Files
swift-mirror/lib/Serialization/Serialization.cpp
Joe Groff 53221db84c AST: Add 'VarPattern' node.
We decided to go with 'var' as a distributive pattern introducer which applies to bare identifiers within the subpattern. For example, 'var (a, b)' and '(var a, var b)' would be equivalent patterns. To model this, give 'var' its own AST node with a subpattern and remove the introducer loc from NamedPattern.

Swift SVN r5824
2013-06-26 23:01:47 +00:00

1119 lines
35 KiB
C++

//===--- Serialization.cpp - Read and write Swift modules -----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/Subsystems.h"
#include "ModuleFormat.h"
#include "swift/AST/AST.h"
#include "swift/AST/Diagnostics.h"
#include "swift/Serialization/BCRecordLayout.h"
#include "llvm/Bitcode/BitstreamWriter.h"
#include "llvm/Config/config.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
#include <array>
#include <queue>
using namespace swift;
using namespace swift::serialization;
namespace {
typedef ArrayRef<unsigned> FileBufferIDs;
class Serializer {
SmallVector<char, 0> Buffer;
llvm::BitstreamWriter Out;
/// A reusable buffer for emitting records.
SmallVector<uint64_t, 64> ScratchRecord;
/// The TranslationUnit currently being serialized.
const TranslationUnit *TU;
public:
/// Stores a declaration or a type to be written to the AST file.
///
/// Convenience wrapper around a PointerUnion.
class DeclTypeUnion {
using DataTy = llvm::PointerUnion<const Decl *, Type>;
DataTy Data;
explicit DeclTypeUnion(const void *val)
: Data(DataTy::getFromOpaqueValue(const_cast<void *>(val))) {}
public:
/*implicit*/ DeclTypeUnion(const Decl *d)
: Data(d) { }
/*implicit*/ DeclTypeUnion(Type ty)
: Data(ty) { }
bool isDecl() const { return Data.is<const Decl *>(); }
bool isType() const { return Data.is<Type>(); }
Type getType() const { return Data.get<Type>(); }
const Decl *getDecl() const { return Data.get<const Decl *>(); }
const void *getOpaqueValue() const { return Data.getOpaqueValue(); }
static DeclTypeUnion getFromOpaqueValue(void *opaqueVal) {
return DeclTypeUnion(opaqueVal);
}
bool operator==(const DeclTypeUnion &other) const {
return Data == other.Data;
}
};
private:
/// A map from Types and Decls to their serialized IDs.
llvm::DenseMap<DeclTypeUnion, DeclID> DeclIDs;
/// A map from Identifiers to their serialized IDs.
llvm::DenseMap<Identifier, IdentifierID> IdentifierIDs;
/// The queue of types and decls that need to be serialized.
///
/// This is a queue and not simply a vector because serializing one
/// decl-or-type might trigger the serialization of another one.
std::queue<DeclTypeUnion> DeclsAndTypesToWrite;
/// All identifiers that need to be serialized.
std::vector<Identifier> IdentifiersToWrite;
std::array<unsigned, 256> DeclTypeAbbrCodes;
/// The offset of each Decl in the bitstream, indexed by DeclID.
std::vector<BitOffset> DeclOffsets;
/// The offset of each Type in the bitstream, indexed by TypeID.
std::vector<BitOffset> TypeOffsets;
/// The offset of each Identifier in the identifier data block, indexed by
/// IdentifierID.
std::vector<CharOffset> IdentifierOffsets;
/// The last assigned DeclID for decls from this module.
DeclID LastDeclID;
/// The last assigned DeclID for types from this module.
TypeID LastTypeID;
/// The last assigned IdentifierID for types from this module.
IdentifierID LastIdentifierID;
/// True if this module does not fully represent the original source file.
///
/// This is a bring-up hack and will eventually go away.
bool ShouldFallBackToTranslationUnit;
/// Returns the record code for serializing the given vector of offsets.
///
/// This allows the offset-serialization code to be generic over all kinds
/// of offsets.
unsigned getOffsetRecordCode(const std::vector<BitOffset> &values) {
if (&values == &DeclOffsets)
return index_block::DECL_OFFSETS;
if (&values == &TypeOffsets)
return index_block::TYPE_OFFSETS;
if (&values == &IdentifierOffsets)
return index_block::IDENTIFIER_OFFSETS;
llvm_unreachable("unknown offset kind");
}
/// Records the use of the given Decl.
///
/// The Decl will be scheduled for serialization if necessary.
///
/// \returns The ID for the given Decl in this module.
DeclID addDeclRef(const Decl *D);
/// Records the use of the given Type.
///
/// The Type will be scheduled for serialization if necessary.
