Files
swift-mirror/lib/SILOptimizer/Transforms/FunctionSignatureOpts.cpp
Adrian Prantl 4d1ae142c6 Remove the redundant DeclCtx field in SILFunction.
In all cases the DeclCtx field was supposed to be initialized from the
SILLocation of the function, so we can save one pointer per
SILFunction.

There is one test case change where a different (more precise)
diagnostic is being generated after this change.
2017-02-06 11:07:50 -08:00

1001 lines
38 KiB
C++

//===--- FunctionSignatureOpts.cpp - Optimizes function signatures --------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// This pass defines function signature related optimizations.
/// When a function signature optimization is performed, changes are made to
/// the original function and after all function signature optimizations are
/// finished, a new function is created and the old function is turned into
/// a thunk.
///
/// Another possibility is to implement these optimizations as separate passes,
/// but then we would send slightly different functions to the pass pipeline
/// multiple times through notifyPassManagerOfFunction.
///
/// TODO: Optimize function with generic parameters.
///
/// TODO: Improve epilogue release matcher, i.e. do a data flow instead of
/// only finding releases in the return block.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-function-signature-opt"
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
#include "swift/SILOptimizer/Analysis/BasicCalleeAnalysis.h"
#include "swift/SILOptimizer/Analysis/CallerAnalysis.h"
#include "swift/SILOptimizer/Analysis/EpilogueARCAnalysis.h"
#include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/FunctionSignatureOptUtils.h"
#include "swift/SILOptimizer/Utils/Local.h"
#include "swift/SILOptimizer/Utils/SILInliner.h"
#include "swift/SILOptimizer/Utils/SpecializationMangler.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/Mangle.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILCloner.h"
#include "swift/SIL/SILValue.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(NumFunctionSignaturesOptimized, "Total func sig optimized");
STATISTIC(NumDeadArgsEliminated, "Total dead args eliminated");
STATISTIC(NumOwnedConvertedToGuaranteed, "Total owned args -> guaranteed args");
STATISTIC(NumOwnedConvertedToNotOwnedResult, "Total owned result -> not owned result");
STATISTIC(NumSROAArguments, "Total SROA arguments optimized");
using SILParameterInfoList = llvm::SmallVector<SILParameterInfo, 8>;
using ArgumentIndexMap = llvm::SmallDenseMap<int, int>;
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
/// Return the single return value of the function.
static SILValue findReturnValue(SILFunction *F) {
auto RBB = F->findReturnBB();
if (RBB == F->end())
return SILValue();
auto Term = dyn_cast<ReturnInst>(RBB->getTerminator());
return Term->getOperand();
}
/// Return the single apply found in this function.
static SILInstruction *findOnlyApply(SILFunction *F) {
SILInstruction *OnlyApply = nullptr;
for (auto &B : *F) {
for (auto &X : B) {
if (!isa<ApplyInst>(X) && !isa<TryApplyInst>(X))
continue;
assert(!OnlyApply && "There are more than 1 function calls");
OnlyApply = &X;
}
}
assert(OnlyApply && "There is no function calls");
return OnlyApply;
}
/// Return a unique name in the current module. We should not be blocked
/// from being able to FSO a function just because we have a name conflict.
///
/// TODO: we should teach the demangler to understand this suffix.
static std::string getUniqueName(std::string Name, SILModule &M) {
if (!M.lookUpFunction(Name))
return Name;
return getUniqueName(Name + "_unique_suffix", M);
}
//===----------------------------------------------------------------------===//
// Function Signature Transformation
//===----------------------------------------------------------------------===//
class FunctionSignatureTransform {
/// The actual function to analyze and transform.
SILFunction *F;
/// The newly created function.
SILFunction *NewF;
/// The RC identity analysis we are using.
RCIdentityAnalysis *RCIA;
/// Post order analysis we are using.
EpilogueARCAnalysis *EA;
// The function signature mangler we are using.
FunctionSignatureSpecializationMangler &OldFM;
NewMangling::FunctionSignatureSpecializationMangler &NewFM;
// Keep tracks to argument mapping.
ArgumentIndexMap &AIM;
// Self argument is modified.
bool shouldModifySelfArgument;
/// Keep a "view" of precompiled information on arguments that we use
/// during our optimization.
llvm::SmallVector<ArgumentDescriptor, 4> &ArgumentDescList;
/// Keep a "view" of precompiled information on the direct results that we
/// will use during our optimization.
llvm::SmallVector<ResultDescriptor, 4> &ResultDescList;
/// Return a function name based on ArgumentDescList and ResultDescList.
std::string createOptimizedSILFunctionName();
/// Return a function type based on ArgumentDescList and ResultDescList.
