mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
931 lines
31 KiB
C++
931 lines
31 KiB
C++
//===--- GeneratingConformances.cpp - Reasoning about conformance rules ---===//
|
||
//
|
||
// This source file is part of the Swift.org open source project
|
||
//
|
||
// Copyright (c) 2021 Apple Inc. and the Swift project authors
|
||
// Licensed under Apache License v2.0 with Runtime Library Exception
|
||
//
|
||
// See https://swift.org/LICENSE.txt for license information
|
||
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This file implements an algorithm to find a minimal set of "generating
|
||
// conformances", which are rules (V1.[P1] => V1), ..., (Vn.[Pn] => Vn) such
|
||
// that any valid term of the form T.[P] can be written as a product of terms
|
||
// (Vi.[Pi]), where each Vi.[Pi] is a left hand side of a generating
|
||
// conformance.
|
||
//
|
||
// A "conformance-valid" rewrite system is one where if we can write
|
||
// T == U.V for arbitrary non-empty U and V, then U.[domain(V)] is joinable
|
||
// with U.
|
||
//
|
||
// If this holds, then starting with a term T.[P] that is joinable with T, we
|
||
// can reduce T to canonical form T', and find the unique rule (V.[P] => V) such
|
||
// that T' == U.V. Then we repeat this process with U.[domain(V)], which is
|
||
// known to be joinable with U, since T is conformance-valid.
|
||
//
|
||
// Iterating this process produces a decomposition of T.[P] as a product of
|
||
// left hand sides of conformance rules. Some of those rules are not minimal;
|
||
// they are added by completion, or they are redundant rules written by the
|
||
// user.
|
||
//
|
||
// Using the rewrite loops that generate the homotopy relation on rewrite paths,
|
||
// decompositions can be found for all "derived" conformance rules, producing
|
||
// a minimal set of generating conformances.
|
||
//
|
||
// There are two small complications to handle implementation details of
|
||
// Swift generics:
|
||
//
|
||
// 1) Inherited witness tables must be derivable by following other protocol
|
||
// refinement requirements only, without looking at non-Self associated
|
||
// types. This is expressed by saying that the generating conformance
|
||
// equations for a protocol refinement can only be written in terms of
|
||
// other protocol refinements; conformance paths involving non-Self
|
||
// associated types are not considered.
|
||
//
|
||
// 2) The subject type of each conformance requirement must be derivable at
|
||
// runtime as well, so for each generating conformance, it must be
|
||
// possible to write down a conformance path for the parent type without
|
||
// using any generating conformance recursively in the parent path of
|
||
// itself.
|
||
//
|
||
// The generating conformances finds fewer conformance requirements to be
|
||
// redundant than homotopy reduction, which is why homotopy reduction only
|
||
// deletes non-protocol conformance requirements.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "swift/AST/Decl.h"
|
||
#include "swift/Basic/Defer.h"
|
||
#include "swift/Basic/Range.h"
|
||
#include "llvm/ADT/DenseMap.h"
|
||
#include "llvm/ADT/DenseSet.h"
|
||
#include "llvm/Support/Debug.h"
|
||
#include "llvm/Support/raw_ostream.h"
|
||
#include <algorithm>
|
||
#include "RewriteContext.h"
|
||
#include "RewriteSystem.h"
|
||
|
||
using namespace swift;
|
||
using namespace rewriting;
|
||
|
||
/// Finds all protocol conformance rules appearing in a rewrite loop, both
|
||
/// in empty context, and with a non-empty left context. Applications of rules
|
||
/// with a non-empty right context are ignored.
|
||
///
|
||
/// The rules are organized by protocol. For each protocol, the first element
|
||
/// of the pair stores conformance rules that appear without context. The
|
||
/// second element of the pair stores rules that appear with non-empty left
|
||
/// context. For each such rule, the left prefix is also stored alongside.
|
||
void RewriteLoop::findProtocolConformanceRules(
|
||
llvm::SmallDenseMap<const ProtocolDecl *,
|
||
ProtocolConformanceRules, 2> &result,
|
||
const RewriteSystem &system) const {
|
||
|
||
auto redundantRules = findRulesAppearingOnceInEmptyContext(system);
|
||
|
||
bool foundAny = false;
|
||
for (unsigned ruleID : redundantRules) {
|
||
const auto &rule = system.getRule(ruleID);
|
||
|
||
if (auto *proto = rule.isAnyConformanceRule()) {
|
||
if (rule.isIdentityConformanceRule()) {
|
||
result[proto].SawIdentityConformance = true;
|
||
continue;
|
||
}
|
||
|
||
result[proto].RulesInEmptyContext.push_back(ruleID);
|
||
foundAny = true;
|
||
}
|
||
}
|
||
|
||
if (!foundAny)
|
||
return;
|
||
|
||
RewritePathEvaluator evaluator(Basepoint);
|
||
|
||
// Now look for rewrite steps with conformance rules in empty right context,
|
||
// that is something like X.(Y.[P] => Y) (or it's inverse, X.(Y => Y.[P])).
