Files
swift-mirror/lib/SIL/SILModule.cpp
Manman Ren 53151b90bd [Global Opt] add SILFunction *InitializerF to SILGlobalVariable.
It is defaulted to nullptr. When it is set, we increment the SILFunction's
ref count to keep it alive.

It will be used in followon patches for globals that can be statically
initialized.


Swift SVN r21983
2014-09-16 21:50:56 +00:00

782 lines
27 KiB
C++

//===--- SILModule.cpp - SILModule implementation -------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-module"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILExternalSource.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/Serialization/SerializedSILLoader.h"
#include "swift/SIL/SILValue.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
using namespace swift;
using namespace Lowering;
STATISTIC(NumFuncLinked, "Number of SIL functions linked");
namespace swift {
/// SILTypeList - The uniqued backing store for the SILValue type list. This
/// is only exposed out of SILValue as an ArrayRef of types, so it should
/// never be used outside of libSIL.
class SILTypeList : public llvm::FoldingSetNode {
public:
unsigned NumTypes;
SILType Types[1]; // Actually variable sized.
void Profile(llvm::FoldingSetNodeID &ID) const {
for (unsigned i = 0, e = NumTypes; i != e; ++i) {
ID.AddPointer(Types[i].getOpaqueValue());
}
}
};
} // end namespace swift.
void SILExternalSource::anchor() {
}
/// SILTypeListUniquingType - This is the type of the folding set maintained by
/// SILModule that these things are uniqued into.
typedef llvm::FoldingSet<SILTypeList> SILTypeListUniquingType;
class SILModule::SerializationCallback : public SerializedSILLoader::Callback {
void didDeserialize(Module *M, SILFunction *fn) override {
updateLinkage(fn);
}
void didDeserialize(Module *M, SILGlobalVariable *var) override {
updateLinkage(var);
}
void didDeserialize(Module *M, SILVTable *vtable) override {
// TODO: should vtables get linkage?
//updateLinkage(vtable);
}
void didDeserialize(Module *M, SILWitnessTable *wt) override {
updateLinkage(wt);
}
template <class T> void updateLinkage(T *decl) {
switch (decl->getLinkage()) {
case SILLinkage::Public:
decl->setLinkage(SILLinkage::PublicExternal);
return;
case SILLinkage::Hidden:
decl->setLinkage(SILLinkage::HiddenExternal);
return;
case SILLinkage::Shared:
decl->setLinkage(SILLinkage::SharedExternal);
return;
case SILLinkage::Private: // ?
case SILLinkage::PublicExternal:
case SILLinkage::HiddenExternal:
case SILLinkage::SharedExternal:
return;
}
}
};
SILModule::SILModule(Module *SwiftModule, const DeclContext *associatedDC)
: TheSwiftModule(SwiftModule), AssociatedDeclContext(associatedDC),
Stage(SILStage::Raw), Callback(new SILModule::SerializationCallback()),
Types(*this) {
TypeListUniquing = new SILTypeListUniquingType();
}
SILModule::~SILModule() {
// Decrement ref count for each SILGlobalVariable with static initializers.
for (SILGlobalVariable &v : silGlobals)
if (v.getInitializer())
v.getInitializer()->decrementRefCount();
for (SILFunction *F : InlinedFunctions)
F->decrementRefCount();
// Drop everything functions in this module reference.
//
// This is necessary since the functions may reference each other. We don't
// need to worry about sil_witness_tables since witness tables reference each
// other via protocol conformances and sil_vtables don't reference each other
// at all.
for (SILFunction &F : *this)
F.dropAllReferences();
delete (SILTypeListUniquingType*)TypeListUniquing;
}
SILWitnessTable *
SILModule::createWitnessTableDeclaration(ProtocolConformance *C,
SILLinkage linkage) {
// If we are passed in a null conformance (a valid value), just return nullptr
// since we can not map a witness table to it.
if (!C)
return nullptr;
// Walk down to the base NormalProtocolConformance.
