mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
Add a `-min-runtime-version` option that can be used to avoid problems when building on Linux and Windows where because the runtime isn't part of the OS, availability doesn't solve the problem of trying to build the compiler against an older runtime. Also add functions to IRGen to make it easy to test feature availability using both the runtime version and the existing Darwin availability support. rdar://121522431
567 lines
20 KiB
C++
567 lines
20 KiB
C++
//===--- Availability.cpp - Swift Availability Structures -----------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines data structures for API availability.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/Availability.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/Attr.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/PlatformKind.h"
|
|
#include "swift/AST/TypeCheckRequests.h"
|
|
#include "swift/AST/TypeWalker.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/Basic/Platform.h"
|
|
#include "swift/ClangImporter/ClangModule.h"
|
|
#include <map>
|
|
|
|
using namespace swift;
|
|
|
|
AvailabilityContext AvailabilityContext::forDeploymentTarget(const ASTContext &Ctx) {
|
|
return AvailabilityContext(
|
|
VersionRange::allGTE(Ctx.LangOpts.getMinPlatformVersion()));
|
|
}
|
|
|
|
AvailabilityContext AvailabilityContext::forInliningTarget(const ASTContext &Ctx) {
|
|
return AvailabilityContext(
|
|
VersionRange::allGTE(Ctx.LangOpts.MinimumInliningTargetVersion));
|
|
}
|
|
|
|
AvailabilityContext AvailabilityContext::forRuntimeTarget(const ASTContext &Ctx) {
|
|
return AvailabilityContext(
|
|
VersionRange::allGTE(Ctx.LangOpts.RuntimeVersion));
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// The inferred availability required to access a group of declarations
|
|
/// on a single platform.
|
|
struct InferredAvailability {
|
|
PlatformAgnosticAvailabilityKind PlatformAgnostic
|
|
= PlatformAgnosticAvailabilityKind::None;
|
|
|
|
llvm::Optional<llvm::VersionTuple> Introduced;
|
|
llvm::Optional<llvm::VersionTuple> Deprecated;
|
|
llvm::Optional<llvm::VersionTuple> Obsoleted;
|
|
bool IsSPI = false;
|
|
};
|
|
|
|
/// The type of a function that merges two version tuples.
|
|
typedef const llvm::VersionTuple &(*MergeFunction)(
|
|
const llvm::VersionTuple &, const llvm::VersionTuple &);
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Apply a merge function to two optional versions, returning the result
|
|
/// in Inferred.
|
|
static bool
|
|
mergeIntoInferredVersion(const llvm::Optional<llvm::VersionTuple> &Version,
|
|
llvm::Optional<llvm::VersionTuple> &Inferred,
|
|
MergeFunction Merge) {
|
|
if (Version.has_value()) {
|
|
if (Inferred.has_value()) {
|
|
Inferred = Merge(Inferred.value(), Version.value());
|
|
return *Inferred == *Version;
|
|
} else {
|
|
Inferred = Version;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Merge an attribute's availability with an existing inferred availability
|
|
/// so that the new inferred availability is at least as available as
|
|
/// the attribute requires.
|
|
static void mergeWithInferredAvailability(const AvailableAttr *Attr,
|
|
InferredAvailability &Inferred) {
|
|
Inferred.PlatformAgnostic
|
|
= static_cast<PlatformAgnosticAvailabilityKind>(
|
|
std::max(static_cast<unsigned>(Inferred.PlatformAgnostic),
|
|
static_cast<unsigned>(Attr->getPlatformAgnosticAvailability())));
|
|
|
|
// The merge of two introduction versions is the maximum of the two versions.
|
|
if (mergeIntoInferredVersion(Attr->Introduced, Inferred.Introduced, std::max)) {
|
|
Inferred.IsSPI = Attr->IsSPI;
|
|
}
|
|
|
|
// The merge of deprecated and obsoleted versions takes the minimum.
|
|
mergeIntoInferredVersion(Attr->Deprecated, Inferred.Deprecated, std::min);
|
|
mergeIntoInferredVersion(Attr->Obsoleted, Inferred.Obsoleted, std::min);
|
|
}
|
|
|
|
/// Create an implicit availability attribute for the given platform
|
|
/// and with the inferred availability.
