mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
The `-Winvalid-offsetof` warning is valid in this case. `offsetof` is being applied to types with a non-standard layout. The layout of this type is undefined by the specification. There is no guarantee that the type layout is uniform across all ABIs. It is not possible to portably compute the offset statically, especially efficiently. Sink this check into a unit test to avoid performing this test at runtime. In order to do this in the standard library, we would need to do this check through a global constructor.
1625 lines
57 KiB
C++
1625 lines
57 KiB
C++
//===--- MetadataCache.h - Implements the metadata cache --------*- C++ -*-===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#ifndef SWIFT_RUNTIME_METADATACACHE_H
|
|
#define SWIFT_RUNTIME_METADATACACHE_H
|
|
|
|
#include "swift/Runtime/AtomicWaitQueue.h"
|
|
#include "swift/Runtime/Concurrent.h"
|
|
#include "swift/Runtime/Metadata.h"
|
|
#include "swift/Threading/Mutex.h"
|
|
|
|
#include "swift/shims/Visibility.h"
|
|
|
|
#include "llvm/ADT/Hashing.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
|
|
#include <atomic>
|
|
#include <condition_variable>
|
|
#include <optional>
|
|
#include <tuple>
|
|
|
|
#ifndef SWIFT_DEBUG_RUNTIME
|
|
#define SWIFT_DEBUG_RUNTIME 0
|
|
#endif
|
|
|
|
namespace swift {
|
|
|
|
RelativeWitnessTable *lookThroughOptionalConditionalWitnessTable(const RelativeWitnessTable *);
|
|
|
|
#if !SWIFT_STDLIB_PASSTHROUGH_METADATA_ALLOCATOR
|
|
|
|
class MetadataAllocator : public llvm::AllocatorBase<MetadataAllocator> {
|
|
private:
|
|
uint16_t Tag;
|
|
|
|
public:
|
|
constexpr MetadataAllocator(uint16_t tag) : Tag(tag) {}
|
|
MetadataAllocator() = delete;
|
|
|
|
void Reset() {}
|
|
|
|
/// Get the location of the allocator's initial statically allocated pool.
|
|
/// The return values are start and size. If there is no statically allocated
|
|
/// pool, the return values are NULL, 0.
|
|
static std::tuple<const void *, size_t> InitialPoolLocation();
|
|
|
|
SWIFT_RETURNS_NONNULL SWIFT_NODISCARD
|
|
void *Allocate(size_t size, size_t alignment);
|
|
using AllocatorBase<MetadataAllocator>::Allocate;
|
|
|
|
void Deallocate(const void *Ptr, size_t size, size_t Alignment);
|
|
using AllocatorBase<MetadataAllocator>::Deallocate;
|
|
|
|
void PrintStats() const {}
|
|
|
|
MetadataAllocator withTag(uint16_t Tag) {
|
|
MetadataAllocator Allocator = *this;
|
|
Allocator.Tag = Tag;
|
|
return Allocator;
|
|
}
|
|
};
|
|
|
|
#else
|
|
|
|
class MetadataAllocator {
|
|
public:
|
|
MetadataAllocator(uint16_t tag) {}
|
|
static std::tuple<const void *, size_t> InitialPoolLocation() {
|
|
return {nullptr, 0};
|
|
}
|
|
SWIFT_RETURNS_NONNULL SWIFT_NODISCARD
|
|
void *Allocate(size_t size, size_t alignment) {
|
|
if (alignment < sizeof(void*)) alignment = sizeof(void*);
|
|
void *ptr = nullptr;
|
|
if (SWIFT_UNLIKELY(posix_memalign(&ptr, alignment, size) != 0 || !ptr)) {
|
|
swift::crash("Could not allocate memory for type metadata.");
|
|
}
|
|
return ptr;
|
|
}
|
|
void Deallocate(const void *ptr, size_t size = 0, size_t Alignment = 0) {
|
|
return free(const_cast<void *>(ptr));
|
|
}
|
|
};
|
|
|
|
#endif
|
|
|
|
template <uint16_t StaticTag>
|
|
class TaggedMetadataAllocator : public MetadataAllocator {
|
|
public:
|
|
constexpr TaggedMetadataAllocator() : MetadataAllocator(StaticTag) {}
|
|
};
|
|
|
|
using RawPrivateMetadataState = uint8_t;
|
|
enum class PrivateMetadataState : RawPrivateMetadataState {
|
|
/// The metadata is being allocated.
|
|
Allocating,
|
|
|
|
/// The metadata has been allocated, but is not yet complete for
|
|
/// external layout: that is, it does not have a size.
|
|
Abstract,
|
|
|
|
/// The metadata has a complete external layout, but may not have
|
|
/// been fully initialized.
|
|
LayoutComplete,
|
|
|
|
/// The metadata has a complete external layout and has been fully
|
|
/// initialized, but has not yet satisfied its transitive completeness
|
|
/// requirements.
|
|
NonTransitiveComplete,
|
|
|
|
/// The metadata is fully complete. There should no longer be waiters.
|
|
Complete
|
|
};
|
|
inline bool operator<(PrivateMetadataState lhs, PrivateMetadataState rhs) {
|
|
return RawPrivateMetadataState(lhs) < RawPrivateMetadataState(rhs);
|
|
}
|
|
inline bool operator<=(PrivateMetadataState lhs, PrivateMetadataState rhs) {
|
|
return RawPrivateMetadataState(lhs) <= RawPrivateMetadataState(rhs);
|
|
}
|
|
inline bool operator>(PrivateMetadataState lhs, PrivateMetadataState rhs) {
|
|
return RawPrivateMetadataState(lhs) > RawPrivateMetadataState(rhs);
|
|
}
|
|
inline bool operator>=(PrivateMetadataState lhs, PrivateMetadataState rhs) {
|
|
return RawPrivateMetadataState(lhs) >= RawPrivateMetadataState(rhs);
|
|
}
|
|
inline bool satisfies(PrivateMetadataState state, MetadataState requirement) {
|
|
switch (requirement) {
|
|
case MetadataState::Abstract:
|
|
return state >= PrivateMetadataState::Abstract;
|
|
case MetadataState::LayoutComplete:
|
|
return state >= PrivateMetadataState::LayoutComplete;
|
|
case MetadataState::NonTransitiveComplete:
|
|
return state >= PrivateMetadataState::NonTransitiveComplete;
|
|
case MetadataState::Complete:
|
|
return state >= PrivateMetadataState::Complete;
|
|
}
|
|
swift_unreachable("unsupported requirement kind");
|
|
}
|
|
inline MetadataState getAccomplishedRequestState(PrivateMetadataState state) {
|
|
switch (state) {
|
|
case PrivateMetadataState::Allocating:
|
|
swift_unreachable("cannot call on allocating state");
|
|
case PrivateMetadataState::Abstract:
|
|
return MetadataState::Abstract;
|
|
case PrivateMetadataState::LayoutComplete:
|
|
return MetadataState::LayoutComplete;
|
|
case PrivateMetadataState::NonTransitiveComplete:
|
|
return MetadataState::NonTransitiveComplete;
|
|
case PrivateMetadataState::Complete:
|
|
return MetadataState::Complete;
|
|
}
|
|
swift_unreachable("bad state");
|
|
}
|
|
|
|
struct MetadataStateWithDependency {
|
|
/// The current state of the metadata.
|
|
PrivateMetadataState NewState;
|
|
/// The known dependency that the metadata has, if any.
|
|
MetadataDependency Dependency;
|
|
};
|
|
|
|
/// A typedef for simple global caches with stable addresses for the entries.
|
|
template <class EntryTy, uint16_t Tag>
|
|
using SimpleGlobalCache =
|
|
StableAddressConcurrentReadableHashMap<EntryTy,
|
|
TaggedMetadataAllocator<Tag>>;
|
|
|
|
struct ConcurrencyControl {
|
|
using LockType = SmallMutex;
|
|
LockType Lock;
|
|
};
|
|
|
|
template <class EntryType, uint16_t Tag>
|
|
class LockingConcurrentMapStorage {
|
|
// This class must fit within
|
|
// TargetGenericMetadataInstantiationCache::PrivateData. On 32-bit archs, that
|
|
// space is not large enough to accommodate a Mutex along with everything
|
|
// else. There, use a SmallMutex to squeeze into the available space.
