Files
swift-mirror/lib/AST/ProtocolConformance.cpp
Doug Gregor b7bfaf3522 [Macros] Fix handling of extension macro conformances and witnesses
Fix two inter-related issues with extension macros that provide
conformances to a protocol, the combined effect of which is that one
cannot meaningfully provide extension macros that implement
conformances to a protocol like Equatable or Hashable that also
supports auto-synthesis.

The first issue involves name lookup of operators provided by macro
expansions. The logic for performing qualified lookup in addition to
unqualified lookup (for operators) did not account for extension
macros in the same manner as it did for member macros, so we would not
find a macro-produced operator (such as operator==) in witness
matching.

The second issue is more fundamental, which is that the conformance
lookup table would create `NormalProtocolConformance` instances for
pre-macro-expansion conformance entries, even though these should
always have been superseded by explicit conformances within the macro
expansion buffers. The end result is that we could end up with two
`NormalProtocolConformance` records for the same conformance. Some
code was taught to ignore the pre-expansion placeholder conformances,
other code was not. Instead, we now refuse to create a
`NormalProtocolConformance` for the pre-expansion entries, and remove
all of the special-case checks for this, so we always using the
superseding explicit conformances produced by the macro expansions (or
error if the macros don't produce them).

Fixes rdar://113994346 / https://github.com/apple/swift/issues/66348
2023-08-16 19:18:36 -07:00

1512 lines
53 KiB
C++

//===--- ProtocolConformance.cpp - AST Protocol Conformance ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the ProtocolConformance class hierarchy.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ProtocolConformance.h"
#include "ConformanceLookupTable.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Availability.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DistributedDecl.h"
#include "swift/AST/FileUnit.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/InFlightSubstitution.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/Module.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Statistic.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/SaveAndRestore.h"
#define DEBUG_TYPE "AST"
STATISTIC(NumConformanceLookupTables, "# of conformance lookup tables built");
using namespace swift;
Witness::Witness(ValueDecl *decl, SubstitutionMap substitutions,
GenericSignature witnessThunkSig,
SubstitutionMap reqToWitnessThunkSigSubs,
GenericSignature derivativeGenSig,
llvm::Optional<ActorIsolation> enterIsolation) {
if (!witnessThunkSig && substitutions.empty() &&
reqToWitnessThunkSigSubs.empty() && !enterIsolation) {
storage = decl;
return;
}
auto &ctx = decl->getASTContext();
auto declRef = ConcreteDeclRef(decl, substitutions);
auto storedMem = ctx.Allocate(sizeof(StoredWitness), alignof(StoredWitness));
auto stored = new (storedMem) StoredWitness{declRef, witnessThunkSig,
reqToWitnessThunkSigSubs,
derivativeGenSig, enterIsolation};
storage = stored;
}
Witness Witness::withEnterIsolation(ActorIsolation enterIsolation) const {
return Witness(getDecl(), getSubstitutions(), getWitnessThunkSignature(),
getRequirementToWitnessThunkSubs(),
getDerivativeGenericSignature(), enterIsolation);
}
void Witness::dump() const { dump(llvm::errs()); }
void Witness::dump(llvm::raw_ostream &out) const {
out << "Witness: ";
if (auto decl = this->getDecl()) {
decl->print(out);
} else {
out << "<no decl>\n";
}
}
#define CONFORMANCE_SUBCLASS_DISPATCH(Method, Args) \
switch (getKind()) { \
case ProtocolConformanceKind::Normal: \
return cast<NormalProtocolConformance>(this)->Method Args; \
case ProtocolConformanceKind::Self: \
return cast<SelfProtocolConformance>(this)->Method Args; \
case ProtocolConformanceKind::Specialized: \
return cast<SpecializedProtocolConformance>(this)->Method Args; \
case ProtocolConformanceKind::Inherited: \
return cast<InheritedProtocolConformance>(this)->Method Args; \
case ProtocolConformanceKind::Builtin: \
assert(&ProtocolConformance::Method != &BuiltinProtocolConformance::Method \
&& "Must override BuiltinProtocolConformance::" #Method); \
return cast<BuiltinProtocolConformance>(this)->Method Args; \
} \
llvm_unreachable("bad ProtocolConformanceKind");
#define ROOT_CONFORMANCE_SUBCLASS_DISPATCH(Method, Args) \
switch (getKind()) { \
case ProtocolConformanceKind::Normal: \
return cast<NormalProtocolConformance>(this)->Method Args; \
case ProtocolConformanceKind::Self: \
return cast<SelfProtocolConformance>(this)->Method Args; \
case ProtocolConformanceKind::Specialized: \
case ProtocolConformanceKind::Inherited: \
case ProtocolConformanceKind::Builtin: \
llvm_unreachable("not a root conformance"); \
} \
llvm_unreachable("bad ProtocolConformanceKind");
/// Get the protocol being conformed to.
ProtocolDecl *ProtocolConformance::getProtocol() const {
CONFORMANCE_SUBCLASS_DISPATCH(getProtocol, ())
}
DeclContext *ProtocolConformance::getDeclContext() const {
CONFORMANCE_SUBCLASS_DISPATCH(getDeclContext, ())
}
/// Retrieve the state of this conformance.
ProtocolConformanceState ProtocolConformance::getState() const {
CONFORMANCE_SUBCLASS_DISPATCH(getState, ())
}
ConformanceEntryKind ProtocolConformance::getSourceKind() const {
CONFORMANCE_SUBCLASS_DISPATCH(getSourceKind, ())
}
NormalProtocolConformance *ProtocolConformance::getImplyingConformance() const {
CONFORMANCE_SUBCLASS_DISPATCH(getImplyingConformance, ())
}
bool
ProtocolConformance::hasTypeWitness(AssociatedTypeDecl *assocType) const {
CONFORMANCE_SUBCLASS_DISPATCH(hasTypeWitness, (assocType));
}
TypeWitnessAndDecl
ProtocolConformance::getTypeWitnessAndDecl(AssociatedTypeDecl *assocType,
SubstOptions options) const {
CONFORMANCE_SUBCLASS_DISPATCH(getTypeWitnessAndDecl,
(assocType, options))
}
Type ProtocolConformance::getTypeWitness(AssociatedTypeDecl *assocType,
SubstOptions options) const {
return getTypeWitnessAndDecl(assocType, options).getWitnessType();
}
ConcreteDeclRef
ProtocolConformance::getWitnessDeclRef(ValueDecl *requirement) const {
CONFORMANCE_SUBCLASS_DISPATCH(getWitnessDeclRef, (requirement))
}
ValueDecl *ProtocolConformance::getWitnessDecl(ValueDecl *requirement) const {
switch (getKind()) {
case ProtocolConformanceKind::Normal:
return cast<NormalProtocolConformance>(this)->getWitness(requirement)
.getDecl();
case ProtocolConformanceKind::Self:
return cast<SelfProtocolConformance>(this)->getWitness(requirement)
.getDecl();
case ProtocolConformanceKind::Inherited:
return cast<InheritedProtocolConformance>(this)
->getInheritedConformance()->getWitnessDecl(requirement);
case ProtocolConformanceKind::Specialized:
return cast<SpecializedProtocolConformance>(this)
->getGenericConformance()->getWitnessDecl(requirement);
case ProtocolConformanceKind::Builtin:
return requirement;
}
llvm_unreachable("unhandled kind");
}
/// Determine whether the witness for the given requirement
/// is either the default definition or was otherwise deduced.