|
||
for (const auto &step : Path) {
|
||
if (!evaluator.isInContext()) {
|
||
switch (step.Kind) {
|
||
case RewriteStep::ApplyRewriteRule: {
|
||
const auto &rule = system.getRule(step.RuleID);
|
||
|
||
if (rule.isIdentityConformanceRule())
|
||
break;
|
||
|
||
if (auto *proto = rule.isAnyConformanceRule()) {
|
||
if (step.StartOffset > 0 &&
|
||
step.EndOffset == 0) {
|
||
// Record the prefix term that is left unchanged by this rewrite step.
|
||
//
|
||
// In the above example where the rewrite step is X.(Y.[P] => Z),
|
||
// the prefix term is 'X'.
|
||
const auto &term = evaluator.getCurrentTerm();
|
||
MutableTerm prefix(term.begin(), term.begin() + step.StartOffset);
|
||
result[proto].RulesInContext.emplace_back(prefix, step.RuleID);
|
||
}
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
case RewriteStep::AdjustConcreteType:
|
||
case RewriteStep::Shift:
|
||
case RewriteStep::Decompose:
|
||
case RewriteStep::ConcreteConformance:
|
||
case RewriteStep::SuperclassConformance:
|
||
break;
|
||
}
|
||
}
|
||
|
||
evaluator.apply(step, system);
|
||
}
|
||
}
|
||
|
||
namespace {
|
||
|
||
/// Utility class to encapsulate some shared state.
|
||
class GeneratingConformances {
|
||
const RewriteSystem &System;
|
||
RewriteContext &Context;
|
||
|
||
// All conformance rules, sorted by (isExplicit(), getLHS()), with non-explicit
|
||
// rules with longer left hand sides coming first.
|
||
//
|
||
// The idea here is that we want less canonical rules to be eliminated first,
|
||
// but we prefer to eliminate non-explicit rules, in an attempt to keep protocol
|
||
// conformance rules in the same protocol as they were originally defined in.
|
||
SmallVector<unsigned, 4> ConformanceRules;
|
||
|
||
// Maps a conformance rule to a conformance path deriving the subject type's
|
||
// base type. For example, consider the following conformance rule:
|
||
//
|
||
// T.[P:A].[Q:B].[R] => T.[P:A].[Q:B]
|
||
//
|
||
// The subject type is T.[P:A].[Q:B]; in order to derive the metadata, we need
|
||
// the witness table for T.[P:A] : [Q] first, by computing a conformance access
|
||
// path for the term T.[P:A].[Q], known as the 'parent path'.
|
||
llvm::MapVector<unsigned, SmallVector<unsigned, 2>> ParentPaths;
|
||
|
||
// Maps a conformance rule to a list of paths. Each path in the list is a unique
|
||
// derivation of the conformance in terms of other conformance rules.
|
||
llvm::MapVector<unsigned, std::vector<SmallVector<unsigned, 2>>> ConformancePaths;
|
||
|
||
// The set of conformance rules which are protocol refinements, that is rules of
|
||
// the form [P].[Q] => [P].
|
||
llvm::DenseSet<unsigned> ProtocolRefinements;
|
||
|
||
// This is the result.
|
||
llvm::DenseSet<unsigned> &RedundantConformances;
|
||
|
||
void decomposeTermIntoConformanceRuleLeftHandSides(
|
||
MutableTerm term,
|
||
SmallVectorImpl<unsigned> &result) const;
|
||
void decomposeTermIntoConformanceRuleLeftHandSides(
|
||
MutableTerm term, unsigned ruleID,
|
||
SmallVectorImpl<unsigned> &result) const;
|
||
|
||
bool isValidConformancePath(
|
||
llvm::SmallDenseSet<unsigned, 4> &visited,
|
||
const llvm::SmallVectorImpl<unsigned> &path, bool allowConcrete) const;
|
||
|
||
bool isValidRefinementPath(
|
||
const llvm::SmallVectorImpl<unsigned> &path) const;
|
||
|
||
void dumpConformancePath(
|
||
llvm::raw_ostream &out,
|
||
const SmallVectorImpl<unsigned> &path) const;
|
||
|
||
void dumpGeneratingConformanceEquation(
|
||
llvm::raw_ostream &out,
|
||
unsigned baseRuleID,
|
||
const std::vector<SmallVector<unsigned, 2>> &paths) const;
|
||
|
||
public:
|
||
explicit GeneratingConformances(const RewriteSystem &system,
|
||
llvm::DenseSet<unsigned> &redundantConformances)
|
||
: System(system),
|
||
Context(system.getRewriteContext()),
|
||
RedundantConformances(redundantConformances) {}
|
||
|
||
void collectConformanceRules();
|
||
|
||
void computeCandidateConformancePaths();
|
||
|
||
void dumpGeneratingConformanceEquations(llvm::raw_ostream &out) const;
|
||
|
||
void verifyGeneratingConformanceEquations() const;
|
||
|
||
void computeGeneratingConformances(bool firstPass);
|
||
|
||
void verifyGeneratingConformances() const;
|
||
|
||
void dumpGeneratingConformances(llvm::raw_ostream &out) const;
|
||
};
|
||
|
||
} // end namespace
|
||
|
||
/// Write the term as a product of left hand sides of protocol conformance
|
||
/// rules.
