Files
swift-mirror/lib/SILOptimizer/Analysis/AliasAnalysis.cpp
John McCall ab3f77baf2 Make SILInstruction no longer a subclass of ValueBase and
introduce a common superclass, SILNode.

This is in preparation for allowing instructions to have multiple
results.  It is also a somewhat more elegant representation for
instructions that have zero results.  Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction.  Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.

A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.

Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.
2017-09-25 02:06:26 -04:00

779 lines
28 KiB
C++

//===--- AliasAnalysis.cpp - SIL Alias Analysis ---------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-aa"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
#include "swift/SILOptimizer/Analysis/SideEffectAnalysis.h"
#include "swift/SILOptimizer/Analysis/EscapeAnalysis.h"
#include "swift/SILOptimizer/Utils/Local.h"
#include "swift/SILOptimizer/PassManager/PassManager.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILValue.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/InstructionUtils.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
// The AliasAnalysis Cache must not grow beyond this size.
// We limit the size of the AA cache to 2**14 because we want to limit the
// memory usage of this cache.
static const int AliasAnalysisMaxCacheSize = 16384;
//===----------------------------------------------------------------------===//
// AA Debugging
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
namespace {
enum class AAKind : unsigned {
None=0,
BasicAA=1,
TypedAccessTBAA=2,
All=3,
};
} // end anonymous namespace
static llvm::cl::opt<AAKind>
DebugAAKinds("aa-kind", llvm::cl::desc("Alias Analysis Kinds:"),
llvm::cl::init(AAKind::All),
llvm::cl::values(clEnumValN(AAKind::None,
"none",
"Do not perform any AA"),
clEnumValN(AAKind::BasicAA,
"basic-aa",
"basic-aa"),
clEnumValN(AAKind::TypedAccessTBAA,
"typed-access-tb-aa",
"typed-access-tb-aa"),
clEnumValN(AAKind::All,
"all",
"all")));
static inline bool shouldRunAA() {
return unsigned(AAKind(DebugAAKinds));
}
static inline bool shouldRunTypedAccessTBAA() {
return unsigned(AAKind(DebugAAKinds)) & unsigned(AAKind::TypedAccessTBAA);
}
static inline bool shouldRunBasicAA() {
return unsigned(AAKind(DebugAAKinds)) & unsigned(AAKind::BasicAA);
}
#endif
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
using AliasResult = AliasAnalysis::AliasResult;
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &OS, AliasResult R) {
switch (R) {
case AliasResult::NoAlias: return OS << "NoAlias";
case AliasResult::MayAlias: return OS << "MayAlias";
case AliasResult::PartialAlias: return OS << "PartialAlias";
case AliasResult::MustAlias: return OS << "MustAlias";
}
llvm_unreachable("Unhandled AliasResult in switch.");
}
SILValue getAccessedMemory(SILInstruction *User) {
if (auto *LI = dyn_cast<LoadInst>(User)) {
return LI->getOperand();
}
if (auto *SI = dyn_cast<StoreInst>(User)) {
return SI->getDest();
}
return SILValue();
}
//===----------------------------------------------------------------------===//
// Unequal Base Object AA
//===----------------------------------------------------------------------===//
/// Return true if the given SILArgument is an argument to the first BB of a
/// function.
static bool isFunctionArgument(SILValue V) {
return isa<SILFunctionArgument>(V);
}
/// Return true if V is an object that at compile time can be uniquely
/// identified.
static bool isIdentifiableObject(SILValue V) {
if (isa<AllocationInst>(V) || isa<LiteralInst>(V))
return true;
if (isNotAliasingArgument(V))
return true;
return false;
}
/// Return true if V1 and V2 are distinct objects that can be uniquely
/// identified at compile time.
static bool areDistinctIdentifiableObjects(SILValue V1, SILValue V2) {
// Do both values refer to the same global variable?
