opts.DisableImplicitConcurrencyModuleImport |=
Args.hasArg(OPT_disable_implicit_concurrency_module_import);
/// experimental distributed also implicitly enables experimental concurrency
Opts.EnableExperimentalDistributed |=
Args.hasArg(OPT_enable_experimental_distributed);
Opts.EnableExperimentalConcurrency |=
Args.hasArg(OPT_enable_experimental_distributed);
Opts.DiagnoseInvalidEphemeralnessAsError |=
Args.hasArg(OPT_enable_invalid_ephemeralness_as_error);
if (auto A = Args.getLastArg(OPT_enable_deserialization_recovery,
OPT_disable_deserialization_recovery)) {
Opts.EnableDeserializationRecovery
= A->getOption().matches(OPT_enable_deserialization_recovery);
}
Opts.DisableAvailabilityChecking |=
Args.hasArg(OPT_disable_availability_checking);
if (auto A = Args.getLastArg(OPT_enable_conformance_availability_errors,
OPT_disable_conformance_availability_errors)) {
Opts.EnableConformanceAvailabilityErrors
= A->getOption().matches(OPT_enable_conformance_availability_errors);
}
if (auto A = Args.getLastArg(OPT_enable_access_control,
OPT_disable_access_control)) {
Opts.EnableAccessControl
= A->getOption().matches(OPT_enable_access_control);
}
if (auto A = Args.getLastArg(OPT_disable_typo_correction,
OPT_typo_correction_limit)) {
if (A->getOption().matches(OPT_disable_typo_correction))
Opts.TypoCorrectionLimit = 0;
else {
unsigned limit;
if (StringRef(A->getValue()).getAsInteger(10, limit)) {
Diags.diagnose(SourceLoc(), diag::error_invalid_arg_value,
A->getAsString(Args), A->getValue());
HadError = true;
} else {
Opts.TypoCorrectionLimit = limit;
}
}
}
Opts.CodeCompleteInitsInPostfixExpr |=
Args.hasArg(OPT_code_complete_inits_in_postfix_expr);
Opts.CodeCompleteCallPatternHeuristics |=
Args.hasArg(OPT_code_complete_call_pattern_heuristics);
if (auto A = Args.getLastArg(OPT_enable_target_os_checking,
OPT_disable_target_os_checking)) {
Opts.EnableTargetOSChecking
= A->getOption().matches(OPT_enable_target_os_checking);
}
Opts.EnableNewOperatorLookup = Args.hasFlag(OPT_enable_new_operator_lookup,
OPT_disable_new_operator_lookup,
/*default*/ false);
Opts.UseClangFunctionTypes |= Args.hasArg(OPT_use_clang_function_types);
Opts.NamedLazyMemberLoading &= !Args.hasArg(OPT_disable_named_lazy_member_loading);
if (Args.hasArg(OPT_verify_syntax_tree)) {
Opts.BuildSyntaxTree = true;
Opts.VerifySyntaxTree = true;
}
if (Args.hasArg(OPT_emit_fine_grained_dependency_sourcefile_dot_files))
Opts.EmitFineGrainedDependencySourcefileDotFiles = true;
if (Args.hasArg(OPT_enable_experimental_additive_arithmetic_derivation))
Opts.EnableExperimentalAdditiveArithmeticDerivedConformances = true;
Opts.EnableExperimentalForwardModeDifferentiation |=
Args.hasArg(OPT_enable_experimental_forward_mode_differentiation);
Opts.DebuggerSupport |= Args.hasArg(OPT_debugger_support);
if (Opts.DebuggerSupport)
Opts.EnableDollarIdentifiers = true;
Opts.DebuggerTestingTransform = Args.hasArg(OPT_debugger_testing_transform);
Opts.Playground |= Args.hasArg(OPT_playground);
Opts.PlaygroundTransform |= Args.hasArg(OPT_playground);
if (Args.hasArg(OPT_disable_playground_transform))
Opts.PlaygroundTransform = false;
Opts.PlaygroundHighPerformance |=
Args.hasArg(OPT_playground_high_performance);
// This can be enabled independently of the playground transform.
Opts.PCMacro |= Args.hasArg(OPT_pc_macro);
Opts.EnableThrowWithoutTry |= Args.hasArg(OPT_enable_throw_without_try);
if (auto A = Args.getLastArg(OPT_enable_objc_attr_requires_foundation_module,
OPT_disable_objc_attr_requires_foundation_module)) {
Opts.EnableObjCAttrRequiresFoundation
= A->getOption().matches(OPT_enable_objc_attr_requires_foundation_module);
}
if (auto A = Args.getLastArg(OPT_enable_testable_attr_requires_testable_module,
OPT_disable_testable_attr_requires_testable_module)) {
Opts.EnableTestableAttrRequiresTestableModule
= A->getOption().matches(OPT_enable_testable_attr_requires_testable_module);
}
if (Args.getLastArg(OPT_debug_cycles))
Opts.DebugDumpCycles = true;
if (Args.getLastArg(OPT_require_explicit_availability, OPT_require_explicit_availability_target)) {
Opts.RequireExplicitAvailability = true;
if (const Arg *A = Args.getLastArg(OPT_require_explicit_availability_target)) {
Opts.RequireExplicitAvailabilityTarget = A->getValue();
}
}
for (const Arg *A : Args.filtered(OPT_define_availability)) {
Opts.AvailabilityMacros.push_back(A->getValue());
}
if (const Arg *A = Args.getLastArg(OPT_value_recursion_threshold)) {
unsigned threshold;
if (StringRef(A->getValue()).getAsInteger(10, threshold)) {
Diags.diagnose(SourceLoc(), diag::error_invalid_arg_value,
A->getAsString(Args), A->getValue());
HadError = true;
} else {
Opts.MaxCircularityDepth = threshold;
}
}
for (const Arg *A : Args.filtered(OPT_D)) {
Opts.addCustomConditionalCompilationFlag(A->getValue());
}
Opts.EnableAppExtensionRestrictions |= Args.hasArg(OPT_enable_app_extension);
Opts.EnableSwift3ObjCInference =
Args.hasFlag(OPT_enable_swift3_objc_inference,
OPT_disable_swift3_objc_inference, false);
if (const Arg *A = Args.getLastArg(OPT_library_level)) {
StringRef contents = A->getValue();
if (contents == "api") {
Opts.LibraryLevel = LibraryLevel::API;
} else if (contents == "spi") {
Opts.LibraryLevel = LibraryLevel::SPI;
} else {
Opts.LibraryLevel = LibraryLevel::Other;
if (contents != "other") {
// Error on unknown library levels.
auto inFlight = Diags.diagnose(SourceLoc(),
diag::error_unknown_library_level,
contents);
// Only warn for "ipi" as we may use it in the future.
if (contents == "ipi")
inFlight.limitBehavior(DiagnosticBehavior::Warning);
}
}
}
if (Opts.EnableSwift3ObjCInference) {
if (const Arg *A = Args.getLastArg(
OPT_warn_swift3_objc_inference_minimal,
OPT_warn_swift3_objc_inference_complete)) {
if (A->getOption().getID() == OPT_warn_swift3_objc_inference_minimal)
Opts.WarnSwift3ObjCInference = Swift3ObjCInferenceWarnings::Minimal;
else
Opts.WarnSwift3ObjCInference = Swift3ObjCInferenceWarnings::Complete;
}
}
Opts.WarnConcurrency |= Args.hasArg(OPT_warn_concurrency);
Opts.WarnImplicitOverrides =
Args.hasArg(OPT_warn_implicit_overrides);
Opts.EnableNSKeyedArchiverDiagnostics =
Args.hasFlag(OPT_enable_nskeyedarchiver_diagnostics,
OPT_disable_nskeyedarchiver_diagnostics,
Opts.EnableNSKeyedArchiverDiagnostics);
Opts.EnableNonFrozenEnumExhaustivityDiagnostics =
Args.hasFlag(OPT_enable_nonfrozen_enum_exhaustivity_diagnostics,
OPT_disable_nonfrozen_enum_exhaustivity_diagnostics,
Opts.isSwiftVersionAtLeast(5));
if (Arg *A = Args.getLastArg(OPT_Rpass_EQ))
Opts.OptimizationRemarkPassedPattern =
generateOptimizationRemarkRegex(Diags, Args, A);
if (Arg *A = Args.getLastArg(OPT_Rpass_missed_EQ))
Opts.OptimizationRemarkMissedPattern =
generateOptimizationRemarkRegex(Diags, Args, A);
if (Arg *A = Args.getLastArg(OPT_Raccess_note)) {
auto value = llvm::StringSwitch<Optional<AccessNoteDiagnosticBehavior>>(A->getValue())
.Case("none", AccessNoteDiagnosticBehavior::Ignore)
.Case("failures", AccessNoteDiagnosticBehavior::RemarkOnFailure)
.Case("all", AccessNoteDiagnosticBehavior::RemarkOnFailureOrSuccess)
.Case("all-validate", AccessNoteDiagnosticBehavior::ErrorOnFailureRemarkOnSuccess)
.Default(None);
if (value)
Opts.AccessNoteBehavior = *value;
else
Diags.diagnose(SourceLoc(), diag::error_invalid_arg_value,
A->getAsString(Args), A->getValue());
}
Opts.EnableConcisePoundFile =
Args.hasArg(OPT_enable_experimental_concise_pound_file);
Opts.EnableFuzzyForwardScanTrailingClosureMatching =
Args.hasFlag(OPT_enable_fuzzy_forward_scan_trailing_closure_matching,
OPT_disable_fuzzy_forward_scan_trailing_closure_matching,
true);
Opts.EnableCrossImportOverlays =
Args.hasFlag(OPT_enable_cross_import_overlays,
OPT_disable_cross_import_overlays,
Opts.EnableCrossImportOverlays);
Opts.EnableCrossImportRemarks = Args.hasArg(OPT_emit_cross_import_remarks);
Opts.EnableModuleLoadingRemarks = Args.hasArg(OPT_remark_loading_module);
llvm::Triple Target = Opts.Target;
StringRef TargetArg;
std::string TargetArgScratch;
if (const Arg *A = Args.getLastArg(OPT_target)) {
Target = llvm::Triple(A->getValue());
TargetArg = A->getValue();
// Backward compatibility hack: infer "simulator" environment for x86
// iOS/tvOS/watchOS. The driver takes care of this for the frontend
// most of the time, but loading of old .swiftinterface files goes
// directly to the frontend.