|
||
///
|
||
/// The term should be irreducible, except for a protocol symbol at the end.
|
||
void
|
||
GeneratingConformances::decomposeTermIntoConformanceRuleLeftHandSides(
|
||
MutableTerm term, SmallVectorImpl<unsigned> &result) const {
|
||
assert(term.back().getKind() == Symbol::Kind::Protocol);
|
||
|
||
// If T is canonical and T.[P] => T, then by confluence, T.[P]
|
||
// reduces to T in a single step, via a rule V.[P] => V, where
|
||
// T == U.V.
|
||
RewritePath steps;
|
||
bool simplified = System.simplify(term, &steps);
|
||
if (!simplified) {
|
||
llvm::errs() << "Term does not conform to protocol: " << term << "\n";
|
||
abort();
|
||
}
|
||
|
||
assert(steps.size() == 1 &&
|
||
"Canonical conformance term should simplify in one step");
|
||
|
||
const auto &step = *steps.begin();
|
||
|
||
#ifndef NDEBUG
|
||
const auto &rule = System.getRule(step.RuleID);
|
||
assert(rule.isAnyConformanceRule());
|
||
assert(!rule.isIdentityConformanceRule());
|
||
#endif
|
||
|
||
assert(step.Kind == RewriteStep::ApplyRewriteRule);
|
||
assert(step.EndOffset == 0);
|
||
assert(!step.Inverse);
|
||
|
||
// If |U| > 0, recurse with the term U.[domain(V)]. Since T is
|
||
// canonical, we know that U is canonical as well.
|
||
if (step.StartOffset > 0) {
|
||
// Build the term U.
|
||
MutableTerm prefix(term.begin(), term.begin() + step.StartOffset);
|
||
|
||
decomposeTermIntoConformanceRuleLeftHandSides(prefix, step.RuleID, result);
|
||
} else {
|
||
result.push_back(step.RuleID);
|
||
}
|
||
}
|
||
|
||
/// Given a term U and a rule (V.[P] => V), write U.[domain(V)] as a
|
||
/// product of left hand sdies of conformance rules. The term U should
|
||
/// be irreducible.
|
||
void
|
||
GeneratingConformances::decomposeTermIntoConformanceRuleLeftHandSides(
|
||
MutableTerm term, unsigned ruleID,
|
||
SmallVectorImpl<unsigned> &result) const {
|
||
const auto &rule = System.getRule(ruleID);
|
||
assert(rule.isAnyConformanceRule());
|
||
assert(!rule.isIdentityConformanceRule());
|
||
|
||
// Compute domain(V).
|
||
const auto &lhs = rule.getLHS();
|
||
auto protocols = lhs[0].getProtocols();
|
||
assert(protocols.size() == 1);
|
||
auto protocol = Symbol::forProtocol(protocols[0], Context);
|
||
|
||
// A same-type requirement of the form 'Self.Foo == Self' can induce a
|
||
// conformance rule [P].[P] => [P], and we can end up with a generating
|
||
// conformance decomposition of the form
|
||
//
|
||
// (V.[Q] => V) := [P].(V'.[Q] => V'),
|
||
//
|
||
// where domain(V) == [P]. Don't recurse on [P].[P] here since it won't
|
||
// yield anything useful, instead just return with (V'.[Q] => V').
|
||
if (term.size() == 1 && term[0] == protocol) {
|
||
result.push_back(ruleID);
|
||
return;
|
||
}
|
||
|
||
// Build the term U.[domain(V)].
|
||
term.add(protocol);
|
||
|
||
decomposeTermIntoConformanceRuleLeftHandSides(term, result);
|
||
|
||
// Add the rule V => V.[P].
|
||
result.push_back(ruleID);
|
||
}
|
||
|
||
static const ProtocolDecl *getParentConformanceForTerm(Term lhs) {
|
||
// The last element is a protocol symbol, because this is the left hand side
|
||
// of a conformance rule.
|
||
assert(lhs.back().getKind() == Symbol::Kind::Protocol ||
|
||
lhs.back().getKind() == Symbol::Kind::ConcreteConformance);
|
||
|
||
// The second to last symbol is either an associated type, protocol or generic
|
||
// parameter symbol.
|
||
assert(lhs.size() >= 2);
|
||
|
||
auto parentSymbol = lhs[lhs.size() - 2];
|
||
|
||
switch (parentSymbol.getKind()) {
|
||
case Symbol::Kind::AssociatedType: {
|
||
// In a conformance rule of the form [P:T].[Q] => [P:T], the parent type is
|
||
// trivial.
