mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
Support for @noescape SILFunctionTypes. These are the underlying SIL changes necessary to implement the new closure capture ABI. Note: This includes a change to function name mangling that primarily affects reabstraction thunks. The new ABI will allow stack allocation of non-escaping closures as a simple optimization. The new ABI, and the stack allocation optimization, also require closure context to be @guaranteed. That will be implemented as the next step. Many SIL passes pattern match partial_apply sequences. These all needed to be fixed to handle the convert_function that SILGen now emits. The conversion is now needed whenever a function declaration, which has an escaping type, is passed into a @NoEscape argument. In addition to supporting new SIL patterns, some optimizations like inlining and SIL combine are now stronger which could perturb some benchmark results. These underlying SIL changes should be merged now to avoid conflicting with other work. Minor benchmark discrepancies can be investigated as part of the stack-allocation work. * Add a noescape attribute to SILFunctionType. And set this attribute correctly when lowering formal function types to SILFunctionTypes based on @escaping. This will allow stack allocation of closures, and unblock a related ABI change. * Flip the polarity on @noescape on SILFunctionType and clarify that we don't default it. * Emit withoutActuallyEscaping using a convert_function instruction. It might be better to use a specialized instruction here, but I'll leave that up to Andy. Andy: And I'll leave that to Arnold who is implementing SIL support for guaranteed ownership of thick function types. * Fix SILGen and SIL Parsing. * Fix the LoadableByAddress pass. * Fix ClosureSpecializer. * Fix performance inliner constant propagation. * Fix the PartialApplyCombiner. * Adjust SILFunctionType for thunks. * Add mangling for @noescape/@escaping. * Fix test cases for @noescape attribute, mangling, convert_function, etc. * Fix exclusivity test cases. * Fix AccessEnforcement. * Fix SILCombine of convert_function -> apply. * Fix ObjC bridging thunks. * Various MandatoryInlining fixes. * Fix SILCombine optimizeApplyOfConvertFunction. * Fix more test cases after merging (again). * Fix ClosureSpecializer. Hande convert_function cloning. Be conservative when combining convert_function. Most of our code doesn't know how to deal with function type mismatches yet. * Fix MandatoryInlining. Be conservative with function conversion. The inliner does not yet know how to cast arguments or convert between throwing forms. * Fix PartialApplyCombiner.
1250 lines
42 KiB
C++
1250 lines
42 KiB
C++
//===--- ARCAnalysis.cpp - SIL ARC Analysis -------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-arc-analysis"
|
|
|
|
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
|
|
#include "swift/SIL/DebugUtils.h"
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SIL/SILFunction.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SIL/Projection.h"
|
|
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
|
|
#include "swift/SILOptimizer/Utils/Local.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace swift;
|
|
|
|
using BasicBlockRetainValue = std::pair<SILBasicBlock *, SILValue>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool swift::isRetainInstruction(SILInstruction *I) {
|
|
return isa<StrongRetainInst>(I) || isa<RetainValueInst>(I);
|
|
}
|
|
|
|
|
|
bool swift::isReleaseInstruction(SILInstruction *I) {
|
|
return isa<StrongReleaseInst>(I) || isa<ReleaseValueInst>(I);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Decrement Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool swift::mayDecrementRefCount(SILInstruction *User,
|
|
SILValue Ptr, AliasAnalysis *AA) {
|
|
// First do a basic check, mainly based on the type of instruction.
|
|
// Reading the RC is as "bad" as releasing.
|
|
if (!User->mayReleaseOrReadRefCount())
|
|
return false;
|
|
|
|
// Ok, this instruction may have ref counts. If it is an apply, attempt to
|
|
// prove that the callee is unable to affect Ptr.
|
|
if (auto *AI = dyn_cast<ApplyInst>(User))
|
|
return AA->canApplyDecrementRefCount(AI, Ptr);
|
|
if (auto *TAI = dyn_cast<TryApplyInst>(User))
|
|
return AA->canApplyDecrementRefCount(TAI, Ptr);
|
|
if (auto *BI = dyn_cast<BuiltinInst>(User))
|
|
return AA->canBuiltinDecrementRefCount(BI, Ptr);
|
|
|
|
// We cannot conservatively prove that this instruction cannot decrement the
|
|
// ref count of Ptr. So assume that it does.
|
|
return true;
|
|
}
|
|
|
|
bool swift::mayCheckRefCount(SILInstruction *User) {
|
|
return isa<IsUniqueInst>(User) || isa<IsUniqueOrPinnedInst>(User);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Use Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns true if a builtin apply cannot use reference counted values.
|
|
///
|
|
/// The main case that this handles here are builtins that via read none imply
|
|
/// that they cannot read globals and at the same time do not take any
|
|
/// non-trivial types via the arguments. The reason why we care about taking
|
|
/// non-trivial types as arguments is that we want to be careful in the face of
|
|
/// intrinsics that may be equivalent to bitcast and inttoptr operations.
|
|
static bool canApplyOfBuiltinUseNonTrivialValues(BuiltinInst *BInst) {
|
|
SILModule &Mod = BInst->getModule();
|
|
|
|
auto &II = BInst->getIntrinsicInfo();
|
|
if (II.ID != llvm::Intrinsic::not_intrinsic) {
|
|
if (II.hasAttribute(llvm::Attribute::ReadNone)) {
|
|
for (auto &Op : BInst->getAllOperands()) {
|
|
if (!Op.get()->getType().isTrivial(Mod)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
auto &BI = BInst->getBuiltinInfo();
|
|
if (BI.isReadNone()) {
|
|
for (auto &Op : BInst->getAllOperands()) {
|
|
if (!Op.get()->getType().isTrivial(Mod)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if Inst is a function that we know never uses ref count values.
|
|
bool swift::canNeverUseValues(SILInstruction *Inst) {
|
|
switch (Inst->getKind()) {
|
|
// These instructions do not use other values.
|
|
case SILInstructionKind::FunctionRefInst:
|
|
case SILInstructionKind::IntegerLiteralInst:
|
|
case SILInstructionKind::FloatLiteralInst:
|
|
case SILInstructionKind::StringLiteralInst:
|
|
case SILInstructionKind::AllocStackInst:
|
|
case SILInstructionKind::AllocRefInst:
|
|
case SILInstructionKind::AllocRefDynamicInst:
|
|
case SILInstructionKind::AllocBoxInst:
|
|
case SILInstructionKind::MetatypeInst:
|
|
case SILInstructionKind::WitnessMethodInst:
|
|
return true;
|
|
|
|
// DeallocStackInst do not use reference counted values.
