mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
This results in wrong argument/return calling conventions. First, the method call must be specialized. Only then the call can be de-virtualized. Usually, it's done in this order anyway, because the `class_method` instruction is located before the `apply`. But when inlining functions, the order (in the worklist) can be the other way round. Fixes a compiler crash. rdar://154631438
643 lines
24 KiB
C++
643 lines
24 KiB
C++
//===--- SpeculativeDevirtualizer.cpp - Speculatively devirtualize calls --===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Speculatively devirtualizes witness- and class-method calls into direct
|
|
// calls.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-speculative-devirtualizer"
|
|
|
|
#include "swift/SIL/BasicBlockUtils.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILFunction.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SIL/OptimizationRemark.h"
|
|
#include "swift/SILOptimizer/Analysis/ClassHierarchyAnalysis.h"
|
|
#include "swift/SILOptimizer/Utils/Generics.h"
|
|
#include "swift/SILOptimizer/PassManager/Passes.h"
|
|
#include "swift/SILOptimizer/PassManager/PassManager.h"
|
|
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
|
#include "swift/SILOptimizer/Utils/Devirtualize.h"
|
|
#include "swift/SILOptimizer/Utils/SILInliner.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
using namespace swift;
|
|
|
|
// This is the limit for the number of subclasses (jump targets) that the
|
|
// speculative devirtualizer will try to predict.
|
|
static const int MaxNumSpeculativeTargets = 6;
|
|
|
|
STATISTIC(NumTargetsPredicted, "Number of monomorphic functions predicted");
|
|
|
|
/// We want to form a second edge to the given block, but we know
|
|
/// that'll form a critical edge. Return a basic block to which we can
|
|
/// create an edge essentially like the original edge.
|
|
static SILBasicBlock *cloneEdge(TermInst *TI, unsigned SuccIndex) {
|
|
#ifndef NDEBUG
|
|
auto origDestBB = TI->getSuccessors()[SuccIndex].getBB();
|
|
#endif
|
|
|
|
// Split the edge twice. The first split will become our cloned
|
|
// and temporarily-unused edge. The second split will remain in place
|
|
// as the original edge.
|
|
auto clonedEdgeBB = splitEdge(TI, SuccIndex);
|
|
auto replacementEdgeBB = splitEdge(TI, SuccIndex);
|
|
|
|
// Extract the terminators.
|
|
auto clonedEdgeBranch =
|
|
cast<BranchInst>(clonedEdgeBB->getTerminator());
|
|
auto replacementEdgeBranch =
|
|
cast<BranchInst>(replacementEdgeBB->getTerminator());
|
|
|
|
assert(TI->getSuccessors()[SuccIndex].getBB() == replacementEdgeBB);
|
|
assert(replacementEdgeBranch->getDestBB() == clonedEdgeBB);
|
|
assert(clonedEdgeBranch->getDestBB() == origDestBB);
|
|
|
|
// Change the replacement branch to point to the original destination.
|
|
// This will leave the cloned edge unused, which is how we wanted it.
|
|
replacementEdgeBranch->getSuccessors()[0] = clonedEdgeBranch->getDestBB();
|
|
assert(clonedEdgeBB->pred_empty());
|
|
|
|
return clonedEdgeBB;
|
|
}
|
|
|
|
// A utility function for cloning the apply instruction.
|
|
static FullApplySite CloneApply(FullApplySite AI, SILValue SelfArg,
|
|
SILBuilder &Builder) {
|
|
// Clone the Apply.