|
||
if (lhs.size() == 2)
|
||
return nullptr;
|
||
|
||
// If we have a rule of the form X.[P:Y].[Q] => X.[P:Y] wih non-empty X,
|
||
// then the parent type is X.[P].
|
||
const auto protos = parentSymbol.getProtocols();
|
||
assert(protos.size() == 1);
|
||
|
||
return protos[0];
|
||
}
|
||
|
||
case Symbol::Kind::GenericParam:
|
||
case Symbol::Kind::Protocol:
|
||
// The parent type is trivial (either a generic parameter, or the protocol
|
||
// 'Self' type).
|
||
return nullptr;
|
||
|
||
case Symbol::Kind::Name:
|
||
case Symbol::Kind::Layout:
|
||
case Symbol::Kind::Superclass:
|
||
case Symbol::Kind::ConcreteType:
|
||
case Symbol::Kind::ConcreteConformance:
|
||
break;
|
||
}
|
||
|
||
llvm_unreachable("Bad symbol kind");
|
||
}
|
||
|
||
/// Collect conformance rules and parent paths, and record an initial
|
||
/// equation where each conformance is equivalent to itself.
|
||
void GeneratingConformances::collectConformanceRules() {
|
||
// Prepare the initial set of equations.
|
||
for (unsigned ruleID : indices(System.getRules())) {
|
||
const auto &rule = System.getRule(ruleID);
|
||
if (rule.isPermanent())
|
||
continue;
|
||
|
||
if (rule.isRedundant())
|
||
continue;
|
||
|
||
if (rule.containsUnresolvedSymbols())
|
||
continue;
|
||
|
||
if (!rule.isAnyConformanceRule())
|
||
continue;
|
||
|
||
ConformanceRules.push_back(ruleID);
|
||
|
||
// Initially, every non-redundant conformance rule can be expressed
|
||
// as itself.
|
||
SmallVector<unsigned, 2> path;
|
||
path.push_back(ruleID);
|
||
ConformancePaths[ruleID].push_back(path);
|
||
|
||
// Save protocol refinement relations in a side table.
|
||
if (rule.isProtocolRefinementRule()) {
|
||
ProtocolRefinements.insert(ruleID);
|
||
continue;
|
||
}
|
||
|
||
auto lhs = rule.getLHS();
|
||
|
||
// Record a parent path if the subject type itself requires a non-trivial
|
||
// conformance path to derive.
|
||
if (auto *parentProto = getParentConformanceForTerm(lhs)) {
|
||
MutableTerm mutTerm(lhs.begin(), lhs.end() - 2);
|
||
assert(!mutTerm.empty());
|
||
|
||
bool simplified = System.simplify(mutTerm);
|
||
assert(!simplified || rule.isSimplified());
|
||
(void) simplified;
|
||
|
||
mutTerm.add(Symbol::forProtocol(parentProto, Context));
|
||
|
||
// Get a conformance path for X.[P] and record it.
|
||
decomposeTermIntoConformanceRuleLeftHandSides(mutTerm, ParentPaths[ruleID]);
|
||
}
|
||
}
|
||
|
||
// Sort the list of conformance rules in reverse order; we're going to try
|
||
// to minimize away less canonical rules first.
|
||
std::sort(ConformanceRules.begin(), ConformanceRules.end(),
|
||
[&](unsigned lhs, unsigned rhs) -> bool {
|
||
const auto &lhsRule = System.getRule(lhs);
|
||
const auto &rhsRule = System.getRule(rhs);
|
||
|
||
if (lhsRule.isExplicit() != rhsRule.isExplicit())
|
||
return !lhsRule.isExplicit();
|
||
|
||
return lhsRule.getLHS().compare(rhsRule.getLHS(), Context) > 0;
|
||
});
|
||
|
||
Context.ConformanceRulesHistogram.add(ConformanceRules.size());
|
||
}
|
||
|
||
/// Use homotopy information to discover all ways of writing the left hand side
|
||
/// of each conformance rule as a product of left hand sides of other conformance
|
||
/// rules.
|
||
///
|
||
/// Each conformance rule (Vi.[P] => Vi) can always be written in terms of itself,
|
||
/// so the first term of each disjunction is always (Vi.[P] => Vi).