CanSILFunctionType createOptimizedSILFunctionType();
private:
/// ----------------------------------------------------------///
/// Dead argument transformation. ///
/// ----------------------------------------------------------///
/// Find any dead argument opportunities.
bool DeadArgumentAnalyzeParameters();
/// Modify the current function so that later function signature analysis
/// are more effective.
void DeadArgumentTransformFunction();
/// Remove the dead argument once the new function is created.
void DeadArgumentFinalizeOptimizedFunction();
/// ----------------------------------------------------------///
/// Owned to guaranteed transformation. ///
/// ----------------------------------------------------------///
bool OwnedToGuaranteedAnalyzeResults();
bool OwnedToGuaranteedAnalyzeParameters();
/// Modify the current function so that later function signature analysis
/// are more effective.
void OwnedToGuaranteedTransformFunctionResults();
void OwnedToGuaranteedTransformFunctionParameters();
/// Find any owned to guaranteed opportunities.
bool OwnedToGuaranteedAnalyze() {
bool Result = OwnedToGuaranteedAnalyzeResults();
bool Params = OwnedToGuaranteedAnalyzeParameters();
return Params || Result;
}
/// Do the actual owned to guaranteed transformations.
void OwnedToGuaranteedTransform() {
OwnedToGuaranteedTransformFunctionResults();
OwnedToGuaranteedTransformFunctionParameters();
}
/// Set up epilogue work for the thunk result based in the given argument.
void OwnedToGuaranteedAddResultRelease(ResultDescriptor &RD,
SILBuilder &Builder,
SILFunction *F);
/// Set up epilogue work for the thunk argument based in the given argument.
void OwnedToGuaranteedAddArgumentRelease(ArgumentDescriptor &AD,
SILBuilder &Builder,
SILFunction *F);
/// Add the release for converted arguments and result.
void OwnedToGuaranteedFinalizeThunkFunction(SILBuilder &B, SILFunction *F);
/// ----------------------------------------------------------///
/// Argument explosion transformation. ///
/// ----------------------------------------------------------///
/// Find any argument explosion opportunities.
bool ArgumentExplosionAnalyzeParameters();
/// Explode the argument in the optimized function and replace the uses of
/// the original argument.
void ArgumentExplosionFinalizeOptimizedFunction();
/// Setup the thunk arguments based on the given argument descriptor info.
/// Every transformation must defines this interface. Default implementation
/// simply passes it through.
void addThunkArgument(ArgumentDescriptor &AD, SILBuilder &Builder,
SILBasicBlock *BB,
llvm::SmallVectorImpl<SILValue> &NewArgs) {
// Dead argument.
if (AD.IsEntirelyDead) {
return;
}
// Explode the argument.
if (AD.Explode) {
llvm::SmallVector<SILValue, 4> LeafValues;
AD.ProjTree.createTreeFromValue(Builder, BB->getParent()->getLocation(),
BB->getArgument(AD.Index), LeafValues);
NewArgs.append(LeafValues.begin(), LeafValues.end());
return;
}
// All other arguments get pushed as what they are.
NewArgs.push_back(BB->getArgument(AD.Index));
}
/// Take ArgumentDescList and ResultDescList and create an optimized function
/// based on the current function we are analyzing. This also has the side effect
/// of turning the current function into a thunk.
void createFunctionSignatureOptimizedFunction();
/// Compute the optimized function type based on the given argument descriptor.
void computeOptimizedArgInterface(ArgumentDescriptor &A, SILParameterInfoList &O);
public:
/// Constructor.
FunctionSignatureTransform(SILFunction *F,
RCIdentityAnalysis *RCIA, EpilogueARCAnalysis *EA,
FunctionSignatureSpecializationMangler &OldFM,
NewMangling::FunctionSignatureSpecializationMangler &NewFM,
ArgumentIndexMap &AIM,
llvm::SmallVector<ArgumentDescriptor, 4> &ADL,
llvm::SmallVector<ResultDescriptor, 4> &RDL)
: F(F), NewF(nullptr), RCIA(RCIA), EA(EA), OldFM(OldFM), NewFM(NewFM),
AIM(AIM), shouldModifySelfArgument(false), ArgumentDescList(ADL),
ResultDescList(RDL) {}
/// Return the optimized function.
