Files
swift-mirror/lib/Parse/ParsePattern.cpp
Argyrios Kyrtzidis 37dc84e13c Remove VarargBaseType from TuplePatternElt and introduce a bit in TuplePattern to indicate if there is a vararg.
The semantics of varargs (only for the last element) make it more appropriate as a property of the TuplePattern.
Also free the Parser from needing to construct synthetic types (ArraySlice for type of vararg element) to
accommodate the TypeChecker and move the logic to the TypeChecker. This will be more beneficial when the parser stops
creating types in general.

Swift SVN r6271
2013-07-15 20:21:30 +00:00

472 lines
15 KiB
C++

//===--- ParsePattern.cpp - Swift Language Parser for Patterns ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Pattern Parsing and AST Building
//
//===----------------------------------------------------------------------===//
#include "swift/Parse/Parser.h"
#include "swift/AST/ExprHandle.h"
#include "llvm/ADT/StringMap.h"
using namespace swift;
/// Parse function arguments.
/// func-arguments:
/// curried-arguments | selector-arguments
/// curried-arguments:
/// pattern-tuple+
/// selector-arguments:
/// '(' selector-element ')' (identifier '(' selector-element ')')+
/// selector-element:
/// identifier '(' pattern-atom (':' type-annotation)? ('=' expr)? ')'
static bool parseCurriedFunctionArguments(Parser &P,
SmallVectorImpl<Pattern*> &argPat,
SmallVectorImpl<Pattern*> &bodyPat) {
// parseFunctionArguments parsed the first argument pattern.
// Parse additional curried argument clauses as long as we can.
while (P.Tok.is(tok::l_paren)) {
NullablePtr<Pattern> pattern = P.parsePatternTuple(/*AllowInitExpr=*/false);
if (pattern.isNull())
return true;
else {
argPat.push_back(pattern.get());
bodyPat.push_back(pattern.get());
}
}
return false;
}
static bool parseSelectorArgument(Parser &P,
SmallVectorImpl<TuplePatternElt> &argElts,
SmallVectorImpl<TuplePatternElt> &bodyElts,
llvm::StringMap<VarDecl*> &selectorNames,
SourceLoc &rp)
{
NullablePtr<Pattern> argPattern = P.parsePatternIdentifier();
assert(argPattern.isNonNull() &&
"selector argument did not start with an identifier!");
// Check that a selector name isn't used multiple times, which would
// lead to the function type having multiple arguments with the same name.
if (NamedPattern *name = dyn_cast<NamedPattern>(argPattern.get())) {
VarDecl *decl = name->getDecl();
StringRef id = decl->getName().str();
auto prevName = selectorNames.find(id);
if (prevName != selectorNames.end()) {
P.diagnoseRedefinition(prevName->getValue(), decl);
} else {
selectorNames[id] = decl;
}
}
if (!P.Tok.is(tok::l_paren)) {
P.diagnose(P.Tok.getLoc(),
diag::func_selector_without_paren);
return true;
}
P.consumeToken();
if (P.Tok.is(tok::r_paren)) {
P.diagnose(P.Tok, diag::func_selector_with_not_one_argument);
return true;
}
NullablePtr<Pattern> bodyPattern = P.parsePatternAtom();
if (bodyPattern.isNull()) {
P.skipUntil(tok::r_paren);
return true;
}
if (P.consumeIf(tok::colon)) {
TypeLoc type;
if (P.parseTypeAnnotation(type)) {
P.skipUntil(tok::r_paren);
return true;
}
argPattern = new (P.Context) TypedPattern(argPattern.get(), type);
bodyPattern = new (P.Context) TypedPattern(bodyPattern.get(), type);
}
ExprHandle *init = nullptr;
if (P.consumeIf(tok::equal)) {
NullablePtr<Expr> initR =
P.parseExpr(diag::expected_initializer_expr);
if (initR.isNull()) {
P.skipUntil(tok::r_paren);
