Files
swift-mirror/lib/SILOptimizer/SILCombiner/SILCombine.cpp
Kavon Farvardin 4a943d464d sil: provide ability to run CopyPropagation in -Onone
This does not enable it by default. Use either of the flags:

```
-enable-copy-propagation
-enable-copy-propagation=always
```

to enable it in -Onone. The previous frontend flag
`-enable-copy-propagation=true` has been renamed to
`-enable-copy-propagation=optimizing`, which is currently default.

rdar://107610971
2025-09-19 16:23:19 -07:00

773 lines
29 KiB
C++

//===--- SILCombine.cpp ---------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// A port of LLVM's InstCombine pass to SIL. Its main purpose is for performing
// small combining operations/peepholes at the SIL level. It additionally
// performs dead code elimination when it initially adds instructions to the
// work queue in order to reduce compile time by not visiting trivially dead
// instructions.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-combine"
#include "SILCombiner.h"
#include "swift/Basic/Assertions.h"
#include "swift/SIL/BasicBlockDatastructures.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SIL/Test.h"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Analysis/NonLocalAccessBlockAnalysis.h"
#include "swift/SILOptimizer/Analysis/SimplifyInstruction.h"
#include "swift/SILOptimizer/PassManager/PassManager.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CanonicalizeInstruction.h"
#include "swift/SILOptimizer/Utils/DebugOptUtils.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/OSSACanonicalizeGuaranteed.h"
#include "swift/SILOptimizer/Utils/OSSACanonicalizeOwned.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "swift/SILOptimizer/Utils/StackNesting.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <fstream>
#include <set>
using namespace swift;
STATISTIC(NumCombined, "Number of instructions combined");
STATISTIC(NumDeadInst, "Number of dead insts eliminated");
static llvm::cl::opt<bool> EnableSinkingOwnedForwardingInstToUses(
"silcombine-owned-code-sinking",
llvm::cl::desc("Enable sinking of owned forwarding insts"),
llvm::cl::init(true), llvm::cl::Hidden);
// Allow disabling general optimization for targeted unit tests.
static llvm::cl::opt<bool> EnableSILCombineCanonicalize(
"sil-combine-canonicalize",
llvm::cl::desc("Canonicalization during sil-combine"), llvm::cl::init(true),
llvm::cl::Hidden);
//===----------------------------------------------------------------------===//
// Utility Methods
//===----------------------------------------------------------------------===//
/// addReachableCodeToWorklist - Walk the function in depth-first order, adding
/// all reachable code to the worklist.
///
/// This has a couple of tricks to make the code faster and more powerful. In
/// particular, we DCE instructions as we go, to avoid adding them to the
/// worklist (this significantly speeds up SILCombine on code where many
/// instructions are dead or constant).
void SILCombiner::addReachableCodeToWorklist(SILBasicBlock *BB) {
BasicBlockWorklist Worklist(BB);
llvm::SmallVector<SILInstruction *, 128> InstrsForSILCombineWorklist;
while (SILBasicBlock *BB = Worklist.pop()) {
for (SILBasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
SILInstruction *Inst = &*BBI;
++BBI;
// DCE instruction if trivially dead.
if (isInstructionTriviallyDead(Inst)) {
++NumDeadInst;
LLVM_DEBUG(llvm::dbgs() << "SC: DCE: " << *Inst << '\n');
// We pass in false here since we need to signal to
// eraseInstFromFunction to not add this instruction's operands to the
// worklist since we have not initialized the worklist yet.
