mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
When a rewrite rule is replaced with a path containing ::Adjust, ::Decompose, ::ConcreteConformance or ::SuperclassConformance rewrite steps, the steps will get a non-zero EndOffset if the original rule appears in a step with a non-zero EndOffset. For this reason, these steps must work with a non-zero EndOffset, which primarily means computing correct offsets into the term being manipulated.
799 lines
27 KiB
C++
799 lines
27 KiB
C++
//===--- PropertyUnification.cpp - Rules added w/ building property map ---===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2021 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements the PropertyBag::addProperty() method, which merges layout,
|
|
// superclass and concrete type requirements. This merging can create new rules;
|
|
// property map construction is iterated with the Knuth-Bendix completion
|
|
// procedure until fixed point.
|
|
//
|
|
// This file also implements "nested type concretization", which introduces
|
|
// concrete type requirements on nested types of type parameters which are
|
|
// subject to both a protocol conformance and a concrete type (or superclass)
|
|
// requirement.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/LayoutConstraint.h"
|
|
#include "swift/AST/Module.h"
|
|
#include "swift/AST/ProtocolConformance.h"
|
|
#include "swift/AST/TypeMatcher.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <vector>
|
|
|
|
#include "PropertyMap.h"
|
|
|
|
using namespace swift;
|
|
using namespace rewriting;
|
|
|
|
/// This method takes a concrete type that was derived from a concrete type
|
|
/// produced by RewriteSystemBuilder::getConcreteSubstitutionSchema(),
|
|
/// either by extracting a structural sub-component or performing a (Swift AST)
|
|
/// substitution using subst(). It returns a new concrete substitution schema
|
|
/// and a new list of substitution terms.
|
|
///
|
|
/// For example, suppose we start with the concrete type
|
|
///
|
|
/// Dictionary<τ_0_0, Array<τ_0_1>> with substitutions {X.Y, Z}
|
|
///
|
|
/// We can extract out the structural sub-component Array<τ_0_1>. If we wish
|
|
/// to build a new concrete substitution schema, we call this method with
|
|
/// Array<τ_0_1> and the original substitutions {X.Y, Z}. This will produce
|
|
/// the new schema Array<τ_0_0> with substitutions {Z}.
|
|
///
|
|
/// As another example, consider we start with the schema Bar<τ_0_0> with
|
|
/// original substitutions {X.Y}, and perform a Swift AST subst() to get
|
|
/// Foo<τ_0_0.A.B>. We can then call this method with Foo<τ_0_0.A.B> and
|
|
/// the original substitutions {X.Y} to produce the new schema Foo<τ_0_0>
|
|
/// with substitutions {X.Y.A.B}.
|
|
static CanType
|
|
remapConcreteSubstitutionSchema(CanType concreteType,
|
|
ArrayRef<Term> substitutions,
|
|
RewriteContext &ctx,
|
|
SmallVectorImpl<Term> &result) {
|
|
assert(!concreteType->isTypeParameter() && "Must have a concrete type here");
|
|
|
|
if (!concreteType->hasTypeParameter())
|
|
return concreteType;
|
|
|
|
return CanType(concreteType.transformRec([&](Type t) -> Optional<Type> {
|
|
if (!t->isTypeParameter())
|
|
return None;
|
|
|
|
auto term = ctx.getRelativeTermForType(CanType(t), substitutions);
|
|
|
|
unsigned newIndex = result.size();
|
|
result.push_back(Term::get(term, ctx));
|
|
|
|
return CanGenericTypeParamType::get(/*type sequence=*/ false,
|
|
/*depth=*/ 0, newIndex,
|
|
ctx.getASTContext());
|
|
}));
|
|
}
|
|
|
|
namespace {
|
|
/// Utility class used by unifyConcreteTypes() and unifySuperclasses()
|
|
/// to walk two concrete types in parallel. Any time there is a mismatch,
|
|
/// records a new induced rule.