SILFunction *getOptimizedFunction() { return NewF; }
/// Run the optimization.
bool run(bool hasCaller) {
bool Changed = false;
if (!hasCaller && canBeCalledIndirectly(F->getRepresentation())) {
DEBUG(llvm::dbgs() << " function has no caller -> abort\n");
return false;
}
// Run OwnedToGuaranteed optimization.
if (OwnedToGuaranteedAnalyze()) {
Changed = true;
DEBUG(llvm::dbgs() << " transform owned-to-guaranteed\n");
OwnedToGuaranteedTransform();
}
// Run DeadArgument elimination transformation. We only specialize
// if this function has a caller inside the current module or we have
// already created a thunk.
if ((hasCaller || Changed) && DeadArgumentAnalyzeParameters()) {
Changed = true;
DEBUG(llvm::dbgs() << " remove dead arguments\n");
DeadArgumentTransformFunction();
}
// Run ArgumentExplosion transformation. We only specialize
// if this function has a caller inside the current module or we have
// already created a thunk.
//
// NOTE: we run argument explosion last because we've already initialized
// the ArgumentDescList to have unexploded number of arguments. Exploding
// it without changing the argument count is not going to help with
// owned-to-guaranteed transformation.
//
// In order to not miss any opportunity, we send the optimized function
// to the passmanager to optimize any opportunities exposed by argument
// explosion.
if ((hasCaller || Changed) && ArgumentExplosionAnalyzeParameters()) {
Changed = true;
}
// Create the specialized function and invalidate the old function.
if (Changed) {
createFunctionSignatureOptimizedFunction();
}
return Changed;
}
/// Run dead argument elimination of partially applied functions.
/// After this optimization CapturePropagation can replace the partial_apply
/// by a direct reference to the specialized function.
bool removeDeadArgs(int minPartialAppliedArgs) {
if (minPartialAppliedArgs < 1)
return false;
if (!DeadArgumentAnalyzeParameters())
return false;
// Check if at least the minimum number of partially applied arguments
// are dead. Otherwise no partial_apply can be removed anyway.
for (unsigned Idx = 0, Num = ArgumentDescList.size(); Idx < Num; ++Idx) {
if (Idx < Num - minPartialAppliedArgs) {
// Don't remove arguments other than the partial applied ones, even if
// they are dead.
ArgumentDescList[Idx].IsEntirelyDead = false;
} else {
// Is the partially applied argument dead?
if (!ArgumentDescList[Idx].IsEntirelyDead)
return false;
// Currently we require that all dead parameters have trivial types.
// The reason is that it's very hard to find places where we can release
// those parameters (as a replacement for the removed partial_apply).
// TODO: maybe we can skip this restriction when we have semantic ARC.
if (!ArgumentDescList[Idx].Arg->getType().isTrivial(F->getModule()))
return false;
}
}
DEBUG(llvm::dbgs() << " remove dead arguments for partial_apply\n");
DeadArgumentTransformFunction();
createFunctionSignatureOptimizedFunction();
return true;
}
};
std::string FunctionSignatureTransform::createOptimizedSILFunctionName() {
// Handle arguments' changes.
for (unsigned i : indices(ArgumentDescList)) {
const ArgumentDescriptor &Arg = ArgumentDescList[i];
if (Arg.IsEntirelyDead) {
OldFM.setArgumentDead(i);
NewFM.setArgumentDead(i);
// No point setting other attribute if argument is dead.
continue;
}
// If we have an @owned argument and found a callee release for it,
// convert the argument to guaranteed.
if (Arg.OwnedToGuaranteed) {
OldFM.setArgumentOwnedToGuaranteed(i);
NewFM.setArgumentOwnedToGuaranteed(i);
}
// If this argument is not dead and we can explode it, add 's' to the
// mangling.
if (Arg.Explode) {
OldFM.setArgumentSROA(i);
NewFM.setArgumentSROA(i);
}
}
// Handle return value's change.
// FIXME: handle multiple direct results here
if (ResultDescList.size() == 1 && !ResultDescList[0].CalleeRetain.empty()) {
OldFM.setReturnValueOwnedToUnowned();
NewFM.setReturnValueOwnedToUnowned();
}
OldFM.mangle();
SILModule &M = F->getModule();
std::string Old = getUniqueName(OldFM.getMangler().finalize(), M);
int UniqueID = 0;
std::string New;
do {
New = NewFM.mangle(UniqueID);
++UniqueID;
} while (M.lookUpFunction(New));
return NewMangling::selectMangling(Old, New);
}
/// Compute what the function interface will look like based on the
/// optimization we are doing on the given argument descriptor. Default
/// implementation simply passes it through.
void
FunctionSignatureTransform::
computeOptimizedArgInterface(ArgumentDescriptor &AD, SILParameterInfoList &Out) {
// If this argument is live, but we cannot optimize it.
if (!AD.canOptimizeLiveArg()) {
Out.push_back(AD.PInfo);
return;
}
// If we have a dead argument, bail.
if (AD.IsEntirelyDead) {
++NumDeadArgsEliminated;
return;
}
// Explode the argument or not ?