///
/// \returns The ID for the given Type in this module.
TypeID addTypeRef(Type ty);
/// Records the use of the given Identifier.
///
/// The Identifier will be scheduled for serialization if necessary.
///
/// \returns The ID for the given Identifier in this module.
IdentifierID addIdentifierRef(Identifier ident);
/// Writes the BLOCKINFO block.
void writeBlockInfoBlock();
/// Writes the Swift module file header, BLOCKINFO block, and
/// non-TU-specific metadata.
void writeHeader();
/// Writes the dependencies used to build this module: its imported
/// modules and its source files.
void writeInputFiles(const TranslationUnit *TU, FileBufferIDs inputFiles);
/// Writes the given pattern, recursively.
void writePattern(const Pattern *pattern);
/// Writes a reference to a decl in another module.
///
/// Returns false if the decl cannot be serialized without losing
/// information.
bool writeCrossReference(const Decl *D);
/// Writes the given decl.
///
/// Returns false if the decl cannot be serialized without losing
/// information.
bool writeDecl(const Decl *D);
/// Writes the given type.
///
/// Returns false if the type cannot be serialized without losing
/// information.
bool writeType(Type ty);
/// Registers the abbreviation for the given decl or type layout.
template <typename Layout>
void registerDeclTypeAbbr() {
using AbbrArrayTy = decltype(DeclTypeAbbrCodes);
static_assert(Layout::Code <= std::tuple_size<AbbrArrayTy>::value,
"layout has invalid record code");
DeclTypeAbbrCodes[Layout::Code] = Layout::emitAbbrev(Out);
}
/// Writes all decls and types in the DeclsToWrite queue.
///
/// This will continue until the queue is empty, even if the items currently
/// in the queue trigger the serialization of additional decls and/or types.
void writeAllDeclsAndTypes();
/// Writes all identifiers in the IdentifiersToWrite queue.
///
/// This must be called after writeAllDeclsAndTypes(), since that may add
/// additional identifiers to the pool.
void writeAllIdentifiers();
/// Writes the offsets for decls or types.
void writeOffsets(const index_block::OffsetsLayout &Offsets,
const std::vector<BitOffset> &values);
/// Top-level entry point for serializing a translation unit module.
void writeTranslationUnit(const TranslationUnit *TU);
public:
Serializer()
: Out(Buffer), TU(nullptr), LastDeclID(0), LastTypeID(0),
ShouldFallBackToTranslationUnit(false) {
}
/// Serialize a translation unit to the given stream.
void writeToStream(raw_ostream &os, const TranslationUnit *TU,
FileBufferIDs inputFiles);
};
} // end anonymous namespace
namespace llvm {
template<> struct DenseMapInfo<Serializer::DeclTypeUnion> {
using DeclTypeUnion = Serializer::DeclTypeUnion;
static inline DeclTypeUnion getEmptyKey() { return nullptr; }
static inline DeclTypeUnion getTombstoneKey() { return Type(); }
static unsigned getHashValue(const DeclTypeUnion &val) {
return DenseMapInfo<const void *>::getHashValue(val.getOpaqueValue());
}
static bool isEqual(const DeclTypeUnion &lhs, const DeclTypeUnion &rhs) {
return lhs == rhs;
}
};
}
static const Decl *getDeclForContext(const DeclContext *DC) {
switch (DC->getContextKind()) {
case DeclContextKind::TranslationUnit:
// Use a null decl to represent the translation unit.
// FIXME: multiple TUs within a module?
return nullptr;
case DeclContextKind::BuiltinModule:
llvm_unreachable("builtins should be handled explicitly");
case DeclContextKind::SerializedModule:
case DeclContextKind::ClangModule:
llvm_unreachable("shouldn't serialize decls from an imported module");
case DeclContextKind::TopLevelCodeDecl:
llvm_unreachable("shouldn't serialize the main module");
case DeclContextKind::CapturingExpr: {
// FIXME: What about default functions?