|
|
class ConcreteTypeMatcher : public TypeMatcher<ConcreteTypeMatcher> {
|
|
ArrayRef<Term> lhsSubstitutions;
|
|
ArrayRef<Term> rhsSubstitutions;
|
|
RewriteContext &ctx;
|
|
SmallVectorImpl<InducedRule> &inducedRules;
|
|
bool debug;
|
|
|
|
public:
|
|
ConcreteTypeMatcher(ArrayRef<Term> lhsSubstitutions,
|
|
ArrayRef<Term> rhsSubstitutions,
|
|
RewriteContext &ctx,
|
|
SmallVectorImpl<InducedRule> &inducedRules,
|
|
bool debug)
|
|
: lhsSubstitutions(lhsSubstitutions),
|
|
rhsSubstitutions(rhsSubstitutions),
|
|
ctx(ctx), inducedRules(inducedRules), debug(debug) {}
|
|
|
|
bool alwaysMismatchTypeParameters() const { return true; }
|
|
|
|
bool mismatch(TypeBase *firstType, TypeBase *secondType,
|
|
Type sugaredFirstType) {
|
|
bool firstAbstract = firstType->isTypeParameter();
|
|
bool secondAbstract = secondType->isTypeParameter();
|
|
|
|
if (firstAbstract && secondAbstract) {
|
|
// Both sides are type parameters; add a same-type requirement.
|
|
auto lhsTerm = ctx.getRelativeTermForType(CanType(firstType),
|
|
lhsSubstitutions);
|
|
auto rhsTerm = ctx.getRelativeTermForType(CanType(secondType),
|
|
rhsSubstitutions);
|
|
if (lhsTerm != rhsTerm) {
|
|
if (debug) {
|
|
llvm::dbgs() << "%% Induced rule " << lhsTerm
|
|
<< " == " << rhsTerm << "\n";
|
|
}
|
|
inducedRules.emplace_back(lhsTerm, rhsTerm);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (firstAbstract && !secondAbstract) {
|
|
// A type parameter is equated with a concrete type; add a concrete
|
|
// type requirement.
|
|
auto subjectTerm = ctx.getRelativeTermForType(CanType(firstType),
|
|
lhsSubstitutions);
|
|
|
|
SmallVector<Term, 3> result;
|
|
auto concreteType = remapConcreteSubstitutionSchema(CanType(secondType),
|
|
rhsSubstitutions,
|
|
ctx, result);
|
|
|
|
MutableTerm constraintTerm(subjectTerm);
|
|
constraintTerm.add(Symbol::forConcreteType(concreteType, result, ctx));
|
|
|
|
if (debug) {
|
|
llvm::dbgs() << "%% Induced rule " << subjectTerm
|
|
<< " == " << constraintTerm << "\n";
|
|
}
|
|
inducedRules.emplace_back(subjectTerm, constraintTerm);
|
|
return true;
|
|
}
|
|
|
|
if (!firstAbstract && secondAbstract) {
|
|
// A concrete type is equated with a type parameter; add a concrete
|
|
// type requirement.
|
|
auto subjectTerm = ctx.getRelativeTermForType(CanType(secondType),
|
|
rhsSubstitutions);
|
|
|
|
SmallVector<Term, 3> result;
|
|
auto concreteType = remapConcreteSubstitutionSchema(CanType(firstType),
|
|
lhsSubstitutions,
|
|
ctx, result);
|
|
|
|
MutableTerm constraintTerm(subjectTerm);
|
|
constraintTerm.add(Symbol::forConcreteType(concreteType, result, ctx));
|
|
|
|
if (debug) {
|
|
llvm::dbgs() << "%% Induced rule " << subjectTerm
|
|
<< " == " << constraintTerm << "\n";
|
|
}
|
|
inducedRules.emplace_back(subjectTerm, constraintTerm);
|
|
return true;
|
|
}
|
|
|
|
// Any other kind of type mismatch involves conflicting concrete types on
|
|
// both sides, which can only happen on invalid input.
|
|
return false;
|
|
}
|
|
};
|
|
}
|
|
|
|
/// When a type parameter has two concrete types, we have to unify the
|
|
/// type constructor arguments.