if (AD.Explode) {
++NumSROAArguments;
llvm::SmallVector<const ProjectionTreeNode*, 8> LeafNodes;
AD.ProjTree.getLeafNodes(LeafNodes);
for (auto Node : LeafNodes) {
SILType Ty = Node->getType();
DEBUG(llvm::dbgs() << " " << Ty << "\n");
// If Ty is trivial, just pass it directly.
if (Ty.isTrivial(AD.Arg->getModule())) {
SILParameterInfo NewInfo(Ty.getSwiftRValueType(),
ParameterConvention::Direct_Unowned);
Out.push_back(NewInfo);
continue;
}
// Ty is not trivial, pass it through as the original calling convention.
SILParameterInfo NewInfo(Ty.getSwiftRValueType(), AD.OwnedToGuaranteed ?
ParameterConvention::Direct_Guaranteed :
AD.PInfo.getConvention());
Out.push_back(NewInfo);
}
return;
}
// If we cannot explode this value, handle callee release and return.
// If we found releases in the callee in the last BB on an @owned
// parameter, change the parameter to @guaranteed and continue...
if (AD.OwnedToGuaranteed) {
++NumOwnedConvertedToGuaranteed;
SILParameterInfo NewInfo(AD.PInfo.getType(),
ParameterConvention::Direct_Guaranteed);
Out.push_back(NewInfo);
return;
}
// Otherwise just propagate through the parameter info.
Out.push_back(AD.PInfo);
}
CanSILFunctionType FunctionSignatureTransform::createOptimizedSILFunctionType() {
CanSILFunctionType FTy = F->getLoweredFunctionType();
// The only way that we modify the arity of function parameters is here for
// dead arguments. Doing anything else is unsafe since by definition non-dead
// arguments will have SSA uses in the function. We would need to be smarter
// in our moving to handle such cases.
llvm::SmallVector<SILParameterInfo, 8> InterfaceParams;
for (auto &ArgDesc : ArgumentDescList) {
computeOptimizedArgInterface(ArgDesc, InterfaceParams);
}
// ResultDescs only covers the direct results; we currently can't ever
// change an indirect result. Piece the modified direct result information
// back into the all-results list.
llvm::SmallVector<SILResultInfo, 8> InterfaceResults;
auto &ResultDescs = ResultDescList;
for (SILResultInfo InterfaceResult : FTy->getResults()) {
if (InterfaceResult.isFormalDirect()) {
auto &RV = ResultDescs[0];
if (!RV.CalleeRetain.empty()) {
++NumOwnedConvertedToNotOwnedResult;
InterfaceResults.push_back(SILResultInfo(InterfaceResult.getType(),
ResultConvention::Unowned));
continue;
}
}
InterfaceResults.push_back(InterfaceResult);
}
// Don't use a method representation if we modified self.
auto ExtInfo = FTy->getExtInfo();
if (shouldModifySelfArgument) {
ExtInfo = ExtInfo.withRepresentation(SILFunctionTypeRepresentation::Thin);
}
return SILFunctionType::get(FTy->getGenericSignature(), ExtInfo,
FTy->getCalleeConvention(), InterfaceParams,
InterfaceResults, FTy->getOptionalErrorResult(),
F->getModule().getASTContext());
}
void FunctionSignatureTransform::createFunctionSignatureOptimizedFunction() {
// Create the optimized function !
SILModule &M = F->getModule();
std::string Name = createOptimizedSILFunctionName();
SILLinkage linkage = F->getLinkage();
if (isAvailableExternally(linkage))
linkage = SILLinkage::Shared;
DEBUG(llvm::dbgs() << " -> create specialized function " << Name << "\n");
NewF = M.createFunction(linkage, Name, createOptimizedSILFunctionType(),
nullptr, F->getLocation(), F->isBare(),
F->isTransparent(), F->isFragile(), F->isThunk(),
F->getClassVisibility(), F->getInlineStrategy(),
F->getEffectsKind(), nullptr, F->getDebugScope());
if (F->hasUnqualifiedOwnership()) {
NewF->setUnqualifiedOwnership();
}
// Then we transfer the body of F to NewF.
NewF->spliceBody(F);
// Array semantic clients rely on the signature being as in the original
// version.
for (auto &Attr : F->getSemanticsAttrs()) {
if (!StringRef(Attr).startswith("array."))
NewF->addSemanticsAttr(Attr);
}
// Do the last bit of work to the newly created optimized function.
ArgumentExplosionFinalizeOptimizedFunction();
DeadArgumentFinalizeOptimizedFunction();
// Create the thunk body !