//
// The reason to just use a default argument here is that it allows us
// to centralize all instruction removal in SILCombine into this one
// function. This is important if we want to be able to update analyses
// in a clean manner.
eraseInstFromFunction(*Inst, BBI,
false /*Don't add operands to worklist*/);
continue;
}
InstrsForSILCombineWorklist.push_back(Inst);
}
// Recursively visit successors.
for (SILBasicBlock *Succ : BB->getSuccessors()) {
Worklist.pushIfNotVisited(Succ);
}
}
// Once we've found all of the instructions to add to the worklist, add them
// in reverse order. This way SILCombine will visit from the top of the
// function down. This jives well with the way that it adds all uses of
// instructions to the worklist after doing a transformation, thus avoiding
// some N^2 behavior in pathological cases.
addInitialGroup(InstrsForSILCombineWorklist);
}
//===----------------------------------------------------------------------===//
// Implementation
//===----------------------------------------------------------------------===//
namespace swift {
// Define a CanonicalizeInstruction subclass for use in SILCombine.
class SILCombineCanonicalize final : CanonicalizeInstruction {
SmallSILInstructionWorklist<256> &Worklist;
bool changed = false;
public:
SILCombineCanonicalize(SmallSILInstructionWorklist<256> &Worklist,
DeadEndBlocks &deadEndBlocks)
: CanonicalizeInstruction(DEBUG_TYPE, deadEndBlocks), Worklist(Worklist) {
}
void notifyNewInstruction(SILInstruction *inst) override {
Worklist.add(inst);
Worklist.addUsersOfAllResultsToWorklist(inst);
changed = true;
}
// Just delete the given 'inst' and record its operands. The callback isn't
// allowed to mutate any other instructions.
void killInstruction(SILInstruction *inst) override {
Worklist.eraseSingleInstFromFunction(*inst,
/*AddOperandsToWorklist*/ true);
changed = true;
}
void notifyHasNewUsers(SILValue value) override {
if (Worklist.size() < 10000) {
Worklist.addUsersToWorklist(value);
}
changed = true;
}
bool tryCanonicalize(SILInstruction *inst) {
if (!EnableSILCombineCanonicalize)
return false;
changed = false;
canonicalize(inst);
return changed;
}
};
} // end namespace swift
SILCombiner::SILCombiner(SILFunctionTransform *trans,
bool removeCondFails, bool enableCopyPropagation) :
parentTransform(trans),
AA(trans->getPassManager()->getAnalysis<AliasAnalysis>(trans->getFunction())),
CA(trans->getPassManager()->getAnalysis<BasicCalleeAnalysis>()),
DA(trans->getPassManager()->getAnalysis<DominanceAnalysis>()),
PCA(trans->getPassManager()->getAnalysis<ProtocolConformanceAnalysis>()),
CHA(trans->getPassManager()->getAnalysis<ClassHierarchyAnalysis>()),
NLABA(trans->getPassManager()->getAnalysis<NonLocalAccessBlockAnalysis>()),
Worklist("SC"),
deleter(InstModCallbacks()
.onDelete([&](SILInstruction *instToDelete) {
// We allow for users in SILCombine to perform 2 stage
// deletion, so we need to split the erasing of
// instructions from adding operands to the worklist.
eraseInstFromFunction(*instToDelete,
false /* don't add operands */);
})
.onNotifyWillBeDeleted(
[&](SILInstruction *instThatWillBeDeleted) {
Worklist.addOperandsToWorklist(
*instThatWillBeDeleted);
})
.onCreateNewInst([&](SILInstruction *newlyCreatedInst) {
Worklist.add(newlyCreatedInst);
})
.onSetUseValue([&](Operand *use, SILValue newValue) {
use->set(newValue);
Worklist.add(use->getUser());
})),
DEBA(trans->getPassManager()->getAnalysis<DeadEndBlocksAnalysis>()),
MadeChange(false), RemoveCondFails(removeCondFails),
enableCopyPropagation(enableCopyPropagation), Iteration(0),
Builder(*trans->getFunction(), &TrackingList),
FuncBuilder(*trans),
CastOpt(
FuncBuilder, nullptr /*SILBuilderContext*/,
/* ReplaceValueUsesAction */
[&](SILValue Original, SILValue Replacement) {
replaceValueUsesWith(Original, Replacement);
},
/* ReplaceInstUsesAction */
[&](SingleValueInstruction *I, ValueBase *V) {
replaceInstUsesWith(*I, V);
},
/* EraseAction */
[&](SILInstruction *I) { eraseInstFromFunction(*I); }),
deBlocks(trans->getFunction()),
ownershipFixupContext(getInstModCallbacks(), deBlocks),
swiftPassInvocation(trans->getPassManager(),
trans->getFunction(), this) {}
bool SILCombiner::trySinkOwnedForwardingInst(SingleValueInstruction *svi) {
if (auto *consumingUse = svi->getSingleConsumingUse()) {
auto *consumingUser = consumingUse->getUser();
// If our user is already in the same block, we don't move it further.