|
|
///
|
|
/// For example, suppose that we have two concrete same-type requirements:
|
|
///
|
|
/// T == Foo<X.Y, Z, String>
|
|
/// T == Foo<Int, A.B, W>
|
|
///
|
|
/// These lower to the following two rules:
|
|
///
|
|
/// T.[concrete: Foo<τ_0_0, τ_0_1, String> with {X.Y, Z}] => T
|
|
/// T.[concrete: Foo<Int, τ_0_0, τ_0_1> with {A.B, W}] => T
|
|
///
|
|
/// The two concrete type symbols will be added to the property bag of 'T',
|
|
/// and we will eventually end up in this method, where we will generate three
|
|
/// induced rules:
|
|
///
|
|
/// X.Y.[concrete: Int] => X.Y
|
|
/// A.B => Z
|
|
/// W.[concrete: String] => W
|
|
///
|
|
/// Returns the left hand side on success (it could also return the right hand
|
|
/// side; since we unified the type constructor arguments, it doesn't matter).
|
|
///
|
|
/// Returns true if a conflict was detected.
|
|
static bool unifyConcreteTypes(
|
|
Symbol lhs, Symbol rhs, RewriteContext &ctx,
|
|
SmallVectorImpl<InducedRule> &inducedRules,
|
|
bool debug) {
|
|
auto lhsType = lhs.getConcreteType();
|
|
auto rhsType = rhs.getConcreteType();
|
|
|
|
if (debug) {
|
|
llvm::dbgs() << "% Unifying " << lhs << " with " << rhs << "\n";
|
|
}
|
|
|
|
ConcreteTypeMatcher matcher(lhs.getSubstitutions(),
|
|
rhs.getSubstitutions(),
|
|
ctx, inducedRules, debug);
|
|
if (!matcher.match(lhsType, rhsType)) {
|
|
// FIXME: Diagnose the conflict
|
|
if (debug) {
|
|
llvm::dbgs() << "%% Concrete type conflict\n";
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// When a type parameter has two superclasses, we have to both unify the
|
|
/// type constructor arguments, and record the most derived superclass.
|
|
///
|
|
/// For example, if we have this setup:
|
|
///
|
|
/// class Base<T, T> {}
|
|
/// class Middle<U> : Base<T, T> {}
|
|
/// class Derived : Middle<Int> {}
|
|
///
|
|
/// T : Base<U, V>
|
|
/// T : Derived
|
|
///
|
|
/// The most derived superclass requirement is 'T : Derived'.
|
|
///
|
|
/// The corresponding superclass of 'Derived' is 'Base<Int, Int>', so we
|
|
/// unify the type constructor arguments of 'Base<U, V>' and 'Base<Int, Int>',
|
|
/// which generates two induced rules:
|
|
///
|
|
/// U.[concrete: Int] => U
|
|
/// V.[concrete: Int] => V
|
|
///
|
|
/// Returns the most derived superclass, which becomes the new superclass
|
|
/// that gets recorded in the property map.
|
|
static Symbol unifySuperclasses(
|
|
Symbol lhs, Symbol rhs, RewriteContext &ctx,
|
|
SmallVectorImpl<InducedRule> &inducedRules,
|
|
bool debug) {
|
|
if (debug) {
|
|
llvm::dbgs() << "% Unifying " << lhs << " with " << rhs << "\n";
|
|
}
|
|
|
|
auto lhsType = lhs.getSuperclass();
|
|
auto rhsType = rhs.getSuperclass();
|
|
|
|
auto *lhsClass = lhsType.getClassOrBoundGenericClass();
|
|
assert(lhsClass != nullptr);
|
|
|
|
auto *rhsClass = rhsType.getClassOrBoundGenericClass();
|
|
assert(rhsClass != nullptr);
|
|
|
|
// First, establish the invariant that lhsClass is either equal to, or
|
|
// is a superclass of rhsClass.
|
|
if (lhsClass == rhsClass ||
|
|
lhsClass->isSuperclassOf(rhsClass)) {
|
|
// Keep going.
|
|
} else if (rhsClass->isSuperclassOf(lhsClass)) {
|
|
std::swap(rhs, lhs);
|
|
std::swap(rhsType, lhsType);
|
|
std::swap(rhsClass, lhsClass);
|
|
} else {
|
|
// FIXME: Diagnose the conflict.
|
|
if (debug) {
|
|
llvm::dbgs() << "%% Unrelated superclass types\n";
|
|
}
|
|
|
|
return lhs;
|
|
}
|
|
|
|
if (lhsClass != rhsClass) {
|
|
// Get the corresponding substitutions for the right hand side.