bool ProtocolConformance::
usesDefaultDefinition(AssociatedTypeDecl *requirement) const {
CONFORMANCE_SUBCLASS_DISPATCH(usesDefaultDefinition, (requirement))
}
GenericEnvironment *ProtocolConformance::getGenericEnvironment() const {
switch (getKind()) {
case ProtocolConformanceKind::Inherited:
case ProtocolConformanceKind::Normal:
case ProtocolConformanceKind::Self:
// If we have a normal or inherited protocol conformance, look for its
// generic parameters.
return getDeclContext()->getGenericEnvironmentOfContext();
case ProtocolConformanceKind::Specialized:
case ProtocolConformanceKind::Builtin:
// If we have a specialized protocol conformance, since we do not support
// currently partial specialization, we know that it cannot have any open
// type variables.
//
// FIXME: We could return a meaningful GenericEnvironment here
return nullptr;
}
llvm_unreachable("Unhandled ProtocolConformanceKind in switch.");
}
GenericSignature ProtocolConformance::getGenericSignature() const {
switch (getKind()) {
case ProtocolConformanceKind::Inherited:
case ProtocolConformanceKind::Normal:
case ProtocolConformanceKind::Self:
// If we have a normal or inherited protocol conformance, look for its
// generic signature.
return getDeclContext()->getGenericSignatureOfContext();
case ProtocolConformanceKind::Builtin:
return cast<BuiltinProtocolConformance>(this)->getGenericSignature();
case ProtocolConformanceKind::Specialized:
// If we have a specialized protocol conformance, since we do not support
// currently partial specialization, we know that it cannot have any open
// type variables.
return nullptr;
}
llvm_unreachable("Unhandled ProtocolConformanceKind in switch.");
}
SubstitutionMap ProtocolConformance::getSubstitutionMap() const {
CONFORMANCE_SUBCLASS_DISPATCH(getSubstitutionMap, ())
}
SubstitutionMap RootProtocolConformance::getSubstitutionMap() const {
if (auto genericSig = getGenericSignature())
return genericSig->getIdentitySubstitutionMap();
return SubstitutionMap();
}
bool RootProtocolConformance::isInvalid() const {
ROOT_CONFORMANCE_SUBCLASS_DISPATCH(isInvalid, ())
}
SourceLoc RootProtocolConformance::getLoc() const {
ROOT_CONFORMANCE_SUBCLASS_DISPATCH(getLoc, ())
}
bool
RootProtocolConformance::isWeakImported(ModuleDecl *fromModule) const {
auto *dc = getDeclContext();
if (dc->getParentModule() == fromModule)
return false;
// If the protocol is weak imported, so are any conformances to it.
if (getProtocol()->isWeakImported(fromModule))
return true;
// If the conforming type is weak imported, so are any of its conformances.
if (auto *nominal = getType()->getAnyNominal())
if (nominal->isWeakImported(fromModule))
return true;
// If the conformance is declared in an extension with the @_weakLinked
// attribute, it is weak imported.
if (auto *ext = dyn_cast<ExtensionDecl>(dc))
if (ext->isWeakImported(fromModule))
return true;
return false;
}
bool RootProtocolConformance::hasWitness(ValueDecl *requirement) const {
ROOT_CONFORMANCE_SUBCLASS_DISPATCH(hasWitness, (requirement))
}
bool NormalProtocolConformance::isRetroactive() const {
auto module = getDeclContext()->getParentModule();
// If the conformance occurs in the same module as the protocol definition,
// this is not a retroactive conformance.
auto protocolModule = getProtocol()->getDeclContext()->getParentModule();
if (module == protocolModule)
return false;
// If the conformance occurs in the same module as the conforming type
// definition, this is not a retroactive conformance.
if (auto nominal = getType()->getAnyNominal()) {
auto nominalModule = nominal->getParentModule();
// Consider the overlay module to be the "home" of a nominal type
// defined in a Clang module.
if (auto nominalLoadedModule =
dyn_cast<LoadedFile>(nominal->getModuleScopeContext())) {
if (auto overlayModule = nominalLoadedModule->getOverlayModule())
nominalModule = overlayModule;
}
if (module == nominalModule)
return false;
}
// Everything else is retroactive.
return true;
}
bool NormalProtocolConformance::isSynthesizedNonUnique() const {
if (auto *file = dyn_cast<FileUnit>(getDeclContext()->getModuleScopeContext()))
return file->getKind() == FileUnitKind::ClangModule;
return false;
}
bool NormalProtocolConformance::isResilient() const {
// If the type is non-resilient or the module we're in is non-resilient, the
// conformance is non-resilient.