|
||
///
|
||
/// Conformance rules can also be circular, so not every choice of disjunctions
|
||
/// produces a valid result; for example, if you have these definitions:
|
||
///
|
||
/// protocol P {
|
||
/// associatedtype T : P
|
||
/// }
|
||
///
|
||
/// struct G<X, Y> where X : P, X.T == Y, Y : P, Y.T == X {}
|
||
///
|
||
/// We have three conformance rules:
|
||
///
|
||
/// [P:T].[P] => [P:T]
|
||
/// <X>.[P] => <X>
|
||
/// <Y>.[P] => <Y>
|
||
///
|
||
/// The first rule, <X>.[P] => <X> has an alternate conformance path:
|
||
///
|
||
/// (<Y>.[P]).([P:T].[P])
|
||
///
|
||
/// The second rule similarly has an alternate conformance path:
|
||
///
|
||
/// (<X>.[P]).([P:T].[P])
|
||
///
|
||
/// This gives us the following initial set of candidate conformance paths:
|
||
///
|
||
/// [P:T].[P] := ([P:T].[P])
|
||
/// <X>.[P] := (<X>.[P]) ∨ (<Y>.[P]).([P:T].[P])
|
||
/// <Y>.[P] := (<Y>.[P]) ∨ (<X>.[P]).([P:T].[P])
|
||
///
|
||
/// One valid solution is the following set of assignments:
|
||
///
|
||
/// [P:T].[P] := ([P:T].[P])
|
||
/// <X>.[P] := (<X>.[P])
|
||
/// <Y>.[P] := (<X>.[P]).([P:T].[P])
|
||
///
|
||
/// That is, we can choose to eliminate <X>.[P], but not <Y>.[P], or vice
|
||
/// versa; but it is never valid to eliminate both.
|
||
void GeneratingConformances::computeCandidateConformancePaths() {
|
||
for (const auto &loop : System.getLoops()) {
|
||
if (loop.isDeleted())
|
||
continue;
|
||
|
||
llvm::SmallDenseMap<const ProtocolDecl *,
|
||
ProtocolConformanceRules, 2> result;
|
||
|
||
loop.findProtocolConformanceRules(result, System);
|
||
|
||
if (result.empty())
|
||
continue;
|
||
|
||
if (System.getDebugOptions().contains(DebugFlags::GeneratingConformances)) {
|
||
llvm::dbgs() << "Candidate homotopy generator: ";
|
||
loop.dump(llvm::dbgs(), System);
|
||
llvm::dbgs() << "\n";
|
||
}
|
||
|
||
for (const auto &pair : result) {
|
||
const auto *proto = pair.first;
|
||
const auto &inEmptyContext = pair.second.RulesInEmptyContext;
|
||
const auto &inContext = pair.second.RulesInContext;
|
||
bool sawIdentityConformance = pair.second.SawIdentityConformance;
|
||
|
||
// No rules appear without context.
|
||
if (inEmptyContext.empty())
|
||
continue;
|
||
|
||
if (System.getDebugOptions().contains(DebugFlags::GeneratingConformances)) {
|
||
llvm::dbgs() << "* Protocol " << proto->getName() << ":\n";
|
||
llvm::dbgs() << "** Conformance rules not in context:\n";
|
||
for (unsigned ruleID : inEmptyContext) {
|
||
llvm::dbgs() << "-- (#" << ruleID << ") " << System.getRule(ruleID) << "\n";
|
||
}
|
||
|
||
llvm::dbgs() << "** Conformance rules in context:\n";
|
||
for (auto pair : inContext) {
|
||
llvm::dbgs() << "-- " << pair.first;
|
||
unsigned ruleID = pair.second;
|
||
llvm::dbgs() << " (#" << ruleID << ") " << System.getRule(ruleID) << "\n";
|
||
}
|
||
|
||
if (sawIdentityConformance) {
|
||
llvm::dbgs() << "** Equivalent to identity conformance\n";
|
||
}
|
||
|
||
llvm::dbgs() << "\n";
|
||
}
|
||
|
||
// Two conformance rules in empty context (T.[P] => T) and (T'.[P] => T)
|
||
// are interchangeable, and contribute a trivial pair of conformance
|
||
// equations expressing that each one can be written in terms of the
|
||
// other:
|
||
//
|
||
// (T.[P] => T) := (T'.[P])
|
||
// (T'.[P] => T') := (T.[P])
|
||
for (unsigned candidateRuleID : inEmptyContext) {
|
||
for (unsigned otherRuleID : inEmptyContext) {
|
||
if (otherRuleID == candidateRuleID)
|
||
continue;
|
||
|
||
SmallVector<unsigned, 2> path;
|
||
path.push_back(otherRuleID);
|
||
ConformancePaths[candidateRuleID].push_back(path);
|
||
}
|
||
}
|
||
|
||
// If a rewrite loop contains a conformance rule (T.[P] => T) together
|
||
// with the identity conformance ([P].[P] => [P]), both in empty context,
|
||
// the conformance rule (T.[P] => T) is equivalent to the *empty product*
|
||
// of conformance rules; that is, it is trivially redundant.
|
||
if (sawIdentityConformance) {
|
||
for (unsigned candidateRuleID : inEmptyContext) {
|
||
SmallVector<unsigned, 2> emptyPath;
|
||
ConformancePaths[candidateRuleID].push_back(emptyPath);
|
||
}
|
||
}
|
||
|
||
// Suppose a rewrite loop contains a conformance rule (T.[P] => T) in
|
||
// empty context, and a conformance rule (V.[P] => V) in non-empty left
|
||
// context U.