return true;
}
init = ExprHandle::get(P.Context, initR.get());
}
if (P.Tok.is(tok::comma)) {
P.diagnose(P.Tok, diag::func_selector_with_not_one_argument);
P.skipUntil(tok::r_paren);
return true;
}
if (P.Tok.isNot(tok::r_paren)) {
P.diagnose(P.Tok, diag::expected_rparen_tuple_pattern_list);
return true;
}
rp = P.consumeToken(tok::r_paren);
argElts.push_back(TuplePatternElt(argPattern.get(), init));
bodyElts.push_back(TuplePatternElt(bodyPattern.get(), init));
return false;
}
static Pattern *getFirstSelectorPattern(ASTContext &Context,
const Pattern *argPattern,
SourceLoc loc)
{
Pattern *pattern = new (Context) AnyPattern(loc);
if (auto typed = dyn_cast<TypedPattern>(argPattern)) {
pattern = new (Context) TypedPattern(pattern, typed->getTypeLoc());
}
return pattern;
}
static bool parseSelectorFunctionArguments(Parser &P,
SmallVectorImpl<Pattern*> &argPat,
SmallVectorImpl<Pattern*> &bodyPat,
Pattern *firstPattern)
{
SourceLoc lp;
SmallVector<TuplePatternElt, 8> argElts;
SmallVector<TuplePatternElt, 8> bodyElts;
// For the argument pattern, try to convert the first parameter pattern to
// an anonymous AnyPattern of the same type as the body parameter.
if (ParenPattern *firstParen = dyn_cast<ParenPattern>(firstPattern)) {
bodyElts.push_back(TuplePatternElt(firstParen->getSubPattern()));
lp = firstParen->getLParenLoc();
argElts.push_back(TuplePatternElt(
getFirstSelectorPattern(P.Context,
firstParen->getSubPattern(),
firstParen->getLoc())));
} else if (TuplePattern *firstTuple = dyn_cast<TuplePattern>(firstPattern)) {
if (firstTuple->getNumFields() != 1) {
P.diagnose(P.Tok, diag::func_selector_with_not_one_argument);
return true;
}
TuplePatternElt const &firstElt = firstTuple->getFields()[0];
bodyElts.push_back(firstElt);
lp = firstTuple->getLParenLoc();
argElts.push_back(TuplePatternElt(
getFirstSelectorPattern(P.Context,
firstElt.getPattern(),
firstTuple->getLoc()),
firstElt.getInit()));
} else
llvm_unreachable("unexpected function argument pattern!");
// Parse additional selectors as long as we can.
SourceLoc rp;
llvm::StringMap<VarDecl*> selectorNames;
for (;;) {
if (P.isStartOfBindingName(P.Tok)) {
if (parseSelectorArgument(P, argElts, bodyElts, selectorNames, rp)) {
return true;
}
} else if (P.Tok.is(tok::l_paren)) {
P.diagnose(P.Tok, diag::func_selector_with_curry);
return true;
} else
break;
}
argPat.push_back(TuplePattern::create(P.Context, lp, argElts, rp));
bodyPat.push_back(TuplePattern::create(P.Context, lp, bodyElts, rp));
return false;
}
bool Parser::parseFunctionArguments(SmallVectorImpl<Pattern*> &argPatterns,
SmallVectorImpl<Pattern*> &bodyPatterns) {
// Parse the first function argument clause.
NullablePtr<Pattern> pattern = parsePatternTuple(/*AllowInitExpr=*/true);
if (pattern.isNull())
return true;
else {
Pattern *firstPattern = pattern.get();
if (isStartOfBindingName(Tok)) {
// This looks like a selector-style argument. Try to convert the first
// argument pattern into a single argument type and parse subsequent
// selector forms.
return parseSelectorFunctionArguments(*this,
argPatterns, bodyPatterns,
pattern.get());
} else {
argPatterns.push_back(firstPattern);
bodyPatterns.push_back(firstPattern);
return parseCurriedFunctionArguments(*this,
argPatterns, bodyPatterns);
}
}
}
/// parseFunctionSignature - Parse a function definition signature.
/// func-signature:
/// func-arguments func-signature-result?