// FIXME: Looking at the type is not the right long-term solution. We need an
// explicit mechanism for declaring conformances as 'fragile', or even
// individual witnesses.
if (!getDeclContext()->getSelfNominalTypeDecl()->isResilient())
return false;
return getDeclContext()->getParentModule()->isResilient();
}
llvm::Optional<ArrayRef<Requirement>>
ProtocolConformance::getConditionalRequirementsIfAvailable() const {
CONFORMANCE_SUBCLASS_DISPATCH(getConditionalRequirementsIfAvailable, ());
}
ArrayRef<Requirement> ProtocolConformance::getConditionalRequirements() const {
CONFORMANCE_SUBCLASS_DISPATCH(getConditionalRequirements, ());
}
llvm::Optional<ArrayRef<Requirement>>
NormalProtocolConformance::getConditionalRequirementsIfAvailable() const {
const auto &eval = getDeclContext()->getASTContext().evaluator;
if (eval.hasActiveRequest(ConditionalRequirementsRequest{
const_cast<NormalProtocolConformance *>(this)})) {
return llvm::None;
}
return getConditionalRequirements();
}
llvm::ArrayRef<Requirement>
NormalProtocolConformance::getConditionalRequirements() const {
const auto ext = dyn_cast<ExtensionDecl>(getDeclContext());
if (ext && ext->isComputingGenericSignature()) {
return {};
}
return evaluateOrDefault(getProtocol()->getASTContext().evaluator,
ConditionalRequirementsRequest{
const_cast<NormalProtocolConformance *>(this)},
{});
}
llvm::ArrayRef<Requirement>
ConditionalRequirementsRequest::evaluate(Evaluator &evaluator,
NormalProtocolConformance *NPC) const {
// A non-extension conformance won't have conditional requirements.
const auto ext = dyn_cast<ExtensionDecl>(NPC->getDeclContext());
if (!ext) {
return {};
}
// If the extension is invalid, it won't ever get a signature, so we
// "succeed" with an empty result instead.
if (ext->isInvalid()) {
return {};
}
// A non-generic type won't have conditional requirements.
const auto typeSig = ext->getExtendedNominal()->getGenericSignature();
if (!typeSig) {
return {};
}
const auto extensionSig = ext->getGenericSignature();
// The extension signature should be a superset of the type signature, meaning
// every thing in the type signature either is included too or is implied by
// something else. The most important bit is having the same type
// parameters. (NB. if/when Swift gets parameterized extensions, this needs to
// change.)
assert(typeSig.getCanonicalSignature().getGenericParams() ==
extensionSig.getCanonicalSignature().getGenericParams());
// Find the requirements in the extension that aren't proved by the original
// type, these are the ones that make the conformance conditional.
const auto unsatReqs = extensionSig.requirementsNotSatisfiedBy(typeSig);
if (unsatReqs.empty())
return {};
return NPC->getProtocol()->getASTContext().AllocateCopy(unsatReqs);
}
void NormalProtocolConformance::setSignatureConformances(
ArrayRef<ProtocolConformanceRef> conformances) {
if (conformances.empty()) {
SignatureConformances = { };
return;
}
auto &ctx = getProtocol()->getASTContext();
SignatureConformances = ctx.AllocateCopy(conformances);
#if !NDEBUG
unsigned idx = 0;
auto reqs = getProtocol()->getRequirementSignature().getRequirements();
for (const auto &req : reqs) {
if (req.getKind() == RequirementKind::Conformance) {
assert(!conformances[idx].isConcrete() ||
!conformances[idx].getConcrete()->getType()->hasArchetype() &&
"Should have interface types here");
assert(idx < conformances.size());
assert(conformances[idx].isInvalid() ||
conformances[idx].getRequirement() == req.getProtocolDecl());
++idx;
}
}
assert(idx == conformances.size() && "Too many conformances");
#endif
}
void NormalProtocolConformance::resolveLazyInfo() const {
assert(Loader);
auto *loader = Loader;
auto *mutableThis = const_cast<NormalProtocolConformance *>(this);
mutableThis->Loader = nullptr;
loader->finishNormalConformance(mutableThis, LoaderContextData);
}
void NormalProtocolConformance::setLazyLoader(LazyConformanceLoader *loader,
uint64_t contextData) {
assert(!Loader && "already has a loader");
Loader = loader;
LoaderContextData = contextData;
}
namespace {
class PrettyStackTraceRequirement : public llvm::PrettyStackTraceEntry {
const char *Action;
const ProtocolConformance *Conformance;
ValueDecl *Requirement;
public:
PrettyStackTraceRequirement(const char *action,
const ProtocolConformance *conformance,
ValueDecl *requirement)
: Action(action), Conformance(conformance), Requirement(requirement) { }
void print(llvm::raw_ostream &out) const override {
out << "While " << Action << " requirement ";
Requirement->dumpRef(out);
out << " in conformance ";
Conformance->printName(out);
out << "\n";
}
};
} // end anonymous namespace
bool NormalProtocolConformance::hasTypeWitness(
AssociatedTypeDecl *assocType) const {
if (Loader)
resolveLazyInfo();
auto found = TypeWitnesses.find(assocType);
if (found != TypeWitnesses.end()) {
return !found->getSecond().getWitnessType().isNull();
}
return false;
}
TypeWitnessAndDecl
NormalProtocolConformance::getTypeWitnessAndDecl(AssociatedTypeDecl *assocType,
SubstOptions options) const {
if (Loader)
resolveLazyInfo();
// Check whether we already have a type witness.
auto known = TypeWitnesses.find(assocType);
if (known != TypeWitnesses.end())
return known->second;
// If there is a tentative-type-witness function, use it.
if (options.getTentativeTypeWitness) {
if (Type witnessType =
Type(options.getTentativeTypeWitness(this, assocType)))
return { witnessType, nullptr };
}
// If this conformance is in a state where it is inferring type witnesses but
// we didn't find anything, fail.
if (getState() == ProtocolConformanceState::CheckingTypeWitnesses) {
return { Type(), nullptr };
}
// If the conditional requirements aren't known, we can't properly run
// inference.
if (!getConditionalRequirementsIfAvailable()) {
return TypeWitnessAndDecl();
}
return evaluateOrDefault(
assocType->getASTContext().evaluator,
TypeWitnessRequest{const_cast<NormalProtocolConformance *>(this),
assocType},
TypeWitnessAndDecl());
}
TypeWitnessAndDecl NormalProtocolConformance::getTypeWitnessUncached(
AssociatedTypeDecl *requirement) const {
auto entry = TypeWitnesses.find(requirement);
if (entry == TypeWitnesses.end()) {
return TypeWitnessAndDecl();
}
return entry->second;
}
void NormalProtocolConformance::setTypeWitness(AssociatedTypeDecl *assocType,
Type type,
TypeDecl *typeDecl) const {
assert(getProtocol() == cast<ProtocolDecl>(assocType->getDeclContext()) &&
"associated type in wrong protocol");
assert((TypeWitnesses.count(assocType) == 0 ||
TypeWitnesses[assocType].getWitnessType().isNull()) &&
"Type witness already known");
assert((!isComplete() || isInvalid()) && "Conformance already complete?");
assert(!type->hasArchetype() && "type witnesses must be interface types");
TypeWitnesses[assocType] = {type, typeDecl};
}
Type ProtocolConformance::getAssociatedType(Type assocType) const {
assert(assocType->isTypeParameter() &&
"associated type must be a type parameter");
ProtocolConformanceRef ref(const_cast<ProtocolConformance*>(this));
return ref.getAssociatedType(getType(), assocType);
}
ProtocolConformanceRef
ProtocolConformance::getAssociatedConformance(Type assocType,
ProtocolDecl *protocol) const {
CONFORMANCE_SUBCLASS_DISPATCH(getAssociatedConformance,
(assocType, protocol))
}
ProtocolConformanceRef
NormalProtocolConformance::getAssociatedConformance(Type assocType,
ProtocolDecl *protocol) const {
assert(assocType->isTypeParameter() &&
"associated type must be a type parameter");
// Fill in the signature conformances, if we haven't done so yet.
