Files
swift-mirror/lib/SILOptimizer/Transforms/AccessEnforcementOpts.cpp
Arnold Schwaighofer 7a251af60c AccessEnforcement: Fix analysis to include mayReleases as potentially
executing unknown code

This means we have to claw back some performance by recognizing harmless
releases.

Such as releases on types we known don't call a deinit with unknown
side-effects.

rdar://143497196
rdar://143141695
2025-02-07 15:10:13 -08:00

1176 lines
47 KiB
C++

//===------ AccessEnforcementOpts.cpp - Optimize access enforcement -------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// Pass order dependencies:
///
/// - Will benefit from running after AccessEnforcementSelection.
///
/// - Should run immediately before the AccessEnforcementWMO to share
/// AccessStorageAnalysis results.
///
/// - Benefits from running after AccessEnforcementReleaseSinking.
///
/// This pass optimizes access enforcement as follows:
///
/// **Access marker folding**
///
/// Find begin/end access scopes that are uninterrupted by a potential
/// conflicting access. Flag those as [nontracking] access.
///
/// Folding must prove that no dynamic conflicts occur inside of an access
/// scope. That is, a scope has no "nested inner conflicts". The access itself
/// may still conflict with an outer scope. If successful, folding simply sets
/// the [no_nested_conflict] attribute on the begin_[unpaired_]access
/// instruction and removes all corresponding end_[unpaired_]access
/// instructions.
///
/// This analysis is conceptually similar to DiagnoseStaticExclusivity. The
/// difference is that it conservatively considers any dynamic access that may
/// alias, as opposed to only the obviously aliasing accesses (it is the
/// complement of the static diagnostic pass in that respect). This makes a
/// considerable difference in the implementation. For example,
/// DiagnoseStaticExclusivity must be able to fully analyze all @inout_aliasable
/// parameters because they aren't dynamically enforced. This optimization
/// completely ignores @inout_aliasable parameters because it only cares about
/// dynamic enforcement. This optimization also does not attempt to
/// differentiate accesses on disjoint subaccess paths, because it should not
/// weaken enforcement in any way--a program that traps at -Onone should also
/// trap at -O.
///
/// Access folding is a forward data flow analysis that tracks open accesses. If
/// any path to an access' end of scope has a potentially conflicting access,
/// then that access is marked as a nested conflict.
///
/// **Local access marker removal**
///
/// When none of the local accesses on local storage (box/stack) have nested
/// conflicts, then all the local accesses may be disabled by setting their
/// enforcement to `static`. This is somewhat rare because static diagnostics
/// already promote the obvious cases to static checks. However, there are two
/// reasons that dynamic local markers may be disabled: (1) inlining may cause
/// closure access to become local access (2) local storage may truly escape,
/// but none of the local access scopes cross a call site.
///
/// TODO: Perform another run of AccessEnforcementSelection immediately before
/// this pass. Currently, that pass only works well when run before
/// AllocBox2Stack. Ideally all such closure analysis passes are combined into a
/// shared analysis with a set of associated optimizations that can be rerun at
/// any point in the pipeline. Until then, we could settle for a partially
/// working AccessEnforcementSelection, or expand it somewhat to handle
/// alloc_stack.
///
/// **Access marker merger**
///
/// When a pair of non-overlapping accesses, where the first access dominates
/// the second and there are no conflicts on the same storage in the paths
/// between them, and they are part of the same sub-region
/// be it the same block or the sample loop, merge those accesses to create
/// a new, larger, scope with a single begin_access for the accesses.
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "access-enforcement-opts"
#include "swift/Basic/Assertions.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SILOptimizer/Analysis/AccessStorageAnalysis.h"
#include "swift/SILOptimizer/Analysis/DeadEndBlocksAnalysis.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Analysis/LoopRegionAnalysis.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/InstructionDeleter.h"
#include "swift/SILOptimizer/Utils/OwnershipOptUtils.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SCCIterator.h"
using namespace swift;
namespace swift {
/// Information about each dynamic access with valid storage.
///
/// This is a pass-specific subclass of AccessStorage with identical layout.
/// An instance is created for each BeginAccess in the current function. In
/// additional to identifying the access' storage location, it associates that
/// access with pass-specific data in reserved bits. The reserved bits do not
/// participate in equality or hash lookup.
///
/// Aliased to AccessInfo in this file; the fully descriptive class name allows
/// forward declaration in order to define bitfields in AccessStorage.
class AccessEnforcementOptsInfo : public AccessStorage {
public:
AccessEnforcementOptsInfo(const AccessStorage &storage)
: AccessStorage(storage) {
Bits.AccessEnforcementOptsInfo.beginAccessIndex = 0;
Bits.AccessEnforcementOptsInfo.seenNestedConflict = false;
}
/// Get a unique index for this access within its function.
unsigned getAccessIndex() const {
return Bits.AccessEnforcementOptsInfo.beginAccessIndex;
}
void setAccessIndex(unsigned index) {
Bits.AccessEnforcementOptsInfo.beginAccessIndex = index;
assert(unsigned(Bits.AccessEnforcementOptsInfo.beginAccessIndex) == index);
}
/// Has the analysis seen a conflicting nested access on any path within this
/// access' scope.
bool seenNestedConflict() const {
return Bits.AccessEnforcementOptsInfo.seenNestedConflict;
}
void setSeenNestedConflict() {
Bits.AccessEnforcementOptsInfo.seenNestedConflict = 1;
}
/// Did a PostOrder walk previously find another access to the same
/// storage. If so, then this access could be merged with a subsequent access
/// after checking for conflicts.
bool seenIdenticalStorage() const {
return Bits.AccessEnforcementOptsInfo.seenIdenticalStorage;
}
void setSeenIdenticalStorage() {
Bits.AccessEnforcementOptsInfo.seenIdenticalStorage = 1;
}
void dump() const {
AccessStorage::dump();
llvm::dbgs() << " access index: " << getAccessIndex() << " <"
<< (seenNestedConflict() ? "" : "no ") << "conflict> <"
<< (seenIdenticalStorage() ? "" : "not ") << "seen identical>"
<< "\n";
}
};
using AccessInfo = AccessEnforcementOptsInfo;
} // namespace swift
namespace {
/// A dense map of (index, begin_access instructions) as a compact vector.