|
|
using MutexTy = std::conditional_t<sizeof(void *) == 8 && sizeof(Mutex) <= 56,
|
|
Mutex, SmallMutex>;
|
|
StableAddressConcurrentReadableHashMap<EntryType,
|
|
TaggedMetadataAllocator<Tag>, MutexTy>
|
|
Map;
|
|
ConcurrencyControl Concurrency;
|
|
|
|
public:
|
|
LockingConcurrentMapStorage() {}
|
|
|
|
ConcurrencyControl &getConcurrency() { return Concurrency; }
|
|
|
|
template <class KeyType, class... ArgTys>
|
|
std::pair<EntryType*, bool>
|
|
getOrInsert(KeyType key, ArgTys &&...args) {
|
|
return Map.getOrInsert(key, args...);
|
|
}
|
|
|
|
template <class KeyType>
|
|
EntryType *find(KeyType key) {
|
|
return Map.find(key);
|
|
}
|
|
|
|
/// A default implementation for resolveEntry that assumes that the
|
|
/// key type is a lookup key for the map.
|
|
template <class KeyType>
|
|
EntryType *resolveExistingEntry(KeyType key) {
|
|
auto entry = Map.find(key);
|
|
assert(entry && "entry doesn't already exist!");
|
|
return entry;
|
|
}
|
|
};
|
|
|
|
/// A map for which there is a phase of initialization that is guaranteed
|
|
/// to be performed exclusively.
|
|
///
|
|
/// In addition to the requirements of ConcurrentMap, the entry type must
|
|
/// provide the following members:
|
|
///
|
|
/// /// An encapsulation of the status of the entry. The result type
|
|
/// /// of most operations.
|
|
/// using Status = ...;
|
|
///
|
|
/// /// Given that this is not the thread currently responsible for
|
|
/// /// initializing the entry, wait for the entry to complete.
|
|
/// Status await(ConcurrencyControl &concurrency, ArgTys...);
|
|
///
|
|
/// /// Perform allocation. If this returns a status, initialization
|
|
/// /// is skipped.
|
|
/// Optional<Status>
|
|
/// beginAllocation(WaitQueue::Worker &worker, ArgTys...);
|
|
///
|
|
/// /// Attempt to initialize an entry. This is called once for the entry,
|
|
/// /// immediately after construction, by the thread that successfully
|
|
/// /// constructed the entry.
|
|
/// Status beginInitialization(WaitQueue::Worker &worker, ArgTys...);
|
|
///
|
|
/// /// Perform a checkDependency operation. This only needs to be
|
|
/// /// implemented if checkDependency is called on the map.
|
|
/// MetadataStateWithDependency
|
|
/// checkDependency(ConcurrencyControl &concurrency, ArgTys...);
|
|
template <class EntryType,
|
|
class StorageType = LockingConcurrentMapStorage<EntryType, true>>
|
|
class LockingConcurrentMap {
|
|
StorageType Storage;
|
|
using Status = typename EntryType::Status;
|
|
using WaitQueue = typename EntryType::WaitQueue;
|
|
using Worker = typename WaitQueue::Worker;
|
|
using Waiter = typename WaitQueue::Waiter;
|
|
|
|
public:
|
|
LockingConcurrentMap() = default;
|
|
|
|
template <class KeyType, class... ArgTys>
|
|
std::pair<EntryType*, Status>
|
|
getOrInsert(KeyType key, ArgTys &&...args) {
|
|
Worker worker(Storage.getConcurrency().Lock);
|
|
|
|
auto result = Storage.getOrInsert(key, worker, args...);
|
|
auto entry = result.first;
|
|
|
|
// If we are not inserting the entry, we need to potentially block on
|
|
// currently satisfies our conditions.
|
|
if (!result.second) {
|
|
auto status =
|
|
entry->await(Storage.getConcurrency(), std::forward<ArgTys>(args)...);
|
|
return { entry, status };
|
|
}
|
|
|
|
// Okay, we inserted. We are responsible for allocating and
|
|
// subsequently trying to initialize the entry.
|
|
|
|
// Insertion should have called worker.createQueue(); tell the Worker
|
|
// object that we published it.
|
|
worker.flagCreatedQueueIsPublished();
|
|
|
|
// Allocation. This can fast-path and bypass initialization by returning
|
|
// a status.
|
|
if (auto status = entry->beginAllocation(worker, args...)) {
|
|
return { entry, *status };
|
|
}
|
|
|
|
// Initialization.
|
|
auto status = entry->beginInitialization(worker,
|
|
std::forward<ArgTys>(args)...);
|
|
return { entry, status };
|
|
}
|
|
|
|
template <class KeyType>
|
|
EntryType *find(KeyType key) {
|
|
return Storage.find(key);
|
|
}
|
|
|
|
/// Given that an entry already exists, await it.
|
|
template <class KeyType, class... ArgTys>
|
|
Status await(KeyType key, ArgTys &&...args) {
|
|
EntryType *entry = Storage.resolveExistingEntry(key);
|
|
return entry->await(Storage.getConcurrency(),
|
|
std::forward<ArgTys>(args)...);
|
|
}
|
|
|
|
/// If an entry already exists, await it; otherwise report failure.
|
|
template <class KeyType, class... ArgTys>
|
|
std::optional<Status> tryAwaitExisting(KeyType key, ArgTys &&...args) {
|
|
EntryType *entry = Storage.find(key);
|
|
if (!entry)
|
|
return std::nullopt;
|
|
return entry->await(Storage.getConcurrency(),
|
|
std::forward<ArgTys>(args)...);
|
|
}
|
|
|
|
/// Given that an entry already exists, check whether it has an active
|
|
/// dependency.
|
|
template <class KeyType, class... ArgTys>
|
|
MetadataStateWithDependency
|
|
checkDependency(KeyType key, ArgTys &&...args) {
|
|
EntryType *entry = Storage.resolveExistingEntry(key);
|
|
return entry->checkDependency(Storage.getConcurrency(),
|
|
std::forward<ArgTys>(args)...);
|
|
}
|
|
};
|
|
|
|
/// A base class for metadata cache entries which supports an unfailing
|
|
/// one-phase allocation strategy that should not be done by trial.
|
|
///
|
|
/// In addition to the requirements of ConcurrentMap, subclasses should
|
|
/// provide:
|
|
///
|
|
/// /// Allocate the cached entry. This is not allowed to fail.
|
|
/// ValueType allocate(ArgTys...);
|
|
template <class Impl, class ValueType>
|
|
class SimpleLockingCacheEntryBase {
|
|
public:
|
|
using WaitQueue = SimpleAtomicWaitQueue<ConcurrencyControl::LockType>;
|
|
|
|
private:
|
|
static_assert(std::is_pointer<ValueType>::value,
|
|
"value type must be a pointer type");
|
|
|
|
static const uintptr_t IsWaitQueue = 1;
|
|
static WaitQueue *getAsWaitQueue(uintptr_t value) {
|
|
if (value & IsWaitQueue)
|
|
return reinterpret_cast<WaitQueue*>(value & ~IsWaitQueue);
|
|
return nullptr;
|
|
}
|
|
static ValueType castAsValue(uintptr_t value) {
|
|
assert(!(value & IsWaitQueue));
|
|
return reinterpret_cast<ValueType>(value);
|
|
}
|
|
|
|
std::atomic<uintptr_t> Value;
|
|
|
|
protected:
|
|
Impl &asImpl() { return static_cast<Impl &>(*this); }
|
|
const Impl &asImpl() const { return static_cast<const Impl &>(*this); }
|
|
|
|
SimpleLockingCacheEntryBase(WaitQueue::Worker &worker)
|
|
: Value(reinterpret_cast<uintptr_t>(worker.createQueue()) | IsWaitQueue) {}
|
|
|
|
public:
|
|
using Status = ValueType;
|
|
|
|
template <class... ArgTys>
|
|
Status await(ConcurrencyControl &concurrency, ArgTys &&...args) {
|
|
WaitQueue::Waiter waiter(concurrency.Lock);
|
|
|
|
// Load the value. If this is not a queue, we're done.
|
|
auto value = Value.load(std::memory_order_acquire);
|
|
if (getAsWaitQueue(value)) {
|
|
bool waited = waiter.tryReloadAndWait([&] {
|
|
// We can use a relaxed load because we're already ordered
|
|
// by the lock.
|
|
value = Value.load(std::memory_order_relaxed);
|
|
return getAsWaitQueue(value);
|
|
});
|
|
|
|
if (waited) {
|
|
// This load can be relaxed because we acquired the wait queue
|
|
// lock, which was released by the worker thread after
|
|
// initializing Value to the value.
|
|
value = Value.load(std::memory_order_relaxed);
|
|
assert(!getAsWaitQueue(value));
|
|
}
|
|
}
|
|
return castAsValue(value);
|
|
}
|
|
|
|
template <class... ArgTys>
|
|
std::optional<Status> beginAllocation(WaitQueue::Worker &worker,
|
|
ArgTys &&...args) {
|
|
|
|
// Delegate to the implementation class.