|
|
assert(lhsClass->isSuperclassOf(rhsClass));
|
|
rhsType = rhsType->getSuperclassForDecl(lhsClass)
|
|
->getCanonicalType();
|
|
}
|
|
|
|
// Unify type contructor arguments.
|
|
ConcreteTypeMatcher matcher(lhs.getSubstitutions(),
|
|
rhs.getSubstitutions(),
|
|
ctx, inducedRules, debug);
|
|
if (!matcher.match(lhsType, rhsType)) {
|
|
if (debug) {
|
|
llvm::dbgs() << "%% Superclass conflict\n";
|
|
}
|
|
return rhs;
|
|
}
|
|
|
|
// Record the more specific class.
|
|
return rhs;
|
|
}
|
|
|
|
void PropertyBag::addProperty(
|
|
Symbol property, unsigned ruleID, RewriteContext &ctx,
|
|
SmallVectorImpl<InducedRule> &inducedRules,
|
|
bool debug) {
|
|
|
|
switch (property.getKind()) {
|
|
case Symbol::Kind::Protocol:
|
|
ConformsTo.push_back(property.getProtocol());
|
|
ConformsToRules.push_back(ruleID);
|
|
return;
|
|
|
|
case Symbol::Kind::Layout:
|
|
if (!Layout) {
|
|
Layout = property.getLayoutConstraint();
|
|
LayoutRule = ruleID;
|
|
} else
|
|
Layout = Layout.merge(property.getLayoutConstraint());
|
|
|
|
return;
|
|
|
|
case Symbol::Kind::Superclass: {
|
|
// FIXME: Also handle superclass vs concrete
|
|
|
|
if (Superclass) {
|
|
Superclass = unifySuperclasses(*Superclass, property,
|
|
ctx, inducedRules, debug);
|
|
} else {
|
|
Superclass = property;
|
|
SuperclassRule = ruleID;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
case Symbol::Kind::ConcreteType: {
|
|
if (ConcreteType) {
|
|
(void) unifyConcreteTypes(*ConcreteType, property,
|
|
ctx, inducedRules, debug);
|
|
} else {
|
|
ConcreteType = property;
|
|
ConcreteTypeRule = ruleID;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
case Symbol::Kind::ConcreteConformance:
|
|
// FIXME
|
|
return;
|
|
|
|
case Symbol::Kind::Name:
|
|
case Symbol::Kind::GenericParam:
|
|
case Symbol::Kind::AssociatedType:
|
|
break;
|
|
}
|
|
|
|
llvm_unreachable("Bad symbol kind");
|
|
}
|
|
|
|
/// For each fully-concrete type, find the shortest term having that concrete type.
|
|
/// This is later used by computeConstraintTermForTypeWitness().
|
|
void PropertyMap::computeConcreteTypeInDomainMap() {
|
|
for (const auto &props : Entries) {
|
|
if (!props->isConcreteType())
|
|
continue;
|
|
|
|
auto concreteType = props->ConcreteType->getConcreteType();
|
|
if (concreteType->hasTypeParameter())
|
|
continue;
|
|
|
|
assert(props->ConcreteType->getSubstitutions().empty());
|
|
|
|
auto domain = props->Key.getRootProtocols();
|
|
auto concreteTypeKey = std::make_pair(concreteType, domain);
|
|
|
|
auto found = ConcreteTypeInDomainMap.find(concreteTypeKey);
|
|
if (found != ConcreteTypeInDomainMap.end())
|
|
continue;
|
|
|
|
auto inserted = ConcreteTypeInDomainMap.insert(
|
|
std::make_pair(concreteTypeKey, props->Key));
|
|
assert(inserted.second);
|
|
(void) inserted;
|
|
}
|
|
}
|
|
|
|
void PropertyMap::concretizeNestedTypesFromConcreteParents(
|
|
SmallVectorImpl<InducedRule> &inducedRules) const {
|
|
for (const auto &props : Entries) {
|
|
if (props->getConformsTo().empty())
|
|
continue;
|
|
|
|
if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
|
|
if (props->isConcreteType() ||
|
|
props->hasSuperclassBound()) {
|
|
llvm::dbgs() << "^ Concretizing nested types of ";
|
|
props->dump(llvm::dbgs());
|
|
llvm::dbgs() << "\n";
|
|
}
|
|
}
|
|
|
|
if (props->isConcreteType()) {
|
|
if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
|
|
llvm::dbgs() << "- via concrete type requirement\n";