ProtocolConformance *ParentC = C;
ArrayRef<Substitution> Subs;
while (!isa<NormalProtocolConformance>(ParentC)) {
switch (ParentC->getKind()) {
case ProtocolConformanceKind::Normal:
llvm_unreachable("should have exited the loop?!");
case ProtocolConformanceKind::Inherited:
ParentC = cast<InheritedProtocolConformance>(ParentC)
->getInheritedConformance();
break;
case ProtocolConformanceKind::Specialized: {
auto SC = cast<SpecializedProtocolConformance>(ParentC);
ParentC = SC->getGenericConformance();
assert(Subs.empty() && "multiple conformance specializations?!");
Subs = SC->getGenericSubstitutions();
break;
}
}
}
NormalProtocolConformance *NormalC
= cast<NormalProtocolConformance>(ParentC);
SILWitnessTable *WT = SILWitnessTable::create(*this,
linkage,
NormalC);
return WT;
}
std::pair<SILWitnessTable *, ArrayRef<Substitution>>
SILModule::
lookUpWitnessTable(const ProtocolConformance *C, bool deserializeLazily) {
// If we have a null conformance passed in (a legal value), just return
// nullptr.
ArrayRef<Substitution> Subs;
if (!C)
return {nullptr, Subs};
// Walk down to the base NormalProtocolConformance.
const ProtocolConformance *ParentC = C;
while (!isa<NormalProtocolConformance>(ParentC)) {
switch (ParentC->getKind()) {
case ProtocolConformanceKind::Normal:
llvm_unreachable("should have exited the loop?!");
case ProtocolConformanceKind::Inherited:
ParentC = cast<InheritedProtocolConformance>(ParentC)
->getInheritedConformance();
break;
case ProtocolConformanceKind::Specialized: {
auto SC = cast<SpecializedProtocolConformance>(ParentC);
ParentC = SC->getGenericConformance();
assert(Subs.empty() && "multiple conformance specializations?!");
Subs = SC->getGenericSubstitutions();
break;
}
}
}
const NormalProtocolConformance *NormalC
= cast<NormalProtocolConformance>(ParentC);
// If the normal conformance is for a generic type, and we didn't hit a
// specialized conformance, collect the substitutions from the generic type.
// FIXME: The AST should do this for us.
if (NormalC->getType()->isSpecialized() && Subs.empty()) {
Subs = NormalC->getType()
->gatherAllSubstitutions(NormalC->getDeclContext()->getParentModule(),
nullptr);
}
// Attempt to lookup the witness table from the table.
auto found = WitnessTableLookupCache.find(NormalC);
if (found == WitnessTableLookupCache.end()) {
#ifndef NDEBUG
// Make sure that all witness tables are in the witness table lookup
// cache.
//
// This code should not be hit normally since we add witness tables to the
// lookup cache when we create them. We don't just assert here since there
// is the potential for a conformance without a witness table to be passed
// to this function.
for (SILWitnessTable &WT : witnessTables)
assert(WT.getConformance() != NormalC &&
"Found witness table that is not"
" in the witness table lookup cache.");
#endif
return {nullptr, Subs};
}
SILWitnessTable *wT = found->second;
assert(wT != nullptr && "Should never map a conformance to a null witness"
" table.");
// If we have a definition, return it.
if (wT->isDefinition())
return {wT, Subs};
// Otherwise try to deserialize it. If we succeed return the deserialized
// function.
//
// *NOTE* In practice, wT will be deserializedTable, but I do not want to rely
// on that behavior for now.
if (deserializeLazily)
if (auto deserializedTable = getSILLoader()->lookupWitnessTable(wT))
return {deserializedTable, Subs};
// If we fail, just return the declaration.
return {wT, Subs};
}
SILFunction *SILModule::getOrCreateFunction(SILLocation loc,
StringRef name,
SILLinkage linkage,
CanSILFunctionType type,
IsBare_t isBareSILFunction,
IsTransparent_t isTransparent) {
if (auto fn = lookUpFunction(name)) {
assert(fn->getLoweredFunctionType() == type);
assert(fn->getLinkage() == linkage);
return fn;
}
auto fn = SILFunction::create(*this, linkage, name, type, nullptr,
loc, isBareSILFunction, isTransparent);
fn->setDebugScope(new (*this) SILDebugScope(loc, *fn));
return fn;
}
SILFunction *SILModule::getOrCreateSharedFunction(SILLocation loc,
StringRef name,
CanSILFunctionType type,
IsBare_t isBareSILFunction,
IsTransparent_t isTransparent) {
return getOrCreateFunction(loc, name, SILLinkage::Shared,
type, isBareSILFunction, isTransparent);
}
ArrayRef<SILType> ValueBase::getTypes() const {
// No results.
if (TypeOrTypeList.isNull())
return ArrayRef<SILType>();
// Arbitrary list of results.
if (auto *TypeList = TypeOrTypeList.dyn_cast<SILTypeList*>())
return ArrayRef<SILType>(TypeList->Types, TypeList->NumTypes);
// Single result.
return TypeOrTypeList.get<SILType>();
}
/// getSILTypeList - Get a uniqued pointer to a SIL type list. This can only
/// be used by SILValue.