/// Reachability results are stored here because very few accesses are
/// typically in-progress at a particular program point,
/// particularly at block boundaries.
using DenseAccessSet = llvm::SmallSetVector<BeginAccessInst *, 4>;
// Tracks the local data flow result for a basic block
struct RegionState {
DenseAccessSet inScopeConflictFreeAccesses;
DenseAccessSet outOfScopeConflictFreeAccesses;
public:
RegionState(unsigned size) {
// FIXME: llvm::SetVector should have a reserve API.
// inScopeConflictFreeAccesses.reserve(size);
// outOfScopeConflictFreeAccesses.reserve(size);
}
void reset() {
inScopeConflictFreeAccesses.clear();
outOfScopeConflictFreeAccesses.clear();
}
const DenseAccessSet &getInScopeAccesses() {
return inScopeConflictFreeAccesses;
}
const DenseAccessSet &getOutOfScopeAccesses() {
return outOfScopeConflictFreeAccesses;
}
};
/// Analyze a function's formal accesses.
/// determines nested conflicts and mergeable accesses.
///
/// Maps each begin access instruction to its AccessInfo, which:
/// - identifies the accessed memory for conflict detection
/// - contains a pass-specific reachability set index
/// - contains a pass-specific flag that indicates the presence of a conflict
/// on any path.
///
/// If, after computing reachability, an access' conflict flag is still not set,
/// then all paths in its scope are conflict free. Reachability begins at a
/// begin_access instruction and ends either at a potential conflict
/// or at the end_access instruction that is associated with the
/// begin_access.
///
/// Forward data flow computes `BlockRegionState` for each region's blocks.
/// Loops are processed bottom-up.
/// Control flow within a loop or function top level is processed in RPO order.
/// At a block's control flow merge, this analysis forms an intersection of
/// reachable accesses on each path inside the region.
/// Before a block is visited, it has no `BlockRegionState` entry.
/// Blocks are processed in RPO order, and a single begin_access dominates
/// all associated end_access instructions. Consequently,
/// when a block is first visited, its storage accesses contains the maximal
/// reachability set. Further iteration would only reduce this set.
///
/// The only results of this analysis are:
//// 1) The seenNestedConflict flags in AccessInfo. For Each begin_access
/// Since reducing a reachability set cannot further detect
/// conflicts, there is no need to iterate to a reachability fix point.
/// This is derived from a block's in-scope accesses
/// 2) A deterministic order map of out-of-scope instructions that we can
/// merge. The way we construct this map guarantees the accesses within
/// it are mergeable.
///
// Example:
// %1 = begin_access X
// %1 is in-scope
// ...
// %2 = begin_access Y // conflict with %1 if X (may-)aliases Y
// If it conflicts - seenNestedConflict
// ...
// end_access %1
// %1 is out-of-scope
// ...
// %3 = begin_access X // %1 reaches %3 -> we can merge
class AccessConflictAndMergeAnalysis {
public:
using AccessMap = llvm::SmallDenseMap<BeginAccessInst *, AccessInfo, 32>;
using AccessStorageSet = llvm::SmallDenseSet<AccessStorage, 8>;
using LoopRegionToAccessStorage =
llvm::SmallDenseMap<unsigned, AccessStorageResult>;
using RegionIDToLocalStateMap = llvm::DenseMap<unsigned, RegionState>;
// Instruction pairs we can merge from dominating instruction to dominated
using MergeablePairs =
llvm::SmallVector<std::pair<BeginAccessInst *, BeginAccessInst *>, 64>;
// This result of this analysis is a map from all BeginAccessInst in this
// function to AccessInfo.
struct Result {
/// Map each begin access to its AccessInfo with index, data, and flags.
/// Iterating over this map is nondeterministic. If it is necessary to order
/// the accesses, then AccessInfo::getAccessIndex() can be used.
/// This maps contains every dynamic begin_access instruction,
/// even those with invalid storage:
/// We would like to keep track of unrecognized or invalid storage locations
/// Because they affect our decisions for recognized locations,
/// be it nested conflict or merging out of scope accesses.
/// The access map is just a “cache” of accesses.
/// Keeping those invalid ones just makes the lookup faster
AccessMap accessMap;
/// Instruction pairs we can merge the scope of
MergeablePairs mergePairs;
/// Convenience.
///
/// Note: If AccessInfo has already been retrieved, get the index directly
/// from it instead of calling this to avoid additional hash lookup.
unsigned getAccessIndex(BeginAccessInst *beginAccess) const {
return getAccessInfo(beginAccess).getAccessIndex();
}
/// Get the AccessInfo for a BeginAccessInst within this function. All
/// accesses are mapped by identifyBeginAccesses().
AccessInfo &getAccessInfo(BeginAccessInst *beginAccess) {
auto iter = accessMap.find(beginAccess);
assert(iter != accessMap.end());
return iter->second;
}
const AccessInfo &getAccessInfo(BeginAccessInst *beginAccess) const {
return const_cast<Result &>(*this).getAccessInfo(beginAccess);
}
};
private:
LoopRegionFunctionInfo *LRFI;
PostOrderFunctionInfo *PO;
AccessStorageAnalysis *ASA;
// Unique storage locations seen in this function.
