Files
swift-mirror/lib/SILOptimizer/Analysis/ProtocolConformanceAnalysis.cpp
Doug Gregor 200f2340d9 [Macros] Be deliberate about walking macro arguments vs. expansions
Provide ASTWalker with a customization point to specify whether to
check macro arguments (which are type checked but never emitted), the
macro expansion (which is the result of applying the macro and is
actually emitted into the source), or both. Provide answers for the
~115 different ASTWalker visitors throughout the code base.

Fixes rdar://104042945, which concerns checking of effects in
macro arguments---which we shouldn't do.
2023-02-28 17:48:23 -08:00

172 lines
5.8 KiB
C++

//===-- ProtocolConformanceAnalysis.cpp - Protocol Conformance Analysis ---===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// This analysis collects a set of nominal types (classes, structs, and enums)
// that conform to a protocol during whole module compilation. We only track
// protocols that are non-public.
#include "swift/SILOptimizer/Analysis/ProtocolConformanceAnalysis.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Module.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILValue.h"
using namespace swift;
namespace {
/// A helper class to collect all nominal type declarations.
class NominalTypeWalker : public ASTWalker {
ProtocolConformanceAnalysis::ProtocolConformanceMap &ProtocolConformanceCache;
public:
NominalTypeWalker(ProtocolConformanceAnalysis::ProtocolConformanceMap
&ProtocolConformanceCache)
: ProtocolConformanceCache(ProtocolConformanceCache) {}
/// Walk everything in a macro
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::ArgumentsAndExpansion;
}
PreWalkAction walkToDeclPre(Decl *D) override {
/// (1) Walk over all NominalTypeDecls to determine conformances.
if (auto *NTD = dyn_cast<NominalTypeDecl>(D)) {
if (!isa<ProtocolDecl>(NTD)) {
auto Protocols = NTD->getAllProtocols();
for (auto &Protocol : Protocols) {
if (Protocol->getEffectiveAccess() <= AccessLevel::Internal) {
ProtocolConformanceCache[Protocol].push_back(NTD);
}
}
}
}
/// (2) Walk over all ExtensionDecls to determine conformances.
if (auto *e = dyn_cast<ExtensionDecl>(D)) {
auto *ntd = e->getExtendedNominal();
if (ntd && !isa<ProtocolDecl>(ntd)) {
for (auto *conformance : e->getLocalConformances()) {
if (isa<NormalProtocolConformance>(conformance)) {
auto *proto = conformance->getProtocol();
if (proto->getEffectiveAccess() <= AccessLevel::Internal) {
ProtocolConformanceCache[proto].push_back(ntd);
}
}
}
}
}
return Action::Continue();
}
};
} // end anonymous namespace
void ProtocolConformanceAnalysis::init() {
// We only do this in Whole-Module compilation mode.
if (!M->isWholeModule())
return;
// Process all types implementing protocols.
SmallVector<Decl *, 32> Decls;
// Find all top level declarations.
M->getSwiftModule()->getTopLevelDecls(Decls);
/// This operation is quadratic and should only be performed
/// in whole module compilation!
NominalTypeWalker Walker(ProtocolConformanceCache);
for (auto *D : Decls) {
D->walk(Walker);
}
}
/// Recursively traverse the conformance lists to determine sole conforming
/// class, struct or enum type.
NominalTypeDecl *
ProtocolConformanceAnalysis::findSoleConformingType(ProtocolDecl *Protocol) {
/// First check in the SoleConformingTypeCache.
auto SoleConformingTypeIt = SoleConformingTypeCache.find(Protocol);
if (SoleConformingTypeIt != SoleConformingTypeCache.end())
return SoleConformingTypeIt->second;
SmallVector<ProtocolDecl *, 8> PDWorkList;
SmallPtrSet<ProtocolDecl *, 8> VisitedPDs;
NominalTypeDecl *SoleConformingNTD = nullptr;
PDWorkList.push_back(Protocol);
while (!PDWorkList.empty()) {
auto *PD = PDWorkList.pop_back_val();
// Protocols must have internal or lower access.
if (PD->getEffectiveAccess() > AccessLevel::Internal) {
return nullptr;
}
VisitedPDs.insert(PD);
auto NTDList = getConformances(PD);
for (auto *ConformingNTD : NTDList) {
// Recurse on protocol types.
if (auto *Proto = dyn_cast<ProtocolDecl>(ConformingNTD)) {
// Ignore visited protocol decls.
if (!VisitedPDs.count(Proto))
PDWorkList.push_back(Proto);
} else { // Classes, Structs and Enums are added here.
// Bail if more than one conforming types were found.
if (SoleConformingNTD && ConformingNTD != SoleConformingNTD) {
return nullptr;
} else {
SoleConformingNTD = ConformingNTD;
}
}
}
}
// Bail if we did not find a sole conforming type.
if (!SoleConformingNTD)
return nullptr;
// Generic declarations are ignored.
if (SoleConformingNTD->isGenericContext()) {
return nullptr;
}
// Populate SoleConformingTypeCache.
SoleConformingTypeCache.insert(std::pair<ProtocolDecl *, NominalTypeDecl *>(
Protocol, SoleConformingNTD));
// Return SoleConformingNTD.
return SoleConformingNTD;
}
// Wrapper function to findSoleConformingType that checks for additional
// constraints for classes using ClassHierarchyAnalysis.
bool ProtocolConformanceAnalysis::getSoleConformingType(
ProtocolDecl *Protocol, ClassHierarchyAnalysis *CHA, CanType &ConcreteType) {
// Determine the sole conforming type.
auto *NTD = findSoleConformingType(Protocol);
if (!NTD)
return false;
// Sole conforming class should not be open access or have any derived class.
ClassDecl *CD;
if ((CD = dyn_cast<ClassDecl>(NTD)) &&
(CD->getEffectiveAccess() == AccessLevel::Open ||
CHA->hasKnownDirectSubclasses(CD))) {
return false;
}
// Save the concrete type.
ConcreteType = NTD->getDeclaredType()->getCanonicalType();
return true;
}
ProtocolConformanceAnalysis::~ProtocolConformanceAnalysis() {}