if (getSignatureConformances().empty()) {
const_cast<NormalProtocolConformance *>(this)->finishSignatureConformances();
}
assert(!getSignatureConformances().empty() &&
"signature conformances not yet computed");
unsigned conformanceIndex = 0;
auto requirements = getProtocol()->getRequirementSignature().getRequirements();
for (const auto &reqt : requirements) {
if (reqt.getKind() == RequirementKind::Conformance) {
// Is this the conformance we're looking for?
if (reqt.getFirstType()->isEqual(assocType) &&
reqt.getProtocolDecl() == protocol)
return getSignatureConformances()[conformanceIndex];
++conformanceIndex;
}
}
llvm_unreachable(
"requested conformance was not a direct requirement of the protocol");
}
/// A stripped-down version of Type::subst that only works on the protocol
/// Self type wrapped in zero or more DependentMemberTypes.
static Type
recursivelySubstituteBaseType(ModuleDecl *module,
NormalProtocolConformance *conformance,
DependentMemberType *depMemTy) {
Type origBase = depMemTy->getBase();
// Recursive case.
if (auto *depBase = origBase->getAs<DependentMemberType>()) {
Type substBase = recursivelySubstituteBaseType(
module, conformance, depBase);
return depMemTy->substBaseType(module, substBase);
}
// Base case. The associated type's protocol should be either the
// conformance protocol or an inherited protocol.
auto *reqProto = depMemTy->getAssocType()->getProtocol();
assert(origBase->isEqual(reqProto->getSelfInterfaceType()));
ProtocolConformance *reqConformance = conformance;
// If we have an inherited protocol just look up the conformance.
if (reqProto != conformance->getProtocol()) {
reqConformance = module->lookupConformance(conformance->getType(), reqProto)
.getConcrete();
}
return reqConformance->getTypeWitness(depMemTy->getAssocType());
}
/// Collect conformances for the requirement signature.
void NormalProtocolConformance::finishSignatureConformances() {
if (!SignatureConformances.empty())
return;
auto *proto = getProtocol();
auto reqSig = proto->getRequirementSignature().getRequirements();
if (reqSig.empty())
return;
SmallVector<ProtocolConformanceRef, 4> reqConformances;
for (const auto &req : reqSig) {
if (req.getKind() != RequirementKind::Conformance)
continue;
ModuleDecl *module = getDeclContext()->getParentModule();
Type substTy;
auto origTy = req.getFirstType();
if (origTy->isEqual(proto->getSelfInterfaceType())) {
substTy = getType();
} else {
auto *depMemTy = origTy->castTo<DependentMemberType>();
substTy = recursivelySubstituteBaseType(module, this, depMemTy);
}
auto reqProto = req.getProtocolDecl();
// Looking up a conformance for a contextual type and mapping the
// conformance context produces a more accurate result than looking
// up a conformance from an interface type.
//
// This can happen if the conformance has an associated conformance
// depending on an associated type that is made concrete in a
// refining protocol.
//
// That is, the conformance of an interface type G<T> : P really
// depends on the generic signature of the current context, because
// performing the lookup in a "more" constrained extension than the
// one where the conformance was defined must produce concrete
// conformances.
//
// FIXME: Eliminate this, perhaps by adding a variant of
// lookupConformance() taking a generic signature.
if (substTy->hasTypeParameter())
substTy = getDeclContext()->mapTypeIntoContext(substTy);
reqConformances.push_back(module->lookupConformance(substTy, reqProto,
/*allowMissing=*/true)
.mapConformanceOutOfContext());
}
setSignatureConformances(reqConformances);
}
Witness RootProtocolConformance::getWitness(ValueDecl *requirement) const {
ROOT_CONFORMANCE_SUBCLASS_DISPATCH(getWitness, (requirement))
}
/// Retrieve the value witness corresponding to the given requirement.
Witness NormalProtocolConformance::getWitness(ValueDecl *requirement) const {
assert(!isa<AssociatedTypeDecl>(requirement) && "Request type witness");
assert(requirement->isProtocolRequirement() && "Not a requirement");
if (Loader)
resolveLazyInfo();
return evaluateOrDefault(
requirement->getASTContext().evaluator,
ValueWitnessRequest{const_cast<NormalProtocolConformance *>(this),
requirement},
Witness());
}
Witness
NormalProtocolConformance::getWitnessUncached(ValueDecl *requirement) const {
auto entry = Mapping.find(requirement);
if (entry == Mapping.end()) {
return Witness();
}
return entry->second;
}
Witness SelfProtocolConformance::getWitness(ValueDecl *requirement) const {
return Witness(requirement, SubstitutionMap(), nullptr, SubstitutionMap(),
GenericSignature(), llvm::None);
}
ConcreteDeclRef
RootProtocolConformance::getWitnessDeclRef(ValueDecl *requirement) const {
if (auto witness = getWitness(requirement)) {
auto *witnessDecl = witness.getDecl();
// If the witness is generic, you have to call getWitness() and build
// your own substitutions in terms of the witness thunk signature.
if (auto *witnessDC = dyn_cast<DeclContext>(witnessDecl))
assert(!witnessDC->isInnermostContextGeneric());
// If the witness is not generic, use type substitutions from the
// witness's parent. Don't use witness.getSubstitutions(), which
// are written in terms of the witness thunk signature.