F->setThunk(IsThunk);
// The thunk now carries the information on how the signature is
// optimized. If we inline the thunk, we will get the benefit of calling
// the signature optimized function without additional setup on the
// caller side.
F->setInlineStrategy(AlwaysInline);
SILBasicBlock *ThunkBody = F->createBasicBlock();
for (auto &ArgDesc : ArgumentDescList) {
ThunkBody->createFunctionArgument(ArgDesc.Arg->getType(), ArgDesc.Decl);
}
SILLocation Loc = ThunkBody->getParent()->getLocation();
SILBuilder Builder(ThunkBody);
Builder.setCurrentDebugScope(ThunkBody->getParent()->getDebugScope());
FunctionRefInst *FRI = Builder.createFunctionRef(Loc, NewF);
// Create the args for the thunk's apply, ignoring any dead arguments.
llvm::SmallVector<SILValue, 8> ThunkArgs;
for (auto &ArgDesc : ArgumentDescList) {
addThunkArgument(ArgDesc, Builder, ThunkBody, ThunkArgs);
}
// We are ignoring generic functions and functions with out parameters for
// now.
SILValue ReturnValue;
SILType LoweredType = NewF->getLoweredType();
SILType ResultType = NewF->getConventions().getSILResultType();
auto FunctionTy = LoweredType.castTo<SILFunctionType>();
if (FunctionTy->hasErrorResult()) {
// We need a try_apply to call a function with an error result.
SILFunction *Thunk = ThunkBody->getParent();
SILBasicBlock *NormalBlock = Thunk->createBasicBlock();
ReturnValue =
NormalBlock->createPHIArgument(ResultType, ValueOwnershipKind::Owned);
SILBasicBlock *ErrorBlock = Thunk->createBasicBlock();
SILType Error =
SILType::getPrimitiveObjectType(FunctionTy->getErrorResult().getType());
auto *ErrorArg =
ErrorBlock->createPHIArgument(Error, ValueOwnershipKind::Owned);
Builder.createTryApply(Loc, FRI, LoweredType, ArrayRef<Substitution>(),
ThunkArgs, NormalBlock, ErrorBlock);
Builder.setInsertionPoint(ErrorBlock);
Builder.createThrow(Loc, ErrorArg);
Builder.setInsertionPoint(NormalBlock);
} else {
ReturnValue = Builder.createApply(Loc, FRI, LoweredType, ResultType,
ArrayRef<Substitution>(), ThunkArgs,
false);
}
// Set up the return results.
if (NewF->isNoReturnFunction()) {
Builder.createUnreachable(Loc);
} else {
Builder.createReturn(Loc, ReturnValue);
}
// Do the last bit work to finalize the thunk.
OwnedToGuaranteedFinalizeThunkFunction(Builder, F);
assert(F->getDebugScope()->Parent != NewF->getDebugScope()->Parent);
}
/// ----------------------------------------------------------///
/// Dead argument transformation. ///
/// ----------------------------------------------------------///
bool FunctionSignatureTransform::DeadArgumentAnalyzeParameters() {
// Did we decide we should optimize any parameter?
bool SignatureOptimize = false;
auto Args = F->begin()->getFunctionArguments();
// Analyze the argument information.
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgumentDescriptor &A = ArgumentDescList[i];
if (!A.canOptimizeLiveArg()) {
continue;
}
// Check whether argument is dead.
if (!hasNonTrivialNonDebugUse(Args[i])) {
A.IsEntirelyDead = true;
SignatureOptimize = true;
if (Args[i]->isSelf())
shouldModifySelfArgument = true;
}
}
return SignatureOptimize;
}
void FunctionSignatureTransform::DeadArgumentTransformFunction() {
SILBasicBlock *BB = &*F->begin();
for (const ArgumentDescriptor &AD : ArgumentDescList) {
if (!AD.IsEntirelyDead)
continue;
eraseUsesOfValue(BB->getArgument(AD.Index));
}
}
void FunctionSignatureTransform::DeadArgumentFinalizeOptimizedFunction() {
auto *BB = &*NewF->begin();
// Remove any dead argument starting from the last argument to the first.
for (const ArgumentDescriptor &AD : reverse(ArgumentDescList)) {
if (!AD.IsEntirelyDead)
continue;
BB->eraseArgument(AD.Arg->getIndex());
}
}
/// ----------------------------------------------------------///
/// Owned to Guaranteed transformation. ///
/// ----------------------------------------------------------///
bool FunctionSignatureTransform::OwnedToGuaranteedAnalyzeParameters() {
auto Args = F->begin()->getFunctionArguments();
// A map from consumed SILArguments to the release associated with an
// argument.
//
// TODO: The return block and throw block should really be abstracted away.
