Files
swift-mirror/lib/SILGen/SILGenPoly.cpp
Doug Gregor 2f8a60d718 Silence a warning.
Swift SVN r10563
2013-11-19 23:15:37 +00:00

1115 lines
45 KiB
C++

//===--- SILGenPoly.cpp - Polymorphic Abstraction Difference --------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Routines for manipulating and translating between polymorphic
// abstraction patterns.
//
// The representation of values in Swift can vary according to how
// their type is abstracted: which is to say, according to the pattern
// of opaque type variables within their type. The main motivation
// here is performance: it would be far easier for types to adopt a
// single representation regardless of their abstraction, but this
// would force Swift to adopt a very inefficient representation for
// abstractable values.
//
// For example, consider the comparison function on Int:
// func <(lhs : Int, rhs : Int) -> Bool
//
// This function can be used as an opaque value of type
// (Int,Int)->Bool. An optimal representation of values of that type
// (ignoring context parameters for the moment) would be a pointer to
// a function that takes these two arguments directly in registers and
// returns the result directly in a register.
//
// (It's important to remember throughout this discussion that we're
// talking about abstract values. There's absolutely nothing that
// requires direct uses of the function to follow the same conventions
// as abstract uses! A direct use of a declaration --- even one that
// implies an indirect call, like a class's instance method ---
// provides a concrete specification for exactly how to interact with
// value.)
//
// However, that representation is problematic in the presence of
// generics. This function could be passed off to any of the following
// generic functions:
// func foo<T>(f : (T, Int) -> Bool)
// func bar<U,V>(f : (U, V) -> Bool)
// func baz<W>(f : (Int, Int) -> W)
//
// These generic functions all need to be able to call 'f'. But in
// Swift's implementation model, these functions don't have to be
// instantiated for different parameter types, which means that (e.g.)
// the same 'baz' implementation needs to also be able to work when
// W=String. But the optimal way to pass an Int to a function might
// well be different from the optimal way to pass a String.
//
// And this runs in both directions: a generic function might return
// a function that the caller would like to use as an (Int,Int)->Bool:
// func getFalseFunction<T>() -> (T,T)->Bool
//
// There are three ways we can deal with this:
//
// 1. Give all types in Swift a common representation. The generic
// implementation can work with both W=String and W=Int because
// both of those types have the same (direct) storage representation.
// That's pretty clearly not an acceptable sacrifice.
//
// 2. Adopt a most-general representation of function types that is
// used for opaque values; for example, all parameters and results
// could be passed indirectly. Concrete values must be coerced to
// this representation when made abstract. Unfortunately, there
// are a lot of obvious situations where this is sub-optimal:
// for example, in totally non-generic code that just passes around
// a value of type (Int,Int)->Bool. It's particularly bad because
// Swift functions take multiple arguments as just a tuple, and that
// tuple is usually abstractable: e.g., '<' above could also be
// passed to this:
// func fred<T>(f : T -> Bool)
//
// 3. Permit the representation of values to vary by abstraction.
// Values require coercion when changing abstraction patterns.
// For example, the argument to 'fred' would be expected to return
// its Bool result directly but take a single T parameter indirectly.
// When '<' is passed to this, what must actually be passed is a
// thunk that expects a tuple of type (Int,Int) to be stored at
// the input address.
//
// There is one major risk with (3): naively implemented, a single
// function value which undergoes many coercions could build up a
// linear number of re-abstraction thunks. However, this can be
// solved dynamically by applying thunks with a runtime functon that
// can recognize and bypass its own previous handiwork.
//
// There is one major exception to what sub-expressions in a type
// expression can be abstracted with type variables: a type substitution
// must always be materializable. For example:
// func f(@inout Int, Int) -> Bool
// 'f' cannot be passed to 'foo' above: T=@inout Int is not a legal
// substitution. Nor can it be passed to 'fred'.
//
// In general, abstraction patterns are derived from some explicit
// type expression, such as the written type of a variable or
// parameter. This works whenever the expression directly provides
// structure for the type in question; for example, when the original
// type is (T,Int)->Bool and we are working with an (Int,Int)->Bool
// substitution. However, it is inadequate when the expression does
// not provide structure at the appropriate level, i.e. when that
// level is substituted in: when the original type is merely T. In
// these cases, we must devolve to a representation which all legal
// substitutors will agree upon. In general, this is the
// representation of the type which replaces all materializable
// sub-expressions with a fresh type variable.
//
// For example, when applying the substitution
// T=(Int,Int)->Bool
// values of T are abstracted as if they were of type U->V, i.e.
// taking one indirect parameter and returning one indirect result.
//
// But under the substitution
// T=(@inout Int,Int)->Bool
// values of T are abstracted as if they were of type (@inout U,V)->W,
// i.e. taking one parameter @inout, another indirectly, and returning
// one indirect result.
//
// We generally pass around an original, unsubstituted type as the
// abstraction pattern. The exact archetypes in this type are
// irrelevant; only whether or not a position is filled by an
// archetype matters.