|
|
static AvailableAttr *createAvailableAttr(PlatformKind Platform,
|
|
const InferredAvailability &Inferred,
|
|
StringRef Message,
|
|
StringRef Rename,
|
|
ValueDecl *RenameDecl,
|
|
ASTContext &Context) {
|
|
llvm::VersionTuple Introduced =
|
|
Inferred.Introduced.value_or(llvm::VersionTuple());
|
|
llvm::VersionTuple Deprecated =
|
|
Inferred.Deprecated.value_or(llvm::VersionTuple());
|
|
llvm::VersionTuple Obsoleted =
|
|
Inferred.Obsoleted.value_or(llvm::VersionTuple());
|
|
|
|
return new (Context)
|
|
AvailableAttr(SourceLoc(), SourceRange(), Platform,
|
|
Message, Rename, RenameDecl,
|
|
Introduced, /*IntroducedRange=*/SourceRange(),
|
|
Deprecated, /*DeprecatedRange=*/SourceRange(),
|
|
Obsoleted, /*ObsoletedRange=*/SourceRange(),
|
|
Inferred.PlatformAgnostic, /*Implicit=*/true,
|
|
Inferred.IsSPI);
|
|
}
|
|
|
|
void AvailabilityInference::applyInferredAvailableAttrs(
|
|
Decl *ToDecl, ArrayRef<const Decl *> InferredFromDecls,
|
|
ASTContext &Context) {
|
|
|
|
// Let the new AvailabilityAttr inherit the message and rename.
|
|
// The first encountered message / rename will win; this matches the
|
|
// behaviour of diagnostics for 'non-inherited' AvailabilityAttrs.
|
|
StringRef Message;
|
|
StringRef Rename;
|
|
ValueDecl *RenameDecl = nullptr;
|
|
|
|
// Iterate over the declarations and infer required availability on
|
|
// a per-platform basis.
|
|
std::map<PlatformKind, InferredAvailability> Inferred;
|
|
for (const Decl *D : InferredFromDecls) {
|
|
llvm::SmallVector<const AvailableAttr *, 8> MergedAttrs;
|
|
|
|
do {
|
|
llvm::SmallVector<const AvailableAttr *, 8> PendingAttrs;
|
|
|
|
for (const DeclAttribute *Attr : D->getAttrs()) {
|
|
auto *AvAttr = dyn_cast<AvailableAttr>(Attr);
|
|
if (!AvAttr || AvAttr->isInvalid())
|
|
continue;
|
|
|
|
// Skip an attribute from an outer declaration if it is for a platform
|
|
// that was already handled implicitly by an attribute from an inner
|
|
// declaration.
|
|
if (llvm::any_of(MergedAttrs,
|
|
[&AvAttr](const AvailableAttr *MergedAttr) {
|
|
return inheritsAvailabilityFromPlatform(
|
|
AvAttr->Platform, MergedAttr->Platform);
|
|
}))
|
|
continue;
|
|
|
|
mergeWithInferredAvailability(AvAttr, Inferred[AvAttr->Platform]);
|
|
PendingAttrs.push_back(AvAttr);
|
|
|
|
if (Message.empty() && !AvAttr->Message.empty())
|
|
Message = AvAttr->Message;
|
|
|
|
if (Rename.empty() && !AvAttr->Rename.empty()) {
|
|
Rename = AvAttr->Rename;
|
|
RenameDecl = AvAttr->RenameDecl;
|
|
}
|
|
}
|
|
|
|
MergedAttrs.append(PendingAttrs);
|
|
|
|
// Walk up the enclosing declaration hierarchy to make sure we aren't
|
|
// missing any inherited attributes.
|
|
D = AvailabilityInference::parentDeclForInferredAvailability(D);
|
|
} while (D);
|
|
}
|
|
|
|
DeclAttributes &Attrs = ToDecl->getAttrs();
|
|
|
|
// Create an availability attribute for each observed platform and add
|
|
// to ToDecl.
|
|
for (auto &Pair : Inferred) {
|
|
auto *Attr = createAvailableAttr(Pair.first, Pair.second, Message,
|
|
Rename, RenameDecl, Context);
|
|
|
|
Attrs.add(Attr);
|
|
}
|
|
}
|
|
|
|
/// Returns the decl that should be considered the parent decl of the given decl
|
|
/// when looking for inherited availability annotations.