AccessStorageSet storageSet;
Result result;
public:
AccessConflictAndMergeAnalysis(LoopRegionFunctionInfo *LRFI,
PostOrderFunctionInfo *PO,
AccessStorageAnalysis *ASA)
: LRFI(LRFI), PO(PO), ASA(ASA) {}
bool analyze();
const Result &getResult() { return result; }
protected:
bool identifyBeginAccesses();
void
propagateAccessSetsBottomUp(LoopRegionToAccessStorage &regionToStorageMap,
const llvm::SmallVector<unsigned, 16> &worklist);
void calcBottomUpOrder(llvm::SmallVectorImpl<unsigned> &worklist);
void visitBeginAccess(BeginAccessInst *beginAccess, RegionState &state);
void visitEndAccess(EndAccessInst *endAccess, RegionState &state);
void visitFullApply(FullApplySite fullApply, RegionState &state);
void visitMayRelease(SILInstruction *instr, RegionState &state);
RegionState &mergePredAccesses(unsigned regionID,
RegionIDToLocalStateMap &localRegionStates);
void localDataFlowInBlock(RegionState &state, SILBasicBlock *bb);
private:
void recordInScopeConflicts(RegionState &state,
const AccessStorage &currStorage,
SILAccessKind currKind);
bool removeConflicts(DenseAccessSet &accessSet,
const AccessStorage &currStorage);
void recordUnknownConflict(RegionState &state);
void recordConflicts(RegionState &state,
const AccessStorageResult &accessedStorage);
BeginAccessInst *findMergeableOutOfScopeAccess(RegionState &state,
BeginAccessInst *beginAccess);
void insertOutOfScopeAccess(RegionState &state, BeginAccessInst *beginAccess,
AccessInfo &currStorageInfo);
void mergeAccessSet(DenseAccessSet &accessSet, const DenseAccessSet &otherSet,
bool isInitialized);
void mergeState(RegionState &state, const RegionState &otherState,
bool isInitialized);
};
} // namespace
// Mark any in-scope access that conflicts with an access to 'currStorage' for
// the given 'beginAccess' as having a nested conflict.
void AccessConflictAndMergeAnalysis::recordInScopeConflicts(
RegionState &state, const AccessStorage &currStorage,
SILAccessKind currKind) {
// It is tempting to combine this loop with the loop in removeConflicts, which
// also checks isDistinctFrom for each element. However, since SetVector does
// not support 'llvm::erase_if', it is actually more efficient to do the
// removal in a separate 'remove_if' loop.
llvm::for_each(state.inScopeConflictFreeAccesses, [&](BeginAccessInst *bai) {
auto &accessInfo = result.getAccessInfo(bai);
if (accessKindMayConflict(currKind, bai->getAccessKind())
&& !accessInfo.isDistinctFrom(currStorage)) {
accessInfo.setSeenNestedConflict();
LLVM_DEBUG(llvm::dbgs() << " may conflict with:\n"; accessInfo.dump());
}
});
}
// Remove any accesses in accessSet that may conflict with the given storage
// location, currStorageInfo.
//
// Return true if any set elements were removed.
bool AccessConflictAndMergeAnalysis::removeConflicts(
DenseAccessSet &accessSet, const AccessStorage &currStorage) {
return accessSet.remove_if([&](BeginAccessInst *bai) {
auto &storage = result.getAccessInfo(bai);
return !storage.isDistinctFrom(currStorage);
});
}
void AccessConflictAndMergeAnalysis::recordUnknownConflict(RegionState &state) {
// Mark all open scopes as having a nested conflict.
llvm::for_each(state.inScopeConflictFreeAccesses, [&](BeginAccessInst *bai) {
auto &accessInfo = result.getAccessInfo(bai);
accessInfo.setSeenNestedConflict();
LLVM_DEBUG(llvm::dbgs() << " may conflict with:\n"; accessInfo.dump());
});
// Clear data flow.
state.reset();
}
// Update data flow `state` by removing accesses that conflict with the
// currently accessed `storage`. For in-scope accesses, also mark conflicting
// scopes with SeenNestedConflict.
//
// Removing access from the out-of-scope set is important for two reasons:
//
// 1. Let A & B be conflicting out-of-scope, where A's scope ends before B. If
// data flow then encounters scope C with the same storage as B, it should be
// able to merge them. This is safe regardless of whether A & B overlap because
// it doesn't introduce any conflict that wasn't already present. However,
// leaving A in the out-of-scope set means that we won't be able to merge B & C
// based on this dataflow.
//
// 2. Without removing conflicting scopes, the access set is unbounded and this
// data flow could scale quadratically with the function size.
void AccessConflictAndMergeAnalysis::recordConflicts(
RegionState &state, const AccessStorageResult &accessedStorage) {
if (accessedStorage.hasUnidentifiedAccess()) {
recordUnknownConflict(state);
return;
}
for (const StorageAccessInfo &currStorage : accessedStorage.getStorageSet()) {
recordInScopeConflicts(state, currStorage, currStorage.getAccessKind());
removeConflicts(state.inScopeConflictFreeAccesses, currStorage);
removeConflicts(state.outOfScopeConflictFreeAccesses, currStorage);
}
}
// Check if the current BeginAccessInst has identical storage with an
// out-of-scope access. If so, remove the access from the set and return it.
BeginAccessInst *AccessConflictAndMergeAnalysis::findMergeableOutOfScopeAccess(
RegionState &state, BeginAccessInst *beginAccess) {
auto currStorageInfo = result.getAccessInfo(beginAccess);
// Before removing any conflicting accesses, find one with identical storage.
auto identicalStorageIter = llvm::find_if(
state.outOfScopeConflictFreeAccesses, [&](BeginAccessInst *bai) {
auto storageInfo = result.getAccessInfo(bai);
return storageInfo.hasIdenticalStorage(currStorageInfo);
});
if (identicalStorageIter == state.outOfScopeConflictFreeAccesses.end())
return nullptr;
// Remove the matching access before checking for other conflicts. Since we
// only check for a single identical storage access above, leaving multiple
// accesses of the same storage in the set would appear as a conflict in the
// check below when processing subsequent mergeable accesses.