if (auto *GA1 = dyn_cast<GlobalAddrInst>(V1)) {
if (auto *GA2 = dyn_cast<GlobalAddrInst>(V2)) {
return GA1->getReferencedGlobal() != GA2->getReferencedGlobal();
}
}
if (isIdentifiableObject(V1) && isIdentifiableObject(V2))
return V1 != V2;
return false;
}
/// Returns true if both values are equal or yield the address of the same
/// global variable.
static bool isSameValueOrGlobal(SILValue V1, SILValue V2) {
if (V1 == V2)
return true;
// Do both values refer to the same global variable?
if (auto *GA1 = dyn_cast<GlobalAddrInst>(V1)) {
if (auto *GA2 = dyn_cast<GlobalAddrInst>(V2)) {
return GA1->getReferencedGlobal() == GA2->getReferencedGlobal();
}
}
return false;
}
/// Is this a literal which we know cannot refer to a global object?
///
/// FIXME: function_ref?
static bool isLocalLiteral(SILValue V) {
switch (V->getKind()) {
case ValueKind::IntegerLiteralInst:
case ValueKind::FloatLiteralInst:
case ValueKind::StringLiteralInst:
return true;
default:
return false;
}
}
/// Is this a value that can be unambiguously identified as being defined at the
/// function level.
static bool isIdentifiedFunctionLocal(SILValue V) {
return isa<AllocationInst>(*V) || isNotAliasingArgument(V) ||
isLocalLiteral(V);
}
/// Returns true if we can prove that the two input SILValues which do not equal
/// cannot alias.
static bool aliasUnequalObjects(SILValue O1, SILValue O2) {
assert(O1 != O2 && "This function should only be called on unequal values.");
// If O1 and O2 do not equal and they are both values that can be statically
// and uniquely identified, they cannot alias.
if (areDistinctIdentifiableObjects(O1, O2)) {
DEBUG(llvm::dbgs() << " Found two unequal identified "
"objects.\n");
return true;
}
// Function arguments can't alias with things that are known to be
// unambiguously identified at the function level.
//
// Note that both function arguments must be identified. For example, an @in
// argument may be an interior pointer into a box that is passed separately as
// @owned. We must consider uses on the @in argument as potential uses of the
// @owned object.
if ((isFunctionArgument(O1) && isIdentifiedFunctionLocal(O2)) ||
(isFunctionArgument(O2) && isIdentifiedFunctionLocal(O1))) {
DEBUG(llvm::dbgs() << " Found unequal function arg and "
"identified function local!\n");
return true;
}
// We failed to prove that the two objects are different.
return false;
}
//===----------------------------------------------------------------------===//
// Projection Address AA
//===----------------------------------------------------------------------===//
/// Uses a bunch of ad-hoc rules to disambiguate a GEP instruction against
/// another pointer. We know that V1 is a GEP, but we don't know anything about
/// V2. O1, O2 are getUnderlyingObject of V1, V2 respectively.
AliasResult AliasAnalysis::aliasAddressProjection(SILValue V1, SILValue V2,
SILValue O1, SILValue O2) {
// If V2 is also a gep instruction with a must-alias or not-aliasing base
// pointer, figure out if the indices of the GEPs tell us anything about the
// derived pointers.
if (!Projection::isAddressProjection(V2)) {
// Ok, V2 is not an address projection. See if V2 after stripping casts
// aliases O1. If so, then we know that V2 must partially alias V1 via a
// must alias relation on O1. This ensures that given an alloc_stack and a
// gep from that alloc_stack, we say that they partially alias.
if (isSameValueOrGlobal(O1, stripCasts(V2)))
return AliasResult::PartialAlias;
return AliasResult::MayAlias;
}
assert(!Projection::isAddressProjection(O1) &&
"underlying object may not be a projection");
assert(!Projection::isAddressProjection(O2) &&
"underlying object may not be a projection");
// Do the base pointers alias?