if (tripleInfersSimulatorEnvironment(Target)) {
// Set the simulator environment.
Target.setEnvironment(llvm::Triple::EnvironmentType::Simulator);
TargetArgScratch = Target.str();
TargetArg = TargetArgScratch;
}
}
if (const Arg *A = Args.getLastArg(OPT_target_variant)) {
Opts.TargetVariant = llvm::Triple(A->getValue());
}
// Collect -clang-target value if specified in the front-end invocation.
// Usually, the driver will pass down a clang target with the
// exactly same value as the main target, so we could dignose the usage of
// unavailable APIs.
// The reason we cannot infer clang target from -target is that not all
// front-end invocation will include a -target to start with. For instance,
// when compiling a Swift module from a textual interface, -target isn't
// necessary because the textual interface hardcoded the proper target triple
// to use. Inferring -clang-target there will always give us the default
// target triple.
if (const Arg *A = Args.getLastArg(OPT_clang_target)) {
Opts.ClangTarget = llvm::Triple(A->getValue());
}
Opts.EnableCXXInterop |= Args.hasArg(OPT_enable_cxx_interop);
Opts.EnableObjCInterop =
Args.hasFlag(OPT_enable_objc_interop, OPT_disable_objc_interop,
Target.isOSDarwin());
Opts.EnableSILOpaqueValues |= Args.hasArg(OPT_enable_sil_opaque_values);
Opts.VerifyAllSubstitutionMaps |= Args.hasArg(OPT_verify_all_substitution_maps);
Opts.EnableVolatileModules |= Args.hasArg(OPT_enable_volatile_modules);
Opts.UseDarwinPreStableABIBit =
(Target.isMacOSX() && Target.isMacOSXVersionLT(10, 14, 4)) ||
(Target.isiOS() && Target.isOSVersionLT(12, 2)) ||
(Target.isTvOS() && Target.isOSVersionLT(12, 2)) ||
(Target.isWatchOS() && Target.isOSVersionLT(5, 2));
// Must be processed after any other language options that could affect
// platform conditions.
bool UnsupportedOS, UnsupportedArch;
std::tie(UnsupportedOS, UnsupportedArch) = Opts.setTarget(Target);
SmallVector<StringRef, 3> TargetComponents;
TargetArg.split(TargetComponents, "-");
if (UnsupportedArch) {
auto TargetArgArch = TargetComponents.size() ? TargetComponents[0] : "";
Diags.diagnose(SourceLoc(), diag::error_unsupported_target_arch, TargetArgArch);
}
if (UnsupportedOS) {
auto TargetArgOS = TargetComponents.size() > 2 ? TargetComponents[2] : "";
Diags.diagnose(SourceLoc(), diag::error_unsupported_target_os, TargetArgOS);
}
// Parse the SDK version.
if (Arg *A = Args.getLastArg(options::OPT_target_sdk_version)) {
auto vers = version::Version::parseVersionString(
A->getValue(), SourceLoc(), &Diags);
if (vers.hasValue()) {
Opts.SDKVersion = *vers;
} else {
Diags.diagnose(SourceLoc(), diag::error_invalid_arg_value,
A->getAsString(Args), A->getValue());
}
}
// Parse the target variant SDK version.
if (Arg *A = Args.getLastArg(options::OPT_target_variant_sdk_version)) {
auto vers = version::Version::parseVersionString(
A->getValue(), SourceLoc(), &Diags);
if (vers.hasValue()) {
Opts.VariantSDKVersion = *vers;
} else {
Diags.diagnose(SourceLoc(), diag::error_invalid_arg_value,
A->getAsString(Args), A->getValue());
}
}
if (const Arg *A = Args.getLastArg(OPT_entry_point_function_name)) {
Opts.entryPointFunctionName = A->getValue();
}
if (FrontendOpts.RequestedAction == FrontendOptions::ActionType::EmitSyntax) {
Opts.BuildSyntaxTree = true;
Opts.VerifySyntaxTree = true;
}
// Configure lexing to parse and remember comments if:
// - Emitting a swiftdoc/swiftsourceinfo
// - Performing index-while-building
// - Emitting a symbol graph file
// If we are asked to emit a module documentation file, configure lexing and
// parsing to remember comments.
if (FrontendOpts.InputsAndOutputs.hasModuleDocOutputPath() ||
FrontendOpts.InputsAndOutputs.hasModuleSourceInfoOutputPath() ||
!FrontendOpts.IndexStorePath.empty() || FrontendOpts.EmitSymbolGraph) {
Opts.AttachCommentsToDecls = true;
}
// If we're parsing SIL, access control doesn't make sense to enforce.
if (Args.hasArg(OPT_parse_sil) ||
FrontendOpts.InputsAndOutputs.shouldTreatAsSIL()) {
Opts.EnableAccessControl = false;
Opts.DisableAvailabilityChecking = true;
}
if (FrontendOpts.AllowModuleWithCompilerErrors) {
Opts.AllowModuleWithCompilerErrors = true;
}
if (auto A =
Args.getLastArg(OPT_enable_ast_verifier, OPT_disable_ast_verifier)) {
using ASTVerifierOverrideKind = LangOptions::ASTVerifierOverrideKind;
if (A->getOption().matches(OPT_enable_ast_verifier)) {
Opts.ASTVerifierOverride = ASTVerifierOverrideKind::EnableVerifier;
} else if (A->getOption().matches(OPT_disable_ast_verifier)) {
Opts.ASTVerifierOverride = ASTVerifierOverrideKind::DisableVerifier;
} else {
// This is an assert since getLastArg should not have let us get here if
// we did not have one of enable/disable specified.
llvm_unreachable(
"Should have found one of enable/disable ast verifier?!");
}
}
Opts.EnableRequirementMachine = Args.hasFlag(
OPT_enable_requirement_machine,
OPT_disable_requirement_machine, /*default=*/false);
Opts.DebugRequirementMachine = Args.hasArg(
OPT_debug_requirement_machine);
if (const Arg *A = Args.getLastArg(OPT_requirement_machine_step_limit)) {
unsigned limit;
if (StringRef(A->getValue()).getAsInteger(10, limit)) {
Diags.diagnose(SourceLoc(), diag::error_invalid_arg_value,
A->getAsString(Args), A->getValue());
HadError = true;
} else {
Opts.RequirementMachineStepLimit = limit;
}
}
if (const Arg *A = Args.getLastArg(OPT_requirement_machine_depth_limit)) {
unsigned limit;
if (StringRef(A->getValue()).getAsInteger(10, limit)) {
Diags.diagnose(SourceLoc(), diag::error_invalid_arg_value,
A->getAsString(Args), A->getValue());
HadError = true;
} else {
Opts.RequirementMachineDepthLimit = limit;
}
}
return HadError || UnsupportedOS || UnsupportedArch;
}
static bool ParseTypeCheckerArgs(TypeCheckerOptions &Opts, ArgList &Args,
DiagnosticEngine &Diags,
const FrontendOptions &FrontendOpts) {
using namespace options;
bool HadError = false;
auto setUnsignedIntegerArgument =
[&Args, &Diags, &HadError](options::ID optionID, unsigned &valueToSet) {
if (const Arg *A = Args.getLastArg(optionID)) {
unsigned attempt;
if (StringRef(A->getValue()).getAsInteger(/*radix*/ 10, attempt)) {
Diags.diagnose(SourceLoc(), diag::error_invalid_arg_value,
A->getAsString(Args), A->getValue());
HadError = true;
} else {
valueToSet = attempt;
}
}
};
setUnsignedIntegerArgument(OPT_warn_long_function_bodies,
Opts.WarnLongFunctionBodies);
setUnsignedIntegerArgument(OPT_warn_long_expression_type_checking,
Opts.WarnLongExpressionTypeChecking);
setUnsignedIntegerArgument(OPT_solver_expression_time_threshold_EQ,
Opts.ExpressionTimeoutThreshold);
setUnsignedIntegerArgument(OPT_switch_checking_invocation_threshold_EQ,
Opts.SwitchCheckingInvocationThreshold);
setUnsignedIntegerArgument(OPT_debug_constraints_attempt,
Opts.DebugConstraintSolverAttempt);
setUnsignedIntegerArgument(OPT_solver_memory_threshold,
Opts.SolverMemoryThreshold);
setUnsignedIntegerArgument(OPT_solver_shrink_unsolved_threshold,
Opts.SolverShrinkUnsolvedThreshold);
Opts.DebugTimeFunctionBodies |= Args.hasArg(OPT_debug_time_function_bodies);
Opts.DebugTimeExpressions |=
Args.hasArg(OPT_debug_time_expression_type_checking);
// Check for SkipFunctionBodies arguments in order from skipping less to
// skipping more.