|
|
}
|
|
|
|
concretizeNestedTypesFromConcreteParent(
|
|
props->getKey(),
|
|
RequirementKind::SameType,
|
|
props->ConcreteType->getConcreteType(),
|
|
props->ConcreteType->getSubstitutions(),
|
|
props->getConformsTo(),
|
|
props->ConcreteConformances,
|
|
inducedRules);
|
|
}
|
|
|
|
if (props->hasSuperclassBound()) {
|
|
if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
|
|
llvm::dbgs() << "- via superclass requirement\n";
|
|
}
|
|
|
|
concretizeNestedTypesFromConcreteParent(
|
|
props->getKey(),
|
|
RequirementKind::Superclass,
|
|
props->Superclass->getSuperclass(),
|
|
props->Superclass->getSubstitutions(),
|
|
props->getConformsTo(),
|
|
props->SuperclassConformances,
|
|
inducedRules);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Suppose a same-type requirement merges two property bags,
|
|
/// one of which has a conformance requirement to P and the other
|
|
/// one has a concrete type or superclass requirement.
|
|
///
|
|
/// If the concrete type or superclass conforms to P and P has an
|
|
/// associated type A, then we need to infer an equivalence between
|
|
/// T.[P:A] and whatever the type witness for 'A' is in the
|
|
/// concrete conformance.
|
|
///
|
|
/// For example, suppose we have a the following definitions,
|
|
///
|
|
/// protocol Q { associatedtype V }
|
|
/// protocol P { associatedtype A; associatedtype C }
|
|
/// struct Foo<A, B : Q> : P {
|
|
/// typealias C = B.V
|
|
/// }
|
|
///
|
|
/// together with the following property bag:
|
|
///
|
|
/// T => { conforms_to: [ P ], concrete: Foo<Int, τ_0_0> with <U> }
|
|
///
|
|
/// The type witness for A in the conformance Foo<Int, τ_0_0> : P is
|
|
/// the concrete type 'Int', which induces the following rule:
|
|
///
|
|
/// T.[P:A].[concrete: Int] => T.[P:A]
|
|
///
|
|
/// Whereas the type witness for B in the same conformance is the
|
|
/// abstract type 'τ_0_0.V', which via the substitutions <U> corresponds
|
|
/// to the term 'U.V', and therefore induces the following rule:
|
|
///
|
|
/// T.[P:B] => U.V
|
|
///
|
|
void PropertyMap::concretizeNestedTypesFromConcreteParent(
|
|
Term key, RequirementKind requirementKind,
|
|
CanType concreteType, ArrayRef<Term> substitutions,
|
|
ArrayRef<const ProtocolDecl *> conformsTo,
|
|
llvm::TinyPtrVector<ProtocolConformance *> &conformances,
|
|
SmallVectorImpl<InducedRule> &inducedRules) const {
|
|
assert(requirementKind == RequirementKind::SameType ||
|
|
requirementKind == RequirementKind::Superclass);
|
|
|
|
for (auto *proto : conformsTo) {
|
|
// FIXME: Either remove the ModuleDecl entirely from conformance lookup,
|
|
// or pass the correct one down in here.
|
|
auto *module = proto->getParentModule();
|
|
|
|
auto conformance = module->lookupConformance(concreteType,
|
|
const_cast<ProtocolDecl *>(proto));
|
|
if (conformance.isInvalid()) {
|
|
// FIXME: Diagnose conflict
|
|
if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
|
|
llvm::dbgs() << "^^ " << concreteType << " does not conform to "
|
|
<< proto->getName() << "\n";
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// FIXME: Maybe this can happen if the concrete type is an
|
|
// opaque result type?
|
|
assert(!conformance.isAbstract());
|
|
|
|
auto *concrete = conformance.getConcrete();
|
|
|
|
// Record the conformance for use by
|
|
// PropertyBag::getConformsToExcludingSuperclassConformances().