BeginAccessInst *mergeableAccess = *identicalStorageIter;
state.outOfScopeConflictFreeAccesses.erase(identicalStorageIter);
// Given a mergeableAccess, 'A', another out-of-scope access, 'B', and the
// current access, 'C' which has identical storage as 'A', the only situation
// in which it is illegal to merge 'A' with 'C' is when 'B' has non-distinct
// storage from 'A'/'C', 'B' begins after 'A', and 'B' ends before
// 'C'. Merging 'A' with 'C' would then introduce a false conflict. Since it
// is impossible to determine here whether 'A' and 'B' overlap, we assume they
// do not and simply avoid merging whenever 'B' and 'C' overlap. It is not
// important to optimize the case in which 'A' and 'B' overlap because
// potential conflicts like that are unlikely.
if (llvm::any_of(state.outOfScopeConflictFreeAccesses,
[&](BeginAccessInst *bai) {
auto storageInfo = result.getAccessInfo(bai);
return !storageInfo.isDistinctFrom(currStorageInfo);
})) {
return nullptr;
}
return mergeableAccess;
}
// Add the given access to the out-of-scope set, replacing any existing
// out-of-scope access on the same storage. An access to the same storage may
// already be out-of-scope, for example, if there are nested reads:
//
// %4 = begin_access [read] [dynamic] %0 : $*X
// %5 = load %4 : $*X
// %7 = begin_access [read] [dynamic] %0 : $*X
// %8 = load %7 : $*X
// end_access %7 : $*X
// end_access %4 : $*X
//
// The inner scope needs to be replaced with the outer scope so that scope
// nesting is preserved when merging scopes.
void AccessConflictAndMergeAnalysis::insertOutOfScopeAccess(
RegionState &state, BeginAccessInst *beginAccess,
AccessInfo &currStorageInfo) {
if (!currStorageInfo.seenIdenticalStorage()) {
LLVM_DEBUG(llvm::dbgs() << "Ignoring unmergeable access: " << *beginAccess);
return;
}
auto identicalStorageIter = llvm::find_if(
state.outOfScopeConflictFreeAccesses, [&](BeginAccessInst *bai) {
auto storageInfo = result.getAccessInfo(bai);
return storageInfo.hasIdenticalStorage(currStorageInfo);
});
if (identicalStorageIter == state.outOfScopeConflictFreeAccesses.end())
state.outOfScopeConflictFreeAccesses.insert(beginAccess);
else {
state.outOfScopeConflictFreeAccesses.erase(identicalStorageIter);
state.outOfScopeConflictFreeAccesses.insert(beginAccess);
}
}
// Top-level driver for AccessConflictAndMergeAnalysis
//
// Returns true if the analysis succeeded.
bool AccessConflictAndMergeAnalysis::analyze() {
if (!identifyBeginAccesses()) {
LLVM_DEBUG(llvm::dbgs() << "Skipping AccessConflictAndMergeAnalysis...\n");
return false;
}
LoopRegionToAccessStorage accessSetsOfRegions;
// Populate a worklist of regions such that the top of the worklist is the
// innermost loop and the bottom of the worklist is the entry block.
llvm::SmallVector<unsigned, 16> worklist;
calcBottomUpOrder(worklist);
propagateAccessSetsBottomUp(accessSetsOfRegions, worklist);
LLVM_DEBUG(llvm::dbgs() << "Processing Function: "
<< LRFI->getFunction()->getName() << "\n");
while (!worklist.empty()) {
auto regionID = worklist.pop_back_val();
LLVM_DEBUG(llvm::dbgs() << "Processing Sub-Region: " << regionID << "\n");
auto *region = LRFI->getRegion(regionID);
RegionIDToLocalStateMap localRegionStates;
// This is RPO order of the sub-regions
for (auto subID : region->getSubregions()) {
RegionState &state = mergePredAccesses(subID, localRegionStates);
auto *subRegion = LRFI->getRegion(subID);
if (subRegion->isBlock()) {
localDataFlowInBlock(state, subRegion->getBlock());
} else {
assert(subRegion->isLoop() && "Expected a loop sub-region");
const AccessStorageResult &loopStorage = accessSetsOfRegions[subID];
recordConflicts(state, loopStorage);
}
}
}
return true;
}
// Find all begin access operations in this function. Map each access to
// AccessInfo, which includes its identified memory location, identifying
// index, and analysis result flags.
//
// Also, add the storage location to the function's RegionStorage
//
// Returns true if it is worthwhile to continue the analysis.
//
// TODO: begin_unpaired_access is not tracked. Even though begin_unpaired_access
// isn't explicitly paired, it may be possible after devirtualization and
// inlining to find all uses of the scratch buffer. However, this doesn't
// currently happen in practice (rdar://40033735).
bool AccessConflictAndMergeAnalysis::identifyBeginAccesses() {
bool seenPossibleNestedConflict = false;
bool seenIdenticalStorage = false;
// Scan blocks in PostOrder (bottom-up) to mark any accesses with identical
// storage to another reachable access. The earlier access must be marked
// because this analysis does forward data flow to find conflicts.
for (auto *BB : PO->getPostOrder()) {
for (auto &I : llvm::reverse(*BB)) {
auto *beginAccess = dyn_cast<BeginAccessInst>(&I);
if (!beginAccess)
continue;
if (beginAccess->getEnforcement() != SILAccessEnforcement::Dynamic)
continue;
if (!beginAccess->hasNoNestedConflict())
seenPossibleNestedConflict = true;
// The accessed base is expected to be valid for begin_access, but for
// now, since this optimization runs at the end of the pipeline, we
// gracefully ignore unrecognized source address patterns, which show up
// here as an invalid `storage` value.
auto storage = AccessStorage::compute(beginAccess->getSource());
auto iterAndInserted = storageSet.insert(storage);
// After inserting it in storageSet, this storage object can be downcast
// to AccessInfo to use the pass-specific bits.
auto &accessInfo = static_cast<AccessInfo &>(storage);
// If the same location was seen later in the CFG, mark this access as one
// to check for merging.
if (!iterAndInserted.second) {
seenIdenticalStorage = true;
accessInfo.setSeenIdenticalStorage();
}
auto iterAndSuccess =
result.accessMap.try_emplace(beginAccess, accessInfo);
(void)iterAndSuccess;
assert(iterAndSuccess.second);
// Add a pass-specific access index to the mapped storage object.