ConsumedArgToEpilogueReleaseMatcher ArgToReturnReleaseMap(RCIA->get(F), F);
ConsumedArgToEpilogueReleaseMatcher ArgToThrowReleaseMap(
RCIA->get(F), F, ConsumedArgToEpilogueReleaseMatcher::ExitKind::Throw);
// Did we decide we should optimize any parameter?
bool SignatureOptimize = false;
// Analyze the argument information.
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgumentDescriptor &A = ArgumentDescList[i];
if (!A.canOptimizeLiveArg()) {
continue;
}
// See if we can find a ref count equivalent strong_release or release_value
// at the end of this function if our argument is an @owned parameter.
if (A.hasConvention(SILArgumentConvention::Direct_Owned)) {
auto Releases = ArgToReturnReleaseMap.getReleasesForArgument(A.Arg);
if (!Releases.empty()) {
// If the function has a throw block we must also find a matching
// release in the throw block.
auto ReleasesInThrow = ArgToThrowReleaseMap.getReleasesForArgument(A.Arg);
if (!ArgToThrowReleaseMap.hasBlock() || !ReleasesInThrow.empty()) {
A.CalleeRelease = Releases;
A.CalleeReleaseInThrowBlock = ReleasesInThrow;
// We can convert this parameter to a @guaranteed.
A.OwnedToGuaranteed = true;
SignatureOptimize = true;
}
}
}
// Modified self argument.
if (A.OwnedToGuaranteed && Args[i]->isSelf()) {
shouldModifySelfArgument = true;
}
}
return SignatureOptimize;
}
bool FunctionSignatureTransform::OwnedToGuaranteedAnalyzeResults() {
auto fnConv = F->getConventions();
// For now, only do anything if there's a single direct result.
if (fnConv.getNumDirectSILResults() != 1)
return false;
bool SignatureOptimize = false;
if (ResultDescList[0].hasConvention(ResultConvention::Owned)) {
auto RV = findReturnValue(F);
if (!RV)
return false;
auto &RI = ResultDescList[0];
// We have an @owned return value, find the epilogue retains now.
auto Retains = EA->get(F)->computeEpilogueARCInstructions(EpilogueARCContext::EpilogueARCKind::Retain, RV);
// We do not need to worry about the throw block, as the return value is only
// going to be used in the return block/normal block of the try_apply
// instruction.
if (!Retains.empty()) {
RI.CalleeRetain = Retains;
SignatureOptimize = true;
RI.OwnedToGuaranteed = true;
}
}
return SignatureOptimize;
}
void FunctionSignatureTransform::OwnedToGuaranteedTransformFunctionParameters() {
// And remove all Callee releases that we found and made redundant via owned
// to guaranteed conversion.
for (const ArgumentDescriptor &AD : ArgumentDescList) {
if (!AD.OwnedToGuaranteed)
continue;
for (auto &X : AD.CalleeRelease) {
X->eraseFromParent();
}
for (auto &X : AD.CalleeReleaseInThrowBlock) {
X->eraseFromParent();
}
// Now we need to replace the FunctionArgument so that we have the correct
// ValueOwnershipKind.
AD.Arg->setOwnershipKind(ValueOwnershipKind::Guaranteed);
}
}
void FunctionSignatureTransform::OwnedToGuaranteedTransformFunctionResults() {
// And remove all callee retains that we found and made redundant via owned
// to unowned conversion.
for (const ResultDescriptor &RD : ResultDescList) {
if (!RD.OwnedToGuaranteed)
continue;
for (auto &X : RD.CalleeRetain) {
if (isa<StrongRetainInst>(X) || isa<RetainValueInst>(X)) {
X->eraseFromParent();
continue;
}
// Create a release to balance it out.
assert(isa<ApplyInst>(X) && "Unknown epilogue retain");
createDecrementBefore(X, dyn_cast<ApplyInst>(X)->getParent()->getTerminator());
}
}
}
void FunctionSignatureTransform::
OwnedToGuaranteedFinalizeThunkFunction(SILBuilder &Builder, SILFunction *F) {
// Finish the epilogue work for the argument as well as result.
for (auto &ArgDesc : ArgumentDescList) {
OwnedToGuaranteedAddArgumentRelease(ArgDesc, Builder, F);
}
for (auto &ResDesc : ResultDescList) {
OwnedToGuaranteedAddResultRelease(ResDesc, Builder, F);
}
}
/// Set up epilogue work for the thunk arguments based in the given argument.