|
|
ValueType origValue =
|
|
asImpl().allocate(std::forward<ArgTys>(args)...);
|
|
|
|
auto value = reinterpret_cast<uintptr_t>(origValue);
|
|
assert(!getAsWaitQueue(value) && "allocate returned an unaligned value");
|
|
|
|
// Publish the value, which unpublishes the queue.
|
|
worker.finishAndUnpublishQueue([&] {
|
|
Value.store(value, std::memory_order_release);
|
|
});
|
|
|
|
return origValue;
|
|
}
|
|
|
|
template <class... ArgTys>
|
|
Status beginInitialization(WaitQueue::Worker &worker,
|
|
ArgTys &&...args) {
|
|
swift_unreachable("beginAllocation always short-circuits");
|
|
}
|
|
};
|
|
|
|
/// A summary of the information from a generic signature that's
|
|
/// sufficient to compare arguments.
|
|
template<typename Runtime>
|
|
struct GenericSignatureLayout {
|
|
uint16_t NumKeyParameters = 0;
|
|
uint16_t NumWitnessTables = 0;
|
|
uint16_t NumPacks = 0;
|
|
uint16_t NumShapeClasses = 0;
|
|
const GenericPackShapeDescriptor *PackShapeDescriptors = nullptr;
|
|
|
|
GenericSignatureLayout(const RuntimeGenericSignature<Runtime> &sig)
|
|
: NumPacks(sig.getGenericPackShapeHeader().NumPacks),
|
|
NumShapeClasses(sig.getGenericPackShapeHeader().NumShapeClasses),
|
|
PackShapeDescriptors(sig.getGenericPackShapeDescriptors().data()) {
|
|
|
|
#ifndef NDEBUG
|
|
unsigned packIdx = 0;
|
|
#endif
|
|
|
|
for (const auto &gp : sig.getParams()) {
|
|
if (gp.hasKeyArgument()) {
|
|
#ifndef NDEBUG
|
|
if (gp.getKind() == GenericParamKind::TypePack) {
|
|
assert(packIdx < NumPacks);
|
|
assert(PackShapeDescriptors[packIdx].Kind
|
|
== GenericPackKind::Metadata);
|
|
assert(PackShapeDescriptors[packIdx].Index
|
|
== NumShapeClasses + NumKeyParameters);
|
|
assert(PackShapeDescriptors[packIdx].ShapeClass
|
|
< NumShapeClasses);
|
|
++packIdx;
|
|
}
|
|
#endif
|
|
|
|
++NumKeyParameters;
|
|
}
|
|
}
|
|
for (const auto &reqt : sig.getRequirements()) {
|
|
if (reqt.Flags.hasKeyArgument() &&
|
|
reqt.getKind() == GenericRequirementKind::Protocol) {
|
|
#ifndef NDEBUG
|
|
if (reqt.getFlags().isPackRequirement()) {
|
|
assert(packIdx < NumPacks);
|
|
assert(PackShapeDescriptors[packIdx].Kind
|
|
== GenericPackKind::WitnessTable);
|
|
assert(PackShapeDescriptors[packIdx].Index
|
|
== NumShapeClasses + NumKeyParameters + NumWitnessTables);
|
|
assert(PackShapeDescriptors[packIdx].ShapeClass
|
|
< NumShapeClasses);
|
|
++packIdx;
|
|
}
|
|
#endif
|
|
|
|
++NumWitnessTables;
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
assert(packIdx == NumPacks);
|
|
#endif
|
|
}
|
|
|
|
size_t sizeInWords() const {
|
|
return NumShapeClasses + NumKeyParameters + NumWitnessTables;
|
|
}
|
|
|
|
friend bool operator==(const GenericSignatureLayout<Runtime> &lhs,
|
|
const GenericSignatureLayout<Runtime> &rhs) {
|
|
if (lhs.NumKeyParameters != rhs.NumKeyParameters ||
|
|
lhs.NumWitnessTables != rhs.NumWitnessTables ||
|
|
lhs.NumShapeClasses != rhs.NumShapeClasses ||
|
|
lhs.NumPacks != rhs.NumPacks) {
|
|
return false;
|
|
}
|
|
|
|
for (unsigned i = 0; i < lhs.NumPacks; ++i) {
|
|
const auto &lhsElt = lhs.PackShapeDescriptors[i];
|
|
const auto &rhsElt = rhs.PackShapeDescriptors[i];
|
|
if (lhsElt.Kind != rhsElt.Kind ||
|
|
lhsElt.Index != rhsElt.Index ||
|
|
lhsElt.ShapeClass != rhsElt.ShapeClass)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
friend bool operator!=(const GenericSignatureLayout<Runtime> &lhs,
|
|
const GenericSignatureLayout<Runtime> &rhs) {
|
|
return !(lhs == rhs);
|
|
}
|
|
};
|
|
|
|
/// A key value as provided to the concurrent map.
|
|
class MetadataCacheKey {
|
|
const void * const *Data;
|
|
GenericSignatureLayout<InProcess> Layout;
|
|
uint32_t Hash;
|
|
|
|
public:
|
|
/// Compare two witness tables, which may involving checking the
|
|
/// contents of their conformance descriptors.
|
|
static bool areWitnessTablesEqual(const WitnessTable *awt,
|
|
const WitnessTable *bwt) {
|
|
if (awt == bwt)
|
|
return true;
|
|
#if SWIFT_STDLIB_USE_RELATIVE_PROTOCOL_WITNESS_TABLES
|
|
auto *aDescription = lookThroughOptionalConditionalWitnessTable(
|
|
reinterpret_cast<const RelativeWitnessTable*>(awt))->getDescription();
|
|
auto *bDescription = lookThroughOptionalConditionalWitnessTable(
|
|
reinterpret_cast<const RelativeWitnessTable*>(bwt))->getDescription();
|
|
#else
|
|
auto *aDescription = awt->getDescription();
|
|
auto *bDescription = bwt->getDescription();
|
|
#endif
|
|
return areConformanceDescriptorsEqual(aDescription, bDescription);
|
|
}
|
|
|
|
static void installGenericArguments(uint16_t numKeyArguments, uint16_t numPacks,
|
|
const GenericPackShapeDescriptor *packShapeDescriptors,
|
|
const void **dst, const void * const *src);
|
|
|
|
/// Compare two conformance descriptors, checking their contents if necessary.
|
|
static bool areConformanceDescriptorsEqual(
|
|
const ProtocolConformanceDescriptor *aDescription,
|
|
const ProtocolConformanceDescriptor *bDescription) {
|
|
if (aDescription == bDescription)
|
|
return true;
|
|
|
|
if (!aDescription->isSynthesizedNonUnique() ||
|
|
!bDescription->isSynthesizedNonUnique())
|
|
return aDescription == bDescription;
|
|
|
|
auto aType = aDescription->getCanonicalTypeMetadata();
|
|
auto bType = bDescription->getCanonicalTypeMetadata();
|
|
if (!aType || !bType)
|
|
return aDescription == bDescription;
|
|
|
|
return (aType == bType &&
|
|
aDescription->getProtocol() == bDescription->getProtocol());
|
|
}
|
|
|
|
private:
|
|
static bool areMetadataPacksEqual(const void *lhsPtr,
|
|
const void *rhsPtr,
|
|
uintptr_t count) {
|
|
MetadataPackPointer lhs(lhsPtr);
|
|
MetadataPackPointer rhs(rhsPtr);
|
|
|
|
// lhs is the user-supplied key, which might be on the stack.
|
|
// rhs is the stored key in the cache.
|
|
assert(rhs.getLifetime() == PackLifetime::OnHeap);
|
|
|
|
auto *lhsElt = lhs.getElements();
|
|
auto *rhsElt = rhs.getElements();
|
|
|
|
for (uintptr_t i = 0; i < count; ++i) {
|
|
if (lhsElt[i] != rhsElt[i])
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool areWitnessTablePacksEqual(const void *lhsPtr,
|
|
const void *rhsPtr,
|
|
uintptr_t count) {
|
|
WitnessTablePackPointer lhs(lhsPtr);
|
|
WitnessTablePackPointer rhs(rhsPtr);
|
|
|
|
// lhs is the user-supplied key, which might be on the stack.
|
|
// rhs is the stored key in the cache.
|
|
assert(rhs.getLifetime() == PackLifetime::OnHeap);
|
|
|
|
auto *lhsElt = lhs.getElements();
|
|
auto *rhsElt = rhs.getElements();
|
|
|
|
for (uintptr_t i = 0; i < count; ++i) {
|
|
if (!areWitnessTablesEqual(lhsElt[i], rhsElt[i]))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
public:
|
|
MetadataCacheKey(const GenericSignatureLayout<InProcess> &layout,
|
|
const void *const *data)
|
|
: Data(data), Layout(layout), Hash(computeHash()) {}
|
|
|
|
MetadataCacheKey(const GenericSignatureLayout<InProcess> &layout,
|
|
const void *const *data, uint32_t hash)
|
|
: Data(data), Layout(layout), Hash(hash) {}
|
|
|
|
bool operator==(const MetadataCacheKey &rhs) const {
|
|
// Compare the hashes.