if (svi->getParent() == consumingUser->getParent())
return false;
// Otherwise, make sure our instruction does not have any non-debug uses
// that are non-lifetime ending. If so, we return.
if (llvm::any_of(getNonDebugUses(svi),
[](Operand *use) { return !use->isLifetimeEnding(); }))
return false;
LLVM_DEBUG(llvm::dbgs() << "Sink forwarding: " << *svi << '\n');
// Otherwise, delete all of the debug uses so we don't have to sink them as
// well and then return true so we process svi in its new position.
deleteAllDebugUses(svi, getInstModCallbacks());
svi->moveBefore(consumingUser);
MadeChange = true;
// NOTE: We return false here so that our caller doesn't delete the
// instruction and instead tries to simplify it.
return false;
}
// If we have multiple consuming uses, then we know that our
// forwarding inst must be live out of the current block and thus we
// might be able to duplicate/sink.
if (llvm::any_of(getNonDebugUses(svi),
[](Operand *use) { return !use->isLifetimeEnding(); }))
return false;
while (!svi->use_empty()) {
auto *sviUse = *svi->use_begin();
auto *sviUser = sviUse->getUser();
if (auto *dvi = dyn_cast<DestroyValueInst>(sviUser)) {
dvi->setOperand(svi->getOperand(0));
Worklist.add(dvi);
continue;
}
if (sviUser->isDebugInstruction()) {
eraseInstFromFunction(*sviUser);
continue;
}
auto *newSVI = svi->clone(sviUser);
LLVM_DEBUG(llvm::dbgs()
<< "Sink forwarding: " << *svi << " to " << *newSVI << '\n');
Worklist.add(newSVI);
sviUse->set(newSVI);
}
eraseInstFromFunction(*svi);
MadeChange = true;
return true;
}
/// Canonicalize each extended OSSA lifetime that contains an instruction newly
/// created during this SILCombine iteration.
///
/// \p currentInst is null if the current instruction was deleted during its
/// SILCombine.
///
/// Avoid endless worklist iteration as follows:
///
/// - Canonicalization only runs on the canonical definition of the visited
/// instruction if it was itself a copy or any new copies were inserted
/// as a result of optimization.
///
/// - Instructions are only added back to the SILCombine worklist when
/// canonicalization deletes an instruction. Only the canonical def being
/// processed and its uses are added rather than arbitrary operands of the
/// deleted instruction. This ensures that an instruction is only added back
/// to the worklist after SILCombine either directly optimized it or created a
/// new copy_value for which it is the canonical def or its use.
void SILCombiner::canonicalizeOSSALifetimes(SILInstruction *currentInst) {
if (!enableCopyPropagation || !Builder.hasOwnership())
return;
llvm::SmallSetVector<SILValue, 16> defsToCanonicalize;
// copyInst was either optimized by a SILCombine visitor or is a copy_value
// produced by the visitor. Find the canonical def.