|
|
case SILInstructionKind::DeallocStackInst:
|
|
return true;
|
|
|
|
// Debug values do not use referenced counted values in a manner we care
|
|
// about.
|
|
case SILInstructionKind::DebugValueInst:
|
|
case SILInstructionKind::DebugValueAddrInst:
|
|
return true;
|
|
|
|
// Casts do not use pointers in a manner that we care about since we strip
|
|
// them during our analysis. The reason for this is if the cast is not dead
|
|
// then there must be some other use after the cast that we will protect if a
|
|
// release is not in between the cast and the use.
|
|
case SILInstructionKind::UpcastInst:
|
|
case SILInstructionKind::AddressToPointerInst:
|
|
case SILInstructionKind::PointerToAddressInst:
|
|
case SILInstructionKind::UncheckedRefCastInst:
|
|
case SILInstructionKind::UncheckedRefCastAddrInst:
|
|
case SILInstructionKind::UncheckedAddrCastInst:
|
|
case SILInstructionKind::RefToRawPointerInst:
|
|
case SILInstructionKind::RawPointerToRefInst:
|
|
case SILInstructionKind::UnconditionalCheckedCastInst:
|
|
case SILInstructionKind::UncheckedBitwiseCastInst:
|
|
return true;
|
|
|
|
// If we have a trivial bit cast between trivial types, it is not something
|
|
// that can use ref count ops in a way we care about. We do need to be careful
|
|
// with uses with ref count inputs. In such a case, we assume conservatively
|
|
// that the bit cast could use it.
|
|
//
|
|
// The reason why this is different from the ref bitcast is b/c the use of a
|
|
// ref bit cast is still a ref typed value implying that our ARC dataflow will
|
|
// properly handle its users. A conversion of a reference count value to a
|
|
// trivial value though could be used as a trivial value in ways that ARC
|
|
// dataflow will not understand implying we need to treat it as a use to be
|
|
// safe.
|
|
case SILInstructionKind::UncheckedTrivialBitCastInst: {
|
|
SILValue Op = cast<UncheckedTrivialBitCastInst>(Inst)->getOperand();
|
|
return Op->getType().isTrivial(Inst->getModule());
|
|
}
|
|
|
|
// Typed GEPs do not use pointers. The user of the typed GEP may but we will
|
|
// catch that via the dataflow.
|
|
case SILInstructionKind::StructExtractInst:
|
|
case SILInstructionKind::TupleExtractInst:
|
|
case SILInstructionKind::StructElementAddrInst:
|
|
case SILInstructionKind::TupleElementAddrInst:
|
|
case SILInstructionKind::UncheckedTakeEnumDataAddrInst:
|
|
case SILInstructionKind::RefElementAddrInst:
|
|
case SILInstructionKind::RefTailAddrInst:
|
|
case SILInstructionKind::UncheckedEnumDataInst:
|
|
case SILInstructionKind::IndexAddrInst:
|
|
case SILInstructionKind::IndexRawPointerInst:
|
|
return true;
|
|
|
|
// Aggregate formation by themselves do not create new uses since it is their
|
|
// users that would create the appropriate uses.
|
|
case SILInstructionKind::EnumInst:
|
|
case SILInstructionKind::StructInst:
|
|
case SILInstructionKind::TupleInst:
|
|
return true;
|
|
|
|
// Only uses non reference counted values.
|
|
case SILInstructionKind::CondFailInst:
|
|
return true;
|
|
|
|
case SILInstructionKind::BuiltinInst: {
|
|
auto *BI = cast<BuiltinInst>(Inst);
|
|
|
|
// Certain builtin function refs we know can never use non-trivial values.
|
|
return canApplyOfBuiltinUseNonTrivialValues(BI);
|
|
}
|
|
// We do not care about branch inst, since if the branch inst's argument is
|
|
// dead, LLVM will clean it up.
|
|
case SILInstructionKind::BranchInst:
|
|
case SILInstructionKind::CondBranchInst:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool doOperandsAlias(ArrayRef<Operand> Ops, SILValue Ptr,
|
|
AliasAnalysis *AA) {
|
|
// If any are not no alias, we have a use.
|
|
return std::any_of(Ops.begin(), Ops.end(),
|
|
[&AA, &Ptr](const Operand &Op) -> bool {
|
|
return !AA->isNoAlias(Ptr, Op.get());
|
|
});
|
|
}
|
|
|
|
static bool canTerminatorUseValue(TermInst *TI, SILValue Ptr,
|
|
AliasAnalysis *AA) {
|
|
if (auto *BI = dyn_cast<BranchInst>(TI)) {
|
|
return doOperandsAlias(BI->getAllOperands(), Ptr, AA);
|
|
}
|
|
|
|
if (auto *CBI = dyn_cast<CondBranchInst>(TI)) {
|
|
bool First = doOperandsAlias(CBI->getTrueOperands(), Ptr, AA);
|
|
bool Second = doOperandsAlias(CBI->getFalseOperands(), Ptr, AA);
|
|
return First || Second;
|
|
}
|
|
|
|
if (auto *SWEI = dyn_cast<SwitchEnumInst>(TI)) {
|
|
return doOperandsAlias(SWEI->getAllOperands(), Ptr, AA);
|
|
}
|
|
|
|
if (auto *SWVI = dyn_cast<SwitchValueInst>(TI)) {
|
|
return doOperandsAlias(SWVI->getAllOperands(), Ptr, AA);
|
|
}
|
|
|
|
auto *CCBI = dyn_cast<CheckedCastBranchInst>(TI);
|
|
// If we don't have this last case, be conservative and assume that we can use
|
|
// the value.
|
|
if (!CCBI)
|
|
return true;
|
|
|
|
// Otherwise, look at the operands.
|
|
return doOperandsAlias(CCBI->getAllOperands(), Ptr, AA);
|
|
}
|
|
|
|
|
|
bool swift::mayHaveSymmetricInterference(SILInstruction *User, SILValue Ptr, AliasAnalysis *AA) {
|
|
// Check whether releasing this value can call deinit and interfere with User.
|
|
if (AA->mayValueReleaseInterfereWithInstruction(User, Ptr))
|
|
return true;
|
|
|
|
// If Inst is an instruction that we know can never use values with reference
|
|
// semantics, return true.
|
|
if (canNeverUseValues(User))
|
|
return false;
|
|
|
|
// If the user is a load or a store and we can prove that it does not access
|
|
// the object then return true.
|
|
// Notice that we need to check all of the values of the object.
|
|
if (isa<StoreInst>(User)) {
|
|
if (AA->mayWriteToMemory(User, Ptr))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
if (isa<LoadInst>(User) ) {
|
|
if (AA->mayReadFromMemory(User, Ptr))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// If we have a terminator instruction, see if it can use ptr. This currently
|
|
// means that we first show that TI cannot indirectly use Ptr and then use
|
|
// alias analysis on the arguments.
|
|
if (auto *TI = dyn_cast<TermInst>(User))
|
|
return canTerminatorUseValue(TI, Ptr, AA);
|
|
|
|
// TODO: If we add in alias analysis support here for apply inst, we will need
|
|
// to check that the pointer does not escape.
|
|
|
|
// Otherwise, assume that Inst can use Target.