if (Args.hasArg(
OPT_experimental_skip_non_inlinable_function_bodies_without_types))
Opts.SkipFunctionBodies = FunctionBodySkipping::NonInlinableWithoutTypes;
// If asked to perform InstallAPI, go ahead and enable non-inlinable function
// body skipping.
if (Args.hasArg(OPT_experimental_skip_non_inlinable_function_bodies) ||
Args.hasArg(OPT_tbd_is_installapi))
Opts.SkipFunctionBodies = FunctionBodySkipping::NonInlinable;
if (Args.hasArg(OPT_experimental_skip_all_function_bodies))
Opts.SkipFunctionBodies = FunctionBodySkipping::All;
if (Opts.SkipFunctionBodies != FunctionBodySkipping::None &&
FrontendOpts.ModuleName == SWIFT_ONONE_SUPPORT) {
// Disable these optimizations if we're compiling SwiftOnoneSupport,
// because we _definitely_ need to look inside every declaration to figure
// out what gets prespecialized.
Opts.SkipFunctionBodies = FunctionBodySkipping::None;
Diags.diagnose(
SourceLoc(),
diag::module_incompatible_with_skip_function_bodies,
SWIFT_ONONE_SUPPORT);
}
Opts.DisableConstraintSolverPerformanceHacks |=
Args.hasArg(OPT_disable_constraint_solver_performance_hacks);
Opts.EnableOperatorDesignatedTypes |=
Args.hasArg(OPT_enable_operator_designated_types);
// Always enable operator designated types for the standard library.
Opts.EnableOperatorDesignatedTypes |= FrontendOpts.ParseStdlib;
Opts.EnableOneWayClosureParameters |=
Args.hasArg(OPT_experimental_one_way_closure_params);
Opts.PrintFullConvention |=
Args.hasArg(OPT_experimental_print_full_convention);
Opts.DebugConstraintSolver |= Args.hasArg(OPT_debug_constraints);
for (const Arg *A : Args.filtered(OPT_debug_constraints_on_line)) {
unsigned line;
if (StringRef(A->getValue()).getAsInteger(/*radix*/ 10, line)) {
Diags.diagnose(SourceLoc(), diag::error_invalid_arg_value,
A->getAsString(Args), A->getValue());
HadError = true;
} else {
Opts.DebugConstraintSolverOnLines.push_back(line);
}
}
llvm::sort(Opts.DebugConstraintSolverOnLines);
if (const Arg *A = Args.getLastArg(OPT_debug_forbid_typecheck_prefix)) {
Opts.DebugForbidTypecheckPrefix = A->getValue();
}
if (Args.getLastArg(OPT_solver_disable_shrink))
Opts.SolverDisableShrink = true;
Opts.DebugGenericSignatures |= Args.hasArg(OPT_debug_generic_signatures);
return HadError;
}
static bool ParseClangImporterArgs(ClangImporterOptions &Opts,
ArgList &Args,
DiagnosticEngine &Diags,
StringRef workingDirectory) {
using namespace options;
if (const Arg *A = Args.getLastArg(OPT_module_cache_path)) {
Opts.ModuleCachePath = A->getValue();
}
if (const Arg *A = Args.getLastArg(OPT_target_cpu))
Opts.TargetCPU = A->getValue();
if (const Arg *A = Args.getLastArg(OPT_index_store_path))
Opts.IndexStorePath = A->getValue();
for (const Arg *A : Args.filtered(OPT_Xcc)) {
Opts.ExtraArgs.push_back(A->getValue());
}
for (auto A : Args.getAllArgValues(OPT_debug_prefix_map)) {
// Forward -debug-prefix-map arguments from Swift to Clang as
// -fdebug-prefix-map. This is required to ensure DIFiles created there,
// like "<swift-imported-modules>", have their paths remapped properly.
// (Note, however, that Clang's usage of std::map means that the remapping
// may not be applied in the same order, which can matter if one mapping is
// a prefix of another.)
Opts.ExtraArgs.push_back("-fdebug-prefix-map=" + A);
}
if (!workingDirectory.empty()) {
// Provide a working directory to Clang as well if there are any -Xcc
// options, in case some of them are search-related. But do it at the
// beginning, so that an explicit -Xcc -working-directory will win.
Opts.ExtraArgs.insert(Opts.ExtraArgs.begin(),
{"-working-directory", workingDirectory.str()});
}
Opts.DumpClangDiagnostics |= Args.hasArg(OPT_dump_clang_diagnostics);
if (Args.hasArg(OPT_embed_bitcode))
Opts.Mode = ClangImporterOptions::Modes::EmbedBitcode;
else if (Args.hasArg(OPT_emit_pcm) || Args.hasArg(OPT_dump_pcm))
Opts.Mode = ClangImporterOptions::Modes::PrecompiledModule;
if (auto *A = Args.getLastArg(OPT_import_objc_header))
Opts.BridgingHeader = A->getValue();
Opts.DisableSwiftBridgeAttr |= Args.hasArg(OPT_disable_swift_bridge_attr);
Opts.DisableOverlayModules |= Args.hasArg(OPT_emit_imported_modules);
Opts.ExtraArgsOnly |= Args.hasArg(OPT_extra_clang_options_only);
if (const Arg *A = Args.getLastArg(OPT_pch_output_dir)) {
Opts.PrecompiledHeaderOutputDir = A->getValue();
Opts.PCHDisableValidation |= Args.hasArg(OPT_pch_disable_validation);
}
if (Args.hasFlag(options::OPT_warnings_as_errors,
options::OPT_no_warnings_as_errors, false))
Opts.ExtraArgs.push_back("-Werror");
Opts.DebuggerSupport |= Args.hasArg(OPT_debugger_support);
Opts.DisableSourceImport |=
Args.hasArg(OPT_disable_clangimporter_source_import);
return false;
}
static bool ParseSearchPathArgs(SearchPathOptions &Opts,
ArgList &Args,
DiagnosticEngine &Diags,
StringRef workingDirectory) {
using namespace options;
namespace path = llvm::sys::path;
auto resolveSearchPath =
[workingDirectory](StringRef searchPath) -> std::string {
if (workingDirectory.empty() || path::is_absolute(searchPath))
return searchPath.str();
SmallString<64> fullPath{workingDirectory};
path::append(fullPath, searchPath);
return std::string(fullPath.str());
};
for (const Arg *A : Args.filtered(OPT_I)) {
Opts.ImportSearchPaths.push_back(resolveSearchPath(A->getValue()));
}
for (const Arg *A : Args.filtered(OPT_F, OPT_Fsystem)) {
Opts.FrameworkSearchPaths.push_back({resolveSearchPath(A->getValue()),
/*isSystem=*/A->getOption().getID() == OPT_Fsystem});
}
for (const Arg *A : Args.filtered(OPT_L)) {
Opts.LibrarySearchPaths.push_back(resolveSearchPath(A->getValue()));
}
for (const Arg *A : Args.filtered(OPT_vfsoverlay)) {
Opts.VFSOverlayFiles.push_back(resolveSearchPath(A->getValue()));
}
if (const Arg *A = Args.getLastArg(OPT_sdk))
Opts.SDKPath = A->getValue();
if (const Arg *A = Args.getLastArg(OPT_resource_dir))
Opts.RuntimeResourcePath = A->getValue();
Opts.SkipRuntimeLibraryImportPaths |= Args.hasArg(OPT_nostdimport);
Opts.DisableModulesValidateSystemDependencies |=
Args.hasArg(OPT_disable_modules_validate_system_headers);
for (auto A: Args.filtered(OPT_swift_module_file)) {
Opts.ExplicitSwiftModules.push_back(resolveSearchPath(A->getValue()));
}
if (const Arg *A = Args.getLastArg(OPT_explict_swift_module_map))
Opts.ExplicitSwiftModuleMap = A->getValue();
for (auto A: Args.filtered(OPT_candidate_module_file)) {
Opts.CandidateCompiledModules.push_back(resolveSearchPath(A->getValue()));
}
if (const Arg *A = Args.getLastArg(OPT_placeholder_dependency_module_map))
Opts.PlaceholderDependencyModuleMap = A->getValue();
if (const Arg *A = Args.getLastArg(OPT_batch_scan_input_file))
Opts.BatchScanInputFilePath = A->getValue();
// Opts.RuntimeIncludePath is set by calls to
// setRuntimeIncludePath() or setMainExecutablePath().