|
|
Builder.setCurrentDebugScope(AI.getDebugScope());
|
|
auto Args = AI.getArguments();
|
|
SmallVector<SILValue, 8> Ret(Args.size());
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
|
|
if (i == e - 1 && SelfArg) {
|
|
Ret[i] = SelfArg;
|
|
} else {
|
|
Ret[i] = Args[i];
|
|
}
|
|
}
|
|
|
|
FullApplySite NAI;
|
|
|
|
switch (AI.getInstruction()->getKind()) {
|
|
case SILInstructionKind::ApplyInst:
|
|
NAI = Builder.createApply(AI.getLoc(), AI.getCallee(),
|
|
AI.getSubstitutionMap(),
|
|
Ret, AI.getApplyOptions());
|
|
break;
|
|
case SILInstructionKind::TryApplyInst: {
|
|
auto *TryApplyI = cast<TryApplyInst>(AI.getInstruction());
|
|
auto NormalBB = cloneEdge(TryApplyI, TryApplyInst::NormalIdx);
|
|
auto ErrorBB = cloneEdge(TryApplyI, TryApplyInst::ErrorIdx);
|
|
NAI = Builder.createTryApply(AI.getLoc(), AI.getCallee(),
|
|
AI.getSubstitutionMap(),
|
|
Ret, NormalBB, ErrorBB,
|
|
AI.getApplyOptions());
|
|
break;
|
|
}
|
|
default:
|
|
llvm_unreachable("Trying to clone an unsupported apply instruction");
|
|
}
|
|
|
|
return NAI;
|
|
}
|
|
|
|
/// Insert monomorphic inline caches for a specific class or metatype
|
|
/// type \p SubClassTy.
|
|
static FullApplySite speculateMonomorphicTarget(SILPassManager *pm, FullApplySite AI,
|
|
CanType SubType, ClassDecl *CD,
|
|
CanType ClassType,
|
|
CheckedCastBranchInst *&CCBI) {
|
|
if (SubType->hasDynamicSelfType())
|
|
return FullApplySite();
|
|
|
|
CCBI = nullptr;
|
|
// Bail if this class_method cannot be devirtualized.
|
|
if (!canDevirtualizeClassMethod(AI, CD, ClassType))
|
|
return FullApplySite();
|
|
|
|
// Can't speculate begin_apply yet.
|
|
if (isa<BeginApplyInst>(AI))
|
|
return FullApplySite();
|
|
|
|
// Create a diamond shaped control flow and a checked_cast_branch
|
|
// instruction that checks the exact type of the object.
|
|
// This cast selects between two paths: one that calls the slow dynamic
|
|
// dispatch and one that calls the specific method.
|
|
auto It = AI.getInstruction()->getIterator();
|
|
SILFunction *F = AI.getFunction();
|
|
SILBasicBlock *Entry = AI.getParent();
|
|
|
|
ClassMethodInst *CMI = cast<ClassMethodInst>(AI.getCallee());
|
|
|
|
// Iden is the basic block containing the direct call.
|
|
SILBasicBlock *Iden = F->createBasicBlock();
|
|
// Virt is the block containing the slow virtual call.
|
|
SILBasicBlock *Virt = F->createBasicBlock();
|
|
Iden->createPhiArgument(SILType::getPrimitiveObjectType(SubType),
|
|
CMI->getOperand()->getOwnershipKind());
|
|
|
|
SILBasicBlock *Continue = Entry->split(It);
|
|
|
|
SILBuilderWithScope Builder(Entry, AI.getInstruction());
|
|
// Create the checked_cast_branch instruction that checks at runtime if the
|
|
// class instance is identical to the SILType.
|
|
|
|
CCBI = Builder.createCheckedCastBranch(AI.getLoc(), /*exact*/ true,
|
|
CheckedCastInstOptions(),
|
|
CMI->getOperand(),
|
|
CMI->getOperand()->getType().getASTType(),
|
|
SILType::getPrimitiveObjectType(SubType),
|
|
SubType, Iden, Virt);
|
|
It = CCBI->getIterator();
|
|
|
|
SILBuilderWithScope VirtBuilder(Virt, AI.getInstruction());
|
|
SILBuilderWithScope IdenBuilder(Iden, AI.getInstruction());
|
|
// This is the class reference downcasted into subclass SubType.
|
|
SILValue DownCastedClassInstance = Iden->getArgument(0);
|
|
|
|
// Copy the two apply instructions into the two blocks.
|
|
FullApplySite IdenAI = CloneApply(AI, DownCastedClassInstance, IdenBuilder);
|
|
FullApplySite VirtAI = CloneApply(AI, SILValue(), VirtBuilder);
|
|
|
|
// See if Continue has a release on self as the instruction right after the
|
|
// apply. If it exists, move it into position in the diamond.