auto subs =
getType()->getContextSubstitutionMap(getDeclContext()->getParentModule(),
witnessDecl->getDeclContext());
return ConcreteDeclRef(witness.getDecl(), subs);
}
return ConcreteDeclRef();
}
void NormalProtocolConformance::setWitness(ValueDecl *requirement,
Witness witness) const {
assert(!isa<AssociatedTypeDecl>(requirement) && "Request type witness");
assert(getProtocol() == cast<ProtocolDecl>(requirement->getDeclContext()) &&
"requirement in wrong protocol");
assert(Mapping.count(requirement) == 0 && "Witness already known");
assert((!isComplete() || isInvalid() ||
requirement->getAttrs().hasAttribute<OptionalAttr>() ||
requirement->getAttrs().isUnavailable(
requirement->getASTContext())) &&
"Conformance already complete?");
Mapping[requirement] = witness;
}
void NormalProtocolConformance::overrideWitness(ValueDecl *requirement,
Witness witness) {
assert(Mapping.count(requirement) == 1 && "Witness not known");
Mapping[requirement] = witness;
}
SpecializedProtocolConformance::SpecializedProtocolConformance(
Type conformingType,
RootProtocolConformance *genericConformance,
SubstitutionMap substitutions)
: ProtocolConformance(ProtocolConformanceKind::Specialized, conformingType),
GenericConformance(genericConformance),
GenericSubstitutions(substitutions) {}
void SpecializedProtocolConformance::computeConditionalRequirements() const {
// already computed?
if (ConditionalRequirements)
return;
auto parentCondReqs =
GenericConformance->getConditionalRequirementsIfAvailable();
if (!parentCondReqs)
return;
if (!parentCondReqs->empty()) {
// Substitute the conditional requirements so that they're phrased in
// terms of the specialized types, not the conformance-declaring decl's
// types.
ModuleDecl *module;
SubstitutionMap subMap;
if (auto nominal = GenericConformance->getType()->getAnyNominal()) {
module = nominal->getModuleContext();
subMap = getType()->getContextSubstitutionMap(module, nominal);
} else {
module = getProtocol()->getModuleContext();
subMap = getSubstitutionMap();
}
SmallVector<Requirement, 4> newReqs;
for (auto oldReq : *parentCondReqs) {
auto newReq = oldReq.subst(QuerySubstitutionMap{subMap},
LookUpConformanceInModule(module));
newReqs.push_back(newReq);
}
auto &ctxt = getProtocol()->getASTContext();
ConditionalRequirements = ctxt.AllocateCopy(newReqs);
} else {
ConditionalRequirements = ArrayRef<Requirement>();
}
}
bool SpecializedProtocolConformance::hasTypeWitness(
AssociatedTypeDecl *assocType) const {
return TypeWitnesses.find(assocType) != TypeWitnesses.end() ||
GenericConformance->hasTypeWitness(assocType);
}
TypeWitnessAndDecl
SpecializedProtocolConformance::getTypeWitnessAndDecl(
AssociatedTypeDecl *assocType,
SubstOptions options) const {
assert(getProtocol() == cast<ProtocolDecl>(assocType->getDeclContext()) &&
"associated type in wrong protocol");
// If we've already created this type witness, return it.
auto known = TypeWitnesses.find(assocType);
if (known != TypeWitnesses.end()) {
return known->second;
}
// Otherwise, perform substitutions to create this witness now.
// Local function to determine whether we will end up referring to a
// tentative witness that may not be chosen.
auto root = GenericConformance->getRootConformance();
auto isTentativeWitness = [&] {
if (root->getState() != ProtocolConformanceState::CheckingTypeWitnesses)
return false;
return !root->hasTypeWitness(assocType);
};
auto genericWitnessAndDecl
= GenericConformance->getTypeWitnessAndDecl(assocType, options);
auto genericWitness = genericWitnessAndDecl.getWitnessType();
if (!genericWitness)
return { Type(), nullptr };
auto *typeDecl = genericWitnessAndDecl.getWitnessDecl();
// Form the substitution.
auto substitutionMap = getSubstitutionMap();
if (substitutionMap.empty())
return TypeWitnessAndDecl();
// Apply the substitution we computed above
auto specializedType = genericWitness.subst(substitutionMap, options);
if (specializedType->hasError()) {
if (isTentativeWitness())
return { Type(), nullptr };
specializedType = ErrorType::get(genericWitness);
}
// If we aren't in a case where we used the tentative type witness
// information, cache the result.
auto specializedWitnessAndDecl = TypeWitnessAndDecl{specializedType, typeDecl};
if (!isTentativeWitness() && !specializedType->hasError())
TypeWitnesses[assocType] = specializedWitnessAndDecl;
return specializedWitnessAndDecl;
}
ProtocolConformanceRef
SpecializedProtocolConformance::getAssociatedConformance(Type assocType,
ProtocolDecl *protocol) const {
ProtocolConformanceRef conformance =
GenericConformance->getAssociatedConformance(assocType, protocol);
auto subMap = getSubstitutionMap();
Type origType =
(conformance.isConcrete()
? conformance.getConcrete()->getType()
: GenericConformance->getAssociatedType(assocType));
return conformance.subst(origType, subMap);
}
ConcreteDeclRef
SpecializedProtocolConformance::getWitnessDeclRef(
ValueDecl *requirement) const {
auto baseWitness = GenericConformance->getWitnessDeclRef(requirement);
if (!baseWitness || !baseWitness.isSpecialized())
return baseWitness;
auto specializationMap = getSubstitutionMap();
auto witnessDecl = baseWitness.getDecl();
auto witnessMap = baseWitness.getSubstitutions();
auto combinedMap = witnessMap.subst(specializationMap);
return ConcreteDeclRef(witnessDecl, combinedMap);
}
ProtocolConformanceRef
InheritedProtocolConformance::getAssociatedConformance(Type assocType,
ProtocolDecl *protocol) const {
auto underlying =
InheritedConformance->getAssociatedConformance(assocType, protocol);
// If the conformance is for Self, return an inherited conformance.
if (underlying.isConcrete() &&
assocType->isEqual(getProtocol()->getSelfInterfaceType())) {
auto subclassType = getType();
ASTContext &ctx = subclassType->getASTContext();
return ProtocolConformanceRef(
ctx.getInheritedConformance(subclassType,
underlying.getConcrete()));
}
return underlying;
}
ConcreteDeclRef
InheritedProtocolConformance::getWitnessDeclRef(ValueDecl *requirement) const {
// FIXME: substitutions?
return InheritedConformance->getWitnessDeclRef(requirement);
}
const NormalProtocolConformance *
ProtocolConformance::getRootNormalConformance() const {
// This is an unsafe cast; remove this entire method.