|
|
const Decl *
|
|
AvailabilityInference::parentDeclForInferredAvailability(const Decl *D) {
|
|
if (auto *AD = dyn_cast<AccessorDecl>(D))
|
|
return AD->getStorage();
|
|
|
|
if (auto *ED = dyn_cast<ExtensionDecl>(D)) {
|
|
if (auto *NTD = ED->getExtendedNominal())
|
|
return NTD;
|
|
}
|
|
|
|
if (auto *PBD = dyn_cast<PatternBindingDecl>(D)) {
|
|
if (PBD->getNumPatternEntries() < 1)
|
|
return nullptr;
|
|
|
|
return PBD->getAnchoringVarDecl(0);
|
|
}
|
|
|
|
if (auto *OTD = dyn_cast<OpaqueTypeDecl>(D))
|
|
return OTD->getNamingDecl();
|
|
|
|
// Clang decls may be inaccurately parented rdar://53956555
|
|
if (D->hasClangNode())
|
|
return nullptr;
|
|
|
|
// Availability is inherited from the enclosing context.
|
|
return D->getDeclContext()->getInnermostDeclarationDeclContext();
|
|
}
|
|
|
|
/// Returns true if the introduced version in \p newAttr should be used instead
|
|
/// of the introduced version in \p prevAttr when both are attached to the same
|
|
/// declaration and refer to the active platform.
|
|
static bool isBetterThan(const AvailableAttr *newAttr,
|
|
const AvailableAttr *prevAttr) {
|
|
assert(newAttr);
|
|
|
|
// If there is no prevAttr, newAttr of course wins.
|
|
if (!prevAttr)
|
|
return true;
|
|
|
|
// If they belong to the same platform, the one that introduces later wins.
|
|
if (prevAttr->Platform == newAttr->Platform)
|
|
return prevAttr->Introduced.value() < newAttr->Introduced.value();
|
|
|
|
// If the new attribute's platform inherits from the old one, it wins.
|
|
return inheritsAvailabilityFromPlatform(newAttr->Platform,
|
|
prevAttr->Platform);
|
|
}
|
|
|
|
const AvailableAttr *
|
|
AvailabilityInference::attrForAnnotatedAvailableRange(const Decl *D,
|
|
ASTContext &Ctx) {
|
|
const AvailableAttr *bestAvailAttr = nullptr;
|
|
|
|
D = abstractSyntaxDeclForAvailableAttribute(D);
|
|
|
|
for (auto Attr : D->getAttrs()) {
|
|
auto *AvailAttr = dyn_cast<AvailableAttr>(Attr);
|
|
if (AvailAttr == nullptr || !AvailAttr->Introduced.has_value() ||
|
|
!AvailAttr->isActivePlatform(Ctx) ||
|
|
AvailAttr->isLanguageVersionSpecific() ||
|
|
AvailAttr->isPackageDescriptionVersionSpecific()) {
|
|
continue;
|
|
}
|
|
|
|
if (isBetterThan(AvailAttr, bestAvailAttr))
|
|
bestAvailAttr = AvailAttr;
|
|
}
|
|
|
|
return bestAvailAttr;
|
|
}
|
|
|
|
llvm::Optional<AvailableAttrDeclPair>
|
|
SemanticAvailableRangeAttrRequest::evaluate(Evaluator &evaluator,
|
|
const Decl *decl) const {
|
|
if (auto attr = AvailabilityInference::attrForAnnotatedAvailableRange(
|
|
decl, decl->getASTContext()))
|
|
return std::make_pair(attr, decl);
|
|
|
|
if (auto *parent =
|
|
AvailabilityInference::parentDeclForInferredAvailability(decl))
|
|
return parent->getSemanticAvailableRangeAttr();
|
|
|
|
return llvm::None;
|
|
}
|
|
|
|
llvm::Optional<AvailableAttrDeclPair>
|
|
Decl::getSemanticAvailableRangeAttr() const {
|
|
auto &eval = getASTContext().evaluator;
|
|
return evaluateOrDefault(eval, SemanticAvailableRangeAttrRequest{this},
|
|
llvm::None);
|
|
}
|
|
|
|
llvm::Optional<AvailabilityContext>
|
|
AvailabilityInference::annotatedAvailableRange(const Decl *D, ASTContext &Ctx) {
|
|
auto bestAvailAttr = attrForAnnotatedAvailableRange(D, Ctx);
|
|
if (!bestAvailAttr)
|
|
return llvm::None;
|
|
|
|
return availableRange(bestAvailAttr, Ctx);
|
|
}
|
|
|
|
bool Decl::isAvailableAsSPI() const {
|
|
return AvailabilityInference::availableRange(this, getASTContext())
|
|
.isAvailableAsSPI();
|
|
}
|
|
|
|
llvm::Optional<AvailableAttrDeclPair>
|
|
SemanticUnavailableAttrRequest::evaluate(Evaluator &evaluator,
|
|
const Decl *decl) const {
|
|
// Directly marked unavailable.