SILTypeList *SILModule::getSILTypeList(ArrayRef<SILType> Types) const {
assert(Types.size() > 1 && "Shouldn't use type list for 0 or 1 types");
auto UniqueMap = (SILTypeListUniquingType*)TypeListUniquing;
llvm::FoldingSetNodeID ID;
for (auto T : Types) {
ID.AddPointer(T.getOpaqueValue());
}
// If we already have this type list, just return it.
void *InsertPoint = 0;
if (SILTypeList *TypeList = UniqueMap->FindNodeOrInsertPos(ID, InsertPoint))
return TypeList;
// Otherwise, allocate a new one.
void *NewListP = BPA.Allocate(sizeof(SILTypeList)+
sizeof(SILType)*(Types.size()-1),
alignof(SILTypeList));
SILTypeList *NewList = new (NewListP) SILTypeList();
NewList->NumTypes = Types.size();
std::copy(Types.begin(), Types.end(), NewList->Types);
UniqueMap->InsertNode(NewList, InsertPoint);
return NewList;
}
const IntrinsicInfo &SILModule::getIntrinsicInfo(Identifier ID) {
unsigned OldSize = IntrinsicIDCache.size();
IntrinsicInfo &Info = IntrinsicIDCache[ID];
// If the element was is in the cache, return it.
if (OldSize == IntrinsicIDCache.size())
return Info;
// Otherwise, lookup the ID and Type and store them in the map.
StringRef NameRef = getBuiltinBaseName(getASTContext(), ID.str(), Info.Types);
Info.ID =
(llvm::Intrinsic::ID)getLLVMIntrinsicID(NameRef, !Info.Types.empty());
return Info;
}
const BuiltinInfo &SILModule::getBuiltinInfo(Identifier ID) {
unsigned OldSize = BuiltinIDCache.size();
BuiltinInfo &Info = BuiltinIDCache[ID];
// If the element was is in the cache, return it.
if (OldSize == BuiltinIDCache.size())
return Info;
// Otherwise, lookup the ID and Type and store them in the map.
// Find the matching ID.
StringRef OperationName =
getBuiltinBaseName(getASTContext(), ID.str(), Info.Types);
// Several operation names have suffixes and don't match the name from
// Builtins.def, so handle those first.
if (OperationName.startswith("fence_"))
Info.ID = BuiltinValueKind::Fence;
else if (OperationName.startswith("cmpxchg_"))
Info.ID = BuiltinValueKind::CmpXChg;
else if (OperationName.startswith("atomicrmw_"))
Info.ID = BuiltinValueKind::AtomicRMW;
else {
// Switch through the rest of builtins.
Info.ID = llvm::StringSwitch<BuiltinValueKind>(OperationName)
#define BUILTIN(ID, Name, Attrs) \
.Case(Name, BuiltinValueKind::ID)
#include "swift/AST/Builtins.def"
.Default(BuiltinValueKind::None);
}
return Info;
}
namespace {
/// Visitor that knows how to link in dependencies of SILInstructions.
class SILLinkerVisitor : public SILInstructionVisitor<SILLinkerVisitor, bool> {
using LinkingMode = SILModule::LinkingMode;
/// The SILModule that we are loading from.
SILModule &Mod;
/// The SILLoader that this visitor is using to link.
SerializedSILLoader *Loader;
/// The external SIL source to use when linking this module.
SILExternalSource *ExternalSource = nullptr;
/// Worklist of SILFunctions we are processing.
llvm::SmallVector<SILFunction *, 128> Worklist;
/// A list of callees of the current instruction being visited. cleared after
/// every instruction is visited.
llvm::SmallVector<SILFunction *, 4> FunctionDeserializationWorklist;
/// The current linking mode.