//
//===----------------------------------------------------------------------===//
#include "SILGen.h"
#include "Scope.h"
#include "swift/Basic/Fallthrough.h"
#include "swift/AST/AST.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Types.h"
#include "swift/SIL/PrettyStackTrace.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/TypeLowering.h"
#include "Initialization.h"
#include "LValue.h"
#include "RValue.h"
using namespace swift;
using namespace Lowering;
namespace {
/// An abstract class for transforming first-class SIL values.
class Transform {
protected:
SILGenFunction &SGF;
SILLocation Loc;
public:
Transform(SILGenFunction &SGF, SILLocation loc) : SGF(SGF), Loc(loc) {}
/// Transform an arbitrary value.
ManagedValue transform(ManagedValue input,
AbstractionPattern origType,
CanType substType,
SGFContext ctxt);
/// Transform a tuple value.
ManagedValue transformTuple(ManagedValue input,
AbstractionPattern origType,
CanTupleType substType,
SGFContext ctxt);
/// Transform a function value.
virtual ManagedValue transformFunction(ManagedValue fn,
AbstractionPattern origType,
CanAnyFunctionType substType) = 0;
/// Return the expected type of a lowered value.
virtual const TypeLowering &getExpectedTypeLowering(AbstractionPattern origType,
CanType substType) = 0;
};
};
/// Apply this transformation to an arbitrary value.
ManagedValue Transform::transform(ManagedValue v,
AbstractionPattern origFormalType,
CanType substFormalType,
SGFContext ctxt) {
// Transformable values are:
// - functions
if (auto substFnType = dyn_cast<AnyFunctionType>(substFormalType)) {
return transformFunction(v, origFormalType, substFnType);
}
// - tuples of transformable values
if (auto substTupleType = dyn_cast<TupleType>(substFormalType)) {
return transformTuple(v, origFormalType, substTupleType, ctxt);
}
// (metatypes?)
// Nothing else.
return v;
}
/// Explode a managed tuple into a bunch of managed elements.
///
/// If the tuple is in memory, the result elements will also be in
/// memory.
typedef std::pair<ManagedValue, const TypeLowering *> ManagedValueAndType;
static void explodeTuple(SILGenFunction &gen,
SILLocation loc,
ManagedValue managedTuple,
SmallVectorImpl<ManagedValueAndType> &out) {
// None of the operations we do here can fail, so we can atomically
// disable the tuple's cleanup and then create cleanups for all the
// elements.
SILValue tuple = managedTuple.forward(gen);
auto tupleSILType = tuple.getType();
auto tupleType = tupleSILType.castTo<TupleType>();
out.reserve(tupleType->getNumElements());
for (auto index : indices(tupleType.getElementTypes())) {
// We're starting with a SIL-lowered tuple type, so the elements
// must also all be SIL-lowered.
SILType eltType = tupleSILType.getTupleElementType(index);
auto &eltTL = gen.getTypeLowering(eltType);
ManagedValue elt;
if (tupleSILType.isAddress()) {
auto addr = gen.B.createTupleElementAddr(loc, tuple, index, eltType);
elt = gen.emitManagedBufferWithCleanup(addr, eltTL);
} else {
auto value = gen.B.createTupleExtract(loc, tuple, index, eltType);
elt = gen.emitManagedRValueWithCleanup(value, eltTL);
}
out.push_back(ManagedValueAndType(elt, &eltTL));
}
}
static ManagedValue emitManagedLoad(SILGenFunction &gen, SILLocation loc,
ManagedValue addr,
const TypeLowering &addrTL) {
auto loadedValue = gen.B.createLoad(loc, addr.forward(gen));
return gen.emitManagedRValueWithCleanup(loadedValue, addrTL);
}
/// Apply this transformation to all the elements of a tuple value,
/// which just entails mapping over each of its component elements.
ManagedValue Transform::transformTuple(ManagedValue inputTuple,
AbstractionPattern origFormalType,
CanTupleType substFormalType,
SGFContext ctxt) {
const TypeLowering &outputTL =
getExpectedTypeLowering(origFormalType, substFormalType);
assert(outputTL.isAddressOnly() == inputTuple.getType().isAddress() &&
"expected loadable inputs to have been loaded");
// If there's no representation difference, we're done.
if (outputTL.getLoweredType() == inputTuple.getType())
return inputTuple;
assert(origFormalType.matchesTuple(substFormalType));
auto inputType = inputTuple.getType().castTo<TupleType>();
assert(substFormalType->getNumElements() == inputType->getNumElements());
// In some cases, we may need or want to emit directly into an address.
SILValue outputAddr;
if (outputTL.isAddressOnly() || ctxt.hasAddressToEmitInto()) {
outputAddr = SGF.getBufferForExprResult(Loc, outputTL.getLoweredType(),
ctxt);
}
// Explode the tuple into individual managed values.
SmallVector<ManagedValueAndType, 4> inputElts;
explodeTuple(SGF, Loc, inputTuple, inputElts);
// Track all the managed elements whether or not we're actually
// emitting to an address, just so that we can disable them ater.
