Files
swift-mirror/lib/SILOptimizer/Transforms/OwnershipModelEliminator.cpp
Michael Gottesman 5d157c55e9 [ome] Make sure to skip functions that do not have ownership.
This is not an actual bug since given where OME is in the pipeline today it will
only process ossa functions. But philosophically this is the right thing to do.
2019-01-08 12:45:12 -08:00

343 lines
12 KiB
C++

//===--- OwnershipModelEliminator.cpp - Eliminate SILOwnership Instr. -----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// This file contains a small pass that lowers SIL ownership instructions to
/// their constituent operations. This will enable us to separate
/// implementation
/// of Semantic ARC in SIL and SILGen from ensuring that all of the optimizer
/// passes respect Semantic ARC. This is done by running this pass right after
/// SILGen and as the pass pipeline is updated, moving this pass further and
/// further back in the pipeline.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-ownership-model-eliminator"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "llvm/Support/CommandLine.h"
using namespace swift;
// Utility command line argument to dump the module before we eliminate
// ownership from it.
static llvm::cl::opt<std::string>
DumpBefore("sil-dump-before-ome-to-path", llvm::cl::Hidden);
//===----------------------------------------------------------------------===//
// Implementation
//===----------------------------------------------------------------------===//
namespace {
struct OwnershipModelEliminatorVisitor
: SILInstructionVisitor<OwnershipModelEliminatorVisitor, bool> {
SILBuilder &B;
SILOpenedArchetypesTracker OpenedArchetypesTracker;
OwnershipModelEliminatorVisitor(SILBuilder &B)
: B(B), OpenedArchetypesTracker(&B.getFunction()) {
B.setOpenedArchetypesTracker(&OpenedArchetypesTracker);
}
void beforeVisit(SILInstruction *I) {
B.setInsertionPoint(I);
B.setCurrentDebugScope(I->getDebugScope());
}
bool visitSILInstruction(SILInstruction *I) { return false; }
bool visitLoadInst(LoadInst *LI);
bool visitStoreInst(StoreInst *SI);
bool visitStoreBorrowInst(StoreBorrowInst *SI);
bool visitCopyValueInst(CopyValueInst *CVI);
bool visitDestroyValueInst(DestroyValueInst *DVI);
bool visitLoadBorrowInst(LoadBorrowInst *LBI);
bool visitBeginBorrowInst(BeginBorrowInst *BBI) {
BBI->replaceAllUsesWith(BBI->getOperand());
BBI->eraseFromParent();
return true;
}
bool visitEndBorrowInst(EndBorrowInst *EBI) {
EBI->eraseFromParent();
return true;
}
bool visitEndLifetimeInst(EndLifetimeInst *ELI) {
ELI->eraseFromParent();
return true;
}
bool visitUncheckedOwnershipConversionInst(
UncheckedOwnershipConversionInst *UOCI) {
UOCI->replaceAllUsesWith(UOCI->getOperand());
UOCI->eraseFromParent();
return true;
}
bool visitUnmanagedRetainValueInst(UnmanagedRetainValueInst *URVI);
bool visitUnmanagedReleaseValueInst(UnmanagedReleaseValueInst *URVI);
bool visitUnmanagedAutoreleaseValueInst(UnmanagedAutoreleaseValueInst *UAVI);
bool visitCheckedCastBranchInst(CheckedCastBranchInst *CBI);
bool visitSwitchEnumInst(SwitchEnumInst *SWI);
bool visitDestructureStructInst(DestructureStructInst *DSI);
bool visitDestructureTupleInst(DestructureTupleInst *DTI);
};
} // end anonymous namespace
bool OwnershipModelEliminatorVisitor::visitLoadInst(LoadInst *LI) {
auto Qualifier = LI->getOwnershipQualifier();
// If the qualifier is unqualified, there is nothing further to do
// here. Just return.
if (Qualifier == LoadOwnershipQualifier::Unqualified)
return false;
SILValue Result = B.emitLoadValueOperation(LI->getLoc(), LI->getOperand(),
LI->getOwnershipQualifier());
// Then remove the qualified load and use the unqualified load as the def of
// all of LI's uses.