|
||
//
|
||
// The rewrite loop looks something like this:
|
||
//
|
||
// ... ⊗ (T.[P] => T) ⊗ ... ⊗ U.(V => V.[P]) ⊗ ...
|
||
// ^ ^
|
||
// | |
|
||
// + basepoint ========================= basepoint +
|
||
//
|
||
// We can decompose U into a product of conformance rules:
|
||
//
|
||
// (V1.[P1] => V1)...(Vn.[Pn] => Vn),
|
||
//
|
||
// Note that (V1)...(Vn) is canonically equivalent to U.
|
||
//
|
||
// Now, we can record a candidate decomposition of (T.[P] => T) as a
|
||
// product of conformance rules:
|
||
//
|
||
// (T.[P] => T) := (V1.[P1] => V1)...(Vn.[Pn] => Vn).(V.[P] => V)
|
||
//
|
||
// Again, note that (V1)...(Vn).V is canonically equivalent to U.V,
|
||
// and therefore T.
|
||
for (auto pair : inContext) {
|
||
// We have a term U, and a rule V.[P] => V.
|
||
SmallVector<unsigned, 2> conformancePath;
|
||
|
||
// Simplify U to get U'.
|
||
MutableTerm term = pair.first;
|
||
(void) System.simplify(term);
|
||
|
||
// Write U'.[domain(V)] as a product of left hand sides of protocol
|
||
// conformance rules.
|
||
decomposeTermIntoConformanceRuleLeftHandSides(term, pair.second,
|
||
conformancePath);
|
||
|
||
// This decomposition defines a conformance access path for each
|
||
// conformance rule we saw in empty context.
|
||
for (unsigned otherRuleID : inEmptyContext)
|
||
ConformancePaths[otherRuleID].push_back(conformancePath);
|
||
}
|
||
}
|
||
}
|
||
|
||
for (const auto &pair : ConformancePaths) {
|
||
if (pair.second.size() > 1)
|
||
Context.GeneratingConformancesHistogram.add(pair.second.size());
|
||
}
|
||
}
|
||
|
||
/// Determines if \p path can be expressed without any of the conformance
|
||
/// rules appearing in \p redundantConformances, by possibly substituting
|
||
/// any occurrences of the redundant rules with alternate definitions
|
||
/// appearing in \p conformancePaths.
|
||
///
|
||
/// The \p conformancePaths map sends conformance rules to a list of
|
||
/// disjunctions, where each disjunction is a product of other conformance
|
||
/// rules.
|
||
bool GeneratingConformances::isValidConformancePath(
|
||
llvm::SmallDenseSet<unsigned, 4> &visited,
|
||
const llvm::SmallVectorImpl<unsigned> &path, bool allowConcrete) const {
|
||
|
||
unsigned lastIdx = path.size() - 1;
|
||
|
||
for (unsigned ruleIdx : indices(path)) {
|
||
unsigned ruleID = path[ruleIdx];
|
||
if (visited.count(ruleID) > 0)
|
||
return false;
|
||
|
||
bool isLastElement = (ruleIdx == lastIdx);
|
||
|
||
// Concrete conformances cannot appear in the middle of a conformance path.
|
||
if (!allowConcrete || !isLastElement) {
|
||
if (System.getRule(ruleID).getLHS().back().getKind()
|
||
== Symbol::Kind::ConcreteConformance)
|
||
return false;
|
||
}
|
||
|
||
if (RedundantConformances.count(ruleID)) {
|
||
SWIFT_DEFER {
|
||
visited.erase(ruleID);
|
||
};
|
||
visited.insert(ruleID);
|
||
|
||
auto found = ConformancePaths.find(ruleID);
|
||
assert(found != ConformancePaths.end());
|
||
|
||
bool foundValidConformancePath = false;
|
||
for (const auto &otherPath : found->second) {
|
||
if (isValidConformancePath(visited, otherPath,
|
||
allowConcrete && isLastElement)) {
|
||
foundValidConformancePath = true;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!foundValidConformancePath)
|
||
return false;
|
||
}
|
||
|
||
auto found = ParentPaths.find(ruleID);
|
||
if (found != ParentPaths.end()) {
|
||
SWIFT_DEFER {
|
||
visited.erase(ruleID);
|
||
};
|
||
visited.insert(ruleID);
|
||
|
||
// If 'req' is based on some other conformance requirement
|
||
// `T.[P.]A : Q', we want to make sure that we have a
|
||
// non-redundant derivation for 'T : P'.
|
||
if (!isValidConformancePath(visited, found->second,
|
||
/*allowConcrete=*/false)) {
|
||
return false;
|
||
}
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/// Rules of the form [P].[Q] => [P] encode protocol refinement and can only
|
||
/// be redundant if they're equivalent to a sequence of other protocol
|
||
/// refinements.
|
||
///
|
||
/// This helps ensure that the inheritance clause of a protocol is complete
|
||
/// and correct, allowing name lookup to find associated types of inherited
|
||
/// protocols while building the protocol requirement signature.