/// func-signature-result:
/// '->' type
///
/// Note that this leaves retType as null if unspecified.
bool Parser::parseFunctionSignature(SmallVectorImpl<Pattern*> &argPatterns,
SmallVectorImpl<Pattern*> &bodyPatterns,
TypeLoc &retType) {
if (parseFunctionArguments(argPatterns, bodyPatterns))
return true;
// If there's a trailing arrow, parse the rest as the result type.
if (consumeIf(tok::arrow)) {
if (parseType(retType))
return true;
}
// Otherwise, we leave retType null.
return false;
}
/// Parse a pattern.
/// pattern ::= pattern-atom
/// pattern ::= pattern-atom ':' type-annotation
NullablePtr<Pattern> Parser::parsePattern() {
// First, parse the pattern atom.
NullablePtr<Pattern> pattern = parsePatternAtom();
if (pattern.isNull()) return nullptr;
// Now parse an optional type annotation.
if (consumeIf(tok::colon)) {
TypeLoc type;
if (parseTypeAnnotation(type))
return nullptr;
pattern = new (Context) TypedPattern(pattern.get(), type);
}
return pattern;
}
/// \brief Determine whether this token can start a pattern.
bool Parser::isStartOfPattern(Token tok) {
return tok.is(tok::kw__) || tok.is(tok::identifier) || tok.is(tok::l_paren);
}
/// \brief Determine whether this token can start a binding name, whether an
/// identifier or the special discard-value binding '_'.
bool Parser::isStartOfBindingName(Token tok) {
return tok.is(tok::kw__) || tok.is(tok::identifier);
}
Pattern *Parser::createBindingFromPattern(SourceLoc loc,
Identifier name) {
VarDecl *var = new (Context) VarDecl(loc, name, Type(), nullptr);
return new (Context) NamedPattern(var);
}
/// Parse an identifier as a pattern.
NullablePtr<Pattern> Parser::parsePatternIdentifier() {
SourceLoc loc = Tok.getLoc();
if (consumeIf(tok::kw__)) {
return new (Context) AnyPattern(loc);
}
StringRef text = Tok.getText();
if (consumeIf(tok::identifier)) {
Identifier ident = Context.getIdentifier(text);
return createBindingFromPattern(loc, ident);
}
return nullptr;
}
/// Parse a pattern "atom", meaning the part that precedes the
/// optional type annotation.
///
/// pattern-atom ::= identifier
/// pattern-atom ::= '_'
/// pattern-atom ::= pattern-tuple
NullablePtr<Pattern> Parser::parsePatternAtom() {
switch (Tok.getKind()) {
case tok::l_paren:
return parsePatternTuple(/*AllowInitExpr*/false);
case tok::identifier:
case tok::kw__:
return parsePatternIdentifier();
#define IDENTIFIER_KEYWORD(kw) case tok::kw_##kw:
#include "swift/Parse/Tokens.def"
diagnose(Tok, diag::expected_pattern_is_keyword);
consumeToken();
return nullptr;
default:
diagnose(Tok, diag::expected_pattern);
return nullptr;
}
}
Optional<TuplePatternElt> Parser::parsePatternTupleElement(bool allowInitExpr) {
// Parse the pattern.
NullablePtr<Pattern> pattern = parsePattern();
if (pattern.isNull())
return Nothing;
// Parse the optional initializer.
ExprHandle *init = nullptr;
if (Tok.is(tok::equal)) {
SourceLoc EqualLoc = consumeToken();
NullablePtr<Expr> initR = parseExpr(diag::expected_initializer_expr);
if (!allowInitExpr) {
auto inFlight = diagnose(EqualLoc, diag::non_func_decl_pattern_init);
if (initR.isNonNull())
inFlight.fixItRemove(SourceRange(EqualLoc, initR.get()->getEndLoc()));
}
// FIXME: Silently dropping initializer expressions where they aren't
// permitted.
if (allowInitExpr && initR.isNonNull())
init = ExprHandle::get(Context, initR.get());
}
return TuplePatternElt(pattern.get(), init);
}
/// Parse a tuple pattern.