SmallVector<ManagedValue, 4> outputElts;
for (auto index : indices(inputType->getElementTypes())) {
auto &inputEltTL = *inputElts[index].second;
ManagedValue inputElt = inputElts[index].first;
if (inputElt.getType().isAddress() && !inputEltTL.isAddressOnly()) {
inputElt = emitManagedLoad(SGF, Loc, inputElt, inputEltTL);
}
auto origEltFormalType = origFormalType.getTupleElementType(index);
auto substEltFormalType = substFormalType.getElementType(index);
// If we're emitting to memory, project out this element in the
// destination buffer, then wrap that in an Initialization to
// track the cleanup.
Optional<TemporaryInitialization> outputEltTemp;
if (outputAddr) {
SILValue outputEltAddr =
SGF.B.createTupleElementAddr(Loc, outputAddr, index);
auto &outputEltTL = SGF.getTypeLowering(outputEltAddr.getType());
assert(outputEltTL.isAddressOnly() == inputEltTL.isAddressOnly());
auto cleanup =
SGF.enterDormantTemporaryCleanup(outputEltAddr, outputEltTL);
outputEltTemp.emplace(outputEltAddr, cleanup);
}
SGFContext eltCtxt =
(outputEltTemp ? SGFContext(&outputEltTemp.getValue()) : SGFContext());
auto outputElt = transform(inputElt, origEltFormalType, substEltFormalType,
eltCtxt);
// If we're not emitting to memory, remember this element for
// later assembly into a tuple.
if (!outputEltTemp) {
assert(outputElt);
assert(!inputEltTL.isAddressOnly());
outputElts.push_back(outputElt);
continue;
}
// Otherwise, make sure we emit into the slot.
auto &temp = outputEltTemp.getValue();
auto outputEltAddr = temp.getManagedAddress();
// That might involve storing directly.
if (outputElt) {
outputElt.forwardInto(SGF, Loc, outputEltAddr.getValue());
temp.finishInitialization(SGF);
}
outputElts.push_back(outputEltAddr);
}
// Okay, disable all the individual element cleanups and collect
// the values for a potential tuple aggregate.
SmallVector<SILValue, 4> outputEltValues;
for (auto outputElt : outputElts) {
SILValue value = outputElt.forward(SGF);
if (!outputAddr) outputEltValues.push_back(value);
}
// If we're emitting to an address, just manage that.
if (outputAddr) {
return SGF.manageBufferForExprResult(outputAddr, outputTL, ctxt);
}
// Otherwise, assemble the tuple value and manage that.
auto outputTuple =
SGF.B.createTuple(Loc, outputTL.getLoweredType(), outputEltValues);
return SGF.emitManagedRValueWithCleanup(outputTuple, outputTL);
}
static ManagedValue manageParam(SILGenFunction &gen,
SILLocation loc,
SILValue paramValue,
SILParameterInfo info) {
switch (info.getConvention()) {
case ParameterConvention::Direct_Unowned:
case ParameterConvention::Direct_Guaranteed:
paramValue = gen.getTypeLowering(paramValue.getType())
.emitCopyValue(gen.B, loc, paramValue);
SWIFT_FALLTHROUGH;
case ParameterConvention::Direct_Owned:
return gen.emitManagedRValueWithCleanup(paramValue);
case ParameterConvention::Indirect_Inout:
return ManagedValue(paramValue, ManagedValue::LValue);
case ParameterConvention::Indirect_In:
return gen.emitManagedBufferWithCleanup(paramValue);
case ParameterConvention::Indirect_Out:
llvm_unreachable("shouldn't be handled out-parameters here");
}
llvm_unreachable("bad parameter convention");
}
static void collectParams(SILGenFunction &gen,
SILLocation loc,
SmallVectorImpl<ManagedValue> &params) {
auto paramTypes =
gen.F.getLoweredFunctionType()->getParametersWithoutIndirectResult();
for (auto param : paramTypes) {
auto paramValue = new (gen.SGM.M) SILArgument(param.getSILType(),
gen.F.begin());
params.push_back(manageParam(gen, loc, paramValue, param));
}
}
enum class TranslationKind {
Generalize, OrigToSubst, SubstToOrig
};
/// Flip the direction of translation.
static TranslationKind getInverse(TranslationKind kind) {
switch (kind) {
case TranslationKind::Generalize:
// This is a bit odd?
return TranslationKind::SubstToOrig;
case TranslationKind::OrigToSubst:
return TranslationKind::SubstToOrig;
case TranslationKind::SubstToOrig:
return TranslationKind::OrigToSubst;
}
llvm_unreachable("bad translation kind");
}
static bool isOutputSubstituted(TranslationKind kind) {
switch (kind) {
case TranslationKind::Generalize: return true;
case TranslationKind::OrigToSubst: return true;
case TranslationKind::SubstToOrig: return false;
}
llvm_unreachable("bad translation kind");
}
/// Primitively translate the given value.