|
|
if (auto attr = decl->getAttrs().getUnavailable(decl->getASTContext()))
|
|
return std::make_pair(attr, decl);
|
|
|
|
if (auto *parent =
|
|
AvailabilityInference::parentDeclForInferredAvailability(decl))
|
|
return parent->getSemanticUnavailableAttr();
|
|
|
|
return llvm::None;
|
|
}
|
|
|
|
llvm::Optional<AvailableAttrDeclPair> Decl::getSemanticUnavailableAttr() const {
|
|
auto &eval = getASTContext().evaluator;
|
|
return evaluateOrDefault(eval, SemanticUnavailableAttrRequest{this},
|
|
llvm::None);
|
|
}
|
|
|
|
static bool isUnconditionallyUnavailable(const Decl *D) {
|
|
if (auto unavailableAttrAndDecl = D->getSemanticUnavailableAttr())
|
|
return unavailableAttrAndDecl->first->isUnconditionallyUnavailable();
|
|
|
|
return false;
|
|
}
|
|
|
|
static UnavailableDeclOptimization
|
|
getEffectiveUnavailableDeclOptimization(ASTContext &ctx) {
|
|
if (ctx.LangOpts.UnavailableDeclOptimizationMode.has_value())
|
|
return *ctx.LangOpts.UnavailableDeclOptimizationMode;
|
|
|
|
return UnavailableDeclOptimization::Stub;
|
|
}
|
|
|
|
bool Decl::isAvailableDuringLowering() const {
|
|
// Unconditionally unavailable declarations should be skipped during lowering
|
|
// when -unavailable-decl-optimization=complete is specified.
|
|
if (getEffectiveUnavailableDeclOptimization(getASTContext()) !=
|
|
UnavailableDeclOptimization::Complete)
|
|
return true;
|
|
|
|
if (isa<ClangModuleUnit>(getDeclContext()->getModuleScopeContext()))
|
|
return true;
|
|
|
|
return !isUnconditionallyUnavailable(this);
|
|
}
|
|
|
|
bool Decl::requiresUnavailableDeclABICompatibilityStubs() const {
|
|
// Code associated with unavailable declarations should trap at runtime if
|
|
// -unavailable-decl-optimization=stub is specified.