|
|
SILBasicBlock::iterator next =
|
|
next_or_end(Continue->begin(), Continue->end());
|
|
auto *Release =
|
|
(next == Continue->end()) ? nullptr : dyn_cast<StrongReleaseInst>(next);
|
|
if (Release && Release->getOperand() == CMI->getOperand()) {
|
|
VirtBuilder.createStrongRelease(Release->getLoc(), CMI->getOperand(),
|
|
Release->getAtomicity());
|
|
IdenBuilder.createStrongRelease(Release->getLoc(), DownCastedClassInstance,
|
|
Release->getAtomicity());
|
|
Release->eraseFromParent();
|
|
}
|
|
|
|
// Create a PHInode for returning the return value from both apply
|
|
// instructions.
|
|
SILArgument *Arg =
|
|
Continue->createPhiArgument(AI.getType(), OwnershipKind::Owned);
|
|
if (!isa<TryApplyInst>(AI)) {
|
|
if (AI.getSubstCalleeType()->isNoReturnFunction(
|
|
F->getModule(), AI.getFunction()->getTypeExpansionContext())) {
|
|
IdenBuilder.createUnreachable(AI.getLoc());
|
|
VirtBuilder.createUnreachable(AI.getLoc());
|
|
} else {
|
|
IdenBuilder.createBranch(AI.getLoc(), Continue,
|
|
{ cast<ApplyInst>(IdenAI) });
|
|
VirtBuilder.createBranch(AI.getLoc(), Continue,
|
|
{ cast<ApplyInst>(VirtAI) });
|
|
}
|
|
}
|
|
|
|
// Remove the old Apply instruction.
|
|
assert(AI.getInstruction() == &Continue->front() &&
|
|
"AI should be the first instruction in the split Continue block");
|
|
if (isa<TryApplyInst>(AI)) {
|
|
AI.getInstruction()->eraseFromParent();
|
|
assert(Continue->empty() &&
|
|
"There should not be an instruction after try_apply");
|
|
Continue->eraseFromParent();
|
|
} else {
|
|
auto apply = cast<ApplyInst>(AI);
|
|
apply->replaceAllUsesWith(Arg);
|
|
apply->eraseFromParent();
|
|
assert(!Continue->empty() &&
|
|
"There should be at least a terminator after AI");
|
|
}
|
|
|
|
// Update the stats.
|
|
++NumTargetsPredicted;
|
|
|
|
// Devirtualize the apply instruction on the identical path.
|
|
auto NewInst = devirtualizeClassMethod(pm, IdenAI, DownCastedClassInstance, CD,
|
|
ClassType, nullptr)
|
|
.first;
|
|
assert(NewInst && "Expected to be able to devirtualize apply!");
|
|
(void)NewInst;
|
|
|
|
deleteDevirtualizedApply(IdenAI);
|
|
|
|
// Split critical edges resulting from VirtAI.
|
|
if (auto *TAI = dyn_cast<TryApplyInst>(VirtAI)) {
|
|
auto *ErrorBB = TAI->getFunction()->createBasicBlock();
|
|
SILArgument *ErrorArg = nullptr;
|
|
if (TAI->getErrorBB()->getNumArguments() == 1) {
|
|
ErrorArg = TAI->getErrorBB()->getArgument(0);
|
|
ErrorBB->createPhiArgument(ErrorArg->getType(), OwnershipKind::Owned);
|
|
}
|
|
Builder.setInsertionPoint(ErrorBB);
|
|
|
|
if (ErrorArg) {
|
|
Builder.createBranch(TAI->getLoc(), TAI->getErrorBB(),
|
|
{ErrorBB->getArgument(0)});
|
|
} else {
|
|
Builder.createBranch(TAI->getLoc(), TAI->getErrorBB());
|
|
}
|
|
|
|
auto *NormalBB = TAI->getFunction()->createBasicBlock();
|
|
NormalBB->createPhiArgument(TAI->getNormalBB()->getArgument(0)->getType(),
|
|
OwnershipKind::Owned);
|
|
Builder.setInsertionPoint(NormalBB);
|
|
Builder.createBranch(TAI->getLoc(), TAI->getNormalBB(),
|
|
{NormalBB->getArgument(0)});
|
|
|
|
Builder.setInsertionPoint(VirtAI.getInstruction());
|
|
SmallVector<SILValue, 4> Args;
|
|
for (auto Arg : VirtAI.getArguments()) {
|
|
Args.push_back(Arg);
|
|
}
|
|
FullApplySite NewVirtAI = Builder.createTryApply(
|
|
VirtAI.getLoc(), VirtAI.getCallee(),
|
|
VirtAI.getSubstitutionMap(),
|
|
Args, NormalBB, ErrorBB,
|
|
VirtAI.getApplyOptions());
|
|
VirtAI.getInstruction()->eraseFromParent();
|
|
VirtAI = NewVirtAI;
|
|
}
|
|
|
|
return VirtAI;
|
|
}
|
|
|
|
/// Returns true, if a method implementation to be called by the
|
|
/// default case handler of a speculative devirtualization is statically
|
|
/// known. This happens if it can be proven that generated
|
|
/// checked_cast_br instructions cover all other possible cases.