static ManagedValue emitTranslatePrimitive(SILGenFunction &SGF,
SILLocation loc,
TranslationKind kind,
AbstractionPattern origType,
CanType substType,
ManagedValue input,
SGFContext context = SGFContext()) {
// Load if the result isn't address-only. All the translation routines
// expect this.
auto inputType = input.getType();
if (inputType.isAddress()) {
auto &inputTL = SGF.getTypeLowering(inputType);
if (!inputTL.isAddressOnly()) {
input = emitManagedLoad(SGF, loc, input, inputTL);
}
}
switch (kind) {
case TranslationKind::Generalize:
return SGF.emitGeneralizedValue(loc, input, origType, substType, context);
case TranslationKind::SubstToOrig:
return SGF.emitSubstToOrigValue(loc, input, origType, substType, context);
case TranslationKind::OrigToSubst:
return SGF.emitOrigToSubstValue(loc, input, origType, substType, context);
}
llvm_unreachable("bad translation kind");
}
/// Force a ManagedValue to be stored into a temporary initialization
/// if it wasn't emitted that way directly.
static void emitForceInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue result, TemporaryInitialization &temp) {
if (!result) return;
result.forwardInto(SGF, loc, temp.getAddress());
temp.finishInitialization(SGF);
}
namespace {
class TranslateArguments {
SILGenFunction &SGF;
SILLocation Loc;
TranslationKind Kind;
ArrayRef<ManagedValue> Inputs;
SmallVectorImpl<ManagedValue> &Outputs;
ArrayRef<SILParameterInfo> OutputTypes;
public:
TranslateArguments(SILGenFunction &SGF, SILLocation loc,
TranslationKind kind,
ArrayRef<ManagedValue> inputs,
SmallVectorImpl<ManagedValue> &outputs,
ArrayRef<SILParameterInfo> outputTypes)
: SGF(SGF), Loc(loc), Kind(kind), Inputs(inputs), Outputs(outputs),
OutputTypes(outputTypes) {}
void translate(AbstractionPattern origType, CanType substType) {
// Tuples are exploded recursively.
if (isa<TupleType>(origType.getAsType())) {
return translateParallelExploded(origType, cast<TupleType>(substType));
}
if (auto substTuple = dyn_cast<TupleType>(substType)) {
if (!substTuple->isMaterializable())
return translateParallelExploded(origType, substTuple);
return translateExplodedIndirect(origType, substTuple);
}
// Okay, we are now working with a single value turning into a
// single value.
auto input = claimNextInput();
auto outputType = claimNextOutputType();
translateSingle(origType, substType, input, outputType);
}
private:
/// Handle a tuple that has been exploded in both the input and
/// the output.
void translateParallelExploded(AbstractionPattern origType,
CanTupleType substType) {
assert(origType.matchesTuple(substType));
for (auto index : indices(substType.getElementTypes())) {
translate(origType.getTupleElementType(index),
substType.getElementType(index));
}
}
/// Handle a tuple that is exploded only in the substituted type.
void translateExplodedIndirect(AbstractionPattern origType,
CanTupleType substType) {
// It matters at this point whether we're translating into the
// substitution or out of it.
if (isOutputSubstituted(Kind)) {
return translateAndExplodeOutOf(origType, substType, claimNextInput());
}
auto output = claimNextOutputType();
auto &outputTL = SGF.getTypeLowering(output.getSILType());
auto temp = SGF.emitTemporary(Loc, outputTL);
translateAndImplodeInto(origType, substType, *temp.get());
Outputs.push_back(temp->getManagedAddress());
}
/// Given that a tuple value is being passed indirectly in the
/// input, explode it and translate the elements.
void translateAndExplodeOutOf(AbstractionPattern origTupleType,
CanTupleType substTupleType,
ManagedValue inputTupleAddr) {
SmallVector<ManagedValueAndType, 4> inputEltAddrs;
explodeTuple(SGF, Loc, inputTupleAddr, inputEltAddrs);
assert(inputEltAddrs.size() == substTupleType->getNumElements());
for (auto index : indices(substTupleType.getElementTypes())) {
auto origEltType = origTupleType.getTupleElementType(index);
auto substEltType = substTupleType.getElementType(index);
auto inputEltAddr = inputEltAddrs[index].first;
assert(inputEltAddr.getType().isAddress());
if (auto substEltTupleType = dyn_cast<TupleType>(substEltType)) {
translateAndExplodeOutOf(origEltType, substEltTupleType, inputEltAddr);
} else {
auto outputType = claimNextOutputType();
translateSingle(origEltType, substEltType, inputEltAddr, outputType);
}
}
}
/// Given that a tuple value is being passed indirectly in the
/// output, translate the elements and implode it.