LinkingMode Mode;
public:
SILLinkerVisitor(SILModule &M, SerializedSILLoader *L,
SILModule::LinkingMode LinkingMode,
SILExternalSource *E = nullptr)
: Mod(M), Loader(L), ExternalSource(E), Worklist(),
FunctionDeserializationWorklist(), Mode(LinkingMode) { }
/// Process F, recursively deserializing any thing F may reference.
bool processFunction(SILFunction *F) {
if (Mode == LinkingMode::LinkNone)
return false;
// If F is a declaration, first deserialize it.
auto NewFn = F->isExternalDeclaration() ? Loader->lookupSILFunction(F) : F;
if (!NewFn || NewFn->empty())
return false;
++NumFuncLinked;
// Try to transitively deserialize everything referenced by NewFn.
Worklist.push_back(NewFn);
process();
// Since we successfully processed at least one function, return true.
return true;
}
/// Deserialize the VTable mapped to C if it exists and all SIL the VTable
/// transitively references.
///
/// This method assumes that the caller made sure that no vtable existed in
/// Mod.
SILVTable *processClassDecl(const ClassDecl *C) {
// If we are not linking anything, bail.
if (Mode == LinkingMode::LinkNone)
return nullptr;
// Attempt to load the VTable from the SerializedSILLoader. If we
// fail... bail...
SILVTable *Vtbl = Loader->lookupVTable(C);
if (!Vtbl)
return nullptr;
// Otherwise, add all the vtable functions in Vtbl to the function
// processing list...
for (auto &E : Vtbl->getEntries())
Worklist.push_back(E.second);
// And then transitively deserialize all SIL referenced by those functions.
process();
// Return the deserialized Vtbl.
return Vtbl;
}
/// We do not want to visit callee functions if we just have a value base.
bool visitValueBase(ValueBase *V) { return false; }
bool visitApplyInst(ApplyInst *AI) {
// If we don't have a function ref inst, just return false. We do not have
// interesting callees.
auto *FRI = dyn_cast<FunctionRefInst>(AI->getCallee());
if (!FRI)
return false;
// Ok we have a function ref inst, grab the callee.
SILFunction *Callee = FRI->getReferencedFunction();
// If the linking mode is not link all, AI is not transparent, and the
// callee is not shared, we don't want to perform any linking.
if (!isLinkAll() && !AI->isTransparent() &&
!hasSharedVisibility(Callee->getLinkage()))
return false;
// Otherwise we want to try and link in the callee... Add it to the callee
// list and return true.
addFunctionToWorklist(Callee);
return true;
}
bool visitPartialApplyInst(PartialApplyInst *PAI) {
auto *FRI = dyn_cast<FunctionRefInst>(PAI->getCallee());
if (!FRI)
return false;
SILFunction *Callee = FRI->getReferencedFunction();
if (!isLinkAll() && !Callee->isTransparent() &&
!hasSharedVisibility(Callee->getLinkage()))
return false;
addFunctionToWorklist(Callee);
return true;
}
bool visitFunctionRefInst(FunctionRefInst *FRI) {
// Needed to handle closures which are no longer applied, but are left
// behind as dead code. This shouldn't happen, but if it does don't get into
// an inconsistent state.
SILFunction *Callee = FRI->getReferencedFunction();
if (!isLinkAll() && !Callee->isTransparent() &&
!hasSharedVisibility(Callee->getLinkage()))
return false;
addFunctionToWorklist(FRI->getReferencedFunction());
return true;
}
bool visitProtocolConformance(ProtocolConformance *C,
const Optional<SILDeclRef> &Member) {
// If a null protocol conformance was passed in, just return false.
if (!C)
return false;
// Otherwise try and lookup a witness table for C.
SILWitnessTable *WT = Mod.lookUpWitnessTable(C).first;
// If we don't find any witness table for the conformance, bail and return
// false.
if (!WT) {
Mod.createWitnessTableDeclaration(C,
TypeConverter::getLinkageForProtocolConformance(
C->getRootNormalConformance(), NotForDefinition));
return false;
}
// If the looked up witness table is a declaration, there is nothing we can
// do here. Just bail and return false.
if (WT->isDeclaration())
return false;
bool performFuncDeserialization = false;
// For each entry in the witness table...
for (auto &E : WT->getEntries()) {
// If the entry is a witness method...