assert(isa<FuncExpr>(DC) &&
"shouldn't serialize decls from anonymous closures");
auto FD = cast<FuncExpr>(DC)->getDecl();
assert(FD && "shouldn't serialize decls from anonymous closures");
return FD;
}
case DeclContextKind::NominalTypeDecl:
return cast<NominalTypeDecl>(DC);
case DeclContextKind::ExtensionDecl:
return cast<ExtensionDecl>(DC);
case DeclContextKind::ConstructorDecl:
return cast<ConstructorDecl>(DC);
case DeclContextKind::DestructorDecl:
return cast<DestructorDecl>(DC);
}
}
DeclID Serializer::addDeclRef(const Decl *D) {
if (!D)
return 0;
DeclID &id = DeclIDs[D];
if (id != 0)
return id;
id = ++LastDeclID;
DeclsAndTypesToWrite.push(D);
return id;
}
TypeID Serializer::addTypeRef(Type ty) {
if (!ty)
return 0;
TypeID &id = DeclIDs[ty];
if (id != 0)
return id;
id = ++LastTypeID;
DeclsAndTypesToWrite.push(ty);
return id;
}
IdentifierID Serializer::addIdentifierRef(Identifier ident) {
if (ident.empty())
return 0;
IdentifierID &id = IdentifierIDs[ident];
if (id != 0)
return id;
id = ++LastIdentifierID;
IdentifiersToWrite.push_back(ident);
return id;
}
/// Record the name of a block.
static void emitBlockID(llvm::BitstreamWriter &out, unsigned ID,
StringRef name,
SmallVectorImpl<unsigned char> &nameBuffer) {
SmallVector<unsigned, 1> idBuffer;
idBuffer.push_back(ID);
out.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETBID, idBuffer);
// Emit the block name if present.
if (name.empty())
return;
nameBuffer.resize(name.size());
memcpy(nameBuffer.data(), name.data(), name.size());
out.EmitRecord(llvm::bitc::BLOCKINFO_CODE_BLOCKNAME, nameBuffer);
}
/// Record the name of a record within a block.
static void emitRecordID(llvm::BitstreamWriter &out, unsigned ID,
StringRef name,
SmallVectorImpl<unsigned char> &nameBuffer) {
assert(ID < 256 && "can't fit record ID in next to name");
nameBuffer.resize(name.size()+1);
nameBuffer[0] = ID;
memcpy(nameBuffer.data()+1, name.data(), name.size());
out.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETRECORDNAME, nameBuffer);
}
void Serializer::writeBlockInfoBlock() {
BCBlockRAII restoreBlock(Out, llvm::bitc::BLOCKINFO_BLOCK_ID, 2);
SmallVector<unsigned char, 64> nameBuffer;
#define BLOCK(X) emitBlockID(Out, X ## _ID, #X, nameBuffer)
#define RECORD(K, X) emitRecordID(Out, K::X, #X, nameBuffer)
BLOCK(CONTROL_BLOCK);
RECORD(control_block, METADATA);
BLOCK(INPUT_BLOCK);
RECORD(input_block, SOURCE_FILE);
RECORD(input_block, IMPORTED_MODULE);
BLOCK(DECLS_AND_TYPES_BLOCK);
RECORD(decls_block, BUILTIN_TYPE);
RECORD(decls_block, NAME_ALIAS_TYPE);
RECORD(decls_block, STRUCT_TYPE);
RECORD(decls_block, PAREN_TYPE);
RECORD(decls_block, TUPLE_TYPE);
RECORD(decls_block, TUPLE_TYPE_ELT);
RECORD(decls_block, IDENTIFIER_TYPE);
RECORD(decls_block, FUNCTION_TYPE);
RECORD(decls_block, METATYPE_TYPE);
RECORD(decls_block, LVALUE_TYPE);
RECORD(decls_block, TYPE_ALIAS_DECL);
RECORD(decls_block, STRUCT_DECL);
RECORD(decls_block, CONSTRUCTOR_DECL);
RECORD(decls_block, VAR_DECL);
RECORD(decls_block, FUNC_DECL);
RECORD(decls_block, PATTERN_BINDING_DECL);
RECORD(decls_block, PAREN_PATTERN);
RECORD(decls_block, TUPLE_PATTERN);
RECORD(decls_block, TUPLE_PATTERN_ELT);
RECORD(decls_block, NAMED_PATTERN);
RECORD(decls_block, ANY_PATTERN);
RECORD(decls_block, TYPED_PATTERN);
RECORD(decls_block, XREF);
RECORD(decls_block, DECL_CONTEXT);
BLOCK(IDENTIFIER_DATA_BLOCK);
RECORD(identifier_block, IDENTIFIER_DATA);
BLOCK(INDEX_BLOCK);
RECORD(index_block, TYPE_OFFSETS);
RECORD(index_block, DECL_OFFSETS);
RECORD(index_block, IDENTIFIER_OFFSETS);
RECORD(index_block, TOP_LEVEL_DECLS);
BLOCK(FALL_BACK_TO_TRANSLATION_UNIT);
#undef BLOCK
#undef RECORD
}
void Serializer::writeHeader() {
writeBlockInfoBlock();
{
BCBlockRAII restoreBlock(Out, CONTROL_BLOCK_ID, 3);
control_block::MetadataLayout Metadata(Out);
// FIXME: put a real version in here.