return cast<NormalProtocolConformance>(getRootConformance());
}
const RootProtocolConformance *
ProtocolConformance::getRootConformance() const {
const ProtocolConformance *C = this;
if (auto *inheritedC = dyn_cast<InheritedProtocolConformance>(C))
C = inheritedC->getInheritedConformance();
if (auto *specializedC = dyn_cast<SpecializedProtocolConformance>(C))
return specializedC->getGenericConformance();
return cast<RootProtocolConformance>(C);
}
bool ProtocolConformance::isVisibleFrom(const DeclContext *dc) const {
// FIXME: Implement me!
return true;
}
ProtocolConformance *
ProtocolConformance::subst(SubstitutionMap subMap,
SubstOptions options) const {
InFlightSubstitutionViaSubMap IFS(subMap, options);
return subst(IFS);
}
ProtocolConformance *
ProtocolConformance::subst(TypeSubstitutionFn subs,
LookupConformanceFn conformances,
SubstOptions options) const {
InFlightSubstitution IFS(subs, conformances, options);
return subst(IFS);
}
ProtocolConformance *
ProtocolConformance::subst(InFlightSubstitution &IFS) const {
switch (getKind()) {
case ProtocolConformanceKind::Normal: {
auto origType = getType();
if (!origType->hasTypeParameter() &&
!origType->hasArchetype())
return const_cast<ProtocolConformance *>(this);
auto substType = origType.subst(IFS);
if (substType->isEqual(origType))
return const_cast<ProtocolConformance *>(this);
auto subMap = SubstitutionMap::get(getGenericSignature(), IFS);
auto *mutableThis = const_cast<ProtocolConformance *>(this);
return substType->getASTContext()
.getSpecializedConformance(substType,
cast<NormalProtocolConformance>(mutableThis),
subMap);
}
case ProtocolConformanceKind::Builtin: {
auto origType = getType();
if (!origType->hasTypeParameter() &&
!origType->hasArchetype())
return const_cast<ProtocolConformance *>(this);
auto substType = origType.subst(IFS);
// We do an exact pointer equality check because subst() can
// change sugar.
if (substType.getPointer() == origType.getPointer())
return const_cast<ProtocolConformance *>(this);
auto kind = cast<BuiltinProtocolConformance>(this)
->getBuiltinConformanceKind();
return substType->getASTContext()
.getBuiltinConformance(substType, getProtocol(), kind);
}
case ProtocolConformanceKind::Self:
return const_cast<ProtocolConformance*>(this);
case ProtocolConformanceKind::Inherited: {
// Substitute the base.
auto inheritedConformance
= cast<InheritedProtocolConformance>(this)->getInheritedConformance();
auto origType = getType();
if (!origType->hasTypeParameter() &&
!origType->hasArchetype()) {
return const_cast<ProtocolConformance *>(this);
}
auto origBaseType = inheritedConformance->getType();
if (origBaseType->hasTypeParameter() ||
origBaseType->hasArchetype()) {
// Substitute into the superclass.
inheritedConformance = inheritedConformance->subst(IFS);
}
auto substType = origType.subst(IFS);
return substType->getASTContext()
.getInheritedConformance(substType, inheritedConformance);
}
case ProtocolConformanceKind::Specialized: {
// Substitute the substitutions in the specialized conformance.
auto spec = cast<SpecializedProtocolConformance>(this);
auto genericConformance = spec->getGenericConformance();
auto subMap = spec->getSubstitutionMap();
auto origType = getType();
auto substType = origType.subst(IFS);
return substType->getASTContext()
.getSpecializedConformance(substType, genericConformance,
subMap.subst(IFS));
}
}
llvm_unreachable("bad ProtocolConformanceKind");
}
ProtocolConformance *
ProtocolConformance::getInheritedConformance(ProtocolDecl *protocol) const {
auto result =
getAssociatedConformance(getProtocol()->getSelfInterfaceType(), protocol);
return result.isConcrete() ? result.getConcrete() : nullptr;
}
#pragma mark Protocol conformance lookup
void NominalTypeDecl::prepareConformanceTable() const {
assert(!isa<ProtocolDecl>(this) &&
"Protocols don't have a conformance table");
if (ConformanceTable)
return;
auto mutableThis = const_cast<NominalTypeDecl *>(this);
ASTContext &ctx = getASTContext();
ConformanceTable = new (ctx) ConformanceLookupTable(ctx);
++NumConformanceLookupTables;
// If this type declaration was not parsed from source code or introduced
// via the Clang importer, don't add any synthesized conformances.
auto *file = cast<FileUnit>(getModuleScopeContext());
if (file->getKind() != FileUnitKind::Source &&
file->getKind() != FileUnitKind::ClangModule &&
file->getKind() != FileUnitKind::DWARFModule) {
return;
}
SmallPtrSet<ProtocolDecl *, 2> protocols;
auto addSynthesized = [&](ProtocolDecl *proto) {
if (!proto)
return;
// No synthesized conformances for move-only nominals.
if (isMoveOnly()) {
// assumption is Sendable gets synthesized elsewhere.
assert(!proto->isSpecificProtocol(KnownProtocolKind::Sendable));
return;
}
if (protocols.count(proto) == 0) {
ConformanceTable->addSynthesizedConformance(
mutableThis, proto, mutableThis);
protocols.insert(proto);
}
};
// Add protocols for any synthesized protocol attributes.
for (auto attr : getAttrs().getAttributes<SynthesizedProtocolAttr>()) {
addSynthesized(attr->getProtocol());
}
// Add any implicit conformances.
if (auto theEnum = dyn_cast<EnumDecl>(mutableThis)) {
if (theEnum->hasCases() && theEnum->hasOnlyCasesWithoutAssociatedValues()) {
// Simple enumerations conform to Equatable.
addSynthesized(ctx.getProtocol(KnownProtocolKind::Equatable));
// Simple enumerations conform to Hashable.
addSynthesized(ctx.getProtocol(KnownProtocolKind::Hashable));
}
// Enumerations with a raw type conform to RawRepresentable.
if (theEnum->hasRawType() && !theEnum->getRawType()->hasError()) {
addSynthesized(ctx.getProtocol(KnownProtocolKind::RawRepresentable));
}
}
// Actor classes conform to the actor protocol.
if (auto classDecl = dyn_cast<ClassDecl>(mutableThis)) {
if (classDecl->isDistributedActor()) {
addSynthesized(ctx.getProtocol(KnownProtocolKind::DistributedActor));
} else if (classDecl->isActor()) {
addSynthesized(ctx.getProtocol(KnownProtocolKind::Actor));
}
}
// Global actors conform to the GlobalActor protocol.