|
|
///
|
|
/// \p CHA class hierarchy analysis to be used
|
|
/// \p AI invocation instruction
|
|
/// \p CD static class of the instance whose method is being invoked
|
|
/// \p Subs set of direct subclasses of this class
|
|
static bool isDefaultCaseKnown(ClassHierarchyAnalysis *CHA,
|
|
FullApplySite AI,
|
|
ClassDecl *CD,
|
|
ClassHierarchyAnalysis::ClassList &Subs) {
|
|
ClassMethodInst *CMI = cast<ClassMethodInst>(AI.getCallee());
|
|
auto *Method = CMI->getMember().getAbstractFunctionDecl();
|
|
assert(Method && "not a function");
|
|
|
|
if (CD->isFinal())
|
|
return true;
|
|
|
|
// If the class has an @objc ancestry it can be dynamically subclassed and we
|
|
// can't therefore statically know the default case.
|
|
if (CD->checkAncestry(AncestryFlags::ObjC))
|
|
return false;
|
|
|
|
// Only handle classes defined within the SILModule's associated context.
|
|
if (!CD->isChildContextOf(AI.getModule().getAssociatedContext()))
|
|
return false;
|
|
|
|
if (!CD->hasAccess())
|
|
return false;
|
|
|
|
// Only consider 'private' members, unless we are in whole-module compilation.
|
|
switch (CD->getEffectiveAccess()) {
|
|
case AccessLevel::Open:
|
|
return false;
|
|
case AccessLevel::Public:
|
|
case AccessLevel::Package:
|
|
case AccessLevel::Internal:
|
|
if (!AI.getModule().isWholeModule())
|
|
return false;
|
|
break;
|
|
case AccessLevel::FilePrivate:
|
|
case AccessLevel::Private:
|
|
break;
|
|
}
|
|
|
|
// This is a private or a module internal class.
|
|
//
|
|
// We can analyze the class hierarchy rooted at it and
|
|
// eventually devirtualize a method call more efficiently.
|
|
|
|
// First, analyze all direct subclasses.
|
|
// We know that a dedicated checked_cast_br check is
|
|
// generated for each direct subclass by tryToSpeculateTarget.
|
|
for (auto S : Subs) {
|
|
// Check if the subclass overrides a method
|
|
auto *FD = S->findOverridingDecl(Method);
|
|
if (!FD)
|
|
continue;
|
|
if (CHA->hasKnownDirectSubclasses(S)) {
|
|
// This subclass has its own subclasses and
|
|
// they will use this implementation or provide
|
|
// their own. In either case it is not covered by
|
|
// checked_cast_br instructions generated by
|
|
// tryToSpeculateTarget. Therefore it increases
|
|
// the number of remaining cases to be handled
|
|
// by the default case handler.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Then, analyze indirect subclasses.
|
|
|
|
// Set of indirect subclasses for the class.