AccessInfo &info = iterAndSuccess.first->second;
info.setAccessIndex(result.accessMap.size() - 1);
assert(!info.seenNestedConflict());
}
}
return seenPossibleNestedConflict || seenIdenticalStorage;
}
// Returns a mapping from each loop sub-region to all its access storage
// Propagates access sets bottom-up from nested regions
void AccessConflictAndMergeAnalysis::propagateAccessSetsBottomUp(
LoopRegionToAccessStorage &regionToStorageMap,
const llvm::SmallVector<unsigned, 16> &worklist) {
for (unsigned regionID : reverse(worklist)) {
auto *region = LRFI->getRegion(regionID);
auto iterAndInserted =
regionToStorageMap.try_emplace(regionID, AccessStorageResult());
assert(iterAndInserted.second && "Should not process a region twice");
AccessStorageResult &accessResult = iterAndInserted.first->second;
for (auto subID : region->getSubregions()) {
auto *subRegion = LRFI->getRegion(subID);
if (subRegion->isLoop()) {
// propagate access sets bottom-up from nested loops.
auto subRegionResultIter = regionToStorageMap.find(subID);
assert(subRegionResultIter != regionToStorageMap.end()
&& "Should have processed sub-region");
accessResult.mergeFrom(subRegionResultIter->second);
} else {
assert(subRegion->isBlock() && "Expected a block region");
auto *bb = subRegion->getBlock();
for (auto &instr : *bb) {
if (auto fullApply = FullApplySite::isa(&instr)) {
FunctionAccessStorage calleeAccess;
// Instead of calling getCallSiteEffects, call getCalleeEffects and
// merge ourselves to avoid an extra merge step.
ASA->getCalleeEffects(calleeAccess, fullApply);
accessResult.mergeFrom(calleeAccess.getResult());
continue;
}
// FIXME: Treat may-release conservatively in the analysis itself by
// adding a mayRelease flag, in addition to the unidentified flag.
accessResult.analyzeInstruction(&instr, ASA->getDestructorAnalysis());
}
}
}
}
}
// Helper function for calcBottomUpOrder
static void calcBottomUpOrderRecurse(LoopRegion *region,
llvm::SmallVectorImpl<unsigned> &worklist,
LoopRegionFunctionInfo *LRFI) {
worklist.push_back(region->getID());
for (auto regionIndex : region->getReverseSubregions()) {
auto *region = LRFI->getRegion(regionIndex);
if (region->isBlock())
continue;
calcBottomUpOrderRecurse(region, worklist, LRFI);
}
}
// Returns a worklist of loop IDs is bottom-up order.
void AccessConflictAndMergeAnalysis::calcBottomUpOrder(
llvm::SmallVectorImpl<unsigned> &worklist) {
auto *topRegion = LRFI->getTopLevelRegion();
calcBottomUpOrderRecurse(topRegion, worklist, LRFI);
}
void AccessConflictAndMergeAnalysis::visitBeginAccess(
BeginAccessInst *beginAccess, RegionState &state) {
if (beginAccess->getEnforcement() != SILAccessEnforcement::Dynamic)
return;
// Get the Access info:
auto &beginAccessInfo = result.getAccessInfo(beginAccess);
if (beginAccessInfo.getKind() == AccessStorage::Unidentified) {
recordUnknownConflict(state);
return;
}
// Mark in-scope accesses that now have nested conflicts.
recordInScopeConflicts(state, beginAccessInfo, beginAccess->getAccessKind());
// Remove in-scope conflicts to avoid checking them again.
removeConflicts(state.inScopeConflictFreeAccesses, beginAccessInfo);
if (!beginAccess->hasNoNestedConflict()) {
// Record the current access as in-scope. It can potentially be folded to
// [no_nested_conflict] independent of any enclosing access conflicts.
bool inserted = state.inScopeConflictFreeAccesses.insert(beginAccess);
(void)inserted;
assert(inserted && "the begin_access should not have been seen yet.");
}
// Find an out-of-scope access that is mergeable with this access. This is
// done at the BeginAccess because it doesn't matter whether the merged access
// has any nested conflicts. Consider the following mergeable accesses:
//
// begin_access %x
// end_access %x
// begin_access %x
// conflict
// end_access %x
if (BeginAccessInst *mergeableAccess =
findMergeableOutOfScopeAccess(state, beginAccess)) {
LLVM_DEBUG(llvm::dbgs() << "Found mergeable pair: " << *mergeableAccess
<< " with " << *beginAccess << "\n");
result.mergePairs.emplace_back(mergeableAccess, beginAccess);
}
// For the purpose of data-flow, removing the out-of-scope access does not
// need to be done until the corresponding EndAccess is seen.
}
void AccessConflictAndMergeAnalysis::visitEndAccess(EndAccessInst *endAccess,
RegionState &state) {
auto *beginAccess = endAccess->getBeginAccess();
if (beginAccess->getEnforcement() != SILAccessEnforcement::Dynamic)
return;
// Remove the corresponding in-scope access (it is no longer in-scope).
if (state.inScopeConflictFreeAccesses.remove(beginAccess)) {
LLVM_DEBUG(llvm::dbgs() << "No conflict on one path from " << *beginAccess
<< " to " << *endAccess);
}
// Any out-of-scope access with non-distinct storage is now longer mergeable.