#ifdef LLVM_VERSION_INFO
# define EXTRA_VERSION_STRING PACKAGE_STRING LLVM_VERSION_INFO
#else
# define EXTRA_VERSION_STRING PACKAGE_STRING
#endif
Metadata.emit(ScratchRecord,
VERSION_MAJOR, VERSION_MINOR, EXTRA_VERSION_STRING);
#undef EXTRA_VERSION_STRING
}
}
void Serializer::writeInputFiles(const TranslationUnit *TU,
FileBufferIDs inputFiles) {
BCBlockRAII restoreBlock(Out, INPUT_BLOCK_ID, 3);
input_block::SourceFileLayout SourceFile(Out);
input_block::ImportedModuleLayout ImportedModule(Out);
auto &sourceMgr = TU->Ctx.SourceMgr;
for (auto bufferID : inputFiles) {
// FIXME: We could really use a real FileManager here.
auto buffer = sourceMgr.getMemoryBuffer(bufferID);
llvm::SmallString<128> path(buffer->getBufferIdentifier());
llvm::error_code err;
err = llvm::sys::fs::make_absolute(path);
if (err)
continue;
SourceFile.emit(ScratchRecord, path);
}
SmallVector<StringRef, 16> imported;
for (auto &moduleEntry : TU->Ctx.LoadedModules) {
if (moduleEntry.second == TU)
continue;
// FIXME: Submodules? Packages?
imported.push_back(moduleEntry.second->Name.str());
}
// Arbitrarily sort by name.
// FIXME: It would be more efficient to linearize the dependency graph, but
// that's more difficult, especially with Clang modules in the mix. This is
// at least deterministic.
std::sort(imported.begin(), imported.end());
for (auto name : imported)
ImportedModule.emit(ScratchRecord, name);
}
void Serializer::writePattern(const Pattern *pattern) {
using namespace decls_block;
assert(pattern && "null pattern");
switch (pattern->getKind()) {
case PatternKind::Paren: {
unsigned abbrCode = DeclTypeAbbrCodes[ParenPatternLayout::Code];
ParenPatternLayout::emitRecord(Out, ScratchRecord, abbrCode);
writePattern(cast<ParenPattern>(pattern)->getSubPattern());
break;
}
case PatternKind::Tuple: {
auto tuple = cast<TuplePattern>(pattern);
unsigned abbrCode = DeclTypeAbbrCodes[TuplePatternLayout::Code];
TuplePatternLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(tuple->getType()),
tuple->getNumFields());
abbrCode = DeclTypeAbbrCodes[TuplePatternEltLayout::Code];
for (auto &elt : tuple->getFields()) {
// FIXME: Handle default arguments?
TuplePatternEltLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(elt.getVarargBaseType()));
writePattern(elt.getPattern());
}
break;
}
case PatternKind::Named: {
auto named = cast<NamedPattern>(pattern);
unsigned abbrCode = DeclTypeAbbrCodes[NamedPatternLayout::Code];
NamedPatternLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclRef(named->getDecl()));
break;
}
case PatternKind::Any: {
unsigned abbrCode = DeclTypeAbbrCodes[AnyPatternLayout::Code];
AnyPatternLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(pattern->getType()));
break;
}
case PatternKind::Typed: {
auto typed = cast<TypedPattern>(pattern);
unsigned abbrCode = DeclTypeAbbrCodes[TypedPatternLayout::Code];
TypedPatternLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(typed->getType()));
writePattern(typed->getSubPattern());
break;
}
case PatternKind::Isa: {
auto isa = cast<IsaPattern>(pattern);
unsigned abbrCode = DeclTypeAbbrCodes[IsaPatternLayout::Code];
IsaPatternLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(isa->getCastTypeLoc().getType()));
break;
}
case PatternKind::NominalType: {
auto nom = cast<NominalTypePattern>(pattern);
unsigned abbrCode = DeclTypeAbbrCodes[NominalTypePatternLayout::Code];
NominalTypePatternLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(nom->getCastTypeLoc().getType()));
writePattern(nom->getSubPattern());
break;
}
case PatternKind::Expr:
llvm_unreachable("FIXME: not implemented");
case PatternKind::Var: {
auto var = cast<VarPattern>(pattern);
unsigned abbrCode = DeclTypeAbbrCodes[VarPatternLayout::Code];
VarPatternLayout::emitRecord(Out, ScratchRecord, abbrCode);
writePattern(var->getSubPattern());
break;
}
}
}
bool Serializer::writeCrossReference(const Decl *D) {
using namespace decls_block;
SmallVector<IdentifierID, 4> accessPath;
XRefKind kind;
TypeID typeID;
if (auto value = dyn_cast<ValueDecl>(D)) {
kind = XRefKind::SwiftValue;
accessPath.push_back(addIdentifierRef(value->getName()));
// Make sure we don't create a self-referential type.