/// Default implementation simply passes it through.
void
FunctionSignatureTransform::
OwnedToGuaranteedAddArgumentRelease(ArgumentDescriptor &AD, SILBuilder &Builder,
SILFunction *F) {
// If we have any arguments that were consumed but are now guaranteed,
// insert a release_value.
if (!AD.OwnedToGuaranteed) {
return;
}
SILInstruction *Call = findOnlyApply(F);
if (isa<ApplyInst>(Call)) {
Builder.setInsertionPoint(&*std::next(SILBasicBlock::iterator(Call)));
Builder.createReleaseValue(RegularLocation(SourceLoc()),
F->getArguments()[AD.Index],
Atomicity::Atomic);
} else {
SILBasicBlock *NormalBB = dyn_cast<TryApplyInst>(Call)->getNormalBB();
Builder.setInsertionPoint(&*NormalBB->begin());
Builder.createReleaseValue(RegularLocation(SourceLoc()),
F->getArguments()[AD.Index],
Atomicity::Atomic);
SILBasicBlock *ErrorBB = dyn_cast<TryApplyInst>(Call)->getErrorBB();
Builder.setInsertionPoint(&*ErrorBB->begin());
Builder.createReleaseValue(RegularLocation(SourceLoc()),
F->getArguments()[AD.Index],
Atomicity::Atomic);
}
}
void
FunctionSignatureTransform::
OwnedToGuaranteedAddResultRelease(ResultDescriptor &RD, SILBuilder &Builder,
SILFunction *F) {
// If we have any result that were consumed but are now guaranteed,
// insert a release_value.
if (!RD.OwnedToGuaranteed) {
return;
}
SILInstruction *Call = findOnlyApply(F);
if (isa<ApplyInst>(Call)) {
Builder.setInsertionPoint(&*std::next(SILBasicBlock::iterator(Call)));
Builder.createRetainValue(RegularLocation(SourceLoc()), Call,
Atomicity::Atomic);
} else {
SILBasicBlock *NormalBB = dyn_cast<TryApplyInst>(Call)->getNormalBB();
Builder.setInsertionPoint(&*NormalBB->begin());
Builder.createRetainValue(RegularLocation(SourceLoc()),
NormalBB->getArgument(0), Atomicity::Atomic);
}
}
/// ----------------------------------------------------------///
/// Argument Explosion transformation. ///
/// ----------------------------------------------------------///
bool FunctionSignatureTransform::ArgumentExplosionAnalyzeParameters() {
// Did we decide we should optimize any parameter?
bool SignatureOptimize = false;
auto Args = F->begin()->getFunctionArguments();
ConsumedArgToEpilogueReleaseMatcher ArgToReturnReleaseMap(RCIA->get(F), F);
// Analyze the argument information.
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgumentDescriptor &A = ArgumentDescList[i];
// Do not optimize argument.
if (!A.canOptimizeLiveArg()) {
continue;
}
A.ProjTree.computeUsesAndLiveness(A.Arg);
A.Explode = A.shouldExplode(ArgToReturnReleaseMap);
// Modified self argument.
if (A.Explode && Args[i]->isSelf()) {
shouldModifySelfArgument = true;
}
SignatureOptimize |= A.Explode;
}
return SignatureOptimize;
}
void FunctionSignatureTransform::ArgumentExplosionFinalizeOptimizedFunction() {
SILBasicBlock *BB = &*NewF->begin();
SILBuilder Builder(BB->begin());
Builder.setCurrentDebugScope(BB->getParent()->getDebugScope());
unsigned TotalArgIndex = 0;
for (ArgumentDescriptor &AD : ArgumentDescList) {
// Simply continue if do not explode.
if (!AD.Explode) {
AIM[TotalArgIndex] = AD.Index;
TotalArgIndex ++;
continue;
}
// OK, we need to explode this argument.
unsigned ArgOffset = ++TotalArgIndex;
unsigned OldArgIndex = ArgOffset - 1;
llvm::SmallVector<SILValue, 8> LeafValues;
// We do this in the same order as leaf types since ProjTree expects that the
// order of leaf values matches the order of leaf types.
llvm::SmallVector<const ProjectionTreeNode*, 8> LeafNodes;
AD.ProjTree.getLeafNodes(LeafNodes);
for (auto *Node : LeafNodes) {
auto OwnershipKind = *AD.getTransformedOwnershipKind(Node->getType());
LeafValues.push_back(BB->insertFunctionArgument(
ArgOffset++, Node->getType(), OwnershipKind,
BB->getArgument(OldArgIndex)->getDecl()));
AIM[TotalArgIndex - 1] = AD.Index;
TotalArgIndex ++;
}
// Then go through the projection tree constructing aggregates and replacing
// uses.
AD.ProjTree.replaceValueUsesWithLeafUses(Builder, BB->getParent()->getLocation(),
LeafValues);
// We ignored debugvalue uses when we constructed the new arguments, in order
// to preserve as much information as possible, we construct a new value for
// OrigArg from the leaf values and use that in place of the OrigArg.