void translateAndImplodeInto(AbstractionPattern origTupleType,
CanTupleType substTupleType,
TemporaryInitialization &tupleInit) {
SmallVector<CleanupHandle, 4> cleanups;
for (auto index : indices(substTupleType.getElementTypes())) {
auto origEltType = origTupleType.getTupleElementType(index);
auto substEltType = substTupleType.getElementType(index);
auto eltAddr =
SGF.B.createTupleElementAddr(Loc, tupleInit.getAddress(), index);
auto &outputEltTL = SGF.getTypeLowering(eltAddr->getType());
CleanupHandle eltCleanup =
SGF.enterDormantTemporaryCleanup(eltAddr, outputEltTL);
if (eltCleanup.isValid()) cleanups.push_back(eltCleanup);
TemporaryInitialization eltInit(eltAddr, eltCleanup);
if (auto substEltTupleType = dyn_cast<TupleType>(substEltType)) {
translateAndImplodeInto(origEltType, substEltTupleType, eltInit);
} else {
// Otherwise, we come from a single value.
auto input = claimNextInput();
translateSingleInto(origEltType, substEltType, input, eltInit);
}
}
// Deactivate all the element cleanups and activate the tuple cleanup.
for (auto cleanup : cleanups)
SGF.Cleanups.setCleanupState(cleanup, CleanupState::Dead);
tupleInit.finishInitialization(SGF);
}
/// Translate a single value and add it as an output.
void translateSingle(AbstractionPattern origType, CanType substType,
ManagedValue input, SILParameterInfo outputType) {
// Easy case: we want to pass exactly this value.
if (input.getType() == outputType.getSILType()) {
Outputs.push_back(input);
return;
}
// Direct translation is relatively easy.
if (!outputType.isIndirect()) {
auto output = translatePrimitive(origType, substType, input);
assert(output.getType() == outputType.getSILType());
Outputs.push_back(output);
return;
}
// Otherwise, we're using one of the indirect conventions.
// If it's @inout, we need writeback.
if (outputType.isIndirectInOut()) {
llvm::errs() << "@inout writeback in abstraction difference thunk "
"not yet implemented\n";
llvm::errs() << "input value "; input.getValue().dump();
llvm::errs() << "output type " << outputType.getSILType() << "\n";
abort();
}
// Otherwise, we need to translate into a temporary.
assert(outputType.getConvention() == ParameterConvention::Indirect_In);
auto &outputTL = SGF.getTypeLowering(outputType.getSILType());
auto temp = SGF.emitTemporary(Loc, outputTL);
translateSingleInto(origType, substType, input, *temp.get());
Outputs.push_back(temp->getManagedAddress());
}
/// Translate a single value and initialize the given temporary with it.
void translateSingleInto(AbstractionPattern origType, CanType substType,
ManagedValue input,
TemporaryInitialization &temp) {
auto output = translatePrimitive(origType, substType, input,
SGFContext(&temp));
forceInto(output, temp);
}
/// Apply primitive translation to the given value.
ManagedValue translatePrimitive(AbstractionPattern origType,
CanType substType, ManagedValue input,
SGFContext context = SGFContext()) {
return emitTranslatePrimitive(SGF, Loc, Kind, origType, substType,
input, context);
}
/// Force the given result into the given initialization.
void forceInto(ManagedValue result, TemporaryInitialization &temp) {
emitForceInto(SGF, Loc, result, temp);
}
ManagedValue claimNextInput() {
assert(!Inputs.empty());
auto next = Inputs.front();
Inputs = Inputs.slice(1);
return next;
}
SILParameterInfo claimNextOutputType() {
assert(!OutputTypes.empty());
auto next = OutputTypes.front();
OutputTypes = OutputTypes.slice(1);
return next;
}
};
}
/// Build the body of a transformation thunk.
static void buildThunkBody(SILGenFunction &gen, SILLocation loc,
TranslationKind kind,
AbstractionPattern origFormalType,
CanAnyFunctionType substFormalType) {
PrettyStackTraceSILFunction stackTrace("emitting reabstraction thunk in",
&gen.F);
auto thunkType = gen.F.getLoweredFunctionType();
FullExpr scope(gen.Cleanups, CleanupLocation::getCleanupLocation(loc));
SILValue outerResultAddr;
if (thunkType->hasIndirectResult()) {
auto resultType = thunkType->getIndirectResult().getSILType();
outerResultAddr = new (gen.SGM.M) SILArgument(resultType, gen.F.begin());
}
SmallVector<ManagedValue, 8> params;
collectParams(gen, loc, params);
ManagedValue fnValue = params.pop_back_val();
auto fnType = fnValue.getType().castTo<SILFunctionType>();
assert(!fnType->isPolymorphic());
auto argTypes = fnType->getParametersWithoutIndirectResult();
// Translate the argument values. Function parameters are
// contravariant: we want to switch the direction of transformation
// on them. For example, a subst-to-orig transformation of
// (Int,Int)->Int to (T,T)->T is one that should take an
// (Int,Int)->Int value and make it be abstracted like a (T,T)->T
// value. This must be done with a thunk. Within the thunk body,
// results need to be subst-to-orig translated (we receive an Int
// like a T and turn it into a normal Int), but the parameters need
// to be orig-to-subst translated (we receive an Int like normal,
// but we need to forward it like we would a T).