if (E.getKind() == SILWitnessTable::WitnessKind::Method) {
// And we are only interested in deserializing a specific requirement
// and don't have that requirement, don't deserialize this method.
if (Member.hasValue() && E.getMethodWitness().Requirement != *Member)
continue;
// Otherwise if it is the requirement we are looking for or we just want
// to deserialize everything, add the function to the list of functions
// to deserialize.
performFuncDeserialization = true;
addFunctionToWorklist(E.getMethodWitness().Witness);
}
}
return performFuncDeserialization;
}
bool visitWitnessMethodInst(WitnessMethodInst *WMI) {
return visitProtocolConformance(WMI->getConformance(), WMI->getMember());
}
bool visitInitExistentialInst(InitExistentialInst *IEI) {
// Link in all protocol conformances that this touches.
//
// TODO: There might be a two step solution where the init_existential_inst
// causes the witness table to be brought in as a declaration and then the
// protocol method inst causes the actual deserialization. For now we are
// not going to be smart about this to enable avoiding any issues with
// visiting the protocol_method before the init_existential_inst.
bool performFuncDeserialization = false;
for (ProtocolConformance *C : IEI->getConformances()) {
performFuncDeserialization |=
visitProtocolConformance(C, Optional<SILDeclRef>());
}
return performFuncDeserialization;
}
bool visitInitExistentialRefInst(InitExistentialRefInst *IERI) {
// Link in all protocol conformances that this touches.
//
// TODO: There might be a two step solution where the init_existential_inst
// causes the witness table to be brought in as a declaration and then the
// protocol method inst causes the actual deserialization. For now we are
// not going to be smart about this to enable avoiding any issues with
// visiting the protocol_method before the init_existential_inst.
bool performFuncDeserialization = false;
for (ProtocolConformance *C : IERI->getConformances()) {
performFuncDeserialization |=
visitProtocolConformance(C, Optional<SILDeclRef>());
}
return performFuncDeserialization;
}
bool visitAllocRefInst(AllocRefInst *ARI) {
// Grab the class decl from the alloc ref inst.
ClassDecl *D = ARI->getType().getClassOrBoundGenericClass();
if (!D)
return false;
return linkInVTable(D);
}
bool visitMetatypeInst(MetatypeInst *MI) {
CanType instTy = MI->getType().castTo<MetatypeType>().getInstanceType();
ClassDecl *C = instTy.getClassOrBoundGenericClass();
if (!C)
return false;
return linkInVTable(C);
}
private:
/// Add a function to our function worklist for processing.
void addFunctionToWorklist(SILFunction *F) {
FunctionDeserializationWorklist.push_back(F);
}
/// Is the current mode link all? Link all implies we should try and link
/// everything, not just transparent/shared functions.
bool isLinkAll() const { return Mode == LinkingMode::LinkAll; }
bool linkInVTable(ClassDecl *D) {
// Attempt to lookup the Vtbl from the SILModule.
SILVTable *Vtbl = Mod.lookUpVTable(D);
// If the SILModule does not have the VTable, attempt to deserialize the
// VTable. If we fail to do that as well, bail.
if (!Vtbl || !(Vtbl = Loader->lookupVTable(D->getName())))
return false;
// Ok we found our VTable. Visit each function referenced by the VTable. If
// any of the functions are external declarations, add them to the worklist
// for processing.
bool Result = false;
for (auto P : Vtbl->getEntries()) {
if (P.second->isExternalDeclaration()) {
Result = true;
addFunctionToWorklist(P.second);
}
}
return Result;
}
// Main loop of the visitor. Called by one of the other *visit* methods.
bool process() {
// Process everything transitively referenced by one of the functions in the
// worklist.
bool Result = false;
while (!Worklist.empty()) {
auto Fn = Worklist.pop_back_val();
for (auto &BB : *Fn) {
for (auto &I : BB) {
// Should we try linking?
if (visit(&I)) {
for (auto F : FunctionDeserializationWorklist) {
// The ExternalSource may wish to rewrite non-empty bodies.
if (!F->empty() && ExternalSource)
if (auto NewFn = ExternalSource->lookupSILFunction(F)) {
NewFn->verify();
Worklist.push_back(NewFn);
++NumFuncLinked;
Result = true;
continue;
}
F->setBare(IsBare);
if (F->empty())
if (auto NewFn = Loader->lookupSILFunction(F)) {
NewFn->verify();
Worklist.push_back(NewFn);
Result = true;
++NumFuncLinked;
}
}
FunctionDeserializationWorklist.clear();
} else {
assert(FunctionDeserializationWorklist.empty() && "Worklist should "
"always be empty if visit does not return true.");
}
}
}
}
// If we return true, we deserialized at least one function.