|
|
auto &IndirectSubs = CHA->getIndirectSubClasses(CD);
|
|
|
|
// Check if any indirect subclasses use an implementation
|
|
// of the method different from the implementation in
|
|
// the current class. If this is the case, then such
|
|
// an indirect subclass would need a dedicated
|
|
// checked_cast_br check to be devirtualized. But this is
|
|
// not done by tryToSpeculateTarget yet and therefore
|
|
// such a subclass should be handled by the "default"
|
|
// case handler, which essentially means that "default"
|
|
// case cannot be devirtualized since it covers more
|
|
// then one alternative.
|
|
for (auto S : IndirectSubs) {
|
|
auto *ImplFD = S->findImplementingMethod(Method);
|
|
if (ImplFD != Method) {
|
|
// Different implementation is used by a subclass.
|
|
// Therefore, the default case is not known.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Try to speculate the call target for the call \p AI. This function
|
|
/// returns true if a change was made.
|
|
static bool tryToSpeculateTarget(SILPassManager *pm, FullApplySite AI, ClassHierarchyAnalysis *CHA,
|
|
OptRemark::Emitter &ORE) {
|
|
ClassMethodInst *CMI = cast<ClassMethodInst>(AI.getCallee());
|
|
|
|
// Strip any upcasts off of our 'self' value, potentially leaving us
|
|
// with a value whose type is closer (in the class hierarchy) to the
|
|
// actual dynamic type.
|
|
auto SubTypeValue = stripUpCasts(CMI->getOperand());
|
|
CanType SubType = SubTypeValue->getType().getASTType();
|
|
|
|
// Bail if any generic types parameters of the class instance type are
|
|
// unbound.
|
|
// We cannot devirtualize unbound generic calls yet.
|
|
if (SubType->hasArchetype())
|
|
return false;
|
|
|
|
auto *F = CMI->getFunction();
|
|
auto &M = F->getModule();
|
|
|
|
CheckedCastBranchInst *LastCCBI = nullptr;
|
|
|
|
auto ClassType = getSelfInstanceType(SubType);
|
|
ClassDecl *CD = ClassType.getClassOrBoundGenericClass();
|
|
assert(CD && "Expected decl for class type!");
|
|
|
|
if (!CHA->hasKnownDirectSubclasses(CD)) {
|
|
// If there is only one possible alternative for this method,
|
|
// try to devirtualize it completely.
|
|
ClassHierarchyAnalysis::ClassList Subs;
|
|
if (isDefaultCaseKnown(CHA, AI, CD, Subs)) {
|
|
auto NewInst =
|
|
tryDevirtualizeClassMethod(pm, AI, SubTypeValue, CD, ClassType, &ORE)
|
|
.first;
|
|
if (NewInst)
|
|
deleteDevirtualizedApply(AI);
|
|
return bool(NewInst);
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Inserting monomorphic speculative call for "
|
|
"class " << CD->getName() << "\n");
|
|
return !!speculateMonomorphicTarget(pm, AI, SubType, CD, ClassType, LastCCBI);
|
|
}
|
|
|
|
// True if any instructions were changed or generated.
|
|
bool Changed = false;
|
|
|
|
SmallVector<ClassDecl *, 8> Subs;
|
|
getAllSubclasses(CHA, CD, ClassType, M, Subs);
|
|
|
|
// Number of subclasses which cannot be handled by checked_cast_br checks.
|
|
int NotHandledSubsNum = 0;
|
|
if (Subs.size() > MaxNumSpeculativeTargets) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Class " << CD->getName() << " has too many ("
|
|
<< Subs.size() << ") subclasses. Performing "
|
|
"speculative devirtualization only for the first "
|
|
<< MaxNumSpeculativeTargets << " of them.\n");
|
|
|
|
NotHandledSubsNum += (Subs.size() - MaxNumSpeculativeTargets);
|
|
Subs.erase(&Subs[MaxNumSpeculativeTargets], Subs.end());
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Class " << CD->getName() << " is a superclass. "
|
|
"Inserting polymorphic speculative call.\n");
|
|
|
|
// Try to devirtualize the static class of instance
|
|
// if it is possible.
|
|
if (auto F = getTargetClassMethod(M, AI, CD, ClassType, CMI)) {
|
|
// Do not devirtualize if a method in the base class is marked
|
|
// as non-optimizable. This way it is easy to disable the
|
|
// devirtualization of this method in the base class and
|
|
// any classes derived from it.