// Opts.RuntimeImportPath is set by calls to
// setRuntimeIncludePath() or setMainExecutablePath() and
// updated by calls to setTargetTriple() or parseArgs().
// Assumes exactly one of setMainExecutablePath() or setRuntimeIncludePath()
// is called before setTargetTriple() and parseArgs().
// TODO: improve the handling of RuntimeIncludePath.
return false;
}
static bool ParseDiagnosticArgs(DiagnosticOptions &Opts, ArgList &Args,
DiagnosticEngine &Diags) {
using namespace options;
if (Args.hasArg(OPT_verify))
Opts.VerifyMode = DiagnosticOptions::Verify;
if (Args.hasArg(OPT_verify_apply_fixes))
Opts.VerifyMode = DiagnosticOptions::VerifyAndApplyFixes;
Opts.VerifyIgnoreUnknown |= Args.hasArg(OPT_verify_ignore_unknown);
Opts.SkipDiagnosticPasses |= Args.hasArg(OPT_disable_diagnostic_passes);
Opts.ShowDiagnosticsAfterFatalError |=
Args.hasArg(OPT_show_diagnostics_after_fatal);
for (Arg *A : Args.filtered(OPT_verify_additional_file))
Opts.AdditionalVerifierFiles.push_back(A->getValue());
Opts.UseColor |=
Args.hasFlag(OPT_color_diagnostics,
OPT_no_color_diagnostics,
/*Default=*/llvm::sys::Process::StandardErrHasColors());
// If no style options are specified, default to LLVM style.
Opts.PrintedFormattingStyle = DiagnosticOptions::FormattingStyle::LLVM;
if (const Arg *arg = Args.getLastArg(OPT_diagnostic_style)) {
StringRef contents = arg->getValue();
if (contents == "llvm") {
Opts.PrintedFormattingStyle = DiagnosticOptions::FormattingStyle::LLVM;
} else if (contents == "swift") {
Opts.PrintedFormattingStyle = DiagnosticOptions::FormattingStyle::Swift;
} else {
Diags.diagnose(SourceLoc(), diag::error_unsupported_option_argument,
arg->getOption().getPrefixedName(), arg->getValue());
return true;
}
}
Opts.FixitCodeForAllDiagnostics |= Args.hasArg(OPT_fixit_all);
Opts.SuppressWarnings |= Args.hasArg(OPT_suppress_warnings);
Opts.WarningsAsErrors = Args.hasFlag(options::OPT_warnings_as_errors,
options::OPT_no_warnings_as_errors,
false);
Opts.PrintDiagnosticNames |= Args.hasArg(OPT_debug_diagnostic_names);
Opts.PrintEducationalNotes |= Args.hasArg(OPT_print_educational_notes);
if (Arg *A = Args.getLastArg(OPT_diagnostic_documentation_path)) {
Opts.DiagnosticDocumentationPath = A->getValue();
}
if (Arg *A = Args.getLastArg(OPT_locale)) {
std::string localeCode = A->getValue();
// Check if the locale code is available.
if (llvm::none_of(localeCodes, [&](const char *locale) {
return localeCode == locale;
})) {
std::string availableLocaleCodes = "";
llvm::interleave(
std::begin(localeCodes), std::end(localeCodes),
[&](std::string locale) { availableLocaleCodes += locale; },
[&] { availableLocaleCodes += ", "; });
Diags.diagnose(SourceLoc(), diag::warning_invalid_locale_code,
availableLocaleCodes);
} else {
Opts.LocalizationCode = localeCode;
}
}
if (Arg *A = Args.getLastArg(OPT_localization_path)) {
if (!llvm::sys::fs::exists(A->getValue())) {
Diags.diagnose(SourceLoc(), diag::warning_locale_path_not_found,
A->getValue());
} else if (!Opts.LocalizationCode.empty()) {
// Check if the localization path exists but it doesn't have a file
// for the specified locale code.
llvm::SmallString<128> localizationPath(A->getValue());
llvm::sys::path::append(localizationPath, Opts.LocalizationCode);
llvm::sys::path::replace_extension(localizationPath, ".yaml");
if (!llvm::sys::fs::exists(localizationPath)) {
Diags.diagnose(SourceLoc(), diag::warning_cannot_find_locale_file,
Opts.LocalizationCode, localizationPath);
}
Opts.LocalizationPath = A->getValue();
}
}
assert(!(Opts.WarningsAsErrors && Opts.SuppressWarnings) &&
"conflicting arguments; should have been caught by driver");
return false;
}
/// Parse -enforce-exclusivity=... options
void parseExclusivityEnforcementOptions(const llvm::opt::Arg *A,
SILOptions &Opts,
DiagnosticEngine &Diags) {
StringRef Argument = A->getValue();
if (Argument == "unchecked") {
// This option is analogous to the -Ounchecked optimization setting.
// It will disable dynamic checking but still diagnose statically.
Opts.EnforceExclusivityStatic = true;
Opts.EnforceExclusivityDynamic = false;
} else if (Argument == "checked") {
Opts.EnforceExclusivityStatic = true;
Opts.EnforceExclusivityDynamic = true;
} else if (Argument == "dynamic-only") {
// This option is intended for staging purposes. The intent is that
// it will eventually be removed.
Opts.EnforceExclusivityStatic = false;
Opts.EnforceExclusivityDynamic = true;
} else if (Argument == "none") {
// This option is for staging purposes.
Opts.EnforceExclusivityStatic = false;
Opts.EnforceExclusivityDynamic = false;
} else {
Diags.diagnose(SourceLoc(), diag::error_unsupported_option_argument,
A->getOption().getPrefixedName(), A->getValue());
}
}
static bool ParseSILArgs(SILOptions &Opts, ArgList &Args,
IRGenOptions &IRGenOpts,
const FrontendOptions &FEOpts,
const TypeCheckerOptions &TCOpts,
DiagnosticEngine &Diags,
const llvm::Triple &Triple,
ClangImporterOptions &ClangOpts) {
using namespace options;
if (const Arg *A = Args.getLastArg(OPT_sil_inline_threshold)) {
if (StringRef(A->getValue()).getAsInteger(10, Opts.InlineThreshold)) {
Diags.diagnose(SourceLoc(), diag::error_invalid_arg_value,
A->getAsString(Args), A->getValue());
return true;
}
}
if (const Arg *A = Args.getLastArg(OPT_sil_inline_caller_benefit_reduction_factor)) {
if (StringRef(A->getValue()).getAsInteger(10, Opts.CallerBaseBenefitReductionFactor)) {
Diags.diagnose(SourceLoc(), diag::error_invalid_arg_value,
A->getAsString(Args), A->getValue());
return true;
}
}
if (const Arg *A = Args.getLastArg(OPT_sil_unroll_threshold)) {
if (StringRef(A->getValue()).getAsInteger(10, Opts.UnrollThreshold)) {
Diags.diagnose(SourceLoc(), diag::error_invalid_arg_value,
A->getAsString(Args), A->getValue());
return true;
}
}
// If we're only emitting a module, stop optimizations once we've serialized
// the SIL for the module.
if (FEOpts.RequestedAction == FrontendOptions::ActionType::EmitModuleOnly)
Opts.StopOptimizationAfterSerialization = true;
// Propagate the typechecker's understanding of
// -experimental-skip-*-function-bodies to SIL.
Opts.SkipFunctionBodies = TCOpts.SkipFunctionBodies;
// Parse the optimization level.
// Default to Onone settings if no option is passed.
Opts.OptMode = OptimizationMode::NoOptimization;
if (const Arg *A = Args.getLastArg(OPT_O_Group)) {
if (A->getOption().matches(OPT_Onone)) {
// Already set.
} else if (A->getOption().matches(OPT_Ounchecked)) {
// Turn on optimizations and remove all runtime checks.
Opts.OptMode = OptimizationMode::ForSpeed;
// Removal of cond_fail (overflow on binary operations).