Type ty = value->getType();
if (ty->is<MetaTypeType>())
ty = nullptr;
typeID = addTypeRef(ty);
} else if (auto op = dyn_cast<OperatorDecl>(D)) {
kind = XRefKind::SwiftOperator;
accessPath.push_back(addIdentifierRef(op->getName()));
switch (op->getKind()) {
case DeclKind::InfixOperator:
typeID = OperatorKind::Infix;
break;
case DeclKind::PrefixOperator:
typeID = OperatorKind::Prefix;
break;
case DeclKind::PostfixOperator:
typeID = OperatorKind::Postfix;
break;
default:
llvm_unreachable("unknown operator kind");
}
} else {
llvm_unreachable("cannot cross-reference this kind of decl");
}
// Build up the access path by walking through parent DeclContexts.
const DeclContext *DC;
for (DC = D->getDeclContext(); !DC->isModuleContext(); DC = DC->getParent()) {
// FIXME: Handle references to things in extensions.
if (isa<ExtensionDecl>(D))
return false;
auto value = cast<ValueDecl>(getDeclForContext(DC));
accessPath.push_back(addIdentifierRef(value->getName()));
}
accessPath.push_back(addIdentifierRef(cast<Module>(DC)->Name));
// Store the access path in forward order.
std::reverse(accessPath.begin(), accessPath.end());
unsigned abbrCode = DeclTypeAbbrCodes[XRefLayout::Code];
XRefLayout::emitRecord(Out, ScratchRecord, abbrCode,
kind, typeID, accessPath);
return true;
}
bool Serializer::writeDecl(const Decl *D) {
using namespace decls_block;
assert(!D->isInvalid() && "cannot create a module with an invalid decl");
if (D->hasClangNode())
return false;
Module *M = D->getModuleContext();
if (M != TU)
return writeCrossReference(D);
switch (D->getKind()) {
case DeclKind::Import:
// FIXME: Do imported module names appear in the DeclContext of the
// serialized module?
return true;
case DeclKind::Extension:
return false;
case DeclKind::PatternBinding: {
auto binding = cast<PatternBindingDecl>(D);
const Decl *DC = getDeclForContext(binding->getDeclContext());
unsigned abbrCode = DeclTypeAbbrCodes[PatternBindingLayout::Code];
PatternBindingLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclRef(DC), binding->isImplicit());
writePattern(binding->getPattern());
// Ignore initializer; external clients don't need to know about it.
return true;
}
case DeclKind::TopLevelCode:
// Top-level code is ignored; external clients don't need to know about it.
return true;
case DeclKind::InfixOperator:
case DeclKind::PrefixOperator:
case DeclKind::PostfixOperator:
return false;
case DeclKind::TypeAlias: {
auto typeAlias = cast<TypeAliasDecl>(D);
assert(!typeAlias->isObjC() && "ObjC typealias is not meaningful");
// FIXME: Handle attributes.
// FIXME: Do typealiases have any interesting attributes? Resilience?
if (!typeAlias->getAttrs().empty())
return false;
const Decl *DC = getDeclForContext(typeAlias->getDeclContext());
Type underlying;
if (typeAlias->hasUnderlyingType())
underlying = typeAlias->getUnderlyingType();
SmallVector<TypeID, 4> inherited;
for (auto parent : typeAlias->getInherited())
inherited.push_back(addTypeRef(parent.getType()));
unsigned abbrCode = DeclTypeAbbrCodes[TypeAliasLayout::Code];
TypeAliasLayout::emitRecord(Out, ScratchRecord, abbrCode,
addIdentifierRef(typeAlias->getName()),
addDeclRef(DC),
addTypeRef(underlying),
typeAlias->isGenericParameter(),
typeAlias->isImplicit(),
inherited);
return true;
}
case DeclKind::Struct: {
auto theStruct = cast<StructDecl>(D);
// FIXME: Handle attributes.
if (!theStruct->getAttrs().empty())
return false;
// FIXME: Handle generics.