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Must Use Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns true if User must use Ptr.
|
|
///
|
|
/// In terms of ARC this means that if we do not remove User, all releases post
|
|
/// dominated by User are known safe.
|
|
bool swift::mustUseValue(SILInstruction *User, SILValue Ptr,
|
|
AliasAnalysis *AA) {
|
|
// Right now just pattern match applies.
|
|
auto *AI = dyn_cast<ApplyInst>(User);
|
|
if (!AI)
|
|
return false;
|
|
|
|
// If any of AI's arguments must alias Ptr, return true.
|
|
for (SILValue Arg : AI->getArguments())
|
|
if (AA->isMustAlias(Arg, Ptr))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if User must use Ptr in a guaranteed way.
|
|
///
|
|
/// This means that assuming that everything is conservative, we can ignore the
|
|
/// ref count effects of User on Ptr since we will only remove things over
|
|
/// guaranteed parameters if we are known safe in both directions.
|
|
bool swift::mustGuaranteedUseValue(SILInstruction *User, SILValue Ptr,
|
|
AliasAnalysis *AA) {
|
|
// Right now just pattern match applies.
|
|
auto *AI = dyn_cast<ApplyInst>(User);
|
|
if (!AI)
|
|
return false;
|
|
|
|
// For now just look for guaranteed self.
|
|
//
|
|
// TODO: Expand this to handle *any* guaranteed parameter.
|
|
if (!AI->hasGuaranteedSelfArgument())
|
|
return false;
|
|
|
|
// Return true if Ptr alias's self.
|
|
return AA->isMustAlias(AI->getSelfArgument(), Ptr);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility Methods for determining use, decrement of values in a contiguous
|
|
// instruction range in one BB.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// If \p Op has arc uses in the instruction range [Start, End), return the
|
|
/// first such instruction. Otherwise return None. We assume that
|
|
/// Start and End are both in the same basic block.
|
|
Optional<SILBasicBlock::iterator>
|
|
swift::
|
|
valueHasARCUsesInInstructionRange(SILValue Op,
|
|
SILBasicBlock::iterator Start,
|
|
SILBasicBlock::iterator End,
|
|
AliasAnalysis *AA) {
|
|
assert(Start->getParent() == End->getParent() &&
|
|
"Start and End should be in the same basic block");
|
|
|
|
// If Start == End, then we have an empty range, return false.
|
|
if (Start == End)
|
|
return None;
|
|
|
|
// Otherwise, until Start != End.
|
|
while (Start != End) {
|
|
// Check if Start can use Op in an ARC relevant way. If so, return true.
|
|
if (mayHaveSymmetricInterference(&*Start, Op, AA))
|
|
return Start;
|
|
|
|
// Otherwise, increment our iterator.
|
|
++Start;
|
|
}
|
|
|
|
// If all such instructions cannot use Op, return false.
|
|
return None;
|
|
}
|
|
|
|
/// If \p Op has arc uses in the instruction range (Start, End], return the
|
|
/// first such instruction. Otherwise return None. We assume that Start and End
|
|
/// are both in the same basic block.
|
|
Optional<SILBasicBlock::iterator>
|
|
swift::valueHasARCUsesInReverseInstructionRange(SILValue Op,
|
|
SILBasicBlock::iterator Start,
|
|
SILBasicBlock::iterator End,
|
|
AliasAnalysis *AA) {
|
|
assert(Start->getParent() == End->getParent() &&
|
|
"Start and End should be in the same basic block");
|
|
assert(End != End->getParent()->end() &&
|
|
"End should be mapped to an actual instruction");
|
|
|
|
// If Start == End, then we have an empty range, return false.
|
|
if (Start == End)
|
|
return None;
|
|
|
|
// Otherwise, until End == Start.
|
|
while (Start != End) {
|
|
// Check if Start can use Op in an ARC relevant way. If so, return true.
|
|
if (mayHaveSymmetricInterference(&*End, Op, AA))
|
|
return End;
|
|
|
|
// Otherwise, decrement our iterator.
|
|
--End;
|
|
}
|
|
|
|
// If all such instructions cannot use Op, return false.
|
|
return None;
|
|
}
|
|
|
|
/// If \p Op has instructions in the instruction range (Start, End] which may
|
|
/// decrement it, return the first such instruction. Returns None
|
|
/// if no such instruction exists. We assume that Start and End are both in the
|
|
/// same basic block.
|
|
Optional<SILBasicBlock::iterator>
|
|
swift::
|
|
valueHasARCDecrementOrCheckInInstructionRange(SILValue Op,
|
|
SILBasicBlock::iterator Start,
|
|
SILBasicBlock::iterator End,
|
|
AliasAnalysis *AA) {
|
|
assert(Start->getParent() == End->getParent() &&
|
|
"Start and End should be in the same basic block");
|
|
|
|
// If Start == End, then we have an empty range, return nothing.
|
|
if (Start == End)
|
|
return None;
|
|
|
|
// Otherwise, until Start != End.
|
|
while (Start != End) {
|
|
// Check if Start can decrement or check Op's ref count. If so, return
|
|
// Start. Ref count checks do not have side effects, but are barriers for
|
|
// retains.
|
|
if (mayDecrementRefCount(&*Start, Op, AA) || mayCheckRefCount(&*Start))
|
|
return Start;
|
|
// Otherwise, increment our iterator.
|
|
++Start;
|
|
}
|
|
|
|
// If all such instructions cannot decrement Op, return nothing.
|
|
return None;
|
|
}
|
|
|
|
bool
|
|
swift::
|
|
mayGuaranteedUseValue(SILInstruction *User, SILValue Ptr, AliasAnalysis *AA) {
|
|
// Only full apply sites can require a guaranteed lifetime. If we don't have
|
|
// one, bail.
|
|
if (!isa<FullApplySite>(User))
|
|
return false;
|
|
|
|
FullApplySite FAS(User);
|
|
|
|
// Ok, we have a full apply site. If the apply has no arguments, we don't need
|
|
// to worry about any guaranteed parameters.
|
|
if (!FAS.getNumArguments())
|
|
return false;
|
|
|
|
// Ok, we have an apply site with arguments. Look at the function type and
|
|
// iterate through the function parameters. If any of the parameters are
|
|
// guaranteed, attempt to prove that the passed in parameter cannot alias
|
|
// Ptr. If we fail, return true.
|
|
CanSILFunctionType FType = FAS.getSubstCalleeType();
|
|
auto Params = FType->getParameters();
|
|
for (unsigned i : indices(Params)) {
|
|
if (!Params[i].isGuaranteed())
|
|
continue;
|
|
SILValue Op = FAS.getArgument(i);
|
|
if (!AA->isNoAlias(Op, Ptr))
|
|
return true;
|
|
}
|
|
|
|
// Ok, we were able to prove that all arguments to the apply that were
|
|
// guaranteed do not alias Ptr. Return false.