LI->replaceAllUsesWith(Result);
LI->eraseFromParent();
return true;
}
bool OwnershipModelEliminatorVisitor::visitStoreInst(StoreInst *SI) {
auto Qualifier = SI->getOwnershipQualifier();
// If the qualifier is unqualified, there is nothing further to do
// here. Just return.
if (Qualifier == StoreOwnershipQualifier::Unqualified)
return false;
B.emitStoreValueOperation(SI->getLoc(), SI->getSrc(), SI->getDest(),
SI->getOwnershipQualifier());
// Then remove the qualified store.
SI->eraseFromParent();
return true;
}
bool OwnershipModelEliminatorVisitor::visitStoreBorrowInst(
StoreBorrowInst *SI) {
B.emitStoreValueOperation(SI->getLoc(), SI->getSrc(), SI->getDest(),
StoreOwnershipQualifier::Init);
// Then remove the qualified store.
SI->eraseFromParent();
return true;
}
bool
OwnershipModelEliminatorVisitor::visitLoadBorrowInst(LoadBorrowInst *LBI) {
// Break down the load borrow into an unqualified load.
auto *UnqualifiedLoad = B.createLoad(LBI->getLoc(), LBI->getOperand(),
LoadOwnershipQualifier::Unqualified);
// Then remove the qualified load and use the unqualified load as the def of
// all of LI's uses.
LBI->replaceAllUsesWith(UnqualifiedLoad);
LBI->eraseFromParent();
return true;
}
bool OwnershipModelEliminatorVisitor::visitCopyValueInst(CopyValueInst *CVI) {
// A copy_value of an address-only type cannot be replaced.
if (CVI->getType().isAddressOnly(B.getModule()))
return false;
// Now that we have set the unqualified ownership flag, destroy value
// operation will delegate to the appropriate strong_release, etc.
B.emitCopyValueOperation(CVI->getLoc(), CVI->getOperand());
CVI->replaceAllUsesWith(CVI->getOperand());
CVI->eraseFromParent();
return true;
}
bool OwnershipModelEliminatorVisitor::visitUnmanagedRetainValueInst(
UnmanagedRetainValueInst *URVI) {
// Now that we have set the unqualified ownership flag, destroy value
// operation will delegate to the appropriate strong_release, etc.
B.emitCopyValueOperation(URVI->getLoc(), URVI->getOperand());
URVI->eraseFromParent();
return true;
}
bool OwnershipModelEliminatorVisitor::visitUnmanagedReleaseValueInst(
UnmanagedReleaseValueInst *URVI) {
// Now that we have set the unqualified ownership flag, destroy value
// operation will delegate to the appropriate strong_release, etc.
B.emitDestroyValueOperation(URVI->getLoc(), URVI->getOperand());
URVI->eraseFromParent();
return true;
}
bool OwnershipModelEliminatorVisitor::visitUnmanagedAutoreleaseValueInst(
UnmanagedAutoreleaseValueInst *UAVI) {
// Now that we have set the unqualified ownership flag, destroy value
// operation will delegate to the appropriate strong_release, etc.
B.createAutoreleaseValue(UAVI->getLoc(), UAVI->getOperand(),
UAVI->getAtomicity());
UAVI->eraseFromParent();
return true;
}
bool OwnershipModelEliminatorVisitor::visitDestroyValueInst(DestroyValueInst *DVI) {
// A destroy_value of an address-only type cannot be replaced.
if (DVI->getOperand()->getType().isAddressOnly(B.getModule()))
return false;
// Now that we have set the unqualified ownership flag, destroy value
// operation will delegate to the appropriate strong_release, etc.
B.emitDestroyValueOperation(DVI->getLoc(), DVI->getOperand());
DVI->eraseFromParent();
return true;
}
bool OwnershipModelEliminatorVisitor::visitCheckedCastBranchInst(
CheckedCastBranchInst *CBI) {
// In ownership qualified SIL, checked_cast_br must pass its argument to the
// fail case so we can clean it up. In non-ownership qualified SIL, we expect
// no argument from the checked_cast_br in the default case. The way that we
// handle this transformation is that:
//
// 1. We replace all uses of the argument to the false block with a use of the
// checked cast branch's operand.