if (theStruct->getGenericParams())
return false;
const Decl *DC = getDeclForContext(theStruct->getDeclContext());
SmallVector<TypeID, 4> inherited;
for (auto parent : theStruct->getInherited())
inherited.push_back(addTypeRef(parent.getType()));
unsigned abbrCode = DeclTypeAbbrCodes[StructLayout::Code];
StructLayout::emitRecord(Out, ScratchRecord, abbrCode,
addIdentifierRef(theStruct->getName()),
addDeclRef(DC),
theStruct->isImplicit(),
inherited);
abbrCode = DeclTypeAbbrCodes[DeclContextLayout::Code];
SmallVector<DeclID, 16> memberIDs;
for (auto member : theStruct->getMembers())
memberIDs.push_back(addDeclRef(member));
DeclContextLayout::emitRecord(Out, ScratchRecord, abbrCode, memberIDs);
return true;
}
case DeclKind::OneOf:
case DeclKind::Class:
case DeclKind::Protocol:
return false;
case DeclKind::Var: {
auto var = cast<VarDecl>(D);
// FIXME: Handle attributes.
if (!var->getAttrs().empty())
return false;
const Decl *DC = getDeclForContext(var->getDeclContext());
unsigned abbrCode = DeclTypeAbbrCodes[VarLayout::Code];
VarLayout::emitRecord(Out, ScratchRecord, abbrCode,
addIdentifierRef(var->getName()),
addDeclRef(DC),
var->isImplicit(),
var->isNeverUsedAsLValue(),
addTypeRef(var->getType()),
addDeclRef(var->getGetter()),
addDeclRef(var->getSetter()),
addDeclRef(var->getOverriddenDecl()));
return true;
}
case DeclKind::Func: {
auto fn = cast<FuncDecl>(D);
// FIXME: Handle attributes.
if (!fn->getAttrs().empty())
return false;
// FIXME: Handle generics.
if (fn->getGenericParams())
return false;
const Decl *DC = getDeclForContext(fn->getDeclContext());
const Decl *associated = fn->getGetterOrSetterDecl();
if (!associated)
associated = fn->getOperatorDecl();
unsigned abbrCode = DeclTypeAbbrCodes[FuncLayout::Code];
FuncLayout::emitRecord(Out, ScratchRecord, abbrCode,
addIdentifierRef(fn->getName()),
addDeclRef(DC),
fn->isImplicit(),
fn->isNeverUsedAsLValue(),
addTypeRef(fn->getType()),
fn->isStatic(),
addDeclRef(associated),
addDeclRef(fn->getOverriddenDecl()));
// Write both argument and body parameters. This is important for proper
// error messages with selector-style declarations.
for (auto pattern : fn->getBody()->getArgParamPatterns())
writePattern(pattern);
for (auto pattern : fn->getBody()->getBodyParamPatterns())
writePattern(pattern);
return true;
}
case DeclKind::OneOfElement:
case DeclKind::Subscript:
return false;
case DeclKind::Constructor: {
auto ctor = cast<ConstructorDecl>(D);
// FIXME: Handle attributes.
if (!ctor->getAttrs().empty())
return false;
// FIXME: Handle generics.
if (ctor->isGeneric())
return false;
// FIXME: Handle allocating constructors.
// FIXME: Does this ever occur in Swift modules? If it's only used by the
// importer, perhaps we don't need to worry about it here.
if (ctor->getAllocThisExpr())
return false;
const DeclContext *DC = ctor->getDeclContext();
auto implicitThis = ctor->getImplicitThisDecl();
unsigned abbrCode = DeclTypeAbbrCodes[ConstructorLayout::Code];
ConstructorLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclRef(cast<NominalTypeDecl>(DC)),
ctor->isImplicit(),
addTypeRef(ctor->getType()),
addDeclRef(implicitThis));
writePattern(ctor->getArguments());
return true;
}
case DeclKind::Destructor:
return false;
}
}
/// Translate from the AST calling convention enum to the Serialization enum
/// values, which are guaranteed to be stable.
static uint8_t getRawStableCC(swift::AbstractCC cc) {
switch (cc) {
#define CASE(THE_CC) \
case swift::AbstractCC::THE_CC: \
return serialization::AbstractCC::THE_CC;
CASE(C)
CASE(ObjCMethod)
CASE(Freestanding)
CASE(Method)
#undef CASE
}
}
bool Serializer::writeType(Type ty) {
using namespace decls_block;
switch (ty.getPointer()->getKind()) {
case TypeKind::Error:
llvm_unreachable("should not serialize an error type");
case TypeKind::BuiltinInteger:
case TypeKind::BuiltinFloat:
case TypeKind::BuiltinRawPointer:
case TypeKind::BuiltinOpaquePointer:
case TypeKind::BuiltinObjectPointer:
case TypeKind::BuiltinObjCPointer:
case TypeKind::BuiltinVector:
llvm_unreachable("should always be accessed through an implicit typealias");
case TypeKind::UnstructuredUnresolved:
return false;
case TypeKind::NameAlias: {
auto nameAlias = cast<NameAliasType>(ty.getPointer());
const TypeAliasDecl *typeAlias = nameAlias->getDecl();
// Short-circuit builtin typealiases by just serializing their names; we'll
// look them up in the Builtin module upon deserialization.