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Owned Result Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ConsumedResultToEpilogueRetainMatcher::
|
|
ConsumedResultToEpilogueRetainMatcher(RCIdentityFunctionInfo *RCFI,
|
|
AliasAnalysis *AA,
|
|
SILFunction *F)
|
|
: F(F), RCFI(RCFI), AA(AA) {
|
|
recompute();
|
|
}
|
|
|
|
void ConsumedResultToEpilogueRetainMatcher::recompute() {
|
|
EpilogueRetainInsts.clear();
|
|
|
|
// Find the return BB of F. If we fail, then bail.
|
|
SILFunction::iterator BB = F->findReturnBB();
|
|
if (BB == F->end())
|
|
return;
|
|
findMatchingRetains(&*BB);
|
|
}
|
|
|
|
bool
|
|
ConsumedResultToEpilogueRetainMatcher::
|
|
isTransitiveSuccessorsRetainFree(llvm::DenseSet<SILBasicBlock *> BBs) {
|
|
// For every block with retain, we need to check the transitive
|
|
// closure of its successors are retain-free.
|
|
for (auto &I : EpilogueRetainInsts) {
|
|
auto *CBB = I->getParent();
|
|
for (auto &Succ : CBB->getSuccessors()) {
|
|
if (BBs.find(Succ) != BBs.end())
|
|
continue;
|
|
return false;
|
|
}
|
|
}
|
|
for (auto CBB : BBs) {
|
|
for (auto &Succ : CBB->getSuccessors()) {
|
|
if (BBs.find(Succ) != BBs.end())
|
|
continue;
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
ConsumedResultToEpilogueRetainMatcher::RetainKindValue
|
|
ConsumedResultToEpilogueRetainMatcher::
|
|
findMatchingRetainsInBasicBlock(SILBasicBlock *BB, SILValue V) {
|
|
for (auto II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
|
|
// Handle self-recursion.
|
|
if (auto *AI = dyn_cast<ApplyInst>(&*II))
|
|
if (AI->getCalleeFunction() == BB->getParent())
|
|
return std::make_pair(FindRetainKind::Recursion, AI);
|
|
|
|
// If we do not have a retain_value or strong_retain...
|
|
if (!isa<RetainValueInst>(*II) && !isa<StrongRetainInst>(*II)) {
|
|
// we can ignore it if it can not decrement the reference count of the
|
|
// return value.
|
|
if (!mayDecrementRefCount(&*II, V, AA))
|
|
continue;
|
|
|
|
// Otherwise, we need to stop computing since we do not want to create
|
|
// lifetime gap.
|
|
return std::make_pair(FindRetainKind::Blocked, nullptr);
|
|
}
|
|
|
|
// Ok, we have a retain_value or strong_retain. Grab Target and find the
|
|
// RC identity root of its operand.
|
|
SILInstruction *Target = &*II;
|
|
SILValue RetainValue = RCFI->getRCIdentityRoot(Target->getOperand(0));
|
|
SILValue ReturnValue = RCFI->getRCIdentityRoot(V);
|
|
|
|
// Is this the epilogue retain we are looking for ?.
|
|
// We break here as we do not know whether this is a part of the epilogue
|
|
// retain for the @own return value.
|
|
if (RetainValue != ReturnValue)
|
|
break;
|
|
|
|
return std::make_pair(FindRetainKind::Found, &*II);
|
|
}
|
|
|
|
// Did not find retain in this block.
|
|
return std::make_pair(FindRetainKind::None, nullptr);
|
|
}
|
|
|
|
void
|
|
ConsumedResultToEpilogueRetainMatcher::
|
|
findMatchingRetains(SILBasicBlock *BB) {
|
|
// Iterate over the instructions post-order and find retains associated with
|
|
// return value.
|
|
SILValue RV = SILValue();
|
|
for (auto II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
|
|
if (auto *RI = dyn_cast<ReturnInst>(&*II)) {
|
|
RV = RI->getOperand();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Somehow, we managed not to find a return value.
|
|
if (!RV)
|
|
return;
|
|
|
|
// OK. we've found the return value, now iterate on the CFG to find all the
|
|
// post-dominating retains.
|
|
//
|
|
// The ConsumedArgToEpilogueReleaseMatcher finds the final releases
|
|
// in the following way.
|
|
//
|
|
// 1. If an instruction, which is not releaseinst nor releasevalue, that
|
|
// could decrement reference count is found. bail out.
|
|
//
|
|
// 2. If a release is found and the release that can not be mapped to any
|
|
// @owned argument. bail as this release may well be the final release of
|
|
// an @owned argument, but somehow rc-identity fails to prove that.
|
|
//
|
|
// 3. A release that is mapped to an argument which already has a release
|
|
// that overlaps with this release. This release for sure is not the final
|
|
// release.
|
|
constexpr unsigned WorkListMaxSize = 4;
|
|
|
|
llvm::DenseSet<SILBasicBlock *> RetainFrees;
|
|
llvm::SmallVector<BasicBlockRetainValue, 4> WorkList;
|
|
llvm::DenseSet<SILBasicBlock *> HandledBBs;
|
|
WorkList.push_back(std::make_pair(BB, RV));
|
|
HandledBBs.insert(BB);
|
|
while (!WorkList.empty()) {
|
|
// Too many blocks ?.
|
|
if (WorkList.size() > WorkListMaxSize) {
|
|
EpilogueRetainInsts.clear();
|
|
return;
|
|
}
|
|
|
|
// Try to find a retain %value in this basic block.
|
|
auto R = WorkList.pop_back_val();
|
|
RetainKindValue Kind = findMatchingRetainsInBasicBlock(R.first, R.second);
|
|
|
|
// We've found a retain on this path.
|
|
if (Kind.first == FindRetainKind::Found) {
|
|
EpilogueRetainInsts.push_back(Kind.second);
|
|
continue;
|
|
}
|
|
|
|
// There is a MayDecrement instruction.