AliasResult BaseAlias = aliasInner(O1, O2);
// If the underlying objects are not aliased, the projected values are also
// not aliased.
if (BaseAlias == AliasResult::NoAlias)
return AliasResult::NoAlias;
// Let's do alias checking based on projections.
auto V1Path = ProjectionPath::getProjectionPath(O1, V1);
auto V2Path = ProjectionPath::getProjectionPath(O2, V2);
// getUnderlyingPath and findAddressProjectionPathBetweenValues disagree on
// what the base pointer of the two values are. Be conservative and return
// MayAlias.
//
// FIXME: The only way this should happen realistically is if there are
// casts in between two projection instructions. getUnderlyingObject will
// ignore that, while findAddressProjectionPathBetweenValues wont. The two
// solutions are to make address projections variadic (something on the wee
// horizon) or enable Projection to represent a cast as a special sort of
// projection.
if (!V1Path || !V2Path)
return AliasResult::MayAlias;
auto R = V1Path->computeSubSeqRelation(*V2Path);
// If all of the projections are equal (and they have the same base pointer),
// the two GEPs must be the same.
if (BaseAlias == AliasResult::MustAlias &&
R == SubSeqRelation_t::Equal)
return AliasResult::MustAlias;
// The two GEPs do not alias if they are accessing different fields, even if
// we don't know the base pointers. Different fields should not overlap.
//
// TODO: Replace this with a check on the computed subseq relation. See the
// TODO in computeSubSeqRelation.
if (V1Path->hasNonEmptySymmetricDifference(V2Path.getValue()))
return AliasResult::NoAlias;
// If one of the GEPs is a super path of the other then they partially
// alias.
if (BaseAlias == AliasResult::MustAlias &&
isStrictSubSeqRelation(R))
return AliasResult::PartialAlias;
// We failed to prove anything. Be conservative and return MayAlias.
return AliasResult::MayAlias;
}
//===----------------------------------------------------------------------===//
// TBAA
//===----------------------------------------------------------------------===//
/// Is this an instruction that can act as a type "oracle" allowing typed access
/// TBAA to know what the real types associated with the SILInstruction are.
static bool isTypedAccessOracle(SILInstruction *I) {
switch (I->getKind()) {
case SILInstructionKind::RefElementAddrInst:
case SILInstructionKind::RefTailAddrInst:
case SILInstructionKind::StructElementAddrInst:
case SILInstructionKind::TupleElementAddrInst:
case SILInstructionKind::UncheckedTakeEnumDataAddrInst:
case SILInstructionKind::LoadInst:
case SILInstructionKind::StoreInst:
case SILInstructionKind::AllocStackInst:
case SILInstructionKind::AllocBoxInst:
case SILInstructionKind::ProjectBoxInst:
case SILInstructionKind::DeallocStackInst:
case SILInstructionKind::DeallocBoxInst:
return true;
default:
return false;
}
}
/// Return true if the given value is an instruction or block argument that is
/// known to produce a nonaliasing address with respect to TBAA rules (i.e. the
/// pointer is not type punned). The only way to produce an aliasing typed
/// address is with pointer_to_address (via UnsafePointer) or
/// unchecked_addr_cast (via Builtin.reinterpretCast). Consequently, if the
/// given value is directly derived from a memory location, it cannot
/// alias. Call arguments also cannot alias because they must follow \@in, @out,
/// @inout, or \@in_guaranteed conventions.
static bool isAddressRootTBAASafe(SILValue V) {
if (isa<SILFunctionArgument>(V))
return true;
if (auto *PtrToAddr = dyn_cast<PointerToAddressInst>(V))
return PtrToAddr->isStrict();
switch (V->getKind()) {
default:
return false;
case ValueKind::AllocStackInst:
case ValueKind::ProjectBoxInst:
case ValueKind::RefElementAddrInst:
case ValueKind::RefTailAddrInst:
return true;
}
}
/// Look at the origin/user ValueBase of V to see if any of them are
/// TypedAccessOracle which enable one to ascertain via undefined behavior the
/// "true" type of the instruction.
static SILType findTypedAccessType(SILValue V) {
// First look at the origin of V and see if we have any instruction that is a
// typed oracle.