if (mutableThis->getAttrs().hasAttribute<GlobalActorAttr>()) {
addSynthesized(ctx.getProtocol(KnownProtocolKind::GlobalActor));
}
}
bool NominalTypeDecl::lookupConformance(
ProtocolDecl *protocol,
SmallVectorImpl<ProtocolConformance *> &conformances) const {
assert(!isa<ProtocolDecl>(this) &&
"Self-conformances are only found by the higher-level "
"ModuleDecl::lookupConformance() entry point");
prepareConformanceTable();
return ConformanceTable->lookupConformance(
const_cast<NominalTypeDecl *>(this),
protocol,
conformances);
}
SmallVector<ProtocolDecl *, 2>
NominalTypeDecl::getAllProtocols(bool sorted) const {
assert(!isa<ProtocolDecl>(this) &&
"For inherited protocols, use ProtocolDecl::inheritsFrom() or "
"ProtocolDecl::getInheritedProtocols()");
prepareConformanceTable();
SmallVector<ProtocolDecl *, 2> result;
ConformanceTable->getAllProtocols(const_cast<NominalTypeDecl *>(this), result,
sorted);
return result;
}
SmallVector<ProtocolConformance *, 2> NominalTypeDecl::getAllConformances(
bool sorted) const
{
prepareConformanceTable();
SmallVector<ProtocolConformance *, 2> result;
ConformanceTable->getAllConformances(const_cast<NominalTypeDecl *>(this),
sorted,
result);
return result;
}
void NominalTypeDecl::getImplicitProtocols(
SmallVectorImpl<ProtocolDecl *> &protocols) {
prepareConformanceTable();
ConformanceTable->getImplicitProtocols(this, protocols);
}
void NominalTypeDecl::registerProtocolConformance(
ProtocolConformance *conformance, bool synthesized) {
prepareConformanceTable();
ConformanceTable->registerProtocolConformance(conformance, synthesized);
}
ArrayRef<ValueDecl *>
NominalTypeDecl::getSatisfiedProtocolRequirementsForMember(
const ValueDecl *member,
bool sorted) const {
assert(member->getDeclContext()->getSelfNominalTypeDecl() == this);
assert(!isa<ProtocolDecl>(this));
prepareConformanceTable();
return ConformanceTable->getSatisfiedProtocolRequirementsForMember(member,
const_cast<NominalTypeDecl *>(this),
sorted);
}
SmallVector<ProtocolDecl *, 2>
IterableDeclContext::getLocalProtocols(ConformanceLookupKind lookupKind) const {
SmallVector<ProtocolDecl *, 2> result;
for (auto conformance : getLocalConformances(lookupKind))
result.push_back(conformance->getProtocol());
return result;
}
/// Find a synthesized conformance in this declaration context, if there is one.
static ProtocolConformance *
findSynthesizedConformance(
const DeclContext *dc,
KnownProtocolKind protoKind) {
auto nominal = dc->getSelfNominalTypeDecl();
// Perform some common checks
if (!nominal)
return nullptr;
if (dc->getParentModule() != nominal->getParentModule())
return nullptr;
auto &C = nominal->getASTContext();
auto cvProto = C.getProtocol(protoKind);
if (!cvProto)
return nullptr;
auto module = dc->getParentModule();
auto conformance = module->lookupConformance(
nominal->getDeclaredInterfaceType(), cvProto);
if (!conformance || !conformance.isConcrete())
return nullptr;
auto concrete = conformance.getConcrete();
if (concrete->getDeclContext() != dc)
return nullptr;
if (isa<InheritedProtocolConformance>(concrete))
return nullptr;
auto normal = concrete->getRootNormalConformance();
if (!normal || normal->getSourceKind() != ConformanceEntryKind::Synthesized)
return nullptr;
return normal;
}
/// Find any synthesized conformances for given decl context.
///
/// Some protocol conformances can be synthesized by the compiler,
/// for those, we need to add them to "local conformances" because otherwise
/// we'd get missing symbols while attempting to use these.
static SmallVector<ProtocolConformance *, 2> findSynthesizedConformances(
const DeclContext *dc) {
auto nominal = dc->getSelfNominalTypeDecl();
if (!nominal)
return {};
// Try to find specific conformances
SmallVector<ProtocolConformance *, 2> result;
auto trySynthesize = [&](KnownProtocolKind knownProto) {
if (auto conformance =
findSynthesizedConformance(dc, knownProto)) {
result.push_back(conformance);
}
};
// Concrete types may synthesize some conformances
if (!isa<ProtocolDecl>(nominal)) {
trySynthesize(KnownProtocolKind::Sendable);
}
/// Distributed actors can synthesize Encodable/Decodable, so look for those
if (nominal->isDistributedActor()) {
trySynthesize(KnownProtocolKind::Encodable);
trySynthesize(KnownProtocolKind::Decodable);
}
return result;
}
std::vector<ProtocolConformance *>
LookupAllConformancesInContextRequest::evaluate(
Evaluator &eval, const IterableDeclContext *IDC) const {
// Dig out the nominal type.
const auto dc = IDC->getAsGenericContext();
const auto nominal = dc->getSelfNominalTypeDecl();
if (!nominal) {
return { };
}
// Protocols only have self-conformances.
if (auto protocol = dyn_cast<ProtocolDecl>(nominal)) {
if (protocol->requiresSelfConformanceWitnessTable()) {
return { protocol->getASTContext().getSelfConformance(protocol) };
}
return { };
}
// Record all potential conformances.
nominal->prepareConformanceTable();
std::vector<ProtocolConformance *> conformances;
nominal->ConformanceTable->lookupConformances(
nominal,
const_cast<GenericContext *>(dc),
&conformances,
nullptr);
return conformances;
}
SmallVector<ProtocolConformance *, 2>
IterableDeclContext::getLocalConformances(ConformanceLookupKind lookupKind)
const {
// Look up the cached set of all of the conformances.
std::vector<ProtocolConformance *> conformances =
evaluateOrDefault(
getASTContext().evaluator, LookupAllConformancesInContextRequest{this},
{ });
// Copy all of the conformances we want.