|
|
conformances.push_back(concrete);
|
|
|
|
auto assocTypes = proto->getAssociatedTypeMembers();
|
|
if (assocTypes.empty())
|
|
continue;
|
|
|
|
for (auto *assocType : assocTypes) {
|
|
if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
|
|
llvm::dbgs() << "^^ " << "Looking up type witness for "
|
|
<< proto->getName() << ":" << assocType->getName()
|
|
<< " on " << concreteType << "\n";
|
|
}
|
|
|
|
auto t = concrete->getTypeWitness(assocType);
|
|
if (!t) {
|
|
if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
|
|
llvm::dbgs() << "^^ " << "Type witness for " << assocType->getName()
|
|
<< " of " << concreteType << " could not be inferred\n";
|
|
}
|
|
|
|
t = ErrorType::get(concreteType);
|
|
}
|
|
|
|
auto typeWitness = t->getCanonicalType();
|
|
|
|
if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
|
|
llvm::dbgs() << "^^ " << "Type witness for " << assocType->getName()
|
|
<< " of " << concreteType << " is " << typeWitness << "\n";
|
|
}
|
|
|
|
MutableTerm subjectType(key);
|
|
subjectType.add(Symbol::forAssociatedType(proto, assocType->getName(),
|
|
Context));
|
|
|
|
MutableTerm constraintType;
|
|
|
|
auto simplify = [&](CanType t) -> CanType {
|
|
return CanType(t.transformRec([&](Type t) -> Optional<Type> {
|
|
if (!t->isTypeParameter())
|
|
return None;
|
|
|
|
auto term = Context.getRelativeTermForType(t->getCanonicalType(),
|
|
substitutions);
|
|
System.simplify(term);
|
|
return Context.getTypeForTerm(term, { });
|
|
}));
|
|
};
|
|
|
|
if (simplify(concreteType) == simplify(typeWitness) &&
|
|
requirementKind == RequirementKind::SameType) {
|
|
// FIXME: ConcreteTypeInDomainMap should support substitutions so
|
|
// that we can remove this.
|
|
|
|
if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
|
|
llvm::dbgs() << "^^ Type witness is the same as the concrete type\n";
|
|
}
|
|
|
|
// Add a rule T.[P:A] => T.
|
|
constraintType = MutableTerm(key);
|
|
} else {
|
|
constraintType = computeConstraintTermForTypeWitness(
|
|
key, concreteType, typeWitness, subjectType,
|
|
substitutions);
|
|
}
|
|
|
|
inducedRules.emplace_back(subjectType, constraintType);
|
|
if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
|
|
llvm::dbgs() << "^^ Induced rule " << constraintType
|
|
<< " => " << subjectType << "\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Given the key of a property bag known to have \p concreteType,
|
|
/// together with a \p typeWitness from a conformance on that concrete
|
|
/// type, return the right hand side of a rewrite rule to relate
|
|
/// \p subjectType with a term representing the type witness.
|
|
///
|
|
/// Suppose the key is T and the subject type is T.[P:A].
|
|
///
|
|
/// If the type witness is an abstract type U, this produces a rewrite
|
|
/// rule
|
|
///
|
|
/// T.[P:A] => U
|
|
///
|
|
/// If the type witness is a concrete type Foo, this produces a rewrite
|
|
/// rule
|
|
///
|
|
/// T.[P:A].[concrete: Foo] => T.[P:A]
|
|
///
|
|
/// However, this also tries to tie off recursion first using a heuristic.
|
|
///
|
|
/// If the type witness is fully concrete and we've already seen some
|
|
/// term V in the same domain with the same concrete type, we produce a
|
|
/// rewrite rule:
|
|
///
|
|
/// T.[P:A] => V
|
|
MutableTerm PropertyMap::computeConstraintTermForTypeWitness(
|
|
Term key, CanType concreteType, CanType typeWitness,
|
|
const MutableTerm &subjectType, ArrayRef<Term> substitutions) const {
|
|
if (!typeWitness->hasTypeParameter()) {
|
|
// Check if we have a shorter representative we can use.