// TODO: MultiValueInstruction
if (auto *I = dyn_cast<SingleValueInstruction>(V))
if (isTypedAccessOracle(I))
return V->getType();
// Then look at any uses of V that potentially could act as a typed access
// oracle.
for (auto Use : V->getUses())
if (isTypedAccessOracle(Use->getUser()))
return V->getType();
// Otherwise return an empty SILType
return SILType();
}
SILType swift::computeTBAAType(SILValue V) {
if (isAddressRootTBAASafe(getUnderlyingAddressRoot(V)))
return findTypedAccessType(V);
// FIXME: add ref_element_addr check here. TBAA says that objects cannot be
// type punned.
return SILType();
}
static bool typedAccessTBAABuiltinTypesMayAlias(SILType LTy, SILType RTy,
SILModule &Mod) {
assert(LTy != RTy && "LTy should have already been shown to not equal RTy to "
"call this function.");
// If either of our types are raw pointers, they may alias any builtin.
if (LTy.is<BuiltinRawPointerType>() || RTy.is<BuiltinRawPointerType>())
return true;
// At this point, we have 3 possibilities:
//
// 1. (Pointer, Scalar): A pointer to a pointer can never alias a scalar.
//
// 2. (Pointer, Pointer): If we have two pointers to pointers, since we know
// that the two values do not equal due to previous AA calculations, one must
// be a native object and the other is an unknown object type (i.e. an objc
// object) which cannot alias.
//
// 3. (Scalar, Scalar): If we have two scalar pointers, since we know that the
// types are already not equal, we know that they cannot alias. For those
// unfamiliar even though BuiltinIntegerType/BuiltinFloatType are single
// classes, the AST represents each integer/float of different bit widths as
// different types, so equality of SILTypes allows us to know that they have
// different bit widths.
//
// Thus we can just return false since in none of the aforementioned cases we
// cannot alias, so return false.
return false;
}
/// \brief return True if the types \p LTy and \p RTy may alias.
///
/// Currently this only implements typed access based TBAA. See the TBAA section
/// in the SIL reference manual.
static bool typedAccessTBAAMayAlias(SILType LTy, SILType RTy, SILModule &Mod) {
#ifndef NDEBUG
if (!shouldRunTypedAccessTBAA())
return true;
#endif
// If the two types are the same they may alias.
if (LTy == RTy)
return true;
// Typed access based TBAA only occurs on pointers. If we reach this point and
// do not have a pointer, be conservative and return that the two types may
// alias.
if (!LTy.isAddress() || !RTy.isAddress())
return true;
// If the types have unbound generic arguments then we don't know
// the possible range of the type. A type such as $Array<Int> may
// alias $Array<T>. Right now we are conservative and we assume
// that $UnsafeMutablePointer<T> and $Int may alias.
if (LTy.hasArchetype() || RTy.hasArchetype())
return true;
// If either type is a protocol type, we don't know the underlying type so
// return may alias.
//
// FIXME: We could be significantly smarter here by using the protocol
// hierarchy.
if (LTy.isAnyExistentialType() || RTy.isAnyExistentialType())
return true;
// If either type is an address only type, bail so we are conservative.
if (LTy.isAddressOnly(Mod) || RTy.isAddressOnly(Mod))
return true;
// If both types are builtin types, handle them separately.
if (LTy.is<BuiltinType>() && RTy.is<BuiltinType>())
return typedAccessTBAABuiltinTypesMayAlias(LTy, RTy, Mod);
// Otherwise, we know that at least one of our types is not a builtin
// type. If we have a builtin type, canonicalize it on the right.
if (LTy.is<BuiltinType>())
std::swap(LTy, RTy);
// If RTy is a builtin raw pointer type, it can alias anything.