Opts.RemoveRuntimeAsserts = true;
Opts.AssertConfig = SILOptions::Unchecked;
} else if (A->getOption().matches(OPT_Oplayground)) {
// For now -Oplayground is equivalent to -Onone.
Opts.OptMode = OptimizationMode::NoOptimization;
} else if (A->getOption().matches(OPT_Osize)) {
Opts.OptMode = OptimizationMode::ForSize;
} else {
assert(A->getOption().matches(OPT_O));
Opts.OptMode = OptimizationMode::ForSpeed;
}
if (Opts.shouldOptimize()) {
ClangOpts.Optimization = "-Os";
}
}
IRGenOpts.OptMode = Opts.OptMode;
if (Args.getLastArg(OPT_AssumeSingleThreaded)) {
Opts.AssumeSingleThreaded = true;
}
Opts.IgnoreAlwaysInline |= Args.hasArg(OPT_ignore_always_inline);
// Parse the assert configuration identifier.
if (const Arg *A = Args.getLastArg(OPT_AssertConfig)) {
StringRef Configuration = A->getValue();
if (Configuration == "DisableReplacement") {
Opts.AssertConfig = SILOptions::DisableReplacement;
} else if (Configuration == "Debug") {
Opts.AssertConfig = SILOptions::Debug;
} else if (Configuration == "Release") {
Opts.AssertConfig = SILOptions::Release;
} else if (Configuration == "Unchecked") {
Opts.AssertConfig = SILOptions::Unchecked;
} else {
Diags.diagnose(SourceLoc(), diag::error_invalid_arg_value,
A->getAsString(Args), A->getValue());
return true;
}
} else if (FEOpts.ParseStdlib) {
// Disable assertion configuration replacement when we build the standard
// library.
Opts.AssertConfig = SILOptions::DisableReplacement;
} else if (Opts.AssertConfig == SILOptions::Debug) {
// Set the assert configuration according to the optimization level if it
// has not been set by the -Ounchecked flag.
Opts.AssertConfig =
(IRGenOpts.shouldOptimize() ? SILOptions::Release : SILOptions::Debug);
}
// -Ounchecked might also set removal of runtime asserts (cond_fail).
Opts.RemoveRuntimeAsserts |= Args.hasArg(OPT_RemoveRuntimeAsserts);
Opts.EnableCopyPropagation |= Args.hasArg(OPT_enable_copy_propagation);
Opts.DisableCopyPropagation |= Args.hasArg(OPT_disable_copy_propagation);
Opts.EnableARCOptimizations &= !Args.hasArg(OPT_disable_arc_opts);
Opts.EnableOSSAModules |= Args.hasArg(OPT_enable_ossa_modules);
Opts.EnableOSSAOptimizations &= !Args.hasArg(OPT_disable_ossa_opts);
Opts.EnableSpeculativeDevirtualization |= Args.hasArg(OPT_enable_spec_devirt);
Opts.EnableActorDataRaceChecks |= Args.hasFlag(
OPT_enable_actor_data_race_checks,
OPT_disable_actor_data_race_checks, /*default=*/false);
Opts.DisableSILPerfOptimizations |= Args.hasArg(OPT_disable_sil_perf_optzns);
Opts.CrossModuleOptimization |= Args.hasArg(OPT_CrossModuleOptimization);
Opts.VerifyAll |= Args.hasArg(OPT_sil_verify_all);
Opts.VerifyNone |= Args.hasArg(OPT_sil_verify_none);
Opts.DebugSerialization |= Args.hasArg(OPT_sil_debug_serialization);
Opts.EmitVerboseSIL |= Args.hasArg(OPT_emit_verbose_sil);
Opts.EmitSortedSIL |= Args.hasArg(OPT_emit_sorted_sil);
Opts.PrintFullConvention |=
Args.hasArg(OPT_experimental_print_full_convention);
Opts.PrintInstCounts |= Args.hasArg(OPT_print_inst_counts);
Opts.StopOptimizationBeforeLoweringOwnership |=
Args.hasArg(OPT_sil_stop_optzns_before_lowering_ownership);
if (const Arg *A = Args.getLastArg(OPT_external_pass_pipeline_filename))
Opts.ExternalPassPipelineFilename = A->getValue();
Opts.GenerateProfile |= Args.hasArg(OPT_profile_generate);
const Arg *ProfileUse = Args.getLastArg(OPT_profile_use);
Opts.UseProfile = ProfileUse ? ProfileUse->getValue() : "";
Opts.EmitProfileCoverageMapping |= Args.hasArg(OPT_profile_coverage_mapping);
Opts.DisableSILPartialApply |=
Args.hasArg(OPT_disable_sil_partial_apply);
Opts.VerifySILOwnership &= !Args.hasArg(OPT_disable_sil_ownership_verifier);
Opts.EnableDynamicReplacementCanCallPreviousImplementation = !Args.hasArg(
OPT_disable_previous_implementation_calls_in_dynamic_replacements);
if (const Arg *A = Args.getLastArg(OPT_save_optimization_record_EQ)) {
llvm::Expected<llvm::remarks::Format> formatOrErr =
llvm::remarks::parseFormat(A->getValue());
if (llvm::Error err = formatOrErr.takeError()) {
Diags.diagnose(SourceLoc(), diag::error_creating_remark_serializer,
toString(std::move(err)));
return true;
}
Opts.OptRecordFormat = *formatOrErr;
}
if (const Arg *A = Args.getLastArg(OPT_save_optimization_record_passes))
Opts.OptRecordPasses = A->getValue();
if (const Arg *A = Args.getLastArg(OPT_save_optimization_record_path))
Opts.OptRecordFile = A->getValue();
if (Args.hasArg(OPT_debug_on_sil)) {
// Derive the name of the SIL file for debugging from
// the regular outputfile.
std::string BaseName = FEOpts.InputsAndOutputs.getSingleOutputFilename();
// If there are no or multiple outputfiles, derive the name
// from the module name.
if (BaseName.empty())
BaseName = FEOpts.ModuleName;
Opts.SILOutputFileNameForDebugging = BaseName;
}
if (const Arg *A = Args.getLastArg(options::OPT_sanitize_EQ)) {
Opts.Sanitizers = parseSanitizerArgValues(
Args, A, Triple, Diags,
/* sanitizerRuntimeLibExists= */[](StringRef libName, bool shared) {
// The driver has checked the existence of the library
// already.
return true;
});
IRGenOpts.Sanitizers = Opts.Sanitizers;
}
if (const Arg *A = Args.getLastArg(options::OPT_sanitize_recover_EQ)) {
IRGenOpts.SanitizersWithRecoveryInstrumentation =
parseSanitizerRecoverArgValues(A, Opts.Sanitizers, Diags,
/*emitWarnings=*/true);
}
if (const Arg *A =
Args.getLastArg(options::OPT_sanitize_address_use_odr_indicator)) {
IRGenOpts.SanitizeAddressUseODRIndicator =
parseSanitizerAddressUseODRIndicator(A, Opts.Sanitizers, Diags);
}
if (auto A = Args.getLastArg(OPT_enable_verify_exclusivity,
OPT_disable_verify_exclusivity)) {
Opts.VerifyExclusivity
= A->getOption().matches(OPT_enable_verify_exclusivity);
}
// If runtime asserts are disabled in general, also disable runtime
// exclusivity checks unless explicitly requested.
if (Opts.RemoveRuntimeAsserts)
Opts.EnforceExclusivityDynamic = false;
if (const Arg *A = Args.getLastArg(options::OPT_enforce_exclusivity_EQ)) {
parseExclusivityEnforcementOptions(A, Opts, Diags);
}
return false;
}
void CompilerInvocation::buildDebugFlags(std::string &Output,
const ArrayRef<const char*> &Args,
StringRef SDKPath,
StringRef ResourceDir) {
// This isn't guaranteed to be the same temp directory as what the driver
// uses, but it's highly likely.
llvm::SmallString<128> TDir;
llvm::sys::path::system_temp_directory(true, TDir);
llvm::raw_string_ostream OS(Output);
interleave(Args,
[&](const char *Argument) { PrintArg(OS, Argument, TDir.str()); },
[&] { OS << " "; });
// Inject the SDK path and resource dir if they are nonempty and missing.
bool haveSDKPath = SDKPath.empty();
bool haveResourceDir = ResourceDir.empty();
for (auto A : Args) {
StringRef Arg(A);
// FIXME: this should distinguish between key and value.