if (isa<BuiltinModule>(typeAlias->getModuleContext())) {
// FIXME: Come up with a compact code for common builtins.
unsigned abbrCode = DeclTypeAbbrCodes[BuiltinTypeLayout::Code];
BuiltinTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
typeAlias->getName().str());
return true;
}
unsigned abbrCode = DeclTypeAbbrCodes[NameAliasTypeLayout::Code];
NameAliasTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclRef(typeAlias));
return true;
}
case TypeKind::Identifier: {
auto identTy = cast<IdentifierType>(ty.getPointer());
unsigned abbrCode = DeclTypeAbbrCodes[IdentifierTypeLayout::Code];
IdentifierTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(identTy->getMappedType()));
return true;
}
case TypeKind::Paren: {
auto parenTy = cast<ParenType>(ty.getPointer());
unsigned abbrCode = DeclTypeAbbrCodes[ParenTypeLayout::Code];
ParenTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(parenTy->getUnderlyingType()));
return true;
}
case TypeKind::Tuple: {
auto tupleTy = cast<TupleType>(ty.getPointer());
unsigned abbrCode = DeclTypeAbbrCodes[TupleTypeLayout::Code];
TupleTypeLayout::emitRecord(Out, ScratchRecord, abbrCode);
abbrCode = DeclTypeAbbrCodes[TupleTypeEltLayout::Code];
for (auto &elt : tupleTy->getFields()) {
// FIXME: Handle initializers.
TupleTypeEltLayout::emitRecord(Out, ScratchRecord, abbrCode,
addIdentifierRef(elt.getName()),
addTypeRef(elt.getType()),
addTypeRef(elt.getVarargBaseTy()));
}
return true;
}
case TypeKind::Struct: {
auto structTy = cast<StructType>(ty.getPointer());
unsigned abbrCode = DeclTypeAbbrCodes[StructTypeLayout::Code];
StructTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclRef(structTy->getDecl()),
addTypeRef(structTy->getParent()));
return true;
}
case TypeKind::OneOf:
case TypeKind::Class:
case TypeKind::Protocol:
return false;
case TypeKind::MetaType: {
auto metatypeTy = cast<MetaTypeType>(ty.getPointer());
unsigned abbrCode = DeclTypeAbbrCodes[MetaTypeTypeLayout::Code];
MetaTypeTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(metatypeTy->getInstanceType()));
return true;
}
case TypeKind::Module:
return false;
case TypeKind::Archetype:
return false;
case TypeKind::Substituted:
return false;
case TypeKind::Function: {
auto fnTy = cast<FunctionType>(ty.getPointer());
unsigned abbrCode = DeclTypeAbbrCodes[FunctionTypeLayout::Code];
FunctionTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(fnTy->getInput()),
addTypeRef(fnTy->getResult()),
getRawStableCC(fnTy->getAbstractCC()),
fnTy->isAutoClosure(),
fnTy->isThin(),
fnTy->isBlock());
return true;
}
case TypeKind::PolymorphicFunction:
return false;
case TypeKind::Array:
case TypeKind::ArraySlice:
return false;
case TypeKind::ProtocolComposition:
return false;
case TypeKind::LValue: {
auto lValueTy = cast<LValueType>(ty.getPointer());
unsigned abbrCode = DeclTypeAbbrCodes[LValueTypeLayout::Code];
LValueTypeLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(lValueTy->getObjectType()),
lValueTy->getQualifiers().isImplicit(),
!lValueTy->getQualifiers().isSettable());
return true;
}
case TypeKind::UnboundGeneric:
return false;
case TypeKind::BoundGenericClass:
case TypeKind::BoundGenericOneOf:
case TypeKind::BoundGenericStruct:
return false;
case TypeKind::TypeVariable:
return false;
}
}
void Serializer::writeAllDeclsAndTypes() {
BCBlockRAII restoreBlock(Out, DECLS_AND_TYPES_BLOCK_ID, 8);
{
using namespace decls_block;
registerDeclTypeAbbr<BuiltinTypeLayout>();
registerDeclTypeAbbr<NameAliasTypeLayout>();
registerDeclTypeAbbr<StructTypeLayout>();
registerDeclTypeAbbr<ParenTypeLayout>();
registerDeclTypeAbbr<TupleTypeLayout>();
registerDeclTypeAbbr<TupleTypeEltLayout>();