// If this access doesn't currently overlap with it, then merging it with
// another later access could introduce a conflict with this access.
auto currStorageInfo = result.getAccessInfo(beginAccess);
removeConflicts(state.outOfScopeConflictFreeAccesses, currStorageInfo);
// This access is now out-of-scope access; inform data flow.
insertOutOfScopeAccess(state, beginAccess, currStorageInfo);
}
void AccessConflictAndMergeAnalysis::visitFullApply(FullApplySite fullApply,
RegionState &state) {
FunctionAccessStorage callSiteAccesses;
ASA->getCallSiteEffects(callSiteAccesses, fullApply);
LLVM_DEBUG(llvm::dbgs() << "Visiting: " << *fullApply.getInstruction()
<< " call site accesses:\n";
callSiteAccesses.dump());
recordConflicts(state, callSiteAccesses.getResult());
}
void AccessConflictAndMergeAnalysis::visitMayRelease(SILInstruction *instr,
RegionState &state) {
// TODO Introduce "Pure Swift" deinitializers
// We can then make use of alias information for instr's operands
// If they don't alias - we might get away with not recording a conflict
LLVM_DEBUG(llvm::dbgs() << "MayRelease Instruction: " << *instr);
// This is similar to recordUnknownConflict, but only class and global
// accesses can be affected by a deinitializer.
auto isHeapAccess = [](AccessStorage::Kind accessKind) {
return accessKind == AccessStorage::Class || accessKind == AccessStorage::Global;
};
// Mark the in-scope accesses as having a nested conflict
llvm::for_each(state.inScopeConflictFreeAccesses, [&](BeginAccessInst *bai) {
auto &accessInfo = result.getAccessInfo(bai);
if (isHeapAccess(accessInfo.getKind())) {
accessInfo.setSeenNestedConflict();
LLVM_DEBUG(llvm::dbgs() << " may conflict with:\n"; accessInfo.dump());
}
});
// Remove both in-scope and out-of-scope accesses from
// the data flow state.
state.inScopeConflictFreeAccesses.remove_if([&](BeginAccessInst *bai) {
auto &accessInfo = result.getAccessInfo(bai);
return isHeapAccess(accessInfo.getKind());
});
state.outOfScopeConflictFreeAccesses.remove_if([&](BeginAccessInst *bai) {
auto &accessInfo = result.getAccessInfo(bai);
return isHeapAccess(accessInfo.getKind());
});
}
// Merge the data flow result in 'otherSet' into 'accessSet'. If 'accessSet' is
// not initialized, simply copy 'otherSet'; otherwise, "merge" the results by
// deleting any accesses that aren't in common.
void AccessConflictAndMergeAnalysis::mergeAccessSet(
DenseAccessSet &accessSet, const DenseAccessSet &otherSet,
bool isInitialized) {
if (!isInitialized) {
accessSet.insert(otherSet.begin(), otherSet.end());
return;
}
accessSet.remove_if(
[&](BeginAccessInst *bai) { return !otherSet.count(bai); });
}
// Merge the data flow result in `otherState` into `state`.
void AccessConflictAndMergeAnalysis::mergeState(RegionState &state,
const RegionState &otherState,
bool isInitialized) {
mergeAccessSet(state.inScopeConflictFreeAccesses,
otherState.inScopeConflictFreeAccesses, isInitialized);
mergeAccessSet(state.outOfScopeConflictFreeAccesses,
otherState.outOfScopeConflictFreeAccesses, isInitialized);
}
RegionState &AccessConflictAndMergeAnalysis::mergePredAccesses(
unsigned regionID, RegionIDToLocalStateMap &localRegionStates) {
auto regionStateIterAndInserted = localRegionStates.try_emplace(
regionID, RegionState(result.accessMap.size()));
assert(regionStateIterAndInserted.second && "only visit each region once");
RegionState &state = regionStateIterAndInserted.first->second;
auto *region = LRFI->getRegion(regionID);
auto bbRegionParentID = region->getParentID();
bool isInitialized = false;
for (auto pred : region->getPreds()) {
auto *predRegion = LRFI->getRegion(pred);
assert((predRegion->getParentID() == bbRegionParentID) &&
"predecessor is not part of the parent region - unhandled control "
"flow");
(void)predRegion;
(void)bbRegionParentID;
auto predStateIter = localRegionStates.find(pred);
if (predStateIter == localRegionStates.end()) {
// Backedge / irreducible control flow - bail
state.reset();
break;
}
mergeState(state, predStateIter->second, isInitialized);
isInitialized = true;
}
return state;
}
void AccessConflictAndMergeAnalysis::localDataFlowInBlock(RegionState &state,
SILBasicBlock *bb) {
for (auto &instr : *bb) {
if (auto *beginAccess = dyn_cast<BeginAccessInst>(&instr)) {
visitBeginAccess(beginAccess, state);
continue;
}
if (auto *endAccess = dyn_cast<EndAccessInst>(&instr)) {
visitEndAccess(endAccess, state);
continue;
}
if (auto fullApply = FullApplySite::isa(&instr)) {
visitFullApply(fullApply, state);
continue;
}
if (instr.mayRelease() &&
!isDestructorSideEffectFree(&instr, ASA->getDestructorAnalysis())) {
visitMayRelease(&instr, state);
}
}
}
// -----------------------------------------------------------------------------
// MARK: Access Enforcement Optimization
// -----------------------------------------------------------------------------
/// Perform access folding.
///
/// Data-flow analysis is now complete. Any begin_access that has seen a
/// conflict can be given the [no_nested_conflict] instruction attribute.