auto recordCopiedDef = [&defsToCanonicalize](CopyValueInst *copyInst) {
SILValue def = OSSACanonicalizeOwned::getCanonicalCopiedDef(copyInst);
// getCanonicalCopiedDef returns a copy whenever that the copy's source is
// guaranteed. In that case, find the root of the borrowed lifetime. If it
// is a function argument, then a simple guaranteed canonicalization can be
// performed. Canonicalizing other borrow scopes is not handled by
// SILCombine because it's not a single-lifetime canonicalization. Instead,
// SILCombine treats a copy that uses a borrowed value as a separate owned
// live range. Handling the compensation code across the borrow scope
// boundary requires post processing in a particular order. The copy
// propagation pass knows how to handle that. To avoid complexity and ensure
// fast convergence, rewriting borrow scopes should not be combined with
// other unrelated transformations.
if (auto *copyDef = dyn_cast<CopyValueInst>(def)) {
if (SILValue borrowDef =
OSSACanonicalizeGuaranteed::getCanonicalBorrowedDef(
copyDef->getOperand())) {
if (isa<SILFunctionArgument>(borrowDef)) {
def = borrowDef;
}
}
}
defsToCanonicalize.insert(def);
};
if (auto *copyInst = dyn_cast_or_null<CopyValueInst>(currentInst))
recordCopiedDef(copyInst);
for (auto *trackedInst : *Builder.getTrackingList()) {
if (trackedInst->isDeleted())
continue;
if (auto *copyInst = dyn_cast<CopyValueInst>(trackedInst))
recordCopiedDef(copyInst);
}
if (defsToCanonicalize.empty())
return;
// Remove instructions deleted during canonicalization from SILCombine's
// worklist. OSSACanonicalizeOwned invalidates operands before invoking
// the deletion callback.
auto canonicalizeCallbacks =
InstModCallbacks().onDelete([this](SILInstruction *instToDelete) {
eraseInstFromFunction(*instToDelete,
false /*do not add operands to the worklist*/);
});
InstructionDeleter deleter(std::move(canonicalizeCallbacks));
DominanceInfo *domTree = DA->get(&Builder.getFunction());
OSSACanonicalizeOwned canonicalizer(
DontPruneDebugInsts,
MaximizeLifetime_t(!parentTransform->getFunction()->shouldOptimize()),
parentTransform->getFunction(), NLABA, DEBA, domTree, CA, deleter);
OSSACanonicalizeGuaranteed borrowCanonicalizer(parentTransform->getFunction(),
deleter);
while (!defsToCanonicalize.empty()) {
SILValue def = defsToCanonicalize.pop_back_val();
deleter.getCallbacks().resetHadCallbackInvocation();
auto canonicalized = [&]() {
if (!deleter.getCallbacks().hadCallbackInvocation())
return;
if (auto *inst = def->getDefiningInstruction()) {
Worklist.add(inst);
}
for (auto *use : def->getUses()) {
Worklist.add(use->getUser());
}
};
if (def->getOwnershipKind() == OwnershipKind::Guaranteed) {
if (auto functionArg = dyn_cast<SILFunctionArgument>(def)) {
if (borrowCanonicalizer.canonicalizeFunctionArgument(functionArg))
canonicalized();
}
continue;
}
if (canonicalizer.canonicalizeValueLifetime(def)) {
canonicalized();
}
}
}
bool SILCombiner::doOneIteration(SILFunction &F, unsigned Iteration) {
MadeChange = false;
LLVM_DEBUG(llvm::dbgs() << "\n\nSILCOMBINE ITERATION #" << Iteration << " on "
<< F.getName() << "\n");
// Add reachable instructions to our worklist.
addReachableCodeToWorklist(&*F.begin());
SILCombineCanonicalize scCanonicalize(Worklist, *DEBA->get(&F));
// Process until we run out of items in our worklist.
while (!Worklist.isEmpty()) {
SILInstruction *I = Worklist.pop_back_val();
// When we erase an instruction, we use the map in the worklist to check if
// the instruction is in the worklist. If it is, we replace it with null
// instead of shifting all members of the worklist towards the front. This
// check makes sure that if we run into any such residual null pointers, we
// skip them.