// 2. We delete the argument from the false block.
SILBasicBlock *FailureBlock = CBI->getFailureBB();
if (FailureBlock->getNumArguments() == 0)
return false;
FailureBlock->getArgument(0)->replaceAllUsesWith(CBI->getOperand());
FailureBlock->eraseArgument(0);
return true;
}
bool OwnershipModelEliminatorVisitor::visitSwitchEnumInst(
SwitchEnumInst *SWEI) {
// In ownership qualified SIL, switch_enum must pass its argument to the fail
// case so we can clean it up. In non-ownership qualified SIL, we expect no
// argument from the switch_enum in the default case. The way that we handle
// this transformation is that:
//
// 1. We replace all uses of the argument to the false block with a use of the
// checked cast branch's operand.
// 2. We delete the argument from the false block.
if (!SWEI->hasDefault())
return false;
SILBasicBlock *DefaultBlock = SWEI->getDefaultBB();
if (DefaultBlock->getNumArguments() == 0)
return false;
DefaultBlock->getArgument(0)->replaceAllUsesWith(SWEI->getOperand());
DefaultBlock->eraseArgument(0);
return true;
}
static void splitDestructure(SILBuilder &B, SILInstruction *I, SILValue Op) {
assert((isa<DestructureStructInst>(I) || isa<DestructureTupleInst>(I)) &&
"Only destructure operations can be passed to splitDestructure");
SILModule &M = I->getModule();
SILLocation Loc = I->getLoc();
SILType OpType = Op->getType();
llvm::SmallVector<Projection, 8> Projections;
Projection::getFirstLevelProjections(OpType, M, Projections);
assert(Projections.size() == I->getNumResults());
llvm::SmallVector<SILValue, 8> NewValues;
for (unsigned i : indices(Projections)) {
const auto &Proj = Projections[i];
NewValues.push_back(Proj.createObjectProjection(B, Loc, Op).get());
assert(NewValues.back()->getType() == I->getResults()[i]->getType() &&
"Expected created projections and results to be the same types");
}
I->replaceAllUsesPairwiseWith(NewValues);
I->eraseFromParent();
}
bool OwnershipModelEliminatorVisitor::visitDestructureStructInst(
DestructureStructInst *DSI) {
splitDestructure(B, DSI, DSI->getOperand());
return true;
}
bool OwnershipModelEliminatorVisitor::visitDestructureTupleInst(
DestructureTupleInst *DTI) {
splitDestructure(B, DTI, DTI->getOperand());
return true;
}
//===----------------------------------------------------------------------===//
// Top Level Entry Point
//===----------------------------------------------------------------------===//
namespace {
struct OwnershipModelEliminator : SILModuleTransform {
void run() override {
if (DumpBefore.size()) {
getModule()->dump(DumpBefore.c_str());
}
for (auto &F : *getModule()) {
// Don't rerun early lowering on deserialized functions.
if (F.wasDeserializedCanonical())
continue;
// If F does not have ownership, skip it. We have no further work to do.
if (!F.hasOwnership())
continue;
// Set F to have unqualified ownership.
F.setOwnershipEliminated();
bool MadeChange = false;
SILBuilder B(F);
OwnershipModelEliminatorVisitor Visitor(B);
for (auto &BB : F) {
// Change all arguments to have ValueOwnershipKind::Any.
for (auto *Arg : BB.getArguments()) {
Arg->setOwnershipKind(ValueOwnershipKind::Any);
}
for (auto II = BB.begin(), IE = BB.end(); II != IE;) {
// Since we are going to be potentially removing instructions, we need
// to make sure to increment our iterator before we perform any
// visits.
SILInstruction *I = &*II;
++II;
MadeChange |= Visitor.visit(I);
}
}
if (MadeChange) {
auto InvalidKind =
SILAnalysis::InvalidationKind::BranchesAndInstructions;
invalidateAnalysis(&F, InvalidKind);
}
}
}
};
} // end anonymous namespace
SILTransform *swift::createOwnershipModelEliminator() {
return new OwnershipModelEliminator();
}