|
|
if (Kind.first == FindRetainKind::Blocked) {
|
|
EpilogueRetainInsts.clear();
|
|
return;
|
|
}
|
|
|
|
// There is a self-recursion. Use the apply instruction as the retain.
|
|
if (Kind.first == FindRetainKind::Recursion) {
|
|
EpilogueRetainInsts.push_back(Kind.second);
|
|
continue;
|
|
}
|
|
|
|
// Did not find a retain in this block, try to go to its predecessors.
|
|
if (Kind.first == FindRetainKind::None) {
|
|
// We can not find a retain in a block with no predecessors.
|
|
if (R.first->getPredecessorBlocks().begin() ==
|
|
R.first->getPredecessorBlocks().end()) {
|
|
EpilogueRetainInsts.clear();
|
|
return;
|
|
}
|
|
|
|
// This block does not have a retain.
|
|
RetainFrees.insert(R.first);
|
|
|
|
// If this is a SILArgument of current basic block, we can split it up to
|
|
// values in the predecessors.
|
|
auto *SA = dyn_cast<SILPHIArgument>(R.second);
|
|
if (SA && SA->getParent() != R.first)
|
|
SA = nullptr;
|
|
|
|
for (auto X : R.first->getPredecessorBlocks()) {
|
|
if (HandledBBs.find(X) != HandledBBs.end())
|
|
continue;
|
|
// Try to use the predecessor edge-value.
|
|
if (SA && SA->getIncomingValue(X)) {
|
|
WorkList.push_back(std::make_pair(X, SA->getIncomingValue(X)));
|
|
}
|
|
else
|
|
WorkList.push_back(std::make_pair(X, R.second));
|
|
|
|
HandledBBs.insert(X);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Lastly, check whether all the successor blocks are retain-free.
|
|
if (!isTransitiveSuccessorsRetainFree(RetainFrees))
|
|
EpilogueRetainInsts.clear();
|
|
|
|
// At this point, we've either failed to find any epilogue retains or
|
|
// all the post-dominating epilogue retains.
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Owned Argument Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ConsumedArgToEpilogueReleaseMatcher::ConsumedArgToEpilogueReleaseMatcher(
|
|
RCIdentityFunctionInfo *RCFI,
|
|
SILFunction *F,
|
|
ArrayRef<SILArgumentConvention> ArgumentConventions,
|
|
ExitKind Kind)
|
|
: F(F), RCFI(RCFI), Kind(Kind), ArgumentConventions(ArgumentConventions),
|
|
ProcessedBlock(nullptr) {
|
|
recompute();
|
|
}
|
|
|
|
void ConsumedArgToEpilogueReleaseMatcher::recompute() {
|
|
ArgInstMap.clear();
|
|
|
|
// Find the return BB of F. If we fail, then bail.
|
|
SILFunction::iterator BB;
|
|
switch (Kind) {
|
|
case ExitKind::Return:
|
|
BB = F->findReturnBB();
|
|
break;
|
|
case ExitKind::Throw:
|
|
BB = F->findThrowBB();
|
|
break;
|
|
}
|
|
|
|
if (BB == F->end()) {
|
|
ProcessedBlock = nullptr;
|
|
return;
|
|
}
|
|
ProcessedBlock = &*BB;
|
|
findMatchingReleases(&*BB);
|
|
}
|
|
|
|
bool
|
|
ConsumedArgToEpilogueReleaseMatcher::
|
|
isRedundantRelease(ReleaseList Insts, SILValue Base, SILValue Derived) {
|
|
// We use projection path to analyze the relation.
|
|
auto POp = ProjectionPath::getProjectionPath(Base, Derived);
|
|
// We can not build a projection path from the base to the derived, bail out.
|
|
// and return true so that we can stop the epilogue walking sequence.
|
|
if (!POp.hasValue())
|
|
return true;
|
|
|
|
for (auto &R : Insts) {
|
|
SILValue ROp = R->getOperand(0);
|
|
auto PROp = ProjectionPath::getProjectionPath(Base, ROp);
|
|
if (!PROp.hasValue())
|
|
return true;
|
|
// If Op is a part of ROp or Rop is a part of Op. then we have seen
|
|
// a redundant release.
|
|
if (!PROp.getValue().hasNonEmptySymmetricDifference(POp.getValue()))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
ConsumedArgToEpilogueReleaseMatcher::
|
|
releaseArgument(ReleaseList Insts, SILValue Arg) {
|
|
// Reason about whether all parts are released.
|
|
SILModule *Mod = &(*Insts.begin())->getModule();
|
|
|
|
// These are the list of SILValues that are actually released.
|
|
ProjectionPathSet Paths;
|
|
for (auto &I : Insts) {
|
|
auto PP = ProjectionPath::getProjectionPath(Arg, I->getOperand(0));
|
|
if (!PP)
|
|
return false;
|
|
Paths.insert(PP.getValue());
|
|
}
|
|
|
|
// Is there an uncovered non-trivial type.
|
|
return !ProjectionPath::hasUncoveredNonTrivials(Arg->getType(), Mod, Paths);
|
|
}
|
|
|
|
void
|
|
ConsumedArgToEpilogueReleaseMatcher::
|
|
processMatchingReleases() {
|
|
llvm::DenseSet<SILArgument *> ArgToRemove;
|
|
// If we can not find a release for all parts with reference semantics
|
|
// that means we did not find all releases for the base.
|
|
for (auto Arg : ArgInstMap) {
|
|
// If an argument has a single release and it is rc-identical to the
|
|
// SILArgument. Then we do not need to use projection to check for whether
|
|
// all non-trivial fields are covered.
|
|
if (Arg.second.size() == 1) {
|
|
SILInstruction *I = *Arg.second.begin();
|
|
SILValue RV = I->getOperand(0);
|
|
if (Arg.first == RCFI->getRCIdentityRoot(RV))
|
|
continue;
|
|
}
|
|
|
|
// OK. we have multiple epilogue releases for this argument, check whether
|
|
// it has covered all fields with reference semantic in the argument.
|
|
if (releaseArgument(Arg.second, Arg.first))
|
|
continue;
|
|
|
|
// OK. we did find some epilogue releases, just not all.
|
|
if (!Arg.second.empty())
|
|
FoundSomeReleases.insert(Arg.first);
|
|
|
|
ArgToRemove.insert(Arg.first);
|
|
}
|
|
|
|
// Clear any releases found for this argument.
|
|
for (auto &X : ArgToRemove) {
|
|
ArgInstMap.erase(ArgInstMap.find(X));
|
|
}
|
|
}
|
|
|
|
/// Check if a given argument convention is in the list
|
|
/// of possible argument conventions.