registerDeclTypeAbbr<IdentifierTypeLayout>();
registerDeclTypeAbbr<FunctionTypeLayout>();
registerDeclTypeAbbr<MetaTypeTypeLayout>();
registerDeclTypeAbbr<LValueTypeLayout>();
registerDeclTypeAbbr<TypeAliasLayout>();
registerDeclTypeAbbr<StructLayout>();
registerDeclTypeAbbr<ConstructorLayout>();
registerDeclTypeAbbr<VarLayout>();
registerDeclTypeAbbr<FuncLayout>();
registerDeclTypeAbbr<PatternBindingLayout>();
registerDeclTypeAbbr<ParenPatternLayout>();
registerDeclTypeAbbr<TuplePatternLayout>();
registerDeclTypeAbbr<TuplePatternEltLayout>();
registerDeclTypeAbbr<NamedPatternLayout>();
registerDeclTypeAbbr<AnyPatternLayout>();
registerDeclTypeAbbr<TypedPatternLayout>();
registerDeclTypeAbbr<XRefLayout>();
registerDeclTypeAbbr<DeclContextLayout>();
}
while (!DeclsAndTypesToWrite.empty()) {
DeclTypeUnion next = DeclsAndTypesToWrite.front();
DeclsAndTypesToWrite.pop();
DeclID id = DeclIDs[next];
assert(id != 0 && "decl or type not referenced properly");
auto &offsets = next.isDecl() ? DeclOffsets : TypeOffsets;
assert((id - 1) == offsets.size());
offsets.push_back(Out.GetCurrentBitNo());
// If we can't handle a decl or type, mark the module as incomplete.
// FIXME: Eventually we should assert this.
bool success = next.isDecl() ? writeDecl(next.getDecl())
: writeType(next.getType());
if (!success)
ShouldFallBackToTranslationUnit = true;
}
}
void Serializer::writeAllIdentifiers() {
BCBlockRAII restoreBlock(Out, IDENTIFIER_DATA_BLOCK_ID, 3);
identifier_block::IdentifierDataLayout IdentifierData(Out);
llvm::SmallString<4096> stringData;
// Make sure no identifier has an offset of 0.
stringData.push_back('\0');
for (Identifier ident : IdentifiersToWrite) {
IdentifierOffsets.push_back(stringData.size());
stringData.append(ident.get());
stringData.push_back('\0');
}
IdentifierData.emit(ScratchRecord, stringData.str());
}
void Serializer::writeOffsets(const index_block::OffsetsLayout &Offsets,
const std::vector<BitOffset> &values) {
Offsets.emit(ScratchRecord, getOffsetRecordCode(values), values);
}
void Serializer::writeTranslationUnit(const TranslationUnit *TU) {
assert(!this->TU && "already serializing a translation unit");
this->TU = TU;
SmallVector<DeclID, 32> topLevelIDs;
for (auto D : TU->Decls) {
if (isa<ImportDecl>(D))
continue;
topLevelIDs.push_back(addDeclRef(D));
}
writeAllDeclsAndTypes();
writeAllIdentifiers();
{
BCBlockRAII restoreBlock(Out, INDEX_BLOCK_ID, 3);
index_block::OffsetsLayout Offsets(Out);
writeOffsets(Offsets, DeclOffsets);
writeOffsets(Offsets, TypeOffsets);
writeOffsets(Offsets, IdentifierOffsets);
index_block::TopLevelDeclsLayout TopLevelDecls(Out);
TopLevelDecls.emit(ScratchRecord, topLevelIDs);
}
#ifndef NDEBUG
this->TU = nullptr;
#endif
}
void Serializer::writeToStream(raw_ostream &os, const TranslationUnit *TU,
FileBufferIDs inputFiles) {
// Write the signature through the BitstreamWriter for alignment purposes.
for (unsigned char byte : SIGNATURE)
Out.Emit(byte, 8);
writeHeader();
writeInputFiles(TU, inputFiles);
writeTranslationUnit(TU);
if (ShouldFallBackToTranslationUnit)
BCBlockRAII(Out, FALL_BACK_TO_TRANSLATION_UNIT_ID, 2);
os.write(Buffer.data(), Buffer.size());
os.flush();
Buffer.clear();
}
void swift::serialize(const TranslationUnit *TU, const char *outputPath,
FileBufferIDs inputFiles) {
std::string errorInfo;
llvm::raw_fd_ostream out(outputPath, errorInfo,
llvm::raw_fd_ostream::F_Binary);
if (out.has_error() || !errorInfo.empty()) {
TU->Ctx.Diags.diagnose(SourceLoc(), diag::error_opening_output, outputPath,
errorInfo);
out.clear_error();
return;
}
Serializer S;
S.writeToStream(out, TU, inputFiles);
}