SmallVector<ManagedValue, 8> args;
TranslateArguments(gen, loc, getInverse(kind), params, args, argTypes)
.translate(origFormalType.getFunctionInputType(),
substFormalType.getInput());
SmallVector<SILValue, 8> argValues;
// Create an indirect result buffer if required.
SILValue innerResultAddr;
if (fnType->hasIndirectResult()) {
auto resultType = fnType->getIndirectResult().getSILType();
// Re-use the original result if possible.
if (outerResultAddr && outerResultAddr.getType() == resultType) {
innerResultAddr = outerResultAddr;
} else {
innerResultAddr = gen.emitTemporaryAllocation(loc, resultType);
}
argValues.push_back(innerResultAddr);
}
// Add the rest of the arguments.
for (auto index : indices(args)) {
auto &arg = args[index];
auto argType = argTypes[index];
argValues.push_back(argType.isConsumed() ? arg.forward(gen)
: arg.getValue());
}
SILValue innerResultValue =
gen.B.createApply(loc, fnValue.forward(gen),
/*substFnType*/ fnValue.getType(),
fnType->getResult().getSILType(),
/*substitutions*/ {},
argValues);
// Convert the direct result to +1 if necessary.
auto &innerResultTL = gen.getTypeLowering(fnType->getSemanticResultSILType());
if (!fnType->hasIndirectResult()) {
switch (fnType->getResult().getConvention()) {
case ResultConvention::Owned:
break;
case ResultConvention::Autoreleased:
innerResultValue =
gen.B.createStrongRetainAutoreleased(loc, innerResultValue);
break;
case ResultConvention::Unowned:
innerResultValue =
innerResultTL.emitCopyValue(gen.B, loc, innerResultValue);
break;
}
}
// Control the result value. The real result value is in the
// indirect output if it exists.
ManagedValue innerResult;
if (innerResultAddr) {
innerResult = gen.emitManagedBufferWithCleanup(innerResultAddr,
innerResultTL);
} else {
innerResult = gen.emitManagedRValueWithCleanup(innerResultValue,
innerResultTL);
}
// Translate the result value. Results are covariant: they use the
// same translation rules as the function.
auto origResultType = origFormalType.getFunctionResultType();
auto substResultType = substFormalType.getResult();
SILValue outerResultValue;
if (outerResultAddr) {
// If we emitted directly, there's nothing more to do.
// Otherwise we'll have to copy over.
if (innerResultAddr != outerResultAddr) {
TemporaryInitialization init(outerResultAddr, CleanupHandle::invalid());
auto translated = emitTranslatePrimitive(gen, loc, kind, origResultType,
substResultType, innerResult,
/*emitInto*/ SGFContext(&init));
emitForceInto(gen, loc, translated, init);
}
// Use the () from the call as the result of the outer function if
// it's available.
if (innerResultAddr) {
outerResultValue = innerResultValue;
} else {
auto voidTy = gen.SGM.Types.getEmptyTupleType();
outerResultValue = gen.B.createTuple(loc, voidTy, {});
}
} else {
auto translated = emitTranslatePrimitive(gen, loc, kind, origResultType,
substResultType, innerResult);
outerResultValue = translated.forward(gen);
}
scope.pop();
gen.B.createReturn(loc, outerResultValue);
}
/// Build the type of a transformation thunk.
static CanSILFunctionType buildThunkType(SILGenFunction &gen,
ManagedValue fn,
CanSILFunctionType expectedType,
CanSILFunctionType &substFnType,
SmallVectorImpl<Substitution> &subs) {
auto sourceType = fn.getType().castTo<SILFunctionType>();
assert(!expectedType->isPolymorphic());
assert(!sourceType->isPolymorphic());
assert(!expectedType->isThin());
// Just use the generic parameters from the context.
// This isn't necessarily optimal.
auto generics = gen.F.getLoweredFunctionType()->getGenericParams();
if (generics) {
for (auto archetype : generics->getAllArchetypes())
subs.push_back({ archetype, archetype, { }});
}
// Add the function type as the parameter.
SmallVector<SILParameterInfo, 4> params;
params.append(expectedType->getParameters().begin(),
expectedType->getParameters().end());
params.push_back({sourceType,
sourceType->isThin() ? ParameterConvention::Direct_Unowned
: DefaultThickCalleeConvention});
auto extInfo = expectedType->getExtInfo().withIsThin(true);
// The type of the thunk function.
auto thunkType = SILFunctionType::get(generics, extInfo,
ParameterConvention::Direct_Unowned,
params, expectedType->getResult(),
gen.getASTContext());
// Define the substituted function type for partial_apply's purposes.
if (!generics) {
substFnType = thunkType;
} else {
substFnType = SILFunctionType::get(nullptr, extInfo,
ParameterConvention::Direct_Unowned,
params, expectedType->getResult(),
gen.getASTContext());
}
return thunkType;
}
/// Create a reabstraction thunk.
static ManagedValue createThunk(SILGenFunction &gen,
SILLocation loc,
TranslationKind kind,
ManagedValue fn,
AbstractionPattern origFormalType,
CanAnyFunctionType substFormalType,
const TypeLowering &expectedTL) {
auto expectedType = expectedTL.getLoweredType().castTo<SILFunctionType>();
// Declare the thunk.