|
|
static bool
|
|
isOneOfConventions(SILArgumentConvention Convention,
|
|
ArrayRef<SILArgumentConvention> ArgumentConventions) {
|
|
for (auto ArgumentConvention : ArgumentConventions) {
|
|
if (Convention == ArgumentConvention)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void
|
|
ConsumedArgToEpilogueReleaseMatcher::
|
|
collectMatchingDestroyAddresses(SILBasicBlock *BB) {
|
|
// Check if we can find destroy_addr for each @in argument.
|
|
SILFunction::iterator AnotherEpilogueBB =
|
|
(Kind == ExitKind::Return) ? F->findThrowBB() : F->findReturnBB();
|
|
for (auto Arg : F->begin()->getFunctionArguments()) {
|
|
if (Arg->isIndirectResult())
|
|
continue;
|
|
if (Arg->getArgumentConvention() != SILArgumentConvention::Indirect_In)
|
|
continue;
|
|
bool HasDestroyAddrOutsideEpilogueBB = false;
|
|
// This is an @in argument. Check if there are any destroy_addr
|
|
// instructions for it.
|
|
for (auto Use : getNonDebugUses(Arg)) {
|
|
auto User = Use->getUser();
|
|
if (!isa<DestroyAddrInst>(User))
|
|
continue;
|
|
// Do not take into account any uses in the other
|
|
// epilogue BB.
|
|
if (AnotherEpilogueBB != F->end() &&
|
|
User->getParent() == &*AnotherEpilogueBB)
|
|
continue;
|
|
if (User->getParent() != BB )
|
|
HasDestroyAddrOutsideEpilogueBB = true;
|
|
ArgInstMap[Arg].push_back(dyn_cast<SILInstruction>(User));
|
|
}
|
|
|
|
// Don't know how to handle destroy_addr outside of the epilogue.
|
|
if (HasDestroyAddrOutsideEpilogueBB)
|
|
ArgInstMap.erase(Arg);
|
|
}
|
|
}
|
|
|
|
void
|
|
ConsumedArgToEpilogueReleaseMatcher::
|
|
collectMatchingReleases(SILBasicBlock *BB) {
|
|
// Iterate over the instructions post-order and find final releases
|
|
// associated with each arguments.
|
|
//
|
|
// The ConsumedArgToEpilogueReleaseMatcher finds the final releases
|
|
// in the following way.
|
|
//
|
|
// 1. If an instruction, which is not releaseinst nor releasevalue, that
|
|
// could decrement reference count is found. bail out.
|
|
//
|
|
// 2. If a release is found and the release that can not be mapped to any
|
|
// @owned argument. bail as this release may well be the final release of
|
|
// an @owned argument, but somehow rc-identity fails to prove that.
|
|
//
|
|
// 3. A release that is mapped to an argument which already has a release
|
|
// that overlaps with this release. This release for sure is not the final
|
|
// release.
|
|
bool IsTrackingInArgs = isOneOfConventions(SILArgumentConvention::Indirect_In,
|
|
ArgumentConventions);
|
|
|
|
for (auto II = std::next(BB->rbegin()), IE = BB->rend(); II != IE; ++II) {
|
|
if (IsTrackingInArgs && isa<DestroyAddrInst>(*II)) {
|
|
// It is probably a destroy addr for an @in argument.
|
|
continue;
|
|
}
|
|
// If we do not have a release_value or strong_release. We can continue
|
|
if (!isa<ReleaseValueInst>(*II) && !isa<StrongReleaseInst>(*II)) {
|
|
|
|
// We cannot match a final release if it is followed by a dealloc_ref.
|
|
if (isa<DeallocRefInst>(*II))
|
|
break;
|
|
|
|
// We do not know what this instruction is, do a simple check to make sure
|
|
// that it does not decrement the reference count of any of its operand.
|
|
//
|
|
// TODO: we could make the logic here more complicated to handle each type
|
|
// of instructions in a more precise manner.
|
|
if (!II->mayRelease())
|
|
continue;
|
|
// This instruction may release something, bail out conservatively.
|
|
break;
|
|
}
|
|
|
|
// Ok, we have a release_value or strong_release. Grab Target and find the
|
|
// RC identity root of its operand.
|
|
SILInstruction *Target = &*II;
|
|
SILValue OrigOp = Target->getOperand(0);
|
|
SILValue Op = RCFI->getRCIdentityRoot(OrigOp);
|
|
|
|
// Check whether this is a SILArgument or a part of a SILArgument. This is
|
|
// possible after we expand release instructions in SILLowerAgg pass.
|
|
auto *Arg = dyn_cast<SILFunctionArgument>(stripValueProjections(Op));
|
|
if (!Arg)
|
|
break;
|
|
|
|
// If Op is not a consumed argument, we must break since this is not an Op
|
|
// that is a part of a return sequence. We are being conservative here since
|
|
// we could make this more general by allowing for intervening non-arg
|
|
// releases in the sense that we do not allow for race conditions in between
|
|
// destructors.
|
|
if (!Arg ||
|
|
!isOneOfConventions(Arg->getArgumentConvention(), ArgumentConventions))
|
|
break;
|
|
|
|
// Ok, we have a release on a SILArgument that has a consuming convention.
|
|
// Attempt to put it into our arc opts map. If we already have it, we have
|
|
// exited the return value sequence so break. Otherwise, continue looking
|
|
// for more arc operations.
|
|
auto Iter = ArgInstMap.find(Arg);
|
|
if (Iter == ArgInstMap.end()) {
|
|
ArgInstMap[Arg].push_back(Target);
|
|
continue;
|
|
}
|
|
|
|
// We've already seen at least part of this base. Check to see whether we
|
|
// are seeing a redundant release.
|
|
//
|
|
// If we are seeing a redundant release we have exited the return value
|
|
// sequence, so break.
|
|
if (!isa<DestroyAddrInst>(Target))
|
|
if (isRedundantRelease(Iter->second, Arg, OrigOp))
|
|
break;
|
|
|
|
// We've seen part of this base, but this is a part we've have not seen.
|
|
// Record it.
|
|
Iter->second.push_back(Target);
|
|
}
|
|
|
|
if (IsTrackingInArgs) {
|
|
// Find destroy_addr for each @in argument.
|
|
collectMatchingDestroyAddresses(BB);
|
|
}
|
|
}
|
|
|
|
void
|
|
ConsumedArgToEpilogueReleaseMatcher::
|
|
findMatchingReleases(SILBasicBlock *BB) {
|
|
// Walk the given basic block to find all the epilogue releases.