return Result;
}
};
} // end anonymous namespace.
bool SILModule::linkFunction(SILFunction *Fun, SILModule::LinkingMode Mode) {
return SILLinkerVisitor(*this, getSILLoader(), Mode,
ExternalSource).processFunction(Fun);
}
void SILModule::linkAllWitnessTables() {
getSILLoader()->getAllWitnessTables();
}
void SILModule::linkAllVTables() {
getSILLoader()->getAllVTables();
}
void SILModule::invalidateSILLoader() {
getSILLoader()->invalidateEntry(nullptr);
}
SILVTable *SILModule::lookUpVTable(const ClassDecl *C) {
if (!C)
return nullptr;
// First try to look up R from the lookup table.
auto R = VTableLookupTable.find(C);
if (R != VTableLookupTable.end())
return R->second;
// If that fails, try to deserialize it. If that fails, return nullptr.
SILVTable *Vtbl = SILLinkerVisitor(*this, getSILLoader(),
SILModule::LinkingMode::LinkAll,
ExternalSource).processClassDecl(C);
if (!Vtbl)
return nullptr;
// If we succeeded, map C -> VTbl in the table and return VTbl.
VTableLookupTable[C] = Vtbl;
return Vtbl;
}
SerializedSILLoader *SILModule::getSILLoader() {
// If the SILLoader is null, create it.
if (!SILLoader)
SILLoader = SerializedSILLoader::create(getASTContext(), this,
Callback.get());
// Return the SerializedSILLoader.
return SILLoader.get();
}
/// \brief Given a protocol \p Proto, a member method \p Member and a concrete
/// class type \p ConcreteTy, search the witness tables and return the static
/// function that matches the member with any specializations may be
/// required. Notice that we do not scan the class hierarchy, just the concrete
/// class type.
std::tuple<SILFunction *, SILWitnessTable *, ArrayRef<Substitution>>
SILModule::findFuncInWitnessTable(const ProtocolConformance *C,
SILDeclRef Member) {
// Look up the witness table associated with our protocol conformance from the
// SILModule.
auto Ret = lookUpWitnessTable(C);
// If no witness table was found, bail.
if (!Ret.first) {
DEBUG(llvm::dbgs() << " Failed speculative lookup of witness for: ";
C->dump());
return {nullptr, nullptr, ArrayRef<Substitution>()};
}
// Okay, we found the correct witness table. Now look for the method.
for (auto &Entry : Ret.first->getEntries()) {
// Look at method entries only.
if (Entry.getKind() != SILWitnessTable::WitnessKind::Method)
continue;
SILWitnessTable::MethodWitness MethodEntry = Entry.getMethodWitness();
// Check if this is the member we were looking for.
if (MethodEntry.Requirement != Member)
continue;
return {MethodEntry.Witness, Ret.first, Ret.second};
}
return {nullptr, nullptr, ArrayRef<Substitution>()};
}
static ClassDecl *getClassDeclSuperClass(ClassDecl *Class) {
Type T = Class->getSuperclass();
if (!T)
return nullptr;
return T->getCanonicalType()->getClassOrBoundGenericClass();
}
SILFunction *
SILModule::
lookUpSILFunctionFromVTable(ClassDecl *Class, SILDeclRef Member) {
// Until we reach the top of the class hierarchy...
while (Class) {
// Try to lookup a VTable for Class from the module...
auto *Vtbl = lookUpVTable(Class);
// If the lookup fails, skip Class and attempt to resolve the method in
// the VTable of the super class of Class if it exists...
if (!Vtbl) {
Class = getClassDeclSuperClass(Class);
continue;
}
// Ok, we have a VTable. Try to lookup the SILFunction implementation from
// the VTable.
if (SILFunction *F = Vtbl->getImplementation(*this, Member))
return F;
// If we fail to lookup the SILFunction, again skip Class and attempt to
// resolve the method in the VTable of the super class of Class if such a
// super class exists.
Class = getClassDeclSuperClass(Class);
}
return nullptr;
}