|
|
if (getEffectiveUnavailableDeclOptimization(getASTContext()) !=
|
|
UnavailableDeclOptimization::Stub)
|
|
return false;
|
|
|
|
if (isa<ClangModuleUnit>(getDeclContext()->getModuleScopeContext()))
|
|
return false;
|
|
|
|
return isUnconditionallyUnavailable(this);
|
|
}
|
|
|
|
bool UnavailabilityReason::requiresDeploymentTargetOrEarlier(
|
|
ASTContext &Ctx) const {
|
|
return RequiredDeploymentRange.getLowerEndpoint() <=
|
|
AvailabilityContext::forDeploymentTarget(Ctx)
|
|
.getOSVersion()
|
|
.getLowerEndpoint();
|
|
}
|
|
|
|
AvailabilityContext
|
|
AvailabilityInference::annotatedAvailableRangeForAttr(const SpecializeAttr* attr,
|
|
ASTContext &ctx) {
|
|
|
|
const AvailableAttr *bestAvailAttr = nullptr;
|
|
|
|
for (auto *availAttr : attr->getAvailableAttrs()) {
|
|
if (availAttr == nullptr || !availAttr->Introduced.has_value() ||
|
|
!availAttr->isActivePlatform(ctx) ||
|
|
availAttr->isLanguageVersionSpecific() ||
|
|
availAttr->isPackageDescriptionVersionSpecific()) {
|
|
continue;
|
|
}
|
|
|
|
if (isBetterThan(availAttr, bestAvailAttr))
|
|
bestAvailAttr = availAttr;
|
|
}
|
|
|
|
if (bestAvailAttr)
|
|
return availableRange(bestAvailAttr, ctx);
|
|
|
|
return AvailabilityContext::alwaysAvailable();
|
|
}
|
|
|
|
AvailabilityContext AvailabilityInference::availableRange(const Decl *D,
|
|
ASTContext &Ctx) {
|
|
llvm::Optional<AvailabilityContext> AnnotatedRange =
|
|
annotatedAvailableRange(D, Ctx);
|
|
if (AnnotatedRange.has_value()) {
|
|
return AnnotatedRange.value();
|
|
}
|
|
|
|
// Unlike other declarations, extensions can be used without referring to them
|
|
// by name (they don't have one) in the source. For this reason, when checking
|
|
// the available range of a declaration we also need to check to see if it is
|
|
// immediately contained in an extension and use the extension's availability
|
|
// if the declaration does not have an explicit @available attribute
|
|
// itself. This check relies on the fact that we cannot have nested
|
|
// extensions.
|
|
|
|
DeclContext *DC = D->getDeclContext();
|
|
if (auto *ED = dyn_cast<ExtensionDecl>(DC)) {
|
|
AnnotatedRange = annotatedAvailableRange(ED, Ctx);
|
|
if (AnnotatedRange.has_value()) {
|
|
return AnnotatedRange.value();
|
|
}
|
|
}
|
|
|
|
// Treat unannotated declarations as always available.
|
|
return AvailabilityContext::alwaysAvailable();
|
|
}
|
|
|
|
AvailabilityContext
|
|
AvailabilityInference::availableRange(const AvailableAttr *attr,
|
|
ASTContext &Ctx) {
|
|
assert(attr->isActivePlatform(Ctx));
|
|
return AvailabilityContext{VersionRange::allGTE(attr->Introduced.value()),
|
|
attr->IsSPI};
|
|
}
|
|
|
|
namespace {
|
|
/// Infers the availability required to access a type.
|
|
class AvailabilityInferenceTypeWalker : public TypeWalker {
|
|
public:
|
|
ASTContext &AC;
|
|
AvailabilityContext AvailabilityInfo = AvailabilityContext::alwaysAvailable();
|
|
|
|
AvailabilityInferenceTypeWalker(ASTContext &AC) : AC(AC) {}
|
|
|
|
Action walkToTypePre(Type ty) override {
|
|
if (auto *nominalDecl = ty->getAnyNominal()) {
|
|
AvailabilityInfo.intersectWith(
|
|
AvailabilityInference::availableRange(nominalDecl, AC));
|
|
}
|
|
|
|
return Action::Continue;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
|
|
AvailabilityContext AvailabilityInference::inferForType(Type t) {
|
|
AvailabilityInferenceTypeWalker walker(t->getASTContext());
|
|
t.walk(walker);
|
|
return walker.AvailabilityInfo;
|
|
}
|
|
|
|
AvailabilityContext ASTContext::getSwiftFutureAvailability() const {
|
|
auto target = LangOpts.Target;
|
|
|
|
if (target.isMacOSX() ) {
|
|
return AvailabilityContext(
|
|