|
|
collectMatchingReleases(BB);
|
|
// We've exited the epilogue sequence, try to find out which parameter we
|
|
// have all the epilogue releases for and which one we did not.
|
|
processMatchingReleases();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Code for Determining Final Releases
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Propagate liveness backwards from an initial set of blocks in our
|
|
// LiveIn set.
|
|
static void propagateLiveness(llvm::SmallPtrSetImpl<SILBasicBlock *> &LiveIn,
|
|
SILBasicBlock *DefBB) {
|
|
// First populate a worklist of predecessors.
|
|
llvm::SmallVector<SILBasicBlock *, 64> Worklist;
|
|
for (auto *BB : LiveIn)
|
|
for (auto Pred : BB->getPredecessorBlocks())
|
|
Worklist.push_back(Pred);
|
|
|
|
// Now propagate liveness backwards until we hit the alloc_box.
|
|
while (!Worklist.empty()) {
|
|
auto *BB = Worklist.pop_back_val();
|
|
|
|
// If it's already in the set, then we've already queued and/or
|
|
// processed the predecessors.
|
|
if (BB == DefBB || !LiveIn.insert(BB).second)
|
|
continue;
|
|
|
|
for (auto Pred : BB->getPredecessorBlocks())
|
|
Worklist.push_back(Pred);
|
|
}
|
|
}
|
|
|
|
// Is any successor of BB in the LiveIn set?
|
|
static bool successorHasLiveIn(SILBasicBlock *BB,
|
|
llvm::SmallPtrSetImpl<SILBasicBlock *> &LiveIn) {
|
|
for (auto &Succ : BB->getSuccessors())
|
|
if (LiveIn.count(Succ))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Walk backwards in BB looking for the last use of a given
|
|
// value, and add it to the set of release points.
|
|
static bool addLastUse(SILValue V, SILBasicBlock *BB,
|
|
ReleaseTracker &Tracker) {
|
|
for (auto I = BB->rbegin(); I != BB->rend(); ++I) {
|
|
if (Tracker.isUser(&*I)) {
|
|
Tracker.trackLastRelease(&*I);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("BB is expected to have a use of a closure");
|
|
return false;
|
|
}
|
|
|
|
/// TODO: Refactor this code so the decision on whether or not to accept an
|
|
/// instruction.
|
|
bool swift::getFinalReleasesForValue(SILValue V, ReleaseTracker &Tracker) {
|
|
llvm::SmallPtrSet<SILBasicBlock *, 16> LiveIn;
|
|
llvm::SmallPtrSet<SILBasicBlock *, 16> UseBlocks;
|
|
|
|
// First attempt to get the BB where this value resides.
|
|
auto *DefBB = V->getParentBlock();
|
|
if (!DefBB)
|
|
return false;
|
|
|
|
bool seenRelease = false;
|
|
SILInstruction *OneRelease = nullptr;
|
|
|
|
// We'll treat this like a liveness problem where the value is the def. Each
|
|
// block that has a use of the value has the value live-in unless it is the
|
|
// block with the value.
|
|
SmallVector<Operand *, 8> Uses(V->getUses());
|
|
while (!Uses.empty()) {
|
|
auto *Use = Uses.pop_back_val();
|
|
auto *User = Use->getUser();
|
|
auto *BB = User->getParent();
|
|
|
|
if (Tracker.isUserTransitive(User)) {
|
|
Tracker.trackUser(User);
|
|
auto *CastInst = cast<SingleValueInstruction>(User);
|
|
Uses.append(CastInst->getUses().begin(), CastInst->getUses().end());
|
|
continue;
|
|
}
|
|
|
|
if (!Tracker.isUserAcceptable(User))
|
|
return false;
|
|
|
|
Tracker.trackUser(User);
|
|
|
|
if (BB != DefBB)
|
|
LiveIn.insert(BB);
|
|
|
|
// Also keep track of the blocks with uses.
|
|
UseBlocks.insert(BB);
|
|
|
|
// Try to speed up the trivial case of single release/dealloc.
|
|
if (isa<StrongReleaseInst>(User) || isa<DeallocBoxInst>(User) ||
|
|
isa<DestroyValueInst>(User)) {
|
|
if (!seenRelease)
|
|
OneRelease = User;
|
|
else
|
|
OneRelease = nullptr;
|
|
|
|
seenRelease = true;
|
|
}
|
|
}
|
|
|
|
// Only a single release/dealloc? We're done!
|
|
if (OneRelease) {
|
|
Tracker.trackLastRelease(OneRelease);
|
|
return true;
|
|
}
|
|
|
|
propagateLiveness(LiveIn, DefBB);
|
|
|
|
// Now examine each block we saw a use in. If it has no successors
|
|
// that are in LiveIn, then the last use in the block is the final
|
|
// release/dealloc.
|
|
for (auto *BB : UseBlocks)
|
|
if (!successorHasLiveIn(BB, LiveIn))
|
|
if (!addLastUse(V, BB, Tracker))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Leaking BB Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool ignorableApplyInstInUnreachableBlock(const ApplyInst *AI) {
|
|
const auto *Fn = AI->getReferencedFunction();
|
|
if (!Fn)
|
|
return false;
|
|
|
|
return Fn->hasSemanticsAttr("arc.programtermination_point");
|
|
}
|
|
|
|
static bool ignorableBuiltinInstInUnreachableBlock(const BuiltinInst *BI) {
|
|
const BuiltinInfo &BInfo = BI->getBuiltinInfo();
|
|
if (BInfo.ID == BuiltinValueKind::CondUnreachable)
|
|
return true;
|
|
|
|
const IntrinsicInfo &IInfo = BI->getIntrinsicInfo();
|
|
if (IInfo.ID == llvm::Intrinsic::trap)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Match a call to a trap BB with no ARC relevant side effects.
|
|
bool swift::isARCInertTrapBB(const SILBasicBlock *BB) {
|
|
// Do a quick check at the beginning to make sure that our terminator is
|
|
// actually an unreachable. This ensures that in many cases this function will
|
|
// exit early and quickly.
|
|
auto II = BB->rbegin();
|
|
if (!isa<UnreachableInst>(*II))
|
|
return false;
|
|
|
|
auto IE = BB->rend();
|
|
while (II != IE) {
|
|
// Ignore any instructions without side effects.
|
|
if (!II->mayHaveSideEffects()) {
|
|
++II;
|
|
continue;
|
|
}
|
|
|
|
// Ignore cond fail.
|
|
if (isa<CondFailInst>(*II)) {
|
|
++II;
|
|
continue;
|
|
}
|
|
|
|
// Check for apply insts that we can ignore.
|
|
if (auto *AI = dyn_cast<ApplyInst>(&*II)) {
|
|
if (ignorableApplyInstInUnreachableBlock(AI)) {
|
|
++II;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Check for builtins that we can ignore.
|
|
if (auto *BI = dyn_cast<BuiltinInst>(&*II)) {
|
|
if (ignorableBuiltinInstInUnreachableBlock(BI)) {
|
|
++II;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If we can't ignore the instruction, return false.