|
|
if (hash() != rhs.hash()) return false;
|
|
|
|
// Fast path the case where they're bytewise identical. That's nearly always
|
|
// the case if the hashes are the same, and we can skip the slower deep
|
|
// comparison.
|
|
auto *adata = begin();
|
|
auto *bdata = rhs.begin();
|
|
|
|
auto asize = (uintptr_t)end() - (uintptr_t)adata;
|
|
auto bsize = (uintptr_t)rhs.end() - (uintptr_t)bdata;
|
|
|
|
// If sizes don't match, they can never be equal.
|
|
if (asize != bsize)
|
|
return false;
|
|
|
|
// If sizes match, see if the bytes match. If they do, then the contents
|
|
// must necessarily match. Otherwise do a deep comparison.
|
|
if (memcmp(adata, bdata, asize) == 0)
|
|
return true;
|
|
|
|
// Compare the layouts.
|
|
if (Layout != rhs.Layout) return false;
|
|
|
|
// Compare the content.
|
|
const uintptr_t *packCounts = reinterpret_cast<const uintptr_t *>(adata);
|
|
|
|
unsigned argIdx = 0;
|
|
|
|
// Compare pack lengths for shape classes.
|
|
for (unsigned i = 0; i != Layout.NumShapeClasses; ++i) {
|
|
if (adata[argIdx] != bdata[argIdx])
|
|
return false;
|
|
|
|
++argIdx;
|
|
}
|
|
|
|
auto *packs = Layout.PackShapeDescriptors;
|
|
unsigned packIdx = 0;
|
|
|
|
// Compare generic arguments for key parameters.
|
|
for (unsigned i = 0; i != Layout.NumKeyParameters; ++i) {
|
|
// Is this entry a metadata pack?
|
|
if (packIdx < Layout.NumPacks &&
|
|
packs[packIdx].Kind == GenericPackKind::Metadata &&
|
|
argIdx == packs[packIdx].Index) {
|
|
assert(packs[packIdx].ShapeClass < Layout.NumShapeClasses);
|
|
uintptr_t count = packCounts[packs[packIdx].ShapeClass];
|
|
|
|
if (!areMetadataPacksEqual(adata[argIdx], bdata[argIdx], count))
|
|
return false;
|
|
|
|
++packIdx;
|
|
++argIdx;
|
|
continue;
|
|
}
|
|
|
|
if (adata[argIdx] != bdata[argIdx])
|
|
return false;
|
|
|
|
++argIdx;
|
|
}
|
|
|
|
// Compare witness tables.
|
|
for (unsigned i = 0; i != Layout.NumWitnessTables; ++i) {
|
|
// Is this entry a witness table pack?
|
|
if (packIdx < Layout.NumPacks &&
|
|
packs[packIdx].Kind == GenericPackKind::WitnessTable &&
|
|
argIdx == packs[packIdx].Index) {
|
|
assert(packs[packIdx].ShapeClass < Layout.NumShapeClasses);
|
|
uintptr_t count = packCounts[packs[packIdx].ShapeClass];
|
|
|
|
if (!areWitnessTablePacksEqual(adata[argIdx], bdata[argIdx], count))
|
|
return false;
|
|
|
|
++packIdx;
|
|
++argIdx;
|
|
continue;
|
|
}
|
|
|
|
if (!areWitnessTablesEqual((const WitnessTable *)adata[argIdx],
|
|
(const WitnessTable *)bdata[argIdx]))
|
|
return false;
|
|
|
|
++argIdx;
|
|
}
|
|
|
|
assert(packIdx == Layout.NumPacks && "Missed a pack");
|
|
return true;
|
|
}
|
|
|
|
uint32_t hash() const {
|
|
return Hash;
|
|
}
|
|
|
|
const GenericSignatureLayout<InProcess> &layout() const { return Layout; }
|
|
|
|
friend llvm::hash_code hash_value(const MetadataCacheKey &key) {
|
|
return key.Hash;
|
|
}
|
|
|
|
const void * const *begin() const { return Data; }
|
|
const void * const *end() const { return Data + size(); }
|
|
unsigned size() const { return Layout.sizeInWords(); }
|
|
|
|
void installInto(const void **buffer) const {
|
|
MetadataCacheKey::installGenericArguments(
|
|
Layout.sizeInWords(),
|
|
Layout.NumPacks,
|
|
Layout.PackShapeDescriptors,
|
|
buffer, Data);
|
|
}
|
|
|
|
private:
|
|
uint32_t computeHash() const {
|
|
size_t H = 0x56ba80d1u * Layout.NumKeyParameters;
|
|
|
|
auto *packs = Layout.PackShapeDescriptors;
|
|
unsigned packIdx = 0;
|
|
|
|
auto update = [&H](uintptr_t value) {
|
|
H = (H >> 10) | (H << ((sizeof(uintptr_t) * 8) - 10));
|
|
H ^= (value ^ (value >> 19));
|
|
};
|
|
|
|
// FIXME: The first NumShapeClasses entries are pack counts;
|
|
// incorporate them into the hash
|
|
for (unsigned i = Layout.NumShapeClasses,
|
|
e = Layout.NumShapeClasses + Layout.NumKeyParameters;
|
|
i != e; ++i) {
|
|
// Is this entry a metadata pack?
|
|
if (packIdx < Layout.NumPacks &&
|
|
packs[packIdx].Kind == GenericPackKind::Metadata &&
|
|
i == packs[packIdx].Index) {
|
|
assert(packs[packIdx].ShapeClass < Layout.NumShapeClasses);
|
|
auto count = reinterpret_cast<uintptr_t>(Data[packs[packIdx].ShapeClass]);
|
|
++packIdx;
|
|
|
|
MetadataPackPointer pack(Data[i]);
|
|
for (unsigned j = 0; j < count; ++j)
|
|
update(reinterpret_cast<uintptr_t>(pack.getElements()[j]));
|
|
|
|
continue;
|
|
}
|
|
|
|
update(reinterpret_cast<uintptr_t>(Data[i]));
|
|
}
|
|
|
|
H *= 0x27d4eb2d;
|
|
|
|
// Rotate right by 10 and then truncate to 32 bits.
|
|
return uint32_t((H >> 10) | (H << ((sizeof(uintptr_t) * 8) - 10)));
|
|
}
|
|
};
|
|
|
|
/// A helper class for ConcurrentMap entry types which allows trailing objects
|
|
/// objects and automatically implements the getExtraAllocationSize methods
|
|
/// in terms of numTrailingObjects calls.
|
|
///
|
|
/// For each trailing object type T, the subclass must provide:
|
|
/// size_t numTrailingObjects(OverloadToken<T>) const;
|
|
/// static size_t numTrailingObjects(OverloadToken<T>, ...) const;
|
|
/// where the arguments to the latter are the arguments to getOrInsert,
|
|
/// including the key.
|
|
template <class Impl, class... Objects>
|
|
struct ConcurrentMapTrailingObjectsEntry
|
|
: swift::ABI::TrailingObjects<Impl, Objects...> {
|
|
protected:
|
|
using TrailingObjects =
|
|
swift::ABI::TrailingObjects<Impl, Objects...>;
|
|
|
|
Impl &asImpl() { return static_cast<Impl &>(*this); }
|
|
const Impl &asImpl() const { return static_cast<const Impl &>(*this); }
|
|
|
|
template<typename T>
|
|
using OverloadToken = typename TrailingObjects::template OverloadToken<T>;
|
|
|
|
public:
|
|
template <class KeyType, class... Args>
|
|
static size_t getExtraAllocationSize(const KeyType &key,
|
|
Args &&...args) {
|
|
return TrailingObjects::template additionalSizeToAlloc<Objects...>(
|
|
Impl::numTrailingObjects(OverloadToken<Objects>(), key, args...)...);
|
|
}
|
|
size_t getExtraAllocationSize() const {
|
|
return TrailingObjects::template additionalSizeToAlloc<Objects...>(
|
|
asImpl().numTrailingObjects(OverloadToken<Objects>())...);
|
|
}
|
|
};
|
|
|
|
/// Reserve the runtime extra space to use for its own tracking.
|
|
struct PrivateMetadataCompletionContext {
|
|
MetadataCompletionContext Public;
|
|
};
|
|
|
|
/// The alignment required for objects that will be stored in
|
|
/// PrivateMetadataTrackingInfo.