if (I == nullptr)
continue;
if (!parentTransform->continueWithNextSubpassRun(I))
return false;
processInstruction(I, scCanonicalize, MadeChange);
}
Worklist.resetChecked();
return MadeChange;
}
void SILCombiner::processInstruction(SILInstruction *I,
SILCombineCanonicalize &scCanonicalize,
bool &MadeChange) {
// Check to see if we can DCE the instruction.
if (isInstructionTriviallyDead(I)) {
LLVM_DEBUG(llvm::dbgs() << "SC: DCE: " << *I << '\n');
eraseInstFromFunction(*I);
++NumDeadInst;
MadeChange = true;
return;
}
#ifndef NDEBUG
std::string OrigIStr;
#endif
LLVM_DEBUG(llvm::raw_string_ostream SS(OrigIStr); I->print(SS);
OrigIStr = SS.str(););
LLVM_DEBUG(llvm::dbgs() << "SC: Visiting: " << OrigIStr << '\n');
// Canonicalize the instruction.
if (scCanonicalize.tryCanonicalize(I)) {
MadeChange = true;
return;
}
// If we have reached this point, all attempts to do simple simplifications
// have failed. First if we have an owned forwarding value, we try to
// sink. Otherwise, we perform the actual SILCombine operation.
if (EnableSinkingOwnedForwardingInstToUses) {
// If we have an ownership forwarding single value inst that forwards
// through its first argument and it is trivially duplicatable, see if it
// only has consuming uses. If so, we can duplicate the instruction into
// the consuming use blocks and destroy any destroy_value uses of it that
// we see. This makes it easier for SILCombine to fold instructions with
// owned parameters since chains of these values will be in the same
// block.
if (auto *svi = dyn_cast<SingleValueInstruction>(I)) {
if (auto fwdOp = ForwardingOperation(svi)) {
if (fwdOp.getSingleForwardingOperand() &&
SILValue(svi)->getOwnershipKind() == OwnershipKind::Owned) {
// Try to sink the value. If we sank the value and deleted it,
// return. If we didn't optimize or sank but we are still able to
// optimize further, we fall through to SILCombine below.
if (trySinkOwnedForwardingInst(svi)) {
return;
}
}
}
}
}
// Then begin... SILCombine.
Builder.setInsertionPoint(I);
SILInstruction *currentInst = I;
if (SILInstruction *Result = visit(I)) {
++NumCombined;
// Should we replace the old instruction with a new one?
Worklist.replaceInstructionWithInstruction(I, Result
#ifndef NDEBUG
,
OrigIStr
#endif
);
currentInst = Result;
MadeChange = true;
}
// Eliminate copies created that this SILCombine iteration may have
// introduced during OSSA-RAUW.
canonicalizeOSSALifetimes(currentInst->isDeleted() ? nullptr : currentInst);
// Builder's tracking list has been accumulating instructions created by the
// during this SILCombine iteration. To finish this iteration, go through
// the tracking list and add its contents to the worklist and then clear
// said list in preparation for the next iteration.