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, we have an unreachable and every instruction is inert from an
|
|
// ARC perspective in an unreachable BB.
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Analysis of builtin "unsafeGuaranteed" instructions
|
|
//===----------------------------------------------------------------------===//
|
|
std::pair<SingleValueInstruction *, SingleValueInstruction *>
|
|
swift::getSingleUnsafeGuaranteedValueResult(BuiltinInst *BI) {
|
|
assert(BI->getBuiltinKind() &&
|
|
*BI->getBuiltinKind() == BuiltinValueKind::UnsafeGuaranteed &&
|
|
"Expecting a unsafeGuaranteed builtin");
|
|
|
|
SingleValueInstruction *GuaranteedValue = nullptr;
|
|
SingleValueInstruction *Token = nullptr;
|
|
|
|
auto Failed = std::make_pair(nullptr, nullptr);
|
|
|
|
for (auto *Operand : getNonDebugUses(BI)) {
|
|
auto *Usr = Operand->getUser();
|
|
if (isa<ReleaseValueInst>(Usr) || isa<RetainValueInst>(Usr))
|
|
continue;
|
|
|
|
auto *TE = dyn_cast<TupleExtractInst>(Usr);
|
|
if (!TE || TE->getOperand() != BI)
|
|
return Failed;
|
|
|
|
if (TE->getFieldNo() == 0 && !GuaranteedValue) {
|
|
GuaranteedValue = TE;
|
|
continue;
|
|
}
|
|
if (TE->getFieldNo() == 1 && !Token) {
|
|
Token = TE;
|
|
continue;
|
|
}
|
|
return Failed;
|
|
}
|
|
|
|
if (!GuaranteedValue || !Token)
|
|
return Failed;
|
|
|
|
return std::make_pair(GuaranteedValue, Token);
|
|
}
|
|
|
|
BuiltinInst *swift::getUnsafeGuaranteedEndUser(SILValue UnsafeGuaranteedToken) {
|
|
BuiltinInst *UnsafeGuaranteedEndI = nullptr;
|
|
|
|
for (auto *Operand : getNonDebugUses(UnsafeGuaranteedToken)) {
|
|
if (UnsafeGuaranteedEndI) {
|
|
DEBUG(llvm::dbgs() << " multiple unsafeGuaranteedEnd users\n");
|
|
UnsafeGuaranteedEndI = nullptr;
|
|
break;
|
|
}
|
|
auto *BI = dyn_cast<BuiltinInst>(Operand->getUser());
|
|
if (!BI || !BI->getBuiltinKind() ||
|
|
*BI->getBuiltinKind() != BuiltinValueKind::UnsafeGuaranteedEnd) {
|
|
DEBUG(llvm::dbgs() << " wrong unsafeGuaranteed token user "
|
|
<< *Operand->getUser());
|
|
break;
|
|
}
|
|
|
|
UnsafeGuaranteedEndI = BI;
|
|
}
|
|
return UnsafeGuaranteedEndI;
|
|
}
|
|
|
|
static bool hasUnsafeGuaranteedOperand(SILValue UnsafeGuaranteedValue,
|
|
SILValue UnsafeGuaranteedValueOperand,
|
|
RCIdentityFunctionInfo &RCII,
|
|
SILInstruction &Release) {
|
|
assert(isa<StrongReleaseInst>(Release) ||
|
|
isa<ReleaseValueInst>(Release) && "Expecting a release");
|
|
|
|
auto RCRoot = RCII.getRCIdentityRoot(Release.getOperand(0));
|
|
|
|
return RCRoot == UnsafeGuaranteedValue ||
|
|
RCRoot == UnsafeGuaranteedValueOperand;
|
|
}
|
|
|
|
SILInstruction *swift::findReleaseToMatchUnsafeGuaranteedValue(
|
|
SILInstruction *UnsafeGuaranteedEndI, SILInstruction *UnsafeGuaranteedI,
|
|
SILValue UnsafeGuaranteedValue, SILBasicBlock &BB,
|
|
RCIdentityFunctionInfo &RCFI) {
|
|
|
|
auto UnsafeGuaranteedRoot = RCFI.getRCIdentityRoot(UnsafeGuaranteedValue);
|
|
auto UnsafeGuaranteedOpdRoot =
|
|
RCFI.getRCIdentityRoot(UnsafeGuaranteedI->getOperand(0));
|
|
|
|
// Try finding it after the "unsafeGuaranteedEnd".
|
|
for (auto ForwardIt = std::next(UnsafeGuaranteedEndI->getIterator()),
|
|
End = BB.end();
|
|
ForwardIt != End; ++ForwardIt) {
|
|
SILInstruction &CurInst = *ForwardIt;
|
|
|
|
// Is this a release?
|
|
if (isa<ReleaseValueInst>(CurInst) || isa<StrongReleaseInst>(CurInst)) {
|
|
if (hasUnsafeGuaranteedOperand(UnsafeGuaranteedRoot,
|
|
UnsafeGuaranteedOpdRoot, RCFI, CurInst))
|
|
return &CurInst;
|
|
continue;
|
|
}
|
|
|
|
if (CurInst.mayHaveSideEffects() && !isa<DebugValueInst>(CurInst) &&
|
|
!isa<DebugValueAddrInst>(CurInst))
|
|
break;
|
|
}
|
|
|
|
// Otherwise, Look before the "unsafeGuaranteedEnd".
|
|
for (auto ReverseIt = ++UnsafeGuaranteedEndI->getIterator().getReverse(),
|
|
End = BB.rend();
|
|
ReverseIt != End; ++ReverseIt) {
|
|
SILInstruction &CurInst = *ReverseIt;
|
|
|
|
// Is this a release?
|
|
if (isa<ReleaseValueInst>(CurInst) || isa<StrongReleaseInst>(CurInst)) {
|
|
if (hasUnsafeGuaranteedOperand(UnsafeGuaranteedRoot,
|
|
UnsafeGuaranteedOpdRoot, RCFI, CurInst))
|
|
return &CurInst;
|
|
continue;
|
|
}
|
|
|
|
if (CurInst.mayHaveSideEffects() && !isa<DebugValueInst>(CurInst) &&
|
|
!isa<DebugValueAddrInst>(CurInst))
|
|
break;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|