|
|
const size_t PrivateMetadataTrackingAlignment = 16;
|
|
|
|
/// The wait queue object that we create for metadata that are
|
|
/// being actively initialized right now.
|
|
struct alignas(PrivateMetadataTrackingAlignment) MetadataWaitQueue :
|
|
public AtomicWaitQueue<MetadataWaitQueue, ConcurrencyControl::LockType> {
|
|
|
|
/// A pointer to the completion context being used to complete this
|
|
/// metadata. This is only actually filled in if:
|
|
///
|
|
/// - the initializing thread is unable to complete the metadata,
|
|
/// but its request doesn't need it to, and
|
|
/// - the current completion context is non-zero. (Completion contexts
|
|
/// are initially zeroed, so this only happens if the initialization
|
|
/// actually stores to the context, which is uncommon.)
|
|
///
|
|
/// This should only be touched by the initializing thread, i.e. the
|
|
/// thread that holds the lock embedded in this object.
|
|
std::unique_ptr<PrivateMetadataCompletionContext> PersistentContext;
|
|
|
|
/// The dependency that is currently blocking this initialization.
|
|
/// This should only be touched while holding the global lock
|
|
/// for this metadata cache.
|
|
MetadataDependency BlockingDependency;
|
|
|
|
class Worker : public AtomicWaitQueue::Worker {
|
|
using super = AtomicWaitQueue::Worker;
|
|
PrivateMetadataState State = PrivateMetadataState::Allocating;
|
|
public:
|
|
Worker(ConcurrencyControl::LockType &globalLock) : super(globalLock) {}
|
|
|
|
void flagCreatedQueueIsPublished() {
|
|
// This method is called after successfully inserting an entry into
|
|
// the atomic storage, at a point that just assumes that a queue
|
|
// was created. However, we may not have created a queue if the
|
|
// metadata was completed during construction.
|
|
//
|
|
// Testing CurrentQueue to see if we published a queue is generally
|
|
// suspect because we might be looping and calling createQueue()
|
|
// on each iteration. However, the metadata cache system won't do
|
|
// this, at least on the path leading to the call to this method,
|
|
// so this works in this one case.
|
|
if (CurrentQueue) {
|
|
assert(State < PrivateMetadataState::Complete);
|
|
super::flagCreatedQueueIsPublished();
|
|
} else {
|
|
assert(State == PrivateMetadataState::Complete);
|
|
}
|
|
}
|
|
|
|
void setState(PrivateMetadataState newState) {
|
|
// It would be nice to assert isWorkerThread() here, but we need
|
|
// this to be callable before we've published the queue.
|
|
State = newState;
|
|
}
|
|
PrivateMetadataState getState() const {
|
|
assert(isWorkerThread() || State == PrivateMetadataState::Complete);
|
|
return State;
|
|
}
|
|
};
|
|
};
|
|
|
|
/// A record used to store information about an attempt to
|
|
/// complete a metadata when there's no active worker thread.
|
|
struct alignas(PrivateMetadataTrackingAlignment) SuspendedMetadataCompletion {
|
|
MetadataDependency BlockingDependency;
|
|
std::unique_ptr<PrivateMetadataCompletionContext> PersistentContext;
|
|
|
|
SuspendedMetadataCompletion(MetadataDependency blockingDependency,
|
|
PrivateMetadataCompletionContext *context)
|
|
: BlockingDependency(blockingDependency),
|
|
PersistentContext(context) {}
|
|
};
|
|
|
|
class PrivateMetadataTrackingInfo {
|
|
public:
|
|
using RawType = uintptr_t;
|
|
|
|
private:
|
|
enum : RawType {
|
|
StateMask = 0x7,
|
|
PointerIsWaitQueueMask = 0x8,
|
|
AllBitsMask = StateMask | PointerIsWaitQueueMask,
|
|
PointerMask = ~AllBitsMask,
|
|
};
|
|
|
|
static_assert(AllBitsMask < PrivateMetadataTrackingAlignment,
|
|
"too many bits for alignment");
|
|
|
|
RawType Data;
|
|
|
|
public:
|
|
// Some std::atomic implementations require a default constructor
|
|
// for no apparent reason.
|
|
PrivateMetadataTrackingInfo() : Data(0) {}
|
|
|
|
explicit PrivateMetadataTrackingInfo(PrivateMetadataState state)
|
|
: Data(RawType(state)) {}
|
|
|
|
explicit PrivateMetadataTrackingInfo(PrivateMetadataState state,
|
|
MetadataWaitQueue *queue)
|
|
: Data(RawType(state) | reinterpret_cast<RawType>(queue)
|
|
| PointerIsWaitQueueMask) {
|
|
assert(queue);
|
|
assert(!(reinterpret_cast<RawType>(queue) & AllBitsMask));
|
|
}
|
|
explicit PrivateMetadataTrackingInfo(PrivateMetadataState state,
|
|
SuspendedMetadataCompletion *suspended)
|
|
: Data(RawType(state) | reinterpret_cast<RawType>(suspended)) {
|
|
assert(!(reinterpret_cast<RawType>(suspended) & AllBitsMask));
|
|
}
|
|
|
|
static PrivateMetadataTrackingInfo
|
|
initial(MetadataWaitQueue::Worker &worker,
|
|
PrivateMetadataState initialState) {
|
|
worker.setState(initialState);
|
|
if (initialState != PrivateMetadataState::Complete)
|
|
return PrivateMetadataTrackingInfo(initialState, worker.createQueue());
|
|
return PrivateMetadataTrackingInfo(initialState);
|
|
}
|
|
|
|
PrivateMetadataState getState() const {
|
|
return PrivateMetadataState(Data & StateMask);
|
|
}
|
|
|
|
/// Does the state mean that we've allocated metadata?
|
|
bool hasAllocatedMetadata() const {
|
|
return getState() != PrivateMetadataState::Allocating;
|
|
}
|
|
|
|
bool isComplete() const {
|
|
return getState() == PrivateMetadataState::Complete;
|
|
}
|
|
|
|
bool hasWaitQueue() const {
|
|
return Data & PointerIsWaitQueueMask;
|
|
}
|
|
MetadataWaitQueue *getWaitQueue() const {
|
|
if (hasWaitQueue())
|
|
return reinterpret_cast<MetadataWaitQueue*>(Data & PointerMask);
|
|
return nullptr;
|
|
}
|
|
|
|
SuspendedMetadataCompletion *getSuspendedCompletion() const {
|
|
if (!hasWaitQueue())
|
|
return reinterpret_cast<SuspendedMetadataCompletion*>(Data & PointerMask);
|
|
return nullptr;
|
|
}
|
|
|
|
/// Return the blocking dependency for this metadata. Should only
|
|
/// be called while holding the global lock for the metadata cache.
|
|
MetadataDependency getBlockingDependency_locked() const {
|
|
if (auto queue = getWaitQueue())
|
|
return queue->BlockingDependency;
|
|
if (auto dependency = getSuspendedCompletion())
|
|
return dependency->BlockingDependency;
|
|
return MetadataDependency();
|
|
}
|
|
|
|
bool satisfies(MetadataState requirement) {
|
|
return swift::satisfies(getState(), requirement);
|
|
}
|
|
|
|
enum CheckResult {
|
|
/// The request is satisfied.
|
|
Satisfied,
|
|
|
|
/// The request is not satisfied, and the requesting thread
|
|
/// should report that immediately.
|
|
Unsatisfied,
|
|
|
|
/// The request is not satisfied, and the requesting thread
|
|
/// must wait for another thread to complete the initialization.
|
|
Wait,
|
|
|
|
/// The request is not satisfied, and the requesting thread
|
|
/// should try to complete the initialization itself.
|
|
Resume,
|
|
};
|
|
|
|
CheckResult check(MetadataRequest request) {
|
|
switch (getState()) {
|
|
// Always wait if the metadata is still allocating. Non-blocking
|
|
// requests still need to allocate abstract metadata that
|
|
// downstream consumers can report a dependency on.
|
|
case PrivateMetadataState::Allocating:
|
|
return Wait;
|
|
|
|
// We never need to do anything if we're complete. This is the
|
|
// most common result.
|
|
case PrivateMetadataState::Complete:
|
|
return Satisfied;
|
|
|
|
case PrivateMetadataState::Abstract:
|
|
case PrivateMetadataState::LayoutComplete:
|
|
case PrivateMetadataState::NonTransitiveComplete:
|
|
// If the request is satisfied, we don't need to do anything.
|
|
if (satisfies(request.getState()))
|
|
return Satisfied;
|
|
|
|
// If there isn't an running thread, we should take over
|
|
// initialization.