SmallVector<Substitution, 4> substitutions;
CanSILFunctionType substFnType;
auto thunkType = buildThunkType(gen, fn, expectedType,
substFnType, substitutions);
auto thunk = new (gen.SGM.M) SILFunction(gen.SGM.M, SILLinkage::Internal,
"", thunkType, loc,
IsTransparent);
gen.SGM.mangleThunk(thunk);
// Build it.
{
SILGenFunction thunkSGF(gen.SGM, *thunk);
buildThunkBody(thunkSGF, loc, kind, origFormalType, substFormalType);
}
// Create it in our current function.
auto thunkValue = gen.B.createFunctionRef(loc, thunk);
auto thunkedFn = gen.B.createPartialApply(loc, thunkValue,
SILType::getPrimitiveObjectType(substFnType),
substitutions, fn.forward(gen),
SILType::getPrimitiveObjectType(expectedType));
return gen.emitManagedRValueWithCleanup(thunkedFn, expectedTL);
}
static ManagedValue
emitGeneralizeFunctionWithThunk(SILGenFunction &gen,
SILLocation loc,
ManagedValue fn,
AbstractionPattern origFormalType,
CanAnyFunctionType substFormalType,
const TypeLowering &expectedTL) {
return createThunk(gen, loc, TranslationKind::Generalize, fn,
origFormalType, substFormalType, expectedTL);
}
ManagedValue
SILGenFunction::emitGeneralizedFunctionValue(SILLocation loc,
ManagedValue fn,
AbstractionPattern origFormalType,
CanAnyFunctionType substFormalType) {
assert(fn.getType().isObject() &&
"expected input to emitGeneralizedValue to be loaded");
auto &expectedTL = getTypeLowering(substFormalType);
auto expectedFnType = expectedTL.getLoweredType().castTo<SILFunctionType>();
auto fnType = fn.getType().castTo<SILFunctionType>();
assert(!expectedFnType->isThin() || fnType->isThin());
// If there's no abstraction difference, we're done.
if (fnType == expectedFnType) {
return fn;
}
// Any of these changes requires a conversion thunk.
if (fnType->getResult() != expectedFnType->getResult() ||
fnType->getParameters() != expectedFnType->getParameters() ||
(!fnType->isThin() &&
fnType->getCalleeConvention() != expectedFnType->getCalleeConvention()) ||
fnType->getAbstractCC() != expectedFnType->getAbstractCC()) {
assert(!expectedFnType->isThin() && "conversion thunk will not be thin!");
return emitGeneralizeFunctionWithThunk(*this, loc, fn,
origFormalType, substFormalType,
expectedTL);
}
// Otherwise, we should just have trivial-ish ExtInfo differences.
auto fnEI = fnType->getExtInfo();
auto expectedEI = expectedFnType->getExtInfo();
assert(fnEI != expectedEI && "unhandled difference in function types?");
assert(adjustFunctionType(fnType, expectedEI,
expectedFnType->getCalleeConvention())
== expectedFnType);
auto emitConversion = [&](SILFunctionType::ExtInfo newEI,
ParameterConvention newCalleeConvention,
ValueKind kind) {
if (fnEI == newEI) return;
fnType = adjustFunctionType(fnType, newEI, newCalleeConvention);
SILType resTy = SILType::getPrimitiveObjectType(fnType);
SILValue converted;
if (kind == ValueKind::ConvertFunctionInst) {
converted = B.createConvertFunction(loc, fn.forward(*this), resTy);
} else {
assert(kind == ValueKind::ThinToThickFunctionInst);
converted = B.createThinToThickFunction(loc, fn.forward(*this), resTy);
}
fnEI = newEI;
fn = emitManagedRValueWithCleanup(converted);
};
// Apply any trivial conversions before doing thin-to-thick.
emitConversion(expectedEI.withIsThin(fnEI.isThin()),
fnType->getCalleeConvention(),
ValueKind::ConvertFunctionInst);
// Now do thin-to-thick if necessary.
emitConversion(expectedEI, expectedFnType->getCalleeConvention(),
ValueKind::ThinToThickFunctionInst);
return fn;
}
namespace {
/// A transformation for applying value generalization.
struct Generalize : Transform {
using Transform::Transform;
ManagedValue transformFunction(ManagedValue fn,
AbstractionPattern origType,
CanAnyFunctionType substType) override {
return SGF.emitGeneralizedFunctionValue(Loc, fn, origType, substType);
}
const TypeLowering &getExpectedTypeLowering(AbstractionPattern origType,
CanType substType) override {
return SGF.getTypeLowering(substType);
}
};
}
/// Apply value generalization to the given value.
///
/// Value generalization is the process of converting specific
/// representation forms (such as thin functions) into the format
/// expected by an ordinary swift Type.