|
||
bool GeneratingConformances::isValidRefinementPath(
|
||
const llvm::SmallVectorImpl<unsigned> &path) const {
|
||
for (unsigned ruleID : path) {
|
||
if (!System.getRule(ruleID).isProtocolRefinementRule())
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
void GeneratingConformances::dumpGeneratingConformanceEquations(
|
||
llvm::raw_ostream &out) const {
|
||
out << "Initial set of equations:\n";
|
||
for (const auto &pair : ConformancePaths) {
|
||
out << "- ";
|
||
dumpGeneratingConformanceEquation(out, pair.first, pair.second);
|
||
out << "\n";
|
||
}
|
||
|
||
out << "Parent paths:\n";
|
||
for (const auto &pair : ParentPaths) {
|
||
out << "- " << System.getRule(pair.first).getLHS() << ": ";
|
||
dumpConformancePath(out, pair.second);
|
||
out << "\n";
|
||
}
|
||
}
|
||
|
||
void GeneratingConformances::dumpConformancePath(
|
||
llvm::raw_ostream &out,
|
||
const SmallVectorImpl<unsigned> &path) const {
|
||
if (path.empty()) {
|
||
out << "1";
|
||
return;
|
||
}
|
||
|
||
for (unsigned ruleID : path)
|
||
out << "(" << System.getRule(ruleID).getLHS() << ")";
|
||
}
|
||
|
||
void GeneratingConformances::dumpGeneratingConformanceEquation(
|
||
llvm::raw_ostream &out,
|
||
unsigned baseRuleID,
|
||
const std::vector<SmallVector<unsigned, 2>> &paths) const {
|
||
out << System.getRule(baseRuleID).getLHS() << " := ";
|
||
|
||
bool first = true;
|
||
for (const auto &path : paths) {
|
||
if (!first)
|
||
out << " ∨ ";
|
||
else
|
||
first = false;
|
||
|
||
dumpConformancePath(out, path);
|
||
}
|
||
}
|
||
|
||
void GeneratingConformances::verifyGeneratingConformanceEquations() const {
|
||
#ifndef NDEBUG
|
||
for (const auto &pair : ConformancePaths) {
|
||
const auto &rule = System.getRule(pair.first);
|
||
auto *proto = rule.getLHS().back().getProtocol();
|
||
|
||
MutableTerm baseTerm(rule.getRHS());
|
||
(void) System.simplify(baseTerm);
|
||
|
||
for (const auto &path : pair.second) {
|
||
if (path.empty())
|
||
continue;
|
||
|
||
const auto &otherRule = System.getRule(path.back());
|
||
auto *otherProto = otherRule.getLHS().back().getProtocol();
|
||
|
||
if (proto != otherProto) {
|
||
llvm::errs() << "Invalid equation: ";
|
||
dumpGeneratingConformanceEquation(llvm::errs(),
|
||
pair.first, pair.second);
|
||
llvm::errs() << "\n";
|
||
llvm::errs() << "Mismatched conformance:\n";
|
||
llvm::errs() << "Base rule: " << rule << "\n";
|
||
llvm::errs() << "Final rule: " << otherRule << "\n\n";
|
||
System.dump(llvm::errs());
|
||
abort();
|
||
}
|
||
|
||
MutableTerm otherTerm;
|
||
for (unsigned i : indices(path)) {
|
||
unsigned otherRuleID = path[i];
|
||
const auto &rule = System.getRule(otherRuleID);
|
||
|
||
bool isLastElement = (i == path.size() - 1);
|
||
if ((isLastElement && !rule.isAnyConformanceRule()) ||
|
||
(!isLastElement && !rule.isProtocolConformanceRule())) {
|
||
llvm::errs() << "Equation term is not a conformance rule: ";
|
||
dumpGeneratingConformanceEquation(llvm::errs(),
|
||
pair.first, pair.second);
|
||
llvm::errs() << "\n";
|
||
llvm::errs() << "Term: " << rule << "\n";
|
||
System.dump(llvm::errs());
|
||
abort();
|
||
}
|
||
|
||
otherTerm.append(rule.getRHS());
|
||
}
|
||
|
||
(void) System.simplify(otherTerm);
|
||
|
||
if (baseTerm != otherTerm) {
|
||
llvm::errs() << "Invalid equation: ";
|
||
dumpGeneratingConformanceEquation(llvm::errs(),
|
||
pair.first, pair.second);
|
||
llvm::errs() << "\n";
|
||
llvm::errs() << "Invalid conformance path:\n";
|
||
llvm::errs() << "Expected: " << baseTerm << "\n";
|
||
llvm::errs() << "Got: " << otherTerm << "\n\n";
|
||
System.dump(llvm::errs());
|
||
abort();
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
}
|
||
|
||
/// Find a minimal set of generating conformances by marking all other
|
||
/// conformances redundant.