|
|
if (!hasWaitQueue())
|
|
return Resume;
|
|
|
|
// If this is a blocking request, we should wait.
|
|
if (request.isBlocking())
|
|
return Wait;
|
|
|
|
// Otherwise, we should return that the request is unsatisfied.
|
|
return Unsatisfied;
|
|
}
|
|
swift_unreachable("bad state");
|
|
}
|
|
};
|
|
|
|
/// Given that this is the initializing thread, and we've reached the
|
|
/// given state, should we block wait for further initialization?
|
|
inline bool shouldBlockInitialization(PrivateMetadataState currentState,
|
|
MetadataRequest request) {
|
|
switch (currentState) {
|
|
case PrivateMetadataState::Allocating:
|
|
swift_unreachable("initialization hasn't allocated?");
|
|
case PrivateMetadataState::Complete:
|
|
return false;
|
|
case PrivateMetadataState::Abstract:
|
|
case PrivateMetadataState::LayoutComplete:
|
|
case PrivateMetadataState::NonTransitiveComplete:
|
|
if (satisfies(currentState, request.getState()))
|
|
return false;
|
|
return request.isBlocking();
|
|
}
|
|
swift_unreachable("bad state");
|
|
}
|
|
|
|
/// Block until the dependency is satisfied.
|
|
void blockOnMetadataDependency(MetadataDependency request,
|
|
MetadataDependency dependency);
|
|
|
|
/// A cache entry class which provides the basic mechanisms for two-phase
|
|
/// metadata initialization. Suitable for more heavyweight metadata kinds
|
|
/// such as generic types and tuples. Does not provide the lookup-related
|
|
/// members.
|
|
///
|
|
/// The value type may be an arbitrary type, but it must be contextually
|
|
/// convertible to bool, and it must be default-constructible in a false
|
|
/// state.
|
|
///
|
|
/// In addition to the lookup members required by ConcurrentMap, concrete
|
|
/// implementations should provide:
|
|
///
|
|
/// /// A name describing the map; used in debugging diagnostics.
|
|
/// static const char *getName();
|
|
///
|
|
/// /// A constructor which should set up an entry. Note that this phase
|
|
/// /// of initialization may race with other threads attempting to set up
|
|
/// /// the same entry; do not do anything during it which might block or
|
|
/// /// need to be reverted.
|
|
/// /// The extra arguments are those provided to getOrInsert.
|
|
/// Entry(MetadataCacheKey key, ExtraArgTys...);
|
|
///
|
|
/// /// Allocate the metadata.
|
|
/// AllocationResult allocate(ExtraArgTys...);
|
|
///
|
|
/// /// Try to initialize the metadata.
|
|
/// MetadataStateWithDependency tryInitialize(Metadata *metadata,
|
|
/// PrivateMetadataState state,
|
|
/// PrivateMetadataCompletionContext *ctxt);
|
|
template <class Impl, class... Objects>
|
|
class MetadataCacheEntryBase
|
|
: public ConcurrentMapTrailingObjectsEntry<Impl, Objects...> {
|
|
using super = ConcurrentMapTrailingObjectsEntry<Impl, Objects...>;
|
|
public:
|
|
using ValueType = Metadata *;
|
|
using Status = MetadataResponse;
|
|
using WaitQueue = MetadataWaitQueue;
|
|
|
|
protected:
|
|
using TrailingObjectsEntry = super;
|
|
using super::asImpl;
|
|
|
|
private:
|
|
/// The current state of this metadata cache entry.
|
|
///
|
|
/// All modifications of this field are performed while holding
|
|
/// the global lock associated with this metadata cache. This is
|
|
/// because these modifications all coincide with changes to the wait
|
|
/// queue reference: either installing, removing, or replacing it.
|
|
/// The proper reference-counting of the queue object requires the
|
|
/// lock to be held during these operations. However, this field
|
|
/// can be read without holding the global lock, as part of the fast
|
|
/// path of several operations on the entry, most importantly
|
|
/// requesting the metadata.
|
|
///
|
|
/// Acquiring and releasing the global lock provides a certain
|
|
/// amount of memory ordering. Thus:
|
|
/// - Reads from the field performed in fast paths without holding
|
|
/// the lock must be acquires in order to properly order memory
|
|
/// with the initializing thread.
|
|
/// - Reads from the field that are performed under the lock can
|
|
/// be relaxed because the lock will properly order them.
|
|
/// - Modifications of the field can be stores rather than
|
|
/// compare-exchanges, although they must still use release
|
|
/// ordering to guarantee proper ordering with code in the
|
|
/// fast paths.
|
|
std::atomic<PrivateMetadataTrackingInfo> TrackingInfo;
|
|
|
|
static constexpr std::memory_order TrackingInfoIsLockedOrder =
|
|
std::memory_order_relaxed;
|
|
|
|
public:
|
|
MetadataCacheEntryBase(MetadataWaitQueue::Worker &worker,
|
|
PrivateMetadataState initialState =
|
|
PrivateMetadataState::Allocating)
|
|
: TrackingInfo(PrivateMetadataTrackingInfo::initial(worker, initialState)) {
|
|
}
|
|
|
|
// Note that having an explicit destructor here is important to make this
|
|
// a non-POD class and allow subclass fields to be allocated in our
|
|
// tail-padding.
|
|
~MetadataCacheEntryBase() {
|
|
}
|
|
|
|
/// Given that this thread doesn't own the right to initialize the
|
|
/// metadata, await the metadata being in the right state.
|
|
template <class... Args>
|
|
Status await(ConcurrencyControl &concurrency, MetadataRequest request,
|
|
Args &&...extraArgs) {
|
|
return awaitSatisfyingState(concurrency, request);
|
|
}
|
|
|
|
Status getStatusToReturn(PrivateMetadataState state) {
|
|
assert(state != PrivateMetadataState::Allocating);
|
|
return { asImpl().getValue(), getAccomplishedRequestState(state) };
|
|
}
|
|
|
|
/// The expected return type of allocate.
|
|
struct AllocationResult {
|
|
Metadata *Value;
|
|
PrivateMetadataState State;
|
|
};
|
|
|
|
/// Perform the allocation operation.
|
|
template <class... Args>
|
|
std::optional<Status> beginAllocation(MetadataWaitQueue::Worker &worker,
|
|
MetadataRequest request,
|
|
Args &&...args) {
|
|
// Returning a non-None value here will preempt initialization, so we
|
|
// should only do it if we're reached PrivateMetadataState::Complete.
|
|
|
|
// We can skip allocation if we were allocated during construction.
|
|
auto state = worker.getState();
|
|
if (state != PrivateMetadataState::Allocating) {
|
|
#ifndef NDEBUG
|
|
// We've already published the metadata as part of construction,
|
|
// so we can verify that the mangled name round-trips.
|
|
if (asImpl().allowMangledNameVerification(std::forward<Args>(args)...))
|
|
verifyMangledNameRoundtrip(asImpl().getValue());
|
|
#endif
|
|
|
|
// Skip initialization, too, if we're fully complete.
|
|
if (state == PrivateMetadataState::Complete) {
|
|
assert(!worker.isWorkerThread());
|
|
return Status{asImpl().getValue(), MetadataState::Complete};
|
|
}
|
|
|
|
// Otherwise, go directly to the initialization phase.
|
|
assert(worker.isWorkerThread());
|
|
return std::nullopt;
|
|
}
|
|
|
|
assert(worker.isWorkerThread());
|
|
|
|
// Allocate the metadata.
|
|
AllocationResult allocationResult =
|
|
asImpl().allocate(std::forward<Args>(args)...);
|
|
state = allocationResult.State;
|
|
worker.setState(state);
|
|
|
|
// Set the self-link before publishing the new status.
|
|
auto value = const_cast<ValueType>(allocationResult.Value);
|
|
asImpl().setValue(value);
|
|
|
|
// If allocation gave us complete metadata, we can short-circuit
|
|
// initialization; publish and report that we've finished.
|
|
if (state == PrivateMetadataState::Complete) {
|
|
finishAndPublishProgress(worker, MetadataDependency(), nullptr);
|
|
|
|
#ifndef NDEBUG
|
|
// Now that we've published the allocated metadata, verify that
|
|
// the mangled name round-trips.
|
|
if (asImpl().allowMangledNameVerification(std::forward<Args>(args)...))
|
|
verifyMangledNameRoundtrip(value);
|
|
#endif
|
|
|
|
return Status{allocationResult.Value, MetadataState::Complete};
|
|
}
|
|
|
|
// Otherwise, we always try at least one round of initialization
|
|
// even if the request is for abstract metadata, just to avoid
|
|
// doing more unnecessary bookkeeping. Publish the current
|
|
// state so that e.g. recursive uses of this metadata are
|
|
// satisfiable.