ManagedValue
SILGenFunction::emitGeneralizedValue(SILLocation loc, ManagedValue v,
AbstractionPattern origFormalType,
CanType substFormalType,
SGFContext ctxt) {
return Generalize(*this, loc).transform(v, origFormalType,
substFormalType, ctxt);
}
namespace {
/// A transformation for applying orig-to-subst re-abstraction.
struct OrigToSubst : Transform {
using Transform::Transform;
ManagedValue transformFunction(ManagedValue fn,
AbstractionPattern origType,
CanAnyFunctionType substType) override;
const TypeLowering &getExpectedTypeLowering(AbstractionPattern origType,
CanType substType) override {
return SGF.getTypeLowering(substType);
}
};
}
ManagedValue OrigToSubst::transformFunction(ManagedValue fn,
AbstractionPattern origFormalType,
CanAnyFunctionType substFormalType) {
auto &expectedTL = SGF.getTypeLowering(substFormalType);
if (expectedTL.getLoweredType() == fn.getType()) return fn;
return createThunk(SGF, Loc, TranslationKind::OrigToSubst, fn,
origFormalType, substFormalType, expectedTL);
}
/// Given a value with the abstraction patterns of the original formal
/// type, give it the abstraction patterns of the substituted formal type.
ManagedValue
SILGenFunction::emitOrigToSubstValue(SILLocation loc, ManagedValue v,
AbstractionPattern origFormalType,
CanType substFormalType,
SGFContext ctxt) {
return OrigToSubst(*this, loc).transform(v, origFormalType,
substFormalType, ctxt);
}
namespace {
/// A transformation for applying subst-to-orig re-abstraction.
struct SubstToOrig : Transform {
using Transform::Transform;
ManagedValue transformFunction(ManagedValue fn,
AbstractionPattern origType,
CanAnyFunctionType substType) override;
const TypeLowering &getExpectedTypeLowering(AbstractionPattern origType,
CanType substType) override {
return SGF.getTypeLowering(origType.getAsType(), substType);
}
};
}
ManagedValue SubstToOrig::transformFunction(ManagedValue fn,
AbstractionPattern origFormalType,
CanAnyFunctionType substFormalType) {
auto &expectedTL = SGF.getTypeLowering(origFormalType.getAsType(), substFormalType);
if (expectedTL.getLoweredType() == fn.getType()) return fn;
return createThunk(SGF, Loc, TranslationKind::SubstToOrig, fn,
origFormalType, substFormalType, expectedTL);
}
/// Given a value with the abstraction patterns of the substituted
/// formal type, give it the abstraction patterns of the original
/// formal type.
ManagedValue
SILGenFunction::emitSubstToOrigValue(SILLocation loc, ManagedValue v,
AbstractionPattern origFormalType,
CanType substFormalType,
SGFContext ctxt) {
return SubstToOrig(*this, loc).transform(v, origFormalType,
substFormalType, ctxt);
}
ManagedValue RValueSource::materialize(SILGenFunction &SGF,
AbstractionPattern origFormalType,
SILType destType) && {
auto substFormalType = getSubstType();
assert(!destType || destType.getObjectType() ==
SGF.SGM.Types.getLoweredType(origFormalType.getAsType(),
substFormalType).getObjectType());
// Fast path: if the types match exactly, no abstraction difference
// is possible and we can just materialize as normal.
if (origFormalType.getAsType() == substFormalType)
return std::move(*this).materialize(SGF);
auto &destTL =
(destType ? SGF.getTypeLowering(destType)
: SGF.getTypeLowering(origFormalType.getAsType(),
substFormalType));
if (!destType) destType = destTL.getLoweredType();
// If there's no abstraction difference, we can just materialize as normal.
if (destTL.getLoweredType() == SGF.getLoweredType(substFormalType)) {
return std::move(*this).materialize(SGF);
}
// Emit a temporary at the given address.
auto temp = SGF.emitTemporary(getLocation(), destTL);
// Forward into it.
std::move(*this).forwardInto(SGF, origFormalType, temp.get(), destTL);
return temp->getManagedAddress();
}
void RValueSource::forwardInto(SILGenFunction &SGF,
AbstractionPattern origFormalType,
Initialization *dest,
const TypeLowering &destTL) && {
auto substFormalType = getSubstType();
assert(destTL.getLoweredType() ==
SGF.getLoweredType(origFormalType.getAsType(), substFormalType));
// If there are no abstraction changes, we can just forward
// normally.
if (origFormalType.getAsType() == substFormalType ||
destTL.getLoweredType() == SGF.getLoweredType(substFormalType)) {
std::move(*this).forwardInto(SGF, dest);
return;
}
// Otherwise, emit as a single independent value.
SILLocation loc = getLocation();
ManagedValue inputValue = std::move(*this).getAsSingleValue(SGF);
// Reabstract.
ManagedValue outputValue =
SGF.emitSubstToOrigValue(loc, inputValue,
origFormalType, substFormalType,
SGFContext(dest));
if (!outputValue) return;
// This potentially causes some pretty silly splitting and
// re-combining.
RValue(SGF, loc, substFormalType, outputValue).forwardInto(SGF, dest, loc);
}