SmallVector<ProtocolConformance *, 2> result;
std::copy_if(
conformances.begin(), conformances.end(), std::back_inserter(result),
[&](ProtocolConformance *conformance) {
// If we are to filter out this result, do so now.
switch (lookupKind) {
case ConformanceLookupKind::OnlyExplicit:
switch (conformance->getSourceKind()) {
case ConformanceEntryKind::Explicit:
case ConformanceEntryKind::Synthesized:
return true;
case ConformanceEntryKind::PreMacroExpansion:
case ConformanceEntryKind::Implied:
case ConformanceEntryKind::Inherited:
return false;
}
case ConformanceLookupKind::NonInherited:
switch (conformance->getSourceKind()) {
case ConformanceEntryKind::Explicit:
case ConformanceEntryKind::Synthesized:
case ConformanceEntryKind::Implied:
return true;
case ConformanceEntryKind::Inherited:
case ConformanceEntryKind::PreMacroExpansion:
return false;
}
case ConformanceLookupKind::All:
case ConformanceLookupKind::NonStructural:
return true;
}
});
// If we want to add structural conformances, do so now.
switch (lookupKind) {
case ConformanceLookupKind::All:
case ConformanceLookupKind::NonInherited: {
// Look for a Sendable conformance globally. If it is synthesized
// and matches this declaration context, use it.
auto dc = getAsGenericContext();
SmallPtrSet<ProtocolConformance *, 4> known;
for (auto conformance : findSynthesizedConformances(dc)) {
// Compute the known set of conformances for the first time.
if (known.empty()) {
known.insert(result.begin(), result.end());
}
if (known.insert(conformance).second)
result.push_back(conformance);
}
break;
}
case ConformanceLookupKind::NonStructural:
case ConformanceLookupKind::OnlyExplicit:
break;
}
return result;
}
SmallVector<ConformanceDiagnostic, 4>
IterableDeclContext::takeConformanceDiagnostics() const {
SmallVector<ConformanceDiagnostic, 4> result;
// Dig out the nominal type.
const auto dc = getAsGenericContext();
const auto nominal = dc->getSelfNominalTypeDecl();
if (!nominal) {
return result;
}
// Protocols are not subject to the checks for supersession.
if (isa<ProtocolDecl>(nominal)) {
return result;
}
// Update to record all potential conformances.
nominal->prepareConformanceTable();
nominal->ConformanceTable->lookupConformances(
nominal,
const_cast<GenericContext *>(dc),
nullptr,
&result);
return result;
}
/// Check of all types used by the conformance are canonical.
bool ProtocolConformance::isCanonical() const {
// Normal conformances are always canonical by construction.
if (getKind() == ProtocolConformanceKind::Normal)
return true;
if (!getType()->isCanonical())
return false;
switch (getKind()) {
case ProtocolConformanceKind::Self:
case ProtocolConformanceKind::Normal: {
return true;
}
case ProtocolConformanceKind::Builtin: {
// FIXME: Not the conforming type?
return true;
}
case ProtocolConformanceKind::Inherited: {
// Substitute the base.
auto inheritedConformance
= cast<InheritedProtocolConformance>(this);
return inheritedConformance->getInheritedConformance()->isCanonical();
}
case ProtocolConformanceKind::Specialized: {
// Substitute the substitutions in the specialized conformance.
auto spec = cast<SpecializedProtocolConformance>(this);
auto genericConformance = spec->getGenericConformance();
if (!genericConformance->isCanonical())
return false;
if (!spec->getSubstitutionMap().isCanonical()) return false;
return true;
}
}
llvm_unreachable("bad ProtocolConformanceKind");
}
/// Check of all types used by the conformance are canonical.
ProtocolConformance *ProtocolConformance::getCanonicalConformance() {
if (isCanonical())
return this;
switch (getKind()) {
case ProtocolConformanceKind::Self:
case ProtocolConformanceKind::Normal: {
// Root conformances are always canonical by construction.
return this;
}
case ProtocolConformanceKind::Builtin: {
// Canonicalize the subject type of the builtin conformance.
auto &Ctx = getType()->getASTContext();
auto builtinConformance = cast<BuiltinProtocolConformance>(this);
return Ctx.getBuiltinConformance(
builtinConformance->getType()->getCanonicalType(),
builtinConformance->getProtocol(),
builtinConformance->getBuiltinConformanceKind());
}
case ProtocolConformanceKind::Inherited: {
auto &Ctx = getType()->getASTContext();
auto inheritedConformance = cast<InheritedProtocolConformance>(this);
return Ctx.getInheritedConformance(
getType()->getCanonicalType(),
inheritedConformance->getInheritedConformance()
->getCanonicalConformance());
}
case ProtocolConformanceKind::Specialized: {
auto &Ctx = getType()->getASTContext();
// Substitute the substitutions in the specialized conformance.
auto spec = cast<SpecializedProtocolConformance>(this);
auto genericConformance = spec->getGenericConformance();
return Ctx.getSpecializedConformance(
getType()->getCanonicalType(),
cast<RootProtocolConformance>(
genericConformance->getCanonicalConformance()),
spec->getSubstitutionMap().getCanonical());
}
}
llvm_unreachable("bad ProtocolConformanceKind");
}
BuiltinProtocolConformance::BuiltinProtocolConformance(
Type conformingType, ProtocolDecl *protocol,
BuiltinConformanceKind kind
) : RootProtocolConformance(ProtocolConformanceKind::Builtin, conformingType),
protocol(protocol), builtinConformanceKind(static_cast<unsigned>(kind))
{}
// See swift/Basic/Statistic.h for declaration: this enables tracing
// ProtocolConformances, is defined here to avoid too much layering violation /
// circular linkage dependency.
struct ProtocolConformanceTraceFormatter
: public UnifiedStatsReporter::TraceFormatter {
void traceName(const void *Entity, raw_ostream &OS) const override {
if (!Entity)
return;
const ProtocolConformance *C =
static_cast<const ProtocolConformance *>(Entity);
C->printName(OS);
}
void traceLoc(const void *Entity, SourceManager *SM,
clang::SourceManager *CSM, raw_ostream &OS) const override {
if (!Entity)
return;
const ProtocolConformance *C =
static_cast<const ProtocolConformance *>(Entity);
if (auto const *NPC = dyn_cast<NormalProtocolConformance>(C)) {
NPC->getLoc().print(OS, *SM);
} else if (auto const *DC = C->getDeclContext()) {
if (auto const *D = DC->getAsDecl())
D->getLoc().print(OS, *SM);
}
}
};
static ProtocolConformanceTraceFormatter TF;
template<>
const UnifiedStatsReporter::TraceFormatter*
FrontendStatsTracer::getTraceFormatter<const ProtocolConformance *>() {
return &TF;
}
void swift::simple_display(llvm::raw_ostream &out,
const ProtocolConformance *conf) {
conf->printName(out);
}
SourceLoc swift::extractNearestSourceLoc(const ProtocolConformance *conformance) {
return extractNearestSourceLoc(conformance->getDeclContext());
}