///
/// Note: If we later support marking begin_unpaired_access
/// [no_nested_conflict], then we also need to remove any corresponding
/// end_unpaired_access. That can be done either by recording the
/// end_unpaired_access instructions during analysis and deleting them here in
/// the same order, or sorting them here by their begin_unpaired_access index.
static bool
foldNonNestedAccesses(AccessConflictAndMergeAnalysis::AccessMap &accessMap) {
bool changed = false;
// Iteration over accessMap is nondeterministic. Setting the conflict flags
// can be done in any order.
for (auto &beginAccessAndInfo : accessMap) {
BeginAccessInst *beginAccess = beginAccessAndInfo.first;
AccessInfo &info = beginAccessAndInfo.second;
if (info.seenNestedConflict())
continue;
// Optimize this begin_access by setting [no_nested_conflict].
beginAccess->setNoNestedConflict(true);
changed = true;
LLVM_DEBUG(llvm::dbgs() << "Folding " << *beginAccess);
}
return changed;
}
/// Perform local access marker elimination.
///
/// Disable access checks for uniquely identified local storage for which no
/// accesses can have nested conflicts. This is only valid if the function's
/// local storage cannot be potentially modified by unidentified access:
///
/// - Arguments cannot alias with local storage, so accessing an argument has no
/// effect on analysis of the current function. When a callee accesses an
/// argument, AccessStorageAnalysis will either map the accessed storage to
/// a value in the caller's function, or mark it as unidentified.
///
/// - Stack or Box local storage could potentially be accessed via Unidentified
/// access. (Some Unidentified accesses are for initialization or for
/// temporary storage instead, but those should never have Dynamic
/// enforcement). These accesses can only be eliminated when there is no
/// Unidentified access within the function without the [no_nested_conflict]
/// flag.
static bool
removeLocalNonNestedAccess(const AccessConflictAndMergeAnalysis::Result &result,
const FunctionAccessStorage &functionAccess) {
if (functionAccess.hasUnidentifiedAccess())
return false;
bool changed = false;
SmallVector<BeginAccessInst *, 8> deadAccesses;
for (auto &beginAccessAndInfo : result.accessMap) {
BeginAccessInst *beginAccess = beginAccessAndInfo.first;
const AccessInfo &info = beginAccessAndInfo.second;
if (info.seenNestedConflict() || !info.isLocal())
continue;
// This particular access to local storage is marked
// [no_nested_conflict]. Now check FunctionAccessStorage to determine if
// that is true for all access to the same storage.
if (functionAccess.hasNoNestedConflict(info)) {
LLVM_DEBUG(llvm::dbgs() << "Disabling dead access " << *beginAccess);
beginAccess->setEnforcement(SILAccessEnforcement::Static);
changed = true;
}
}
return changed;
}
// TODO: support multi-end access cases
static EndAccessInst *getSingleEndAccess(BeginAccessInst *inst) {
EndAccessInst *end = nullptr;
for (auto *currEnd : inst->getEndAccesses()) {
if (end == nullptr)
end = currEnd;
else
return nullptr;
}
return end;
}
struct SCCInfo {
unsigned id;
bool hasLoop;
};
static void mergeEndAccesses(BeginAccessInst *parentIns,
BeginAccessInst *childIns) {
auto *endP = getSingleEndAccess(parentIns);
if (!endP)
llvm_unreachable("not supported");
auto *endC = getSingleEndAccess(childIns);
if (!endC)
llvm_unreachable("not supported");
endC->setOperand(parentIns);
endP->eraseFromParent();
}
static bool canMergeEnd(BeginAccessInst *parentIns, BeginAccessInst *childIns) {
auto *endP = getSingleEndAccess(parentIns);
if (!endP)
return false;
auto *endC = getSingleEndAccess(childIns);
if (!endC)
return false;
return true;
}
// TODO: support other merge patterns
static bool
canMergeBegin(PostDominanceInfo *postDomTree,
const llvm::DenseMap<SILBasicBlock *, SCCInfo> &blockToSCCMap,
BeginAccessInst *parentIns, BeginAccessInst *childIns) {
if (!postDomTree->properlyDominates(childIns, parentIns)) {
return false;
}
auto parentSCCIt = blockToSCCMap.find(parentIns->getParent());
assert(parentSCCIt != blockToSCCMap.end() && "Expected block in SCC Map");
auto childSCCIt = blockToSCCMap.find(childIns->getParent());
assert(childSCCIt != blockToSCCMap.end() && "Expected block in SCC Map");
auto parentSCC = parentSCCIt->getSecond();
auto childSCC = childSCCIt->getSecond();
if (parentSCC.id == childSCC.id) {
return true;
}
if (parentSCC.hasLoop) {
return false;
}
if (childSCC.hasLoop) {
return false;
}
return true;
}
static bool
canMerge(PostDominanceInfo *postDomTree,
const llvm::DenseMap<SILBasicBlock *, SCCInfo> &blockToSCCMap,
BeginAccessInst *parentIns, BeginAccessInst *childIns) {
// A [read] access cannot be converted to a [modify] without potentially
// introducing new conflicts that were previously ignored. Merging read/modify
// will require additional data flow information.
if (childIns->getAccessKind() != parentIns->getAccessKind())
return false;
if (!canMergeBegin(postDomTree, blockToSCCMap, parentIns, childIns))
return false;
return canMergeEnd(parentIns, childIns);
}
static bool extendOwnership(BeginAccessInst *parentInst,
BeginAccessInst *childInst,
InstructionDeleter &deleter,
DeadEndBlocks &deBlocks) {
GuaranteedOwnershipExtension extension(deleter, deBlocks,
parentInst->getFunction());
auto status = extension.checkAddressOwnership(parentInst, childInst);
switch (status) {
case GuaranteedOwnershipExtension::Invalid:
return false;
case GuaranteedOwnershipExtension::Valid:
return true;
case GuaranteedOwnershipExtension::ExtendLifetime:
case GuaranteedOwnershipExtension::ExtendBorrow:
break;
}
extension.transform(status);
return true;
}
/// Perform access merging.