SILValue NewOrigArgValue = AD.ProjTree.computeExplodedArgumentValue(Builder,
BB->getParent()->getLocation(),
LeafValues);
// Replace all uses of the original arg with the new value.
SILArgument *OrigArg = BB->getArgument(OldArgIndex);
OrigArg->replaceAllUsesWith(NewOrigArgValue);
// Now erase the old argument since it does not have any uses. We also
// decrement ArgOffset since we have one less argument now.
BB->eraseArgument(OldArgIndex);
TotalArgIndex --;
}
}
//===----------------------------------------------------------------------===//
// Top Level Entry Point
//===----------------------------------------------------------------------===//
namespace {
class FunctionSignatureOpts : public SILFunctionTransform {
/// If true, perform a special kind of dead argument elimination to enable
/// removal of partial_apply instructions where all partially applied
/// arguments are dead.
bool OptForPartialApply;
public:
FunctionSignatureOpts(bool OptForPartialApply) :
OptForPartialApply(OptForPartialApply) { }
void run() override {
auto *F = getFunction();
// Don't optimize callees that should not be optimized.
if (!F->shouldOptimize())
return;
// This is the function to optimize.
DEBUG(llvm::dbgs() << "*** FSO on function: " << F->getName() << " ***\n");
// Check the signature of F to make sure that it is a function that we
// can specialize. These are conditions independent of the call graph.
if (!canSpecializeFunction(F)) {
DEBUG(llvm::dbgs() << " cannot specialize function -> abort\n");
return;
}
auto *RCIA = getAnalysis<RCIdentityAnalysis>();
CallerAnalysis *CA = PM->getAnalysis<CallerAnalysis>();
auto *EA = PM->getAnalysis<EpilogueARCAnalysis>();
const CallerAnalysis::FunctionInfo &FuncInfo = CA->getCallerInfo(F);
// Lock BCA so it's not invalidated along with the rest of the call graph.
AnalysisPreserver BCAP(PM->getAnalysis<BasicCalleeAnalysis>());
// As we optimize the function more and more, the name of the function is
// going to change, make sure the mangler is aware of all the changes done
// to the function.
Mangle::Mangler M;
auto P = Demangle::SpecializationPass::FunctionSignatureOpts;
FunctionSignatureSpecializationMangler OldFM(P, M, F->isFragile(), F);
NewMangling::FunctionSignatureSpecializationMangler NewFM(P, F->isFragile(),
F);
/// Keep a map between the exploded argument index and the original argument
/// index.
llvm::SmallDenseMap<int, int> AIM;
int asize = F->begin()->getArguments().size();
for (auto i = 0; i < asize; ++i) {
AIM[i] = i;
}
// Allocate the argument and result descriptors.
llvm::SmallVector<ArgumentDescriptor, 4> ArgumentDescList;
llvm::SmallVector<ResultDescriptor, 4> ResultDescList;
auto Args = F->begin()->getFunctionArguments();
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgumentDescList.emplace_back(Args[i]);
}
for (SILResultInfo IR : F->getLoweredFunctionType()->getResults()) {
ResultDescList.emplace_back(IR);
}
// Owned to guaranteed optimization.
FunctionSignatureTransform FST(F, RCIA, EA, OldFM, NewFM, AIM,
ArgumentDescList, ResultDescList);
bool Changed = false;
if (OptForPartialApply) {
Changed = FST.removeDeadArgs(FuncInfo.getMinPartialAppliedArgs());
} else {
Changed = FST.run(FuncInfo.hasCaller());
}
if (Changed) {
++ NumFunctionSignaturesOptimized;
// The old function must be a thunk now.
assert(F->isThunk() && "Old function should have been turned into a thunk");
PM->invalidateAnalysis(F, SILAnalysis::InvalidationKind::Everything);
// Make sure the PM knows about this function. This will also help us
// with self-recursion.
notifyPassManagerOfFunction(FST.getOptimizedFunction(), F);
if (!OptForPartialApply) {
// We have to restart the pipeline for this thunk in order to run the
// inliner (and other opts) again. This is important if the new
// specialized function (which is called from this thunk) is
// function-signature-optimized again and also becomes an
// always-inline-thunk.
restartPassPipeline();
}
}
}
StringRef getName() override { return "Function Signature Optimization"; }
};
} // end anonymous namespace
SILTransform *swift::createFunctionSignatureOpts() {
return new FunctionSignatureOpts(/* OptForPartialApply */ false);
}
SILTransform *swift::createDeadArgSignatureOpt() {
return new FunctionSignatureOpts(/* OptForPartialApply */ true);
}