if (!haveSDKPath && Arg.equals("-sdk"))
haveSDKPath = true;
if (!haveResourceDir && Arg.equals("-resource-dir"))
haveResourceDir = true;
}
if (!haveSDKPath) {
OS << " -sdk ";
PrintArg(OS, SDKPath.data(), TDir.str());
}
if (!haveResourceDir) {
OS << " -resource-dir ";
PrintArg(OS, ResourceDir.data(), TDir.str());
}
}
static bool ParseTBDGenArgs(TBDGenOptions &Opts, ArgList &Args,
DiagnosticEngine &Diags,
CompilerInvocation &Invocation) {
using namespace options;
Opts.HasMultipleIGMs = Invocation.getIRGenOptions().hasMultipleIGMs();
if (const Arg *A = Args.getLastArg(OPT_module_link_name)) {
Opts.ModuleLinkName = A->getValue();
}
if (const Arg *A = Args.getLastArg(OPT_tbd_install_name)) {
Opts.InstallName = A->getValue();
}
Opts.IsInstallAPI = Args.hasArg(OPT_tbd_is_installapi);
if (const Arg *A = Args.getLastArg(OPT_tbd_compatibility_version)) {
Opts.CompatibilityVersion = A->getValue();
}
if (const Arg *A = Args.getLastArg(OPT_tbd_current_version)) {
Opts.CurrentVersion = A->getValue();
}
if (const Arg *A = Args.getLastArg(OPT_previous_module_installname_map_file)) {
Opts.ModuleInstallNameMapPath = A->getValue();
}
for (auto A : Args.getAllArgValues(OPT_embed_tbd_for_module)) {
Opts.embedSymbolsFromModules.push_back(StringRef(A).str());
}
return false;
}
static bool ParseIRGenArgs(IRGenOptions &Opts, ArgList &Args,
DiagnosticEngine &Diags,
const FrontendOptions &FrontendOpts,
const SILOptions &SILOpts,
StringRef SDKPath,
StringRef ResourceDir,
const llvm::Triple &Triple) {
using namespace options;
if (!SILOpts.SILOutputFileNameForDebugging.empty()) {
Opts.DebugInfoLevel = IRGenDebugInfoLevel::LineTables;
} else if (const Arg *A = Args.getLastArg(OPT_g_Group)) {
if (A->getOption().matches(OPT_g))
Opts.DebugInfoLevel = IRGenDebugInfoLevel::Normal;
else if (A->getOption().matches(options::OPT_gline_tables_only))
Opts.DebugInfoLevel = IRGenDebugInfoLevel::LineTables;
else if (A->getOption().matches(options::OPT_gdwarf_types))
Opts.DebugInfoLevel = IRGenDebugInfoLevel::DwarfTypes;
else
assert(A->getOption().matches(options::OPT_gnone) &&
"unknown -g<kind> option");
}
if (Opts.DebugInfoLevel >= IRGenDebugInfoLevel::LineTables) {
if (Args.hasArg(options::OPT_debug_info_store_invocation)) {
ArgStringList RenderedArgs;
for (auto A : Args)
A->render(Args, RenderedArgs);
CompilerInvocation::buildDebugFlags(Opts.DebugFlags,
RenderedArgs, SDKPath,
ResourceDir);
}
// TODO: Should we support -fdebug-compilation-dir?
llvm::SmallString<256> cwd;
llvm::sys::fs::current_path(cwd);
Opts.DebugCompilationDir = std::string(cwd.str());
}
if (const Arg *A = Args.getLastArg(options::OPT_debug_info_format)) {
if (A->containsValue("dwarf"))
Opts.DebugInfoFormat = IRGenDebugInfoFormat::DWARF;
else if (A->containsValue("codeview"))
Opts.DebugInfoFormat = IRGenDebugInfoFormat::CodeView;
else
Diags.diagnose(SourceLoc(), diag::error_invalid_arg_value,
A->getAsString(Args), A->getValue());
} else if (Opts.DebugInfoLevel > IRGenDebugInfoLevel::None) {
// If -g was specified but not -debug-info-format, DWARF is assumed.
Opts.DebugInfoFormat = IRGenDebugInfoFormat::DWARF;
}
if (Args.hasArg(options::OPT_debug_info_format) &&
!Args.hasArg(options::OPT_g_Group)) {
const Arg *debugFormatArg = Args.getLastArg(options::OPT_debug_info_format);
Diags.diagnose(SourceLoc(), diag::error_option_missing_required_argument,
debugFormatArg->getAsString(Args), "-g");
}
if (Opts.DebugInfoFormat == IRGenDebugInfoFormat::CodeView &&
(Opts.DebugInfoLevel == IRGenDebugInfoLevel::LineTables ||
Opts.DebugInfoLevel == IRGenDebugInfoLevel::DwarfTypes)) {
const Arg *debugFormatArg = Args.getLastArg(options::OPT_debug_info_format);
Diags.diagnose(SourceLoc(), diag::error_argument_not_allowed_with,
debugFormatArg->getAsString(Args),
Opts.DebugInfoLevel == IRGenDebugInfoLevel::LineTables
? "-gline-tables-only"
: "-gdwarf_types");
}
for (auto A : Args.getAllArgValues(options::OPT_debug_prefix_map)) {
auto SplitMap = StringRef(A).split('=');
Opts.DebugPrefixMap.addMapping(SplitMap.first, SplitMap.second);
}
for (auto A : Args.getAllArgValues(options::OPT_coverage_prefix_map)) {
auto SplitMap = StringRef(A).split('=');
Opts.CoveragePrefixMap.addMapping(SplitMap.first, SplitMap.second);
}
for (const Arg *A : Args.filtered(OPT_Xcc)) {
StringRef Opt = A->getValue();
if (Opt.startswith("-D") || Opt.startswith("-U"))
Opts.ClangDefines.push_back(Opt.str());
}
for (const Arg *A : Args.filtered(OPT_l, OPT_framework)) {
LibraryKind Kind;
if (A->getOption().matches(OPT_l)) {
Kind = LibraryKind::Library;
} else if (A->getOption().matches(OPT_framework)) {
Kind = LibraryKind::Framework;
} else {
llvm_unreachable("Unknown LinkLibrary option kind");
}
Opts.LinkLibraries.push_back(LinkLibrary(A->getValue(), Kind));
}
if (auto valueNames = Args.getLastArg(OPT_disable_llvm_value_names,
OPT_enable_llvm_value_names)) {
Opts.HasValueNamesSetting = true;
Opts.ValueNames =
valueNames->getOption().matches(OPT_enable_llvm_value_names);
}
Opts.DisableLLVMOptzns |= Args.hasArg(OPT_disable_llvm_optzns);
Opts.DisableSwiftSpecificLLVMOptzns |=
Args.hasArg(OPT_disable_swift_specific_llvm_optzns);
if (Args.hasArg(OPT_disable_llvm_verify))
Opts.Verify = false;
Opts.EmitStackPromotionChecks |= Args.hasArg(OPT_stack_promotion_checks);
if (const Arg *A = Args.getLastArg(OPT_stack_promotion_limit)) {
unsigned limit;
if (StringRef(A->getValue()).getAsInteger(10, limit)) {
Diags.diagnose(SourceLoc(), diag::error_invalid_arg_value,
A->getAsString(Args), A->getValue());
return true;
}
Opts.StackPromotionSizeLimit = limit;
}
Opts.FunctionSections = Args.hasArg(OPT_function_sections);
if (Args.hasArg(OPT_autolink_force_load))
Opts.ForceLoadSymbolName = Args.getLastArgValue(OPT_module_link_name).str();
Opts.ModuleName = FrontendOpts.ModuleName;
if (Args.hasArg(OPT_no_clang_module_breadcrumbs))
Opts.DisableClangModuleSkeletonCUs = true;
if (Args.hasArg(OPT_disable_debugger_shadow_copies))
Opts.DisableDebuggerShadowCopies = true;
if (Args.hasArg(OPT_disable_concrete_type_metadata_mangled_name_accessors))
Opts.DisableConcreteTypeMetadataMangledNameAccessors = true;
if (Args.hasArg(OPT_use_jit)) {
Opts.UseJIT = true;
if (const Arg *A = Args.getLastArg(OPT_dump_jit)) {
llvm::Optional<swift::JITDebugArtifact> artifact =
llvm::StringSwitch<llvm::Optional<swift::JITDebugArtifact>>(A->getValue())
.Case("llvm-ir", JITDebugArtifact::LLVMIR)
.Case("object", JITDebugArtifact::Object)
.Default(None);
if (!artifact) {
Diags.diagnose(SourceLoc(), diag::error_invalid_arg_value,
A->getOption().getName(), A->getValue());
return true;
}
Opts.DumpJIT = *artifact;
}
}
for (const Arg *A : Args.filtered(OPT_verify_type_layout)) {
Opts.VerifyTypeLayoutNames.push_back(A->getValue());
}
for (const Arg *A : Args.filtered(OPT_disable_autolink_framework)) {
Opts.DisableAutolinkFrameworks.push_back(A->getValue());
}
Opts.GenerateProfile |= Args.hasArg(OPT_profile_generate);
const Arg *ProfileUse = Args.getLastArg(OPT_profile_use);
Opts.UseProfile = ProfileUse ? ProfileUse->getValue() : "";
Opts.PrintInlineTree |= Args.hasArg(OPT_print_llvm_inline_tree);
Opts.EnableDynamicReplacementChaining |=
Args.hasArg(OPT_enable_dynamic_replacement_chaining);
if (auto A = Args.getLastArg(OPT_enable_type_layouts,
OPT_disable_type_layouts)) {
Opts.UseTypeLayoutValueHandling
= A->getOption().matches(OPT_enable_type_layouts);
} else if (Opts.OptMode == OptimizationMode::NoOptimization) {
// Disable type layouts at Onone except if explictly requested.