static bool
mergeAccesses(SILFunction *F, PostDominanceInfo *postDomTree,
const AccessConflictAndMergeAnalysis::MergeablePairs &mergePairs,
DeadEndBlocks &deBlocks) {
if (mergePairs.empty()) {
LLVM_DEBUG(llvm::dbgs() << "Skipping SCC Analysis...\n");
return false;
}
bool changed = false;
// Compute a map from each block to its SCC -
// For now we can't merge cross SCC boundary
llvm::DenseMap<SILBasicBlock *, SCCInfo> blockToSCCMap;
SCCInfo info;
info.id = 0;
for (auto sccIt = scc_begin(F); !sccIt.isAtEnd(); ++sccIt) {
++info.id;
info.hasLoop = sccIt.hasCycle();
for (auto *bb : *sccIt) {
blockToSCCMap.insert(std::make_pair(bb, info));
}
}
// make a temporary reverse copy to work on:
// It is in reverse order just to make it easier to debug / follow
AccessConflictAndMergeAnalysis::MergeablePairs workPairs;
workPairs.append(mergePairs.rbegin(), mergePairs.rend());
// Assume the result contains two access pairs to be merged:
// (begin_access %1, begin_access %2)
// = merge end_access %1 with begin_access %2
// (begin_access %2, begin_access %3)
// = merge end_access %2 with begin_access %3
// After merging the first pair, begin_access %2 is removed,
// so the second pair in the result list points to a to-be-deleted
// begin_access instruction. We store (begin_access %2 -> begin_access %1)
// to re-map a merged begin_access to it's replaced instruction.
llvm::DenseMap<BeginAccessInst *, BeginAccessInst *> oldToNewMap;
InstructionDeleter deleter;
while (!workPairs.empty()) {
auto curr = workPairs.pop_back_val();
auto *parentIns = curr.first;
auto *childIns = curr.second;
if (oldToNewMap.count(parentIns) != 0) {
parentIns = oldToNewMap[parentIns];
}
assert(oldToNewMap.count(childIns) == 0 &&
"Can't have same child instruction twice in map");
// The optimization might not currently support every mergeable pair
// If the current pattern is not supported - skip
if (!canMerge(postDomTree, blockToSCCMap, parentIns, childIns))
continue;
if (!extendOwnership(parentIns, childIns, deleter, deBlocks))
continue;
LLVM_DEBUG(llvm::dbgs()
<< "Merging " << *childIns << " into " << *parentIns << "\n");
// Change the no nested conflict of parent if the child has a nested
// conflict.
if (!childIns->hasNoNestedConflict())
parentIns->setNoNestedConflict(false);
// remove end accesses and create new ones that cover bigger scope:
mergeEndAccesses(parentIns, childIns);
// In case the child instruction is at the map,
// updated the oldToNewMap to reflect that we are getting rid of it:
oldToNewMap.insert(std::make_pair(childIns, parentIns));
// Modify the users of child instruction to use the parent:
childIns->replaceAllUsesWith(parentIns);
changed = true;
}
// Delete all old instructions from parent scopes:
while (!oldToNewMap.empty()) {
auto curr = oldToNewMap.begin();
auto *oldIns = curr->getFirst();
oldToNewMap.erase(oldIns);
deleter.forceDelete(oldIns);
}
deleter.cleanupDeadInstructions();
return changed;
}
namespace {
struct AccessEnforcementOpts : public SILFunctionTransform {
void run() override {
SILFunction *F = getFunction();
if (F->empty())
return;
LLVM_DEBUG(llvm::dbgs() << "Running local AccessEnforcementOpts on "
<< F->getName() << "\n");
LoopRegionFunctionInfo *LRFI = getAnalysis<LoopRegionAnalysis>()->get(F);
PostOrderFunctionInfo *PO = getAnalysis<PostOrderAnalysis>()->get(F);
DeadEndBlocksAnalysis *deBlocksAnalysis =
PM->getAnalysis<DeadEndBlocksAnalysis>();
AccessStorageAnalysis *ASA = getAnalysis<AccessStorageAnalysis>();
AccessConflictAndMergeAnalysis a(LRFI, PO, ASA);
if (!a.analyze())
return;
auto result = a.getResult();
// Perform access folding by setting the [no_nested_conflict] flag on
// begin_access instructions.
if (foldNonNestedAccesses(result.accessMap)) {
// Recompute AccessStorageAnalysis, just for this function, to update the
// StorageAccessInfo::noNestedConflict status for each accessed storage.
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
}
// Use the updated AccessStorageAnalysis to find any uniquely identified
// local storage that has no nested conflict on any of its accesses within
// this function. All the accesses can be marked as statically enforced.
//
// Note that the storage address may be passed as an argument and there may
// be nested conflicts within that call, but none of the accesses within
// this function will overlap.
const FunctionAccessStorage &functionAccess = ASA->getEffects(F);
if (removeLocalNonNestedAccess(result, functionAccess))
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
// Perform the access merging
// The inital version of the optimization requires a postDomTree
PostDominanceAnalysis *postDomAnalysis =
getAnalysis<PostDominanceAnalysis>();
PostDominanceInfo *postDomTree = postDomAnalysis->get(F);
DeadEndBlocks *deBlocks = deBlocksAnalysis->get(F);
if (mergeAccesses(F, postDomTree, result.mergePairs, *deBlocks))
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
}
};
} // namespace
SILTransform *swift::createAccessEnforcementOpts() {
return new AccessEnforcementOpts();
}