|
|
auto domain = key.getRootProtocols();
|
|
auto concreteTypeKey = std::make_pair(typeWitness, domain);
|
|
|
|
auto found = ConcreteTypeInDomainMap.find(concreteTypeKey);
|
|
if (found != ConcreteTypeInDomainMap.end()) {
|
|
MutableTerm result(found->second);
|
|
if (result != subjectType) {
|
|
if (Debug.contains(DebugFlags::ConcretizeNestedTypes)) {
|
|
llvm::dbgs() << "^^ Type witness can re-use property bag of "
|
|
<< found->second << "\n";
|
|
}
|
|
return result;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (typeWitness->isTypeParameter()) {
|
|
// The type witness is a type parameter of the form τ_0_n.X.Y...Z,
|
|
// where 'n' is an index into the substitution array.
|
|
//
|
|
// Add a rule T => S.X.Y...Z, where S is the nth substitution term.
|
|
return Context.getRelativeTermForType(typeWitness, substitutions);
|
|
}
|
|
|
|
// The type witness is a concrete type.
|
|
MutableTerm constraintType = subjectType;
|
|
|
|
SmallVector<Term, 3> result;
|
|
auto typeWitnessSchema =
|
|
remapConcreteSubstitutionSchema(typeWitness, substitutions,
|
|
Context, result);
|
|
|
|
// Add a rule T.[P:A].[concrete: Foo.A] => T.[P:A].
|
|
constraintType.add(
|
|
Symbol::forConcreteType(
|
|
typeWitnessSchema, result, Context));
|
|
|
|
return constraintType;
|
|
}
|
|
|
|
void PropertyMap::recordConcreteConformanceRules(
|
|
SmallVectorImpl<InducedRule> &inducedRules) {
|
|
for (const auto &props : Entries) {
|
|
if (props->getConformsTo().empty())
|
|
continue;
|
|
|
|
if (props->ConcreteType) {
|
|
unsigned concreteRuleID = *props->ConcreteTypeRule;
|
|
|
|
// The GSB drops all conformance requirements on a type parameter equated
|
|
// to a concrete type, even if the concrete type doesn't conform. That is,
|
|
//
|
|
// protocol P {}
|
|
// <T where T : P, T == Int>
|
|
//
|
|
// minimizes as
|
|
//
|
|
// <T where T == Int>.
|
|
for (unsigned i : indices(props->ConformsTo)) {
|
|
auto *proto = props->ConformsTo[i];
|
|
auto conformanceRuleID = props->ConformsToRules[i];
|
|
recordConcreteConformanceRule(concreteRuleID, conformanceRuleID, proto,
|
|
inducedRules);
|
|
}
|
|
}
|
|
|
|
if (props->Superclass) {
|
|
unsigned superclassRuleID = *props->SuperclassRule;
|
|
|
|
// For superclass rules, we only introduce a concrete conformance if the
|
|
// superclass actually conforms. Otherwise, it is totally fine to have a
|
|
// signature like
|
|
//
|
|
// protocol P {}
|
|
// class C {}
|
|
// <T where T : P, T : C>
|
|
//
|
|
// There is no relation between P and C here.
|
|
|
|
// The conformances in SuperclassConformances should appear in the same
|
|
// order as the protocols in ConformsTo.
|
|
auto conformanceIter = props->SuperclassConformances.begin();
|
|
|
|
for (unsigned i : indices(props->ConformsTo)) {
|
|
if (conformanceIter == props->SuperclassConformances.end())
|
|
break;
|
|
|
|
auto *proto = props->ConformsTo[i];
|
|
if (proto != (*conformanceIter)->getProtocol())
|
|
continue;
|
|
|
|
unsigned conformanceRuleID = props->ConformsToRules[i];
|
|
recordConcreteConformanceRule(superclassRuleID, conformanceRuleID, proto,
|
|
inducedRules);
|
|
++conformanceIter;
|
|
}
|
|
|
|
assert(conformanceIter == props->SuperclassConformances.end());
|
|
}
|
|
}
|
|
}
|
|
|
|
void PropertyMap::recordConcreteConformanceRule(
|
|
unsigned concreteRuleID,
|
|
unsigned conformanceRuleID,
|
|
const ProtocolDecl *proto,
|
|
SmallVectorImpl<InducedRule> &inducedRules) {
|
|
if (!ConcreteConformanceRules.insert(
|
|
std::make_pair(concreteRuleID, conformanceRuleID)).second) {
|
|
// We've already emitted this rule.