if (RTy.is<BuiltinRawPointerType>())
return true;
ClassDecl *LTyClass = LTy.getClassOrBoundGenericClass();
// The Builtin reference types can alias any class instance.
if (LTyClass) {
if (RTy.is<BuiltinUnknownObjectType>() ||
RTy.is<BuiltinNativeObjectType>() ||
RTy.is<BuiltinBridgeObjectType>()) {
return true;
}
}
// If one type is an aggregate and it contains the other type then the record
// reference may alias the aggregate reference.
if (LTy.aggregateContainsRecord(RTy, Mod) ||
RTy.aggregateContainsRecord(LTy, Mod))
return true;
// FIXME: All the code following could be made significantly more aggressive
// by saying that aggregates of the same type that do not contain each other
// cannot alias.
// Tuples do not alias non-tuples.
bool LTyTT = LTy.is<TupleType>();
bool RTyTT = RTy.is<TupleType>();
if ((LTyTT && !RTyTT) || (!LTyTT && RTyTT))
return false;
// Structs do not alias non-structs.
StructDecl *LTyStruct = LTy.getStructOrBoundGenericStruct();
StructDecl *RTyStruct = RTy.getStructOrBoundGenericStruct();
if ((LTyStruct && !RTyStruct) || (!LTyStruct && RTyStruct))
return false;
// Enums do not alias non-enums.
EnumDecl *LTyEnum = LTy.getEnumOrBoundGenericEnum();
EnumDecl *RTyEnum = RTy.getEnumOrBoundGenericEnum();
if ((LTyEnum && !RTyEnum) || (!LTyEnum && RTyEnum))
return false;
// Classes do not alias non-classes.
ClassDecl *RTyClass = RTy.getClassOrBoundGenericClass();
if ((LTyClass && !RTyClass) || (!LTyClass && RTyClass))
return false;
// Classes with separate class hierarchies do not alias.
if (!LTy.isBindableToSuperclassOf(RTy) && !RTy.isBindableToSuperclassOf(LTy))
return false;
// Otherwise be conservative and return that the two types may alias.
return true;
}
bool AliasAnalysis::typesMayAlias(SILType T1, SILType T2) {
// Both types need to be valid.
if (!T2 || !T1)
return true;
// Check if we've already computed the TBAA relation.
auto Key = std::make_pair(T1, T2);
auto Res = TypesMayAliasCache.find(Key);
if (Res != TypesMayAliasCache.end()) {
return Res->second;
}
bool MA = typedAccessTBAAMayAlias(T1, T2, *Mod);
TypesMayAliasCache[Key] = MA;
return MA;
}
//===----------------------------------------------------------------------===//
// Entry Points
//===----------------------------------------------------------------------===//
/// The main AA entry point. Performs various analyses on V1, V2 in an attempt
/// to disambiguate the two values.
AliasResult AliasAnalysis::alias(SILValue V1, SILValue V2,
SILType TBAAType1, SILType TBAAType2) {
AliasKeyTy Key = toAliasKey(V1, V2, TBAAType1, TBAAType2);
// Check if we've already computed this result.
auto It = AliasCache.find(Key);
if (It != AliasCache.end()) {
return It->second;
}
// Flush the cache if the size of the cache is too large.
if (AliasCache.size() > AliasAnalysisMaxCacheSize) {
AliasCache.clear();
AliasValueBaseToIndex.clear();
// Key is no longer valid as we cleared the AliasValueBaseToIndex.
Key = toAliasKey(V1, V2, TBAAType1, TBAAType2);
}
// Calculate the aliasing result and store it in the cache.
auto Result = aliasInner(V1, V2, TBAAType1, TBAAType2);
AliasCache[Key] = Result;
return Result;
}
/// The main AA entry point. Performs various analyses on V1, V2 in an attempt
/// to disambiguate the two values.