///
/// pattern-tuple:
/// '(' pattern-tuple-body? ')'
/// pattern-tuple-body:
/// pattern-tuple-element (',' pattern-tuple-body)*
NullablePtr<Pattern> Parser::parsePatternTuple(bool AllowInitExpr) {
SourceLoc RPLoc, LPLoc = consumeToken(tok::l_paren);
SourceLoc EllipsisLoc;
// Parse all the elements.
SmallVector<TuplePatternElt, 8> elts;
bool Invalid = parseList(tok::r_paren, LPLoc, RPLoc,
tok::comma, /*OptionalSep=*/false,
diag::expected_rparen_tuple_pattern_list,
[&] () -> bool {
// Parse the pattern tuple element.
Optional<TuplePatternElt> elt = parsePatternTupleElement(AllowInitExpr);
if (!elt)
return true;
// Add this element to the list.
elts.push_back(*elt);
// If there is no ellipsis, we're done with the element.
if (Tok.isNot(tok::ellipsis))
return false;
SourceLoc ellLoc = consumeToken(tok::ellipsis);
// An element cannot have both an initializer and an ellipsis.
if (elt->getInit()) {
diagnose(ellLoc, diag::tuple_ellipsis_init)
.highlight(elt->getInit()->getExpr()->getSourceRange());
return false;
}
// An ellipsis element shall have a specified element type.
// FIXME: This seems unnecessary.
TypedPattern *typedPattern = dyn_cast<TypedPattern>(elt->getPattern());
if (!typedPattern) {
diagnose(ellLoc, diag::untyped_pattern_ellipsis)
.highlight(elt->getPattern()->getSourceRange());
return false;
}
// Variadic elements must come last.
// FIXME: Unnecessary restriction. It makes conversion more interesting,
// but is not complicated to support.
if (Tok.is(tok::r_paren)) {
EllipsisLoc = ellLoc;
} else {
diagnose(ellLoc, diag::ellipsis_pattern_not_at_end);
}
return false;
});
if (Invalid)
return nullptr;
return TuplePattern::createSimple(Context, LPLoc, elts, RPLoc,
EllipsisLoc.isValid(), EllipsisLoc);
}
NullablePtr<Pattern> Parser::parseMatchingPattern() {
// TODO: Since we expect a pattern in this position, we should optimistically
// parse pattern nodes for productions shared by pattern and expression
// grammar. For short-term ease of initial implementation, we always go
// through the expr parser for ambiguious productions.
// Parse productions that can only be patterns.
// matching-pattern ::= matching-pattern-var
if (Tok.is(tok::kw_var)) {
return parseMatchingPatternVar();
}
// matching-pattern ::= '_'
if (Tok.is(tok::kw__)) {
return new (Context) AnyPattern(consumeToken());
}
// matching-pattern ::= 'is' type
if (Tok.is(tok::kw_is)) {
return parseMatchingPatternIsa();
}
// matching-pattern ::= expr
// Fall back to expression parsing for ambiguous forms. Name lookup will
// disambiguate.
NullablePtr<Expr> subExpr = parseExpr(diag::expected_pattern);
if (subExpr.isNull())
return nullptr;
return new (Context) ExprPattern(subExpr.get());
}
NullablePtr<Pattern> Parser::parseMatchingPatternVar() {
// 'var' patterns shouldn't nest.
if (VarPatternDepth >= 1)
diagnose(Tok.getLoc(), diag::var_pattern_in_var);
VarPatternScope scope(*this);
SourceLoc varLoc = consumeToken(tok::kw_var);
NullablePtr<Pattern> subPattern = parseMatchingPattern();
if (subPattern.isNull()) return nullptr;
return new (Context) VarPattern(varLoc, subPattern.get());
}
NullablePtr<Pattern> Parser::parseMatchingPatternIsa() {
SourceLoc isLoc = consumeToken(tok::kw_is);
TypeLoc castType;
if (parseType(castType))
return nullptr;
return new (Context) IsaPattern(isLoc, castType);
}
bool Parser::isOnlyStartOfMatchingPattern() {
return Tok.is(tok::kw_var)
|| Tok.is(tok::kw__)
|| Tok.is(tok::kw_is);
}