Opts.UseTypeLayoutValueHandling = false;
}
// This is set to true by default.
Opts.UseIncrementalLLVMCodeGen &=
!Args.hasArg(OPT_disable_incremental_llvm_codegeneration);
if (Args.hasArg(OPT_embed_bitcode))
Opts.EmbedMode = IRGenEmbedMode::EmbedBitcode;
else if (Args.hasArg(OPT_embed_bitcode_marker))
Opts.EmbedMode = IRGenEmbedMode::EmbedMarker;
if (Opts.EmbedMode == IRGenEmbedMode::EmbedBitcode) {
// Keep track of backend options so we can embed them in a separate data
// section and use them when building from the bitcode. This can be removed
// when all the backend options are recorded in the IR.
for (const Arg *A : Args) {
// Do not encode output and input.
if (A->getOption().getID() == options::OPT_o ||
A->getOption().getID() == options::OPT_INPUT ||
A->getOption().getID() == options::OPT_primary_file ||
A->getOption().getID() == options::OPT_embed_bitcode)
continue;
ArgStringList ASL;
A->render(Args, ASL);
for (ArgStringList::iterator it = ASL.begin(), ie = ASL.end();
it != ie; ++ it) {
StringRef ArgStr(*it);
Opts.CmdArgs.insert(Opts.CmdArgs.end(), ArgStr.begin(), ArgStr.end());
// using \00 to terminate to avoid problem decoding.
Opts.CmdArgs.push_back('\0');
}
}
}
if (const Arg *A = Args.getLastArg(options::OPT_lto)) {
auto LLVMLTOKind =
llvm::StringSwitch<Optional<IRGenLLVMLTOKind>>(A->getValue())
.Case("llvm-thin", IRGenLLVMLTOKind::Thin)
.Case("llvm-full", IRGenLLVMLTOKind::Full)
.Default(llvm::None);
if (LLVMLTOKind)
Opts.LLVMLTOKind = LLVMLTOKind.getValue();
else
Diags.diagnose(SourceLoc(), diag::error_invalid_arg_value,
A->getAsString(Args), A->getValue());
}
if (const Arg *A = Args.getLastArg(options::OPT_sanitize_coverage_EQ)) {
Opts.SanitizeCoverage =
parseSanitizerCoverageArgValue(A, Triple, Diags, Opts.Sanitizers);
} else if (Opts.Sanitizers & SanitizerKind::Fuzzer) {
// Automatically set coverage flags, unless coverage type was explicitly
// requested.
// Updated to match clang at Jul 2019.
Opts.SanitizeCoverage.IndirectCalls = true;
Opts.SanitizeCoverage.TraceCmp = true;
Opts.SanitizeCoverage.PCTable = true;
if (Triple.isOSLinux()) {
Opts.SanitizeCoverage.StackDepth = true;
}
Opts.SanitizeCoverage.Inline8bitCounters = true;
Opts.SanitizeCoverage.CoverageType = llvm::SanitizerCoverageOptions::SCK_Edge;
}
if (Args.hasArg(OPT_disable_reflection_metadata)) {
Opts.EnableReflectionMetadata = false;
Opts.EnableReflectionNames = false;
}
if (Args.hasArg(OPT_enable_anonymous_context_mangled_names))
Opts.EnableAnonymousContextMangledNames = true;
if (Args.hasArg(OPT_disable_reflection_names)) {
Opts.EnableReflectionNames = false;
}
if (Args.hasArg(OPT_force_public_linkage)) {
Opts.ForcePublicLinkage = true;
}
// PE/COFF cannot deal with the cross-module reference to the metadata parent
// (e.g. NativeObject). Force the lazy initialization of the VWT always.
Opts.LazyInitializeClassMetadata = Triple.isOSBinFormatCOFF();
// PE/COFF cannot deal with cross-module reference to the protocol conformance
// witness. Use a runtime initialized value for the protocol conformance
// witness.
Opts.LazyInitializeProtocolConformances = Triple.isOSBinFormatCOFF();
if (Args.hasArg(OPT_disable_legacy_type_info)) {
Opts.DisableLegacyTypeInfo = true;
}
if (Args.hasArg(OPT_prespecialize_generic_metadata) &&
!Args.hasArg(OPT_disable_generic_metadata_prespecialization)) {
Opts.PrespecializeGenericMetadata = true;
}
if (const Arg *A = Args.getLastArg(OPT_read_legacy_type_info_path_EQ)) {
Opts.ReadLegacyTypeInfoPath = A->getValue();
}
for (const auto &Lib : Args.getAllArgValues(options::OPT_autolink_library))
Opts.LinkLibraries.push_back(LinkLibrary(Lib, LibraryKind::Library));
if (const Arg *A = Args.getLastArg(OPT_type_info_dump_filter_EQ)) {
StringRef mode(A->getValue());
if (mode == "all")
Opts.TypeInfoFilter = IRGenOptions::TypeInfoDumpFilter::All;
else if (mode == "resilient")
Opts.TypeInfoFilter = IRGenOptions::TypeInfoDumpFilter::Resilient;
else if (mode == "fragile")
Opts.TypeInfoFilter = IRGenOptions::TypeInfoDumpFilter::Fragile;
else {
Diags.diagnose(SourceLoc(), diag::error_invalid_arg_value,
A->getAsString(Args), A->getValue());
}
}
auto getRuntimeCompatVersion = [&] () -> Optional<llvm::VersionTuple> {
Optional<llvm::VersionTuple> runtimeCompatibilityVersion;
if (auto versionArg = Args.getLastArg(
options::OPT_runtime_compatibility_version)) {
auto version = StringRef(versionArg->getValue());
if (version.equals("none")) {
runtimeCompatibilityVersion = None;
} else if (version.equals("5.0")) {
runtimeCompatibilityVersion = llvm::VersionTuple(5, 0);
} else if (version.equals("5.1")) {
runtimeCompatibilityVersion = llvm::VersionTuple(5, 1);
} else {
Diags.diagnose(SourceLoc(), diag::error_invalid_arg_value,
versionArg->getAsString(Args), version);
}
} else {
runtimeCompatibilityVersion =
getSwiftRuntimeCompatibilityVersionForTarget(Triple);
}
return runtimeCompatibilityVersion;
};
// Autolink runtime compatibility libraries, if asked to.
if (!Args.hasArg(options::OPT_disable_autolinking_runtime_compatibility)) {
Opts.AutolinkRuntimeCompatibilityLibraryVersion = getRuntimeCompatVersion();
}
if (!Args.hasArg(options::
OPT_disable_autolinking_runtime_compatibility_dynamic_replacements)) {
Opts.AutolinkRuntimeCompatibilityDynamicReplacementLibraryVersion =
getRuntimeCompatVersion();
}
if (const Arg *A = Args.getLastArg(OPT_num_threads)) {
if (StringRef(A->getValue()).getAsInteger(10, Opts.NumThreads)) {
Diags.diagnose(SourceLoc(), diag::error_invalid_arg_value,
A->getAsString(Args), A->getValue());
return true;
}
if (environmentVariableRequestedMaximumDeterminism()) {
Opts.NumThreads = 1;
Diags.diagnose(SourceLoc(), diag::remark_max_determinism_overriding,
"-num-threads");
}
}
return false;
}
static std::string getScriptFileName(StringRef name, version::Version &ver) {
if (ver.isVersionAtLeast(4, 2))
return (Twine(name) + "42" + ".json").str();
else
return (Twine(name) + "4" + ".json").str();
}
static bool ParseMigratorArgs(MigratorOptions &Opts,
LangOptions &LangOpts,
const FrontendOptions &FrontendOpts,
StringRef ResourcePath, const ArgList &Args,
DiagnosticEngine &Diags) {
using namespace options;
Opts.KeepObjcVisibility |= Args.hasArg(OPT_migrate_keep_objc_visibility);
Opts.DumpUsr = Args.hasArg(OPT_dump_usr);
if (Args.hasArg(OPT_disable_migrator_fixits)) {
Opts.EnableMigratorFixits = false;
}
if (auto RemapFilePath = Args.getLastArg(OPT_emit_remap_file_path)) {
Opts.EmitRemapFilePath = RemapFilePath->getValue();
}
if (auto MigratedFilePath = Args.getLastArg(OPT_emit_migrated_file_path)) {
Opts.EmitMigratedFilePath = MigratedFilePath->getValue();
}
if (auto Dumpster = Args.getLastArg(OPT_dump_migration_states_dir)) {
Opts.DumpMigrationStatesDir = Dumpster->getValue();
}
if (auto DataPath = Args.getLastArg(OPT_api_diff_data_file)) {
Opts.APIDigesterDataStorePaths.push_back(DataPath->getValue());
} else {
auto &Triple = LangOpts.Target;
llvm::SmallString<128> basePath;
if (auto DataDir = Args.getLastArg(OPT_api_diff_data_dir)) {
basePath = DataDir->getValue();
} else {
basePath = ResourcePath;
llvm::sys::path::append(basePath, "migrator");
}
bool Supported = true;
llvm::SmallString<128> dataPath(basePath);
auto &langVer = LangOpts.EffectiveLanguageVersion;
if (Triple.isMacOSX())
llvm::sys::path::append(dataPath, getScriptFileName("macos", langVer));
else if (Triple.isiOS())
llvm::sys::path::append(dataPath, getScriptFileName("ios", langVer));
else if (Triple.isTvOS())
llvm::sys::path::append(dataPath, getScriptFileName("tvos", langVer));
else if (Triple.isWatchOS())
llvm::sys::path::append(dataPath, getScriptFileName("watchos", langVer));
else
Supported = false;
if (Supported) {
llvm::SmallString<128> authoredDataPath(basePath);
llvm::sys::path::append(authoredDataPath, getScriptFileName("overlay", langVer));
// Add authored list first to take higher priority.