|
|
if (!F->shouldOptimize())
|
|
return false;
|
|
}
|
|
|
|
auto FirstAI =
|
|
speculateMonomorphicTarget(pm, AI, SubType, CD, ClassType, LastCCBI);
|
|
if (FirstAI) {
|
|
Changed = true;
|
|
AI = FirstAI;
|
|
}
|
|
|
|
// Perform a speculative devirtualization of a method invocation.
|
|
// It replaces an indirect class_method-based call by a code to perform
|
|
// a direct call of the method implementation based on the dynamic class
|
|
// of the instance.
|
|
//
|
|
// The code is generated according to the following principles:
|
|
//
|
|
// - For each direct subclass, a dedicated checked_cast_br instruction
|
|
// is generated to check if a dynamic class of the instance is exactly
|
|
// this subclass.
|
|
//
|
|
// - If this check succeeds, then it jumps to the code which performs a
|
|
// direct call of a method implementation specific to this subclass.
|
|
//
|
|
// - If this check fails, then a different subclass is checked by means of
|
|
// checked_cast_br in a similar way.
|
|
//
|
|
// - Finally, if the instance does not exactly match any of the direct
|
|
// subclasses, the "default" case code is generated, which should handle
|
|
// all remaining alternatives, i.e. it should be able to dispatch to any
|
|
// possible remaining method implementations. Typically this is achieved by
|
|
// using a class_method instruction, which performs an indirect invocation.
|
|
// But if it can be proven that only one specific implementation of
|
|
// a method will be always invoked by this code, then a class_method-based
|
|
// call can be devirtualized and replaced by a more efficient direct
|
|
// invocation of this specific method implementation.
|
|
//
|
|
// Remark: With the current implementation of a speculative devirtualization,
|
|
// if devirtualization of the "default" case is possible, then it would
|
|
// by construction directly invoke the implementation of the method
|
|
// corresponding to the static type of the instance. This may change
|
|
// in the future, if we start using PGO for ordering of checked_cast_br
|
|
// checks.
|
|
|
|
// TODO: The ordering of checks may benefit from using a PGO, because
|
|
// the most probable alternatives could be checked first.
|
|
|
|
for (auto S : Subs) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Inserting a speculative call for class "
|
|
<< CD->getName() << " and subclass " << S->getName() << "\n");
|
|
|
|
// FIXME: Add support for generic subclasses.
|
|
if (S->isGenericContext()) {
|
|
++NotHandledSubsNum;
|
|
continue;
|
|
}
|
|
|
|
CanType CanClassType = S->getDeclaredInterfaceType()->getCanonicalType();
|
|
|
|
auto ClassOrMetatypeType = CanClassType;
|
|
if (auto MT = dyn_cast<MetatypeType>(SubType)) {
|
|
ClassOrMetatypeType = CanMetatypeType::get(CanClassType,
|
|
MT->getRepresentation());
|
|
}
|
|
|
|
// Pass the metatype of the subclass.
|
|
auto NewAI = speculateMonomorphicTarget(pm, AI, ClassOrMetatypeType, S,
|
|
CanClassType, LastCCBI);
|
|
if (!NewAI) {
|
|
++NotHandledSubsNum;
|
|
continue;
|
|
}
|
|
AI = NewAI;
|
|
Changed = true;
|
|
}
|
|
|
|
using namespace OptRemark;
|
|
// Check if there is only a single statically known implementation
|
|
// of the method which can be called by the default case handler.
|
|
if (NotHandledSubsNum || !isDefaultCaseKnown(CHA, AI, CD, Subs)) {
|
|
// Devirtualization of remaining cases is not possible,
|
|
// because more than one implementation of the method
|
|
// needs to be handled here. Thus, an indirect call through
|
|
// the class_method cannot be eliminated completely.