AliasResult AliasAnalysis::aliasInner(SILValue V1, SILValue V2,
SILType TBAAType1,
SILType TBAAType2) {
#ifndef NDEBUG
// If alias analysis is disabled, always return may alias.
if (!shouldRunAA())
return AliasResult::MayAlias;
#endif
// If the two values equal, quickly return must alias.
if (isSameValueOrGlobal(V1, V2))
return AliasResult::MustAlias;
DEBUG(llvm::dbgs() << "ALIAS ANALYSIS:\n V1: " << *V1
<< " V2: " << *V2);
// Pass in both the TBAA types so we can perform typed access TBAA and the
// actual types of V1, V2 so we can perform class based TBAA.
if (!typesMayAlias(TBAAType1, TBAAType2))
return AliasResult::NoAlias;
#ifndef NDEBUG
if (!shouldRunBasicAA())
return AliasResult::MayAlias;
#endif
// Strip off any casts on V1, V2.
V1 = stripCasts(V1);
V2 = stripCasts(V2);
DEBUG(llvm::dbgs() << " After Cast Stripping V1:" << *V1);
DEBUG(llvm::dbgs() << " After Cast Stripping V2:" << *V2);
// Ok, we need to actually compute an Alias Analysis result for V1, V2. Begin
// by finding the "base" of V1, V2 by stripping off all casts and GEPs.
SILValue O1 = getUnderlyingObject(V1);
SILValue O2 = getUnderlyingObject(V2);
DEBUG(llvm::dbgs() << " Underlying V1:" << *O1);
DEBUG(llvm::dbgs() << " Underlying V2:" << *O2);
// If O1 and O2 do not equal, see if we can prove that they cannot be the
// same object. If we can, return No Alias.
if (O1 != O2 && aliasUnequalObjects(O1, O2))
return AliasResult::NoAlias;
// Ok, either O1, O2 are the same or we could not prove anything based off of
// their inequality.
// Next: ask escape analysis. This catches cases where we compare e.g. a
// non-escaping pointer with another (maybe escaping) pointer. Escape analysis
// uses the connection graph to check if the pointers may point to the same
// content.
// Note that escape analysis must work with the original pointers and not the
// underlying objects because it treats projections differently.
if (!EA->canPointToSameMemory(V1, V2)) {
DEBUG(llvm::dbgs() << " Found not-aliased objects based on"
"escape analysis\n");
return AliasResult::NoAlias;
}
// Now we climb up use-def chains and attempt to do tricks based off of GEPs.
// First if one instruction is a gep and the other is not, canonicalize our
// inputs so that V1 always is the instruction containing the GEP.
if (!Projection::isAddressProjection(V1) &&
Projection::isAddressProjection(V2)) {
std::swap(V1, V2);
std::swap(O1, O2);
}
// If V1 is an address projection, attempt to use information from the
// aggregate type tree to disambiguate it from V2.
if (Projection::isAddressProjection(V1)) {
AliasResult Result = aliasAddressProjection(V1, V2, O1, O2);
if (Result != AliasResult::MayAlias)
return Result;
}
// We could not prove anything. Be conservative and return that V1, V2 may
// alias.
return AliasResult::MayAlias;
}
bool AliasAnalysis::canApplyDecrementRefCount(FullApplySite FAS, SILValue Ptr) {
// Treat applications of no-return functions as decrementing ref counts. This
// causes the apply to become a sink barrier for ref count increments.
if (FAS.isCalleeNoReturn())
return true;
/// If the pointer cannot escape to the function we are done.
if (!EA->canEscapeTo(Ptr, FAS))
return false;
SideEffectAnalysis::FunctionEffects ApplyEffects;
SEA->getEffects(ApplyEffects, FAS);
auto &GlobalEffects = ApplyEffects.getGlobalEffects();
if (ApplyEffects.mayReadRC() || GlobalEffects.mayRelease())
return true;
/// The function has no unidentified releases, so let's look at the arguments
// in detail.