Opts.APIDigesterDataStorePaths.push_back(std::string(authoredDataPath.str()));
Opts.APIDigesterDataStorePaths.push_back(std::string(dataPath.str()));
}
}
if (Opts.shouldRunMigrator()) {
assert(!FrontendOpts.InputsAndOutputs.isWholeModule());
// FIXME: In order to support batch mode properly, the migrator would have
// to support having one remap file path and one migrated file path per
// primary input. The easiest way to do this would be to move processing of
// these paths into FrontendOptions, like other supplementary outputs, and
// to call migrator::updateCodeAndEmitRemapIfNeeded once for each primary
// file.
//
// Supporting WMO would be similar, but WMO is set up to only produce one
// supplementary output for the whole compilation instead of one per input,
// so it's probably not worth it.
FrontendOpts.InputsAndOutputs.assertMustNotBeMoreThanOnePrimaryInput();
// Always disable typo-correction in the migrator.
LangOpts.TypoCorrectionLimit = 0;
}
return false;
}
bool CompilerInvocation::parseArgs(
ArrayRef<const char *> Args, DiagnosticEngine &Diags,
SmallVectorImpl<std::unique_ptr<llvm::MemoryBuffer>>
*ConfigurationFileBuffers,
StringRef workingDirectory, StringRef mainExecutablePath) {
using namespace options;
if (Args.empty())
return false;
// Parse frontend command line options using Swift's option table.
unsigned MissingIndex;
unsigned MissingCount;
std::unique_ptr<llvm::opt::OptTable> Table = createSwiftOptTable();
llvm::opt::InputArgList ParsedArgs =
Table->ParseArgs(Args, MissingIndex, MissingCount, FrontendOption);
if (MissingCount) {
Diags.diagnose(SourceLoc(), diag::error_missing_arg_value,
ParsedArgs.getArgString(MissingIndex), MissingCount);
return true;
}
if (ParsedArgs.hasArg(OPT_UNKNOWN)) {
for (const Arg *A : ParsedArgs.filtered(OPT_UNKNOWN)) {
Diags.diagnose(SourceLoc(), diag::error_unknown_arg,
A->getAsString(ParsedArgs));
}
return true;
}
if (ParseFrontendArgs(FrontendOpts, ParsedArgs, Diags,
ConfigurationFileBuffers)) {
return true;
}
if (!mainExecutablePath.empty()) {
setMainExecutablePath(mainExecutablePath);
}
ParseModuleInterfaceArgs(ModuleInterfaceOpts, ParsedArgs);
SaveModuleInterfaceArgs(ModuleInterfaceOpts, FrontendOpts, ParsedArgs, Diags);
if (ParseLangArgs(LangOpts, ParsedArgs, Diags, FrontendOpts)) {
return true;
}
if (ParseTypeCheckerArgs(TypeCheckerOpts, ParsedArgs, Diags, FrontendOpts)) {
return true;
}
if (ParseClangImporterArgs(ClangImporterOpts, ParsedArgs, Diags,
workingDirectory)) {
return true;
}
if (ParseSearchPathArgs(SearchPathOpts, ParsedArgs, Diags,
workingDirectory)) {
return true;
}
if (ParseSILArgs(SILOpts, ParsedArgs, IRGenOpts, FrontendOpts,
TypeCheckerOpts, Diags,
LangOpts.Target, ClangImporterOpts)) {
return true;
}
if (ParseIRGenArgs(IRGenOpts, ParsedArgs, Diags, FrontendOpts, SILOpts,
getSDKPath(), SearchPathOpts.RuntimeResourcePath,
LangOpts.Target)) {
return true;
}
if (ParseTBDGenArgs(TBDGenOpts, ParsedArgs, Diags, *this)) {
return true;
}
if (ParseDiagnosticArgs(DiagnosticOpts, ParsedArgs, Diags)) {
return true;
}
if (ParseMigratorArgs(MigratorOpts, LangOpts, FrontendOpts,
SearchPathOpts.RuntimeResourcePath, ParsedArgs, Diags)) {
return true;
}
updateRuntimeLibraryPaths(SearchPathOpts, LangOpts.Target);
setDefaultPrebuiltCacheIfNecessary();
// Now that we've parsed everything, setup some inter-option-dependent state.
setIRGenOutputOptsFromFrontendOptions(IRGenOpts, FrontendOpts);
setBridgingHeaderFromFrontendOptions(ClangImporterOpts, FrontendOpts);
return false;
}
serialization::Status
CompilerInvocation::loadFromSerializedAST(StringRef data) {
serialization::ExtendedValidationInfo extendedInfo;
serialization::ValidationInfo info =
serialization::validateSerializedAST(data, &extendedInfo);
if (info.status != serialization::Status::Valid)
return info.status;
LangOpts.EffectiveLanguageVersion = info.compatibilityVersion;
setTargetTriple(info.targetTriple);
if (!extendedInfo.getSDKPath().empty())
setSDKPath(extendedInfo.getSDKPath().str());
auto &extraClangArgs = getClangImporterOptions().ExtraArgs;
for (StringRef Arg : extendedInfo.getExtraClangImporterOptions())
extraClangArgs.push_back(Arg.str());
return info.status;
}
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>>
CompilerInvocation::setUpInputForSILTool(
StringRef inputFilename, StringRef moduleNameArg,
bool alwaysSetModuleToMain, bool bePrimary,
serialization::ExtendedValidationInfo &extendedInfo) {
// Load the input file.
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> fileBufOrErr =
llvm::MemoryBuffer::getFileOrSTDIN(inputFilename);
if (!fileBufOrErr) {
return fileBufOrErr;
}
// If it looks like we have an AST, set the source file kind to SIL and the
// name of the module to the file's name.
getFrontendOptions().InputsAndOutputs.addInput(
InputFile(inputFilename, bePrimary, fileBufOrErr.get().get(), file_types::TY_SIL));
auto result = serialization::validateSerializedAST(
fileBufOrErr.get()->getBuffer(), &extendedInfo);
bool hasSerializedAST = result.status == serialization::Status::Valid;
if (hasSerializedAST) {
const StringRef stem = !moduleNameArg.empty()
? moduleNameArg
: llvm::sys::path::stem(inputFilename);
setModuleName(stem);
getFrontendOptions().InputMode =
FrontendOptions::ParseInputMode::SwiftLibrary;
} else {
const StringRef name = (alwaysSetModuleToMain || moduleNameArg.empty())
? "main"
: moduleNameArg;
setModuleName(name);
getFrontendOptions().InputMode = FrontendOptions::ParseInputMode::SIL;
}
return fileBufOrErr;
}
bool CompilerInvocation::isModuleExternallyConsumed(
const ModuleDecl *mod) const {
// Modules for executables aren't expected to be consumed by other modules.
// This picks up all kinds of entrypoints, including script mode,
// @UIApplicationMain and @NSApplicationMain.
if (mod->hasEntryPoint()) {
return false;
}
// If an implicit Objective-C header was needed to construct this module, it
// must be the product of a library target.
if (!getFrontendOptions().ImplicitObjCHeaderPath.empty()) {
return false;
}
// App extensions are special beasts because they build without entrypoints
// like library targets, but they behave like executable targets because
// their associated modules are not suitable for distribution.
if (mod->getASTContext().LangOpts.EnableAppExtensionRestrictions) {
return false;
}
// FIXME: This is still a lousy approximation of whether the module file will
// be externally consumed.
return true;
}