for (SILInstruction *I : *Builder.getTrackingList()) {
if (!I->isDeleted()) {
LLVM_DEBUG(llvm::dbgs()
<< "SC: add " << *I << " from tracking list to worklist\n");
Worklist.add(I);
}
}
Builder.getTrackingList()->clear();
}
namespace swift::test {
struct SILCombinerProcessInstruction {
void operator()(SILCombiner &combiner, SILInstruction *inst,
SILCombineCanonicalize &canonicalizer, bool &madeChange) {
combiner.processInstruction(inst, canonicalizer, madeChange);
}
};
// Arguments:
// - instruction: the instruction to be processed
// - bool: remove cond_fails
// - bool: enable lifetime canonicalization
// Dumps:
// - the function after the processing is attempted
static FunctionTest SILCombineProcessInstruction(
"sil_combine_process_instruction",
[](auto &function, auto &arguments, auto &test) {
auto inst = arguments.takeInstruction();
auto removeCondFails = arguments.takeBool();
auto enableCopyPropagation = arguments.takeBool();
SILCombiner combiner(test.getPass(), removeCondFails,
enableCopyPropagation);
SILCombineCanonicalize canonicalizer(combiner.Worklist,
*test.getDeadEndBlocks());
bool madeChange = false;
SILCombinerProcessInstruction()(combiner, inst, canonicalizer,
madeChange);
function.dump();
});
} // end namespace swift::test
namespace swift::test {
// Arguments:
// - instruction: the instruction to be visited
// Dumps:
// - the function after the visitation is attempted
static FunctionTest SILCombineVisitInstruction(
"sil_combine_visit_instruction",
[](auto &function, auto &arguments, auto &test) {
SILCombiner combiner(test.getPass(), false, false);
auto inst = arguments.takeInstruction();
combiner.Builder.setInsertionPoint(inst);
auto *result = combiner.visit(inst);
if (result) {
combiner.Worklist.replaceInstructionWithInstruction(inst, result
#ifndef NDEBUG
,
""
#endif
);
}
function.dump();
});
} // end namespace swift::test
bool SILCombiner::runOnFunction(SILFunction &F) {
clear();
bool Changed = false;
// Perform iterations until we do not make any changes.
while (doOneIteration(F, Iteration)) {
Changed = true;
++Iteration;
}
if (invalidatedStackNesting) {
StackNesting::fixNesting(&F);
}
assert(TrackingList.empty() && "TrackingList should be fully processed");
return Changed;
}
void SILCombiner::eraseInstIncludingUsers(SILInstruction *inst) {
for (SILValue result : inst->getResults()) {
while (!result->use_empty()) {
eraseInstIncludingUsers(result->use_begin()->getUser());
}
}
eraseInstFromFunction(*inst);
}
/// Runs a Swift instruction pass.
void SILCombiner::runSwiftInstructionPass(SILInstruction *inst,
void (*runFunction)(BridgedInstructionPassCtxt)) {
swiftPassInvocation.startInstructionPassRun(inst);
runFunction({ {inst->asSILNode()}, {&swiftPassInvocation} });
swiftPassInvocation.finishedInstructionPassRun();
}
/// Registered briged instruction pass run functions.
static llvm::StringMap<BridgedInstructionPassRunFn> swiftInstPasses;
static bool passesRegistered = false;
// Called from initializeSwiftModules().
void SILCombine_registerInstructionPass(BridgedStringRef instClassName,
BridgedInstructionPassRunFn runFn) {
swiftInstPasses[instClassName.unbridged()] = runFn;
passesRegistered = true;
}
#define _RUN_SWIFT_SIMPLIFICATON(INST) \
static BridgedInstructionPassRunFn runFunction = nullptr; \
static bool passDisabled = false; \
if (!runFunction) { \
runFunction = swiftInstPasses[#INST]; \
if (!runFunction) { \
if (passesRegistered) { \
ABORT([&](auto &out) { \
out << "Swift pass " << #INST << " is not registered"; \
}); \
} else { \
return nullptr; \
} \
} \
StringRef instName = getSILInstructionName(SILInstructionKind::INST); \
passDisabled = SILPassManager::isInstructionPassDisabled(instName); \
} \
if (passDisabled && \
SILPassManager::disablePassesForFunction(inst->getFunction())) { \
return nullptr; \
} \
runSwiftInstructionPass(inst, runFunction); \
return nullptr;
#define INSTRUCTION_SIMPLIFICATION(INST) \
SILInstruction *SILCombiner::visit##INST(INST *inst) { \
_RUN_SWIFT_SIMPLIFICATON(INST) \
} \
#define INSTRUCTION_SIMPLIFICATION_WITH_LEGACY(INST) \
SILInstruction *SILCombiner::visit##INST(INST *inst) { \
if (auto *result = legacyVisit##INST(inst)) \
return result; \
if (!inst->isDeleted()) { \
_RUN_SWIFT_SIMPLIFICATON(INST) \
} \
return nullptr; \
} \
#include "Simplifications.def"
#undef _RUN_SWIFT_SIMPLIFICATON
//===----------------------------------------------------------------------===//
// Entry Points
//===----------------------------------------------------------------------===//
namespace {
class SILCombine : public SILFunctionTransform {
/// The entry point to the transformation.