|
|
notifyWaitingThreadsOfProgress(worker, MetadataDependency());
|
|
|
|
#ifndef NDEBUG
|
|
// Now that we've published the allocated metadata, verify that
|
|
// the mangled name round-trips.
|
|
if (asImpl().allowMangledNameVerification(std::forward<Args>(args)...))
|
|
verifyMangledNameRoundtrip(value);
|
|
#endif
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
template <class... Args>
|
|
static bool allowMangledNameVerification(Args &&...args) {
|
|
// By default, always allow mangled name verification.
|
|
return true;
|
|
}
|
|
|
|
/// Begin initialization immediately after allocation.
|
|
template <class... Args>
|
|
Status beginInitialization(WaitQueue::Worker &worker,
|
|
MetadataRequest request, Args &&...args) {
|
|
// Note that we ignore the extra arguments; those are just for the
|
|
// constructor and allocation.
|
|
auto result = doInitialization(worker, request);
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
/// Try to complete the metadata.
|
|
///
|
|
/// This is the initializing thread. The lock is not held.
|
|
Status doInitialization(WaitQueue::Worker &worker,
|
|
MetadataRequest request) {
|
|
assert(worker.isWorkerThread());
|
|
|
|
assert(worker.getState() > PrivateMetadataState::Allocating);
|
|
auto value = asImpl().getValue();
|
|
|
|
auto queue = worker.getPublishedQueue();
|
|
|
|
// Figure out a completion context to use.
|
|
static const constexpr PrivateMetadataCompletionContext zeroContext = {};
|
|
PrivateMetadataCompletionContext scratchContext;
|
|
PrivateMetadataCompletionContext *context;
|
|
if (auto persistent = queue->PersistentContext.get()) {
|
|
context = persistent;
|
|
} else {
|
|
// Initialize the scratch context to zero.
|
|
scratchContext = zeroContext;
|
|
context = &scratchContext;
|
|
}
|
|
|
|
// Try the complete the metadata. This only loops if initialization
|
|
// has a dependency, but the new dependency is resolved when we go to
|
|
// add ourselves to its queue.
|
|
while (true) {
|
|
assert(worker.getState() < PrivateMetadataState::Complete);
|
|
|
|
// Try a round of initialization.
|
|
auto oldState = worker.getState();
|
|
MetadataStateWithDependency MetadataStateWithDependency =
|
|
asImpl().tryInitialize(value, oldState, context);
|
|
auto newState = MetadataStateWithDependency.NewState;
|
|
auto dependency = MetadataStateWithDependency.Dependency;
|
|
worker.setState(newState);
|
|
|
|
assert(oldState <= newState &&
|
|
"initialization regressed to an earlier state");
|
|
|
|
// If we don't have a dependency, we're finished.
|
|
bool done, willWait;
|
|
if (!dependency) {
|
|
assert(newState == PrivateMetadataState::Complete &&
|
|
"initialization didn't report a dependency but isn't complete");
|
|
done = true;
|
|
willWait = false;
|
|
} else {
|
|
assert(newState != PrivateMetadataState::Complete &&
|
|
"initialization reported a dependency but is complete");
|
|
done = false;
|
|
willWait = shouldBlockInitialization(newState, request);
|
|
}
|
|
|
|
// If we're not going to wait, but we're not done, and the
|
|
// completion context is no longer zero, copy the completion
|
|
// context into the persistent state (if it isn't already there).
|
|
if (!willWait && !done && !queue->PersistentContext) {
|
|
if (memcmp(&scratchContext, &zeroContext, sizeof(zeroContext)) != 0)
|
|
queue->PersistentContext.reset(
|
|
new PrivateMetadataCompletionContext(scratchContext));
|
|
}
|
|
|
|
// If we're not going to wait, publish the new state and finish
|
|
// execution.
|
|
if (!willWait) {
|
|
finishAndPublishProgress(worker, dependency,
|
|
queue->PersistentContext.release());
|
|
return getStatusToReturn(newState);
|
|
}
|
|
|
|
// We're going to wait. If we've made progress, make sure we notify
|
|
// any waiting threads about that progress; if they're satisfied
|
|
// by that progress, they shouldn't be blocked.
|
|
if (oldState < newState) {
|
|
notifyWaitingThreadsOfProgress(worker, dependency);
|
|
|
|
// This might change the queue pointer.
|
|
queue = worker.getPublishedQueue();
|
|
|
|
assert(!queue->PersistentContext ||
|
|
queue->PersistentContext.get() == context);
|
|
}
|
|
|
|
// Block on the target dependency.
|
|
blockOnDependency(worker, request, MetadataStateWithDependency.Dependency);
|
|
|
|
// Go back and try initialization again.
|
|
}
|
|
}
|
|
|
|
/// Publish a new metadata state. Wake waiters if we had any.
|
|
void finishAndPublishProgress(MetadataWaitQueue::Worker &worker,
|
|
MetadataDependency dependency,
|
|
PrivateMetadataCompletionContext *context) {
|
|
auto newState = worker.getState();
|
|
|
|
// Create a suspended completion if there's something to record there.
|
|
// This will be deallocated when some other thread takes over
|
|
// initialization.
|
|
SuspendedMetadataCompletion *suspended = nullptr;
|
|
if (dependency || context) {
|
|
assert(newState != PrivateMetadataState::Complete);
|
|
suspended = new SuspendedMetadataCompletion(dependency, context);
|
|
}
|
|
|
|
// We're done with this worker thread; replace the wait queue
|
|
// with the dependency record. We still want to do these stores
|
|
// under the lock, though.
|
|
worker.finishAndUnpublishQueue([&] {
|
|
auto newInfo = PrivateMetadataTrackingInfo(newState, suspended);
|
|
assert(newInfo.hasAllocatedMetadata());
|
|
|
|
// Set the new state and unpublish the reference to the queue.
|
|
TrackingInfo.store(newInfo, std::memory_order_release);
|
|
});
|
|
}
|
|
|
|
/// Notify any waiting threads that metadata has made progress.
|
|
void notifyWaitingThreadsOfProgress(MetadataWaitQueue::Worker &worker,
|
|
MetadataDependency dependency) {
|
|
worker.maybeReplaceQueue([&] {
|
|
MetadataWaitQueue *oldQueue = worker.getPublishedQueue();
|
|
MetadataWaitQueue *newQueue;
|
|
|
|
// If there aren't any other references to the existing queue,
|
|
// we don't need to replace anything.
|
|
if (oldQueue->isUniquelyReferenced_locked()) {
|
|
newQueue = oldQueue;
|
|
|
|
// Otherwise, make a new queue. Cycling queues this way allows
|
|
// waiting threads to unblock if they are satisfied with the given
|
|
// progress. If they aren't, they'll wait on the new queue.
|
|
} else {
|
|
newQueue = worker.createReplacementQueue();
|
|
newQueue->PersistentContext = std::move(oldQueue->PersistentContext);
|
|
}
|
|
|
|
// Update the current blocking dependency.
|
|
newQueue->BlockingDependency = dependency;
|
|
|
|
// Only the worker thread modifies TrackingInfo, so we can do a
|
|
// simple store instead of a compare-exchange.
|
|
PrivateMetadataTrackingInfo newTrackingInfo =
|
|
PrivateMetadataTrackingInfo(worker.getState(), newQueue);
|
|
TrackingInfo.store(newTrackingInfo, std::memory_order_release);
|
|
|
|
// We signal to maybeReplaceQueue that replacement is required by
|
|
// returning a non-null queue.
|
|
return (newQueue != oldQueue ? newQueue : nullptr);
|
|
});
|
|
}
|
|
|
|
/// Given that the request is not satisfied by the current state of
|
|
/// the metadata, wait for the request to be satisfied.
|
|
///
|
|
/// If there's a thread that currently owns initialization for this
|
|
/// metadata (i.e. it has published a wait queue into TrackingInfo),
|
|
/// we simply wait on that thread. Otherwise, we take over
|
|
/// initialization on the current thread.
|
|
///
|
|
/// If the request is non-blocking, we do not wait, but we may need
|
|
/// to take over initialization.
|
|
Status awaitSatisfyingState(ConcurrencyControl &concurrency,
|
|
MetadataRequest request) {
|
|
// Try loading the current state before acquiring the lock.
|
|
auto trackingInfo = TrackingInfo.load(std::memory_order_acquire);
|
|
|
|
// Return if the current state says to do so.