|
|
return;
|
|
}
|
|
|
|
const auto &concreteRule = System.getRule(concreteRuleID);
|
|
const auto &conformanceRule = System.getRule(conformanceRuleID);
|
|
|
|
auto conformanceSymbol = *conformanceRule.isPropertyRule();
|
|
assert(conformanceSymbol.getKind() == Symbol::Kind::Protocol);
|
|
assert(conformanceSymbol.getProtocol() == proto);
|
|
|
|
auto concreteSymbol = *concreteRule.isPropertyRule();
|
|
assert(concreteSymbol.getKind() == Symbol::Kind::ConcreteType ||
|
|
concreteSymbol.getKind() == Symbol::Kind::Superclass);
|
|
|
|
RewritePath path;
|
|
|
|
// We have a pair of rules T.[P] and T'.[concrete: C].
|
|
// Either T == T', or T is a prefix of T', or T' is a prefix of T.
|
|
//
|
|
// Let T'' be the longest of T and T'.
|
|
MutableTerm rhs(concreteRule.getRHS().size() > conformanceRule.getRHS().size()
|
|
? concreteRule.getRHS()
|
|
: conformanceRule.getRHS());
|
|
|
|
// First, apply the conformance rule in reverse to obtain T''.[P].
|
|
path.add(RewriteStep::forRewriteRule(
|
|
/*startOffset=*/rhs.size() - conformanceRule.getRHS().size(),
|
|
/*endOffset=*/0,
|
|
/*ruleID=*/conformanceRuleID,
|
|
/*inverse=*/true));
|
|
|
|
// Now, apply the concrete type rule in reverse to obtain T''.[concrete: C].[P].
|
|
path.add(RewriteStep::forRewriteRule(
|
|
/*startOffset=*/rhs.size() - concreteRule.getRHS().size(),
|
|
/*endOffset=*/1,
|
|
/*ruleID=*/concreteRuleID,
|
|
/*inverse=*/true));
|
|
|
|
// Apply a concrete type adjustment to the concrete symbol if T' is shorter
|
|
// than T.
|
|
unsigned adjustment = rhs.size() - concreteRule.getRHS().size();
|
|
if (adjustment > 0 &&
|
|
!concreteSymbol.getSubstitutions().empty()) {
|
|
path.add(RewriteStep::forAdjustment(adjustment, /*endOffset=*/1,
|
|
/*inverse=*/false));
|
|
|
|
concreteSymbol = concreteSymbol.prependPrefixToConcreteSubstitutions(
|
|
MutableTerm(rhs.begin(), rhs.begin() + adjustment),
|
|
Context);
|
|
}
|
|
|
|
// Now, transform T''.[concrete: C].[P] into T''.[concrete: C : P].
|
|
Symbol concreteConformanceSymbol = [&]() {
|
|
if (concreteSymbol.getKind() == Symbol::Kind::ConcreteType) {
|
|
path.add(RewriteStep::forConcreteConformance(/*inverse=*/false));
|
|
return Symbol::forConcreteConformance(
|
|
concreteSymbol.getConcreteType(),
|
|
concreteSymbol.getSubstitutions(),
|
|
proto, Context);
|
|
} else {
|
|
assert(concreteSymbol.getKind() == Symbol::Kind::Superclass);
|
|
path.add(RewriteStep::forSuperclassConformance(/*inverse=*/false));
|
|
return Symbol::forConcreteConformance(
|
|
concreteSymbol.getSuperclass(),
|
|
concreteSymbol.getSubstitutions(),
|
|
proto, Context);
|
|
}
|
|
}();
|
|
|
|
MutableTerm lhs(rhs);
|
|
lhs.add(concreteConformanceSymbol);
|
|
|
|
// The path turns T'' (RHS) into T''.[concrete: C : P] (LHS), but we need
|
|
// it to go in the other direction.
|
|
path.invert();
|
|
|
|
inducedRules.emplace_back(std::move(lhs), std::move(rhs), std::move(path));
|
|
} |