void run() override {
bool enableCopyPropagation =
getOptions().CopyPropagation >= CopyPropagationOption::Optimizing;
if (getOptions().EnableOSSAModules) {
enableCopyPropagation =
getOptions().CopyPropagation != CopyPropagationOption::Off;
}
SILCombiner Combiner(this, getOptions().RemoveRuntimeAsserts,
enableCopyPropagation);
bool Changed = Combiner.runOnFunction(*getFunction());
if (Changed) {
updateAllGuaranteedPhis(getPassManager(), getFunction());
// Invalidate everything.
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
}
}
};
} // end anonymous namespace
SILTransform *swift::createSILCombine() {
return new SILCombine();
}
//===----------------------------------------------------------------------===//
// SwiftFunctionPassContext
//===----------------------------------------------------------------------===//
void SwiftPassInvocation::eraseInstruction(SILInstruction *inst, bool salvageDebugInfo) {
if (silCombiner) {
silCombiner->eraseInstFromFunction(*inst, /*addOperandsToWorklist=*/ true, salvageDebugInfo);
} else {
if (salvageDebugInfo) {
swift::salvageDebugInfo(inst);
}
if (inst->isStaticInitializerInst()) {
inst->getParent()->erase(inst, *getPassManager()->getModule());
} else {
inst->eraseFromParent();
}
}
}
// cond_fail removal based on cond_fail message and containing function name.
//
// The standard library uses _precondition calls which have a message argument.
//
// Allow disabling the generated cond_fail by these message arguments.
//
// For example:
//
// _precondition(source >= (0 as T), "Negative value is not representable")
// results in a cond_fail "Negative value is not representable".
//
// This commit allows for specifying a file that contains these messages on each
// line.
//
// /path/to/disable_cond_fails:
//
// ```
// Negative value is not representable
// Array index is out of range
// ```
//
// The optimizer will remove these cond_fails if the swift frontend is invoked
// with -Xllvm -cond-fail-config-file=/path/to/disable_cond_fails.
//
// Additionally, also interpret the lines as function names and check whether
// the current cond_fail is contained in a listed function when considering
// whether to remove it.
static llvm::cl::opt<std::string> CondFailConfigFile(
"cond-fail-config-file", llvm::cl::init(""),
llvm::cl::desc("read the cond_fail message strings to elimimate from file"));
static std::set<std::string> CondFailsToRemove;
bool SILCombiner::shouldRemoveCondFail(CondFailInst &CFI) {
if (CondFailConfigFile.empty())
return false;
std::fstream fs(CondFailConfigFile);
if (!fs) {
llvm::errs() << "cannot cond_fail disablement config file\n";
exit(1);
}
if (CondFailsToRemove.empty()) {
std::string line;
while (std::getline(fs, line)) {
CondFailsToRemove.insert(line);
}
fs.close();
}
// Check whether the cond_fail's containing function was listed in the config
// file.
if (CondFailsToRemove.find(CFI.getFunction()->getName().str()) !=
CondFailsToRemove.end())
return true;
// Check whether the cond_fail's message was listed in the config file.
auto message = CFI.getMessage();
return CondFailsToRemove.find(message.str()) != CondFailsToRemove.end();
}