VersionRange::allGTE(llvm::VersionTuple(99, 99, 0)));
|
|
} else if (target.isiOS()) {
|
|
return AvailabilityContext(
|
|
VersionRange::allGTE(llvm::VersionTuple(99, 99, 0)));
|
|
} else if (target.isWatchOS()) {
|
|
return AvailabilityContext(
|
|
VersionRange::allGTE(llvm::VersionTuple(99, 99, 0)));
|
|
} else {
|
|
return AvailabilityContext::alwaysAvailable();
|
|
}
|
|
}
|
|
|
|
AvailabilityContext
|
|
ASTContext::getSwiftAvailability(unsigned major, unsigned minor) const {
|
|
auto target = LangOpts.Target;
|
|
|
|
// Deal with special cases for Swift 5.3 and lower
|
|
if (major == 5 && minor <= 3) {
|
|
if (target.getArchName() == "arm64e")
|
|
return AvailabilityContext::alwaysAvailable();
|
|
if (target.isMacOSX() && target.isAArch64())
|
|
return AvailabilityContext::alwaysAvailable();
|
|
if (target.isiOS() && target.isAArch64()
|
|
&& (target.isSimulatorEnvironment()
|
|
|| target.isMacCatalystEnvironment()))
|
|
return AvailabilityContext::alwaysAvailable();
|
|
if (target.isWatchOS() && target.isArch64Bit())
|
|
return AvailabilityContext::alwaysAvailable();
|
|
}
|
|
|
|
switch (major) {
|
|
#define MAJOR_VERSION(V) case V: switch (minor) {
|
|
#define END_MAJOR_VERSION(V) } break;
|
|
#define PLATFORM(P, V) \
|
|
if (IS_PLATFORM(P)) \
|
|
return AvailabilityContext(VersionRange::allGTE(llvm::VersionTuple V));
|
|
#define IS_PLATFORM(P) PLATFORM_TEST_##P
|
|
#define FUTURE return getSwiftFutureAvailability();
|
|
#define PLATFORM_TEST_macOS target.isMacOSX()
|
|
#define PLATFORM_TEST_iOS target.isiOS()
|
|
#define PLATFORM_TEST_watchOS target.isWatchOS()
|
|
|
|
#define _SECOND(A, B) B
|
|
#define SECOND(T) _SECOND T
|
|
|
|
#define RUNTIME_VERSION(V, PLATFORMS) \
|
|
case SECOND(V): \
|
|
PLATFORMS \
|
|
return AvailabilityContext::alwaysAvailable();
|
|
|
|
#include "swift/AST/RuntimeVersions.def"
|
|
|
|
#undef PLATFORM_TEST_macOS
|
|
#undef PLATFORM_TEST_iOS
|
|
#undef PLATFORM_TEST_watchOS
|
|
#undef _SECOND
|
|
#undef SECOND
|
|
|
|
case 99:
|
|
if (minor == 99)
|
|
return getSwiftFutureAvailability();
|
|
break;
|
|
}
|
|
|
|
llvm::report_fatal_error(
|
|
Twine("Missing runtime version data for Swift ") +
|
|
Twine(major) + Twine('.') + Twine(minor));
|
|
}
|
|
|
|
bool ASTContext::supportsVersionedAvailability() const {
|
|
return minimumAvailableOSVersionForTriple(LangOpts.Target).has_value();
|
|
}
|
|
|
|
// FIXME: Rename abstractSyntaxDeclForAvailableAttribute since it's useful
|
|
// for more attributes than `@available`.
|
|
const Decl *
|
|
swift::abstractSyntaxDeclForAvailableAttribute(const Decl *ConcreteSyntaxDecl) {
|
|
// This function needs to be kept in sync with its counterpart,
|
|
// concreteSyntaxDeclForAvailableAttribute().
|
|
|
|
if (auto *PBD = dyn_cast<PatternBindingDecl>(ConcreteSyntaxDecl)) {
|
|
// Existing @available attributes in the AST are attached to VarDecls
|
|
// rather than PatternBindingDecls, so we return the first VarDecl for
|
|
// the pattern binding declaration.
|
|
// This is safe, even though there may be multiple VarDecls, because
|
|
// all parsed attribute that appear in the concrete syntax upon on the
|
|
// PatternBindingDecl are added to all of the VarDecls for the pattern
|
|
// binding.
|
|
for (auto index : range(PBD->getNumPatternEntries())) {
|
|
if (auto VD = PBD->getAnchoringVarDecl(index))
|
|
return VD;
|
|
}
|
|
} else if (auto *ECD = dyn_cast<EnumCaseDecl>(ConcreteSyntaxDecl)) {
|
|
// Similar to the PatternBindingDecl case above, we return the
|
|
// first EnumElementDecl.
|
|
if (auto *Elem = ECD->getFirstElement()) {
|
|
return Elem;
|
|
}
|
|
}
|
|
|
|
return ConcreteSyntaxDecl;
|
|
}
|