|
||
///
|
||
/// In the first pass, we only consider conformance requirements that are
|
||
/// made redundant by concrete conformances.
|
||
void GeneratingConformances::computeGeneratingConformances(
|
||
bool firstPass) {
|
||
for (unsigned ruleID : ConformanceRules) {
|
||
const auto &paths = ConformancePaths[ruleID];
|
||
|
||
if (firstPass) {
|
||
bool derivedViaConcrete = false;
|
||
for (const auto &path : paths) {
|
||
if (path.empty())
|
||
break;
|
||
|
||
if (System.getRule(path.back()).getLHS().back().getKind() ==
|
||
Symbol::Kind::ConcreteConformance) {
|
||
derivedViaConcrete = true;
|
||
break;
|
||
}
|
||
}
|
||
|
||
// If this rule doesn't involve concrete conformances it will be
|
||
// considered in the second pass.
|
||
if (!derivedViaConcrete)
|
||
continue;
|
||
} else {
|
||
// Ignore rules already determined to be redundant by the first pass.
|
||
if (RedundantConformances.count(ruleID) > 0)
|
||
continue;
|
||
}
|
||
|
||
bool isProtocolRefinement = ProtocolRefinements.count(ruleID) > 0;
|
||
|
||
for (const auto &path : paths) {
|
||
// Only consider a protocol refinement rule to be redundant if it is
|
||
// witnessed by a composition of other protocol refinement rules.
|
||
if (isProtocolRefinement && !isValidRefinementPath(path))
|
||
continue;
|
||
|
||
llvm::SmallDenseSet<unsigned, 4> visited;
|
||
visited.insert(ruleID);
|
||
|
||
if (isValidConformancePath(visited, path,
|
||
/*allowConcrete=*/true)) {
|
||
RedundantConformances.insert(ruleID);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Check invariants.
|
||
void GeneratingConformances::verifyGeneratingConformances() const {
|
||
#ifndef NDEBUG
|
||
for (const auto &pair : ConformancePaths) {
|
||
unsigned ruleID = pair.first;
|
||
const auto &rule = System.getRule(ruleID);
|
||
|
||
if (RedundantConformances.count(ruleID) > 0) {
|
||
// Check that redundant conformances are recoverable via
|
||
// generating conformances.
|
||
llvm::SmallDenseSet<unsigned, 4> visited;
|
||
|
||
llvm::SmallVector<unsigned, 1> path;
|
||
path.push_back(ruleID);
|
||
|
||
if (!isValidConformancePath(visited, path,
|
||
/*allowConcrete=*/true)) {
|
||
llvm::errs() << "Redundant conformance is not recoverable:\n";
|
||
llvm::errs() << rule << "\n\n";
|
||
System.dump(llvm::errs());
|
||
abort();
|
||
}
|
||
|
||
continue;
|
||
}
|
||
|
||
if (rule.isRedundant()) {
|
||
llvm::errs() << "Generating conformance is redundant: ";
|
||
llvm::errs() << rule << "\n\n";
|
||
System.dump(llvm::errs());
|
||
abort();
|
||
}
|
||
|
||
if (rule.getLHS().containsUnresolvedSymbols()) {
|
||
llvm::errs() << "Generating conformance contains unresolved symbols: ";
|
||
llvm::errs() << rule << "\n\n";
|
||
System.dump(llvm::errs());
|
||
abort();
|
||
}
|
||
}
|
||
#endif
|
||
}
|
||
|
||
void GeneratingConformances::dumpGeneratingConformances(
|
||
llvm::raw_ostream &out) const {
|
||
out << "Generating conformances:\n";
|
||
|
||
for (const auto &pair : ConformancePaths) {
|
||
if (RedundantConformances.count(pair.first) > 0)
|
||
continue;
|
||
|
||
out << "- " << System.getRule(pair.first) << "\n";
|
||
}
|
||
}
|
||
|
||
/// Computes a minimal set of generating conformances, assuming that homotopy
|
||
/// reduction has already eliminated all redundant rewrite rules that are not
|
||
/// conformance rules.
|
||
void RewriteSystem::computeGeneratingConformances(
|
||
llvm::DenseSet<unsigned> &redundantConformances) {
|
||
GeneratingConformances builder(*this, redundantConformances);
|
||
|
||
builder.collectConformanceRules();
|
||
builder.computeCandidateConformancePaths();
|
||
|
||
if (Debug.contains(DebugFlags::GeneratingConformances)) {
|
||
builder.dumpGeneratingConformanceEquations(llvm::dbgs());
|
||
}
|
||
|
||
builder.verifyGeneratingConformanceEquations();
|
||
builder.computeGeneratingConformances(/*firstPass=*/true);
|
||
builder.computeGeneratingConformances(/*firstPass=*/false);
|
||
builder.verifyGeneratingConformances();
|
||
|
||
if (Debug.contains(DebugFlags::GeneratingConformances)) {
|
||
builder.dumpGeneratingConformances(llvm::dbgs());
|
||
}
|
||
}
|