|
|
//
|
|
if (Changed)
|
|
ORE.emit([&]() {
|
|
RemarkPassed R("PartialSpecDevirt", *AI.getInstruction());
|
|
R << "Partially devirtualized call with run-time checks for "
|
|
<< NV("NumSubTypesChecked", Subs.size()) << " subclasses of "
|
|
<< NV("ClassType", ClassType);
|
|
if (NotHandledSubsNum)
|
|
R << ", number of subclasses not devirtualized: "
|
|
<< NV("NotHandledSubsNum", NotHandledSubsNum);
|
|
if (!isDefaultCaseKnown(CHA, AI, CD, Subs))
|
|
R << ", not all subclasses are known";
|
|
return R;
|
|
});
|
|
return Changed;
|
|
}
|
|
|
|
auto RB = [&]() {
|
|
return RemarkPassed("SpecDevirt", *AI.getInstruction())
|
|
<< "Devirtualized call with run-time checks for the derived classes "
|
|
"of " << NV("ClassType", ClassType);
|
|
};
|
|
|
|
// At this point it is known that there is only one remaining method
|
|
// implementation which is not covered by checked_cast_br checks yet.
|
|
// So, it is safe to replace a class_method invocation by
|
|
// a direct call of this remaining implementation.
|
|
if (LastCCBI && SubTypeValue == LastCCBI->getOperand()) {
|
|
// Remove last checked_cast_br, because it will always succeed.
|
|
SILBuilderWithScope B(LastCCBI);
|
|
auto CastedValue = B.createUncheckedReinterpretCast(
|
|
LastCCBI->getLoc(), LastCCBI->getOperand(),
|
|
LastCCBI->getTargetLoweredType());
|
|
B.createBranch(LastCCBI->getLoc(), LastCCBI->getSuccessBB(), {CastedValue});
|
|
LastCCBI->eraseFromParent();
|
|
ORE.emit(RB);
|
|
return true;
|
|
}
|
|
auto NewInst =
|
|
tryDevirtualizeClassMethod(pm, AI, SubTypeValue, CD, ClassType, nullptr)
|
|
.first;
|
|
if (NewInst) {
|
|
ORE.emit(RB);
|
|
deleteDevirtualizedApply(AI);
|
|
return true;
|
|
}
|
|
|
|
if (Changed)
|
|
ORE.emit(RB);
|
|
return Changed;
|
|
}
|
|
|
|
namespace {
|
|
/// Speculate the targets of virtual calls by assuming that the requested
|
|
/// class is at the bottom of the class hierarchy.
|
|
class SpeculativeDevirtualization : public SILFunctionTransform {
|
|
public:
|
|
~SpeculativeDevirtualization() override {}
|
|
|
|
void run() override {
|
|
|
|
auto &CurFn = *getFunction();
|
|
|
|
// Don't perform speculative devirtualization at -Os.
|
|
if (CurFn.optimizeForSize())
|
|
return;
|
|
|
|
// Don't speculatively devirtualize calls inside thunks.
|
|
if (CurFn.isThunk())
|
|
return;
|
|
|
|
ClassHierarchyAnalysis *CHA = PM->getAnalysis<ClassHierarchyAnalysis>();
|
|
|
|
bool Changed = false;
|
|
|
|
// Collect virtual calls that may be specialized.
|
|
SmallVector<FullApplySite, 16> ToSpecialize;
|
|
for (auto &BB : *getFunction()) {
|
|
for (auto II = BB.begin(), IE = BB.end(); II != IE; ++II) {
|
|
FullApplySite AI = FullApplySite::isa(&*II);
|
|
if (AI && isa<ClassMethodInst>(AI.getCallee()))
|
|
ToSpecialize.push_back(AI);
|
|
}
|
|
}
|
|
|
|
OptRemark::Emitter ORE(DEBUG_TYPE, CurFn);
|
|
// Go over the collected calls and try to insert speculative calls.
|
|
for (auto AI : ToSpecialize)
|
|
Changed |= tryToSpeculateTarget(getPassManager(), AI, CHA, ORE);
|
|
|
|
if (Changed) {
|
|
CurFn.getModule().linkFunction(&CurFn, SILModule::LinkingMode::LinkAll);
|
|
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
SILTransform *swift::createSpeculativeDevirtualization() {
|
|
return new SpeculativeDevirtualization();
|
|
}
|