|
|
auto checkResult = trackingInfo.check(request);
|
|
if (checkResult == PrivateMetadataTrackingInfo::Satisfied ||
|
|
checkResult == PrivateMetadataTrackingInfo::Unsatisfied)
|
|
return getStatusToReturn(trackingInfo.getState());
|
|
|
|
MetadataWaitQueue::Worker worker(concurrency.Lock);
|
|
|
|
std::unique_ptr<SuspendedMetadataCompletion> suspendedCompletionToDelete;
|
|
worker.withLock([&](MetadataWaitQueue::Worker::Operation &op) {
|
|
assert(!worker.isWorkerThread());
|
|
|
|
// Reload the tracking info, since it might have been
|
|
// changed by a concurrent worker thread.
|
|
trackingInfo = TrackingInfo.load(TrackingInfoIsLockedOrder);
|
|
checkResult = trackingInfo.check(request);
|
|
|
|
switch (checkResult) {
|
|
// Either the request is satisfied or we should tell the
|
|
// requester immediately that it isn't.
|
|
case PrivateMetadataTrackingInfo::Satisfied:
|
|
case PrivateMetadataTrackingInfo::Unsatisfied:
|
|
return;
|
|
|
|
// There's currently an initializing thread for this metadata,
|
|
// and either we've got a blocking request that isn't yet
|
|
// satisfied or the metadata hasn't even been allocated yet.
|
|
// Wait on the thread and then call this lambda again.
|
|
case PrivateMetadataTrackingInfo::Wait:
|
|
assert(trackingInfo.hasWaitQueue());
|
|
return op.waitAndRepeat(trackingInfo.getWaitQueue());
|
|
|
|
// There isn't a thread currently building the metadata,
|
|
// and the request isn't satisfied. Become the initializing
|
|
// thread and try to build the metadata ourselves.
|
|
case PrivateMetadataTrackingInfo::Resume: {
|
|
assert(!trackingInfo.hasWaitQueue());
|
|
|
|
// Create a queue and publish it, taking over execution.
|
|
auto queue = op.createQueue();
|
|
|
|
// Copy the information from the suspended completion, if any,
|
|
// into the queue.
|
|
if (auto suspendedCompletion =
|
|
trackingInfo.getSuspendedCompletion()) {
|
|
queue->BlockingDependency =
|
|
suspendedCompletion->BlockingDependency;
|
|
queue->PersistentContext =
|
|
std::move(suspendedCompletion->PersistentContext);
|
|
|
|
// Make sure we delete the suspended completion later.
|
|
suspendedCompletionToDelete.reset(suspendedCompletion);
|
|
}
|
|
|
|
// Publish the wait queue we just made.
|
|
auto newTrackingInfo =
|
|
PrivateMetadataTrackingInfo(trackingInfo.getState(), queue);
|
|
TrackingInfo.store(newTrackingInfo, std::memory_order_release);
|
|
|
|
return op.flagQueueIsPublished(queue);
|
|
}
|
|
}
|
|
});
|
|
|
|
// If the check result wasn't Resume, it must have been Satisfied
|
|
// or Unsatisfied, and we should return immediately.
|
|
if (checkResult != PrivateMetadataTrackingInfo::Resume) {
|
|
assert(checkResult == PrivateMetadataTrackingInfo::Satisfied ||
|
|
checkResult == PrivateMetadataTrackingInfo::Unsatisfied);
|
|
return getStatusToReturn(trackingInfo.getState());
|
|
}
|
|
|
|
// Otherwise, we published and are now the worker thread owning
|
|
// this metadata's initialization. Do the initialization.
|
|
worker.setState(trackingInfo.getState());
|
|
return doInitialization(worker, request);
|
|
}
|
|
|
|
/// Given that we are the active worker thread for this initialization,
|
|
/// block until the given dependency is satisfied.
|
|
void blockOnDependency(MetadataWaitQueue::Worker &worker,
|
|
MetadataRequest request,
|
|
MetadataDependency dependency) {
|
|
assert(worker.isWorkerThread());
|
|
assert(request.isBlocking());
|
|
|
|
// Formulate the request for this metadata as a dependency.
|
|
auto requestDependency = MetadataDependency(asImpl().getValue(),
|
|
request.getState());
|
|
|
|
// Block on the metadata dependency.
|
|
blockOnMetadataDependency(requestDependency, dependency);
|
|
}
|
|
|
|
public:
|
|
/// Check whether this metadata has reached the given state and,
|
|
/// if not, return a further metadata dependency if possible.
|
|
///
|
|
/// It's possible for this to not return a dependency, but only if some
|
|
/// other thread is currently still attempting to complete the first
|
|
/// full round of attempted initialization. It's also possible
|
|
/// for the reported dependency to be out of date.
|
|
MetadataStateWithDependency
|
|
checkDependency(ConcurrencyControl &concurrency, MetadataState requirement) {
|
|
// Do a quick check while not holding the lock.
|
|
auto curInfo = TrackingInfo.load(std::memory_order_acquire);
|
|
if (curInfo.satisfies(requirement))
|
|
return { curInfo.getState(), MetadataDependency() };
|
|
|
|
// Alright, try again while holding the lock, which is required
|
|
// in order to safely read the blocking dependency.
|
|
return concurrency.Lock.withLock([&]() -> MetadataStateWithDependency {
|
|
curInfo = TrackingInfo.load(TrackingInfoIsLockedOrder);
|
|
|
|
if (curInfo.satisfies(requirement))
|
|
return { curInfo.getState(), MetadataDependency() };
|
|
|
|
return { curInfo.getState(), curInfo.getBlockingDependency_locked() };
|
|
});
|
|
}
|
|
};
|
|
|
|
/// An convenient subclass of MetadataCacheEntryBase which provides
|
|
/// metadata lookup using a variadic key.
|
|
template <class Impl, class... Objects>
|
|
class VariadicMetadataCacheEntryBase :
|
|
public MetadataCacheEntryBase<Impl, const void *, Objects...> {
|
|
using super = MetadataCacheEntryBase<Impl, const void *, Objects...>;
|
|
|
|
protected:
|
|
using super::asImpl;
|
|
|
|
using ValueType = typename super::ValueType;
|
|
|
|
using TrailingObjectsEntry = typename super::TrailingObjectsEntry;
|
|
friend TrailingObjectsEntry;
|
|
|
|
using TrailingObjects = typename super::TrailingObjects;
|
|
friend TrailingObjects;
|
|
|
|
template<typename T>
|
|
using OverloadToken = typename TrailingObjects::template OverloadToken<T>;
|
|
|
|
size_t numTrailingObjects(OverloadToken<const void *>) const {
|
|
return Layout.sizeInWords();
|
|
}
|
|
|
|
template <class... Args>
|
|
static size_t numTrailingObjects(OverloadToken<const void *>,
|
|
const MetadataCacheKey &key,
|
|
Args &&...extraArgs) {
|
|
return key.size();
|
|
}
|
|
|
|
private:
|
|
/// These are set during construction and never changed.
|
|
const GenericSignatureLayout<InProcess> Layout;
|
|
const uint32_t Hash;
|
|
|
|
/// Valid if TrackingInfo.getState() >= PrivateMetadataState::Abstract.
|
|
ValueType Value;
|
|
|
|
friend super;
|
|
ValueType getValue() {
|
|
return Value;
|
|
}
|
|
void setValue(ValueType value) {
|
|
Value = value;
|
|
}
|
|
|
|
public:
|
|
VariadicMetadataCacheEntryBase(const MetadataCacheKey &key,
|
|
MetadataWaitQueue::Worker &worker,
|
|
PrivateMetadataState initialState,
|
|
ValueType value)
|
|
: super(worker, initialState),
|
|
Layout(key.layout()),
|
|
Hash(key.hash()),
|
|
Value(value) {
|
|
assert((value != nullptr) ==
|
|
(initialState != PrivateMetadataState::Allocating));
|
|
key.installInto(this->template getTrailingObjects<const void *>());
|
|
}
|
|
|
|
MetadataCacheKey getKey() const {
|
|
return MetadataCacheKey(Layout,
|
|
this->template getTrailingObjects<const void*>(),
|
|
Hash);
|
|
}
|
|
|
|
intptr_t getKeyIntValueForDump() const {
|
|
return Hash;
|
|
}
|
|
|
|
friend llvm::hash_code hash_value(const VariadicMetadataCacheEntryBase<Impl, Objects...> &value) {
|
|
return hash_value(value.getKey());
|
|
}
|
|
|
|
bool matchesKey(const MetadataCacheKey &key) const {
|
|
return key == getKey();
|
|
}
|
|
};
|
|
|
|
template <class EntryType, uint16_t Tag>
|
|
class MetadataCache :
|
|
public LockingConcurrentMap<EntryType,
|
|
LockingConcurrentMapStorage<EntryType, Tag>> {
|
|
};
|
|
|
|
} // namespace swift
|
|
|
|
#endif // SWIFT_RUNTIME_METADATACACHE_H
|