for (unsigned Idx = 0, End = FAS.getNumArguments(); Idx < End; ++Idx) {
auto &ArgEffect = ApplyEffects.getParameterEffects()[Idx];
if (ArgEffect.mayRelease()) {
// The function may release this argument, so check if the pointer can
// escape to it.
if (EA->canEscapeToValue(Ptr, FAS.getArgument(Idx)))
return true;
}
}
return false;
}
bool AliasAnalysis::canBuiltinDecrementRefCount(BuiltinInst *BI, SILValue Ptr) {
for (SILValue Arg : BI->getArguments()) {
// Exclude some types of arguments where Ptr can never escape to.
if (isa<MetatypeInst>(Arg))
continue;
if (Arg->getType().is<BuiltinIntegerType>())
continue;
// A builtin can only release an object if it can escape to one of the
// builtin's arguments.
if (EA->canEscapeToValue(Ptr, Arg))
return true;
}
return false;
}
bool AliasAnalysis::mayValueReleaseInterfereWithInstruction(SILInstruction *User,
SILValue Ptr) {
// TODO: Its important to make this as precise as possible.
//
// TODO: Eventually we can plug in some analysis on the what the release of
// the Ptr can do, i.e. be more precise about Ptr's deinit.
//
// TODO: If we know the specific release instruction, we can potentially do
// more.
//
// If this instruction can not read or write any memory. Its OK.
if (!User->mayReadOrWriteMemory())
return false;
// These instructions do read or write memory, get memory accessed.
SILValue V = getAccessedMemory(User);
if (!V)
return true;
// Is this a local allocation ?
if (!pointsToLocalObject(V))
return true;
// This is a local allocation.
// The most important check: does the object escape the current function?
auto LO = getUnderlyingObject(V);
auto *ConGraph = EA->getConnectionGraph(User->getFunction());
auto *Node = ConGraph->getNodeOrNull(LO, EA);
if (Node && !Node->escapes())
return false;
// This is either a non-local allocation or a local allocation that escapes.
// We failed to prove anything, it could be read or written by the deinit.
return true;
}
bool swift::isLetPointer(SILValue V) {
// Traverse the "access" path for V and check that it starts with "let"
// and everything along this path is a value-type (i.e. struct or tuple).
// Is this an address of a "let" class member?
if (auto *REA = dyn_cast<RefElementAddrInst>(V))
return REA->getField()->isLet();
// Is this an address of a global "let"?
if (auto *GAI = dyn_cast<GlobalAddrInst>(V)) {
auto *GlobalDecl = GAI->getReferencedGlobal()->getDecl();
return GlobalDecl && GlobalDecl->isLet();
}
// Is this an address of a struct "let" member?
if (auto *SEA = dyn_cast<StructElementAddrInst>(V))
// Check if it is a "let" in the parent struct.
// Check if its parent is a "let".
return isLetPointer(SEA->getOperand());
// Check if a parent of a tuple is a "let"
if (auto *TEA = dyn_cast<TupleElementAddrInst>(V))
return isLetPointer(TEA->getOperand());
return false;
}
void AliasAnalysis::initialize(SILPassManager *PM) {
SEA = PM->getAnalysis<SideEffectAnalysis>();
EA = PM->getAnalysis<EscapeAnalysis>();
}
SILAnalysis *swift::createAliasAnalysis(SILModule *M) {
return new AliasAnalysis(M);
}
AliasKeyTy AliasAnalysis::toAliasKey(SILValue V1, SILValue V2,
SILType Type1, SILType Type2) {
size_t idx1 = AliasValueBaseToIndex.getIndex(V1);
assert(idx1 != std::numeric_limits<size_t>::max() &&
"~0 index reserved for empty/tombstone keys");
size_t idx2 = AliasValueBaseToIndex.getIndex(V2);
assert(idx2 != std::numeric_limits<size_t>::max() &&
"~0 index reserved for empty/tombstone keys");
void *t1 = Type1.getOpaqueValue();
void *t2 = Type2.getOpaqueValue();
return {idx1, idx2, t1, t2};
}