Files
swift-mirror/lib/SILOptimizer/IPO/CapturePropagation.cpp
Erik Eckstein 7839b54b8a GenericSpecializer: drop metatype arguments in specialized functions
And replace them with explicit `metatype` instruction in the entry block.
This allows such metatype instructions to be deleted if they are dead.

This was already done for performance-annotated functions. But now do this for all functions.

It is essential that performance-annotated functions are specialized in the same way as other functions.
Because otherwise it can happen that the same specialization has different performance characteristics in different modules.
And it's up to the linker to select one of those ODR functions when linking.

Also, dropping metatype arguments is good for performance and code size in general.

This change also contains a few bug fixes for dropping metatype arguments.

rdar://110509780
2023-06-15 21:42:01 +02:00

624 lines
23 KiB
C++

//===--- CapturePropagation.cpp - Propagate closure capture constants -----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "capture-prop"
#include "swift/AST/GenericEnvironment.h"
#include "swift/Demangling/Demangle.h"
#include "swift/SIL/SILCloner.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/TypeSubstCloner.h"
#include "swift/SILOptimizer/Analysis/ColdBlockInfo.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/Generics.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "swift/SILOptimizer/Utils/SpecializationMangler.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(NumCapturesPropagated, "Number of constant captures propagated");
namespace {
/// Propagate constants through closure captures by specializing the partially
/// applied function.
/// Also optimize away partial_apply instructions where all partially applied
/// arguments are dead.
class CapturePropagation : public SILFunctionTransform
{
public:
void run() override;
protected:
bool optimizePartialApply(PartialApplyInst *PAI);
SILFunction *specializeConstClosure(PartialApplyInst *PAI,
SILFunction *SubstF);
void rewritePartialApply(PartialApplyInst *PAI, SILFunction *SpecialF);
};
} // end anonymous namespace
static SILInstruction *getConstant(SILValue V) {
if (auto I = dyn_cast<ThinToThickFunctionInst>(V))
return getConstant(I->getOperand());
if (auto I = dyn_cast<ConvertFunctionInst>(V))
return getConstant(I->getOperand());
if (auto *SLI = dyn_cast<StringLiteralInst>(V)) {
// We do not optimize string literals of length > 32 since we would need to
// encode them into the symbol name for uniqueness.
if (SLI->getValue().size() > 32)
return nullptr;
return SLI;
}
if (auto *lit = dyn_cast<LiteralInst>(V))
return lit;
if (auto *kp = dyn_cast<KeyPathInst>(V)) {
// We could support operands, if they are constants, to enable propagation
// of subscript keypaths. This would require to add the operands in the
// mangling scheme.
// But currently it's not worth it because we do not optimize subscript
// keypaths in SILCombine.
if (kp->getPatternOperands().size() != 0)
return nullptr;
if (!kp->hasPattern())
return nullptr;
if (kp->getSubstitutions().hasAnySubstitutableParams())
return nullptr;
return kp;
}
return nullptr;
}
static std::string getClonedName(PartialApplyInst *PAI, IsSerialized_t Serialized,
SILFunction *F) {
auto P = Demangle::SpecializationPass::CapturePropagation;
Mangle::FunctionSignatureSpecializationMangler Mangler(P, Serialized, F);
// We know that all arguments are literal insts.
unsigned argIdx = ApplySite(PAI).getCalleeArgIndexOfFirstAppliedArg();
for (auto arg : PAI->getArguments()) {
Mangler.setArgumentConstantProp(argIdx, getConstant(arg));
++argIdx;
}
return Mangler.mangle();
}
namespace {
/// Clone the partially applied function, replacing incoming arguments with
/// literal constants.
///
/// The cloned literals will retain the SILLocation from the partial apply's
/// caller, so the cloned function will have a mix of locations from different
/// functions.
class CapturePropagationCloner
: public TypeSubstCloner<CapturePropagationCloner, SILOptFunctionBuilder> {
using SuperTy =
TypeSubstCloner<CapturePropagationCloner, SILOptFunctionBuilder>;
friend class SILInstructionVisitor<CapturePropagationCloner>;
friend class SILCloner<CapturePropagationCloner>;
SILFunction *OrigF;
bool IsCloningConstant;
public:
CapturePropagationCloner(SILFunction *OrigF, SILFunction *NewF,
SubstitutionMap Subs)
: SuperTy(*NewF, *OrigF, Subs), OrigF(OrigF), IsCloningConstant(false) {}
void cloneClosure(OperandValueArrayRef Args);
protected:
/// Literals cloned from the caller drop their location so the debug line
/// tables don't senselessly jump around. As a placeholder give them the
/// location of the newly cloned function.
SILLocation remapLocation(SILLocation InLoc) {
if (IsCloningConstant)
return getBuilder().getFunction().getLocation();
return InLoc;
}
/// Literals cloned from the caller take on the new function's debug scope.
void postProcess(SILInstruction *Orig, SILInstruction *Cloned) {
assert(IsCloningConstant == (Orig->getFunction() != OrigF) &&
"Expect only cloned constants from the caller function.");
SILClonerWithScopes<CapturePropagationCloner>::postProcess(Orig, Cloned);
}
const SILDebugScope *remapScope(const SILDebugScope *DS) {
if (IsCloningConstant)
return getBuilder().getFunction().getDebugScope();
else
return SILClonerWithScopes<CapturePropagationCloner>::remapScope(DS);
}
void cloneConstValue(SILValue Const);
};
} // end anonymous namespace
/// Clone a constant value. Recursively walk the operand chain through cast
/// instructions to ensure that all dependents are cloned. Note that the
/// original value may not belong to the same function as the one being cloned
/// by cloneClosure() (they may be from the partial apply caller).
void CapturePropagationCloner::cloneConstValue(SILValue Val) {
assert(IsCloningConstant && "incorrect mode");
if (isValueCloned(Val))
return;
// TODO: MultiValueInstruction?
auto Inst = dyn_cast<SingleValueInstruction>(Val);
if (!Inst)
return;
if (Inst->getNumOperands() > 0) {
// Only handle single operands for simple recursion without a worklist.
assert(Inst->getNumOperands() == 1 && "expected single-operand cast");
cloneConstValue(Inst->getOperand(0));
}
visit(Inst);
}
/// Clone the original partially applied function into the new specialized
/// function, replacing some arguments with literals.
void CapturePropagationCloner::cloneClosure(
OperandValueArrayRef PartialApplyArgs) {
SILFunction &CloneF = getBuilder().getFunction();
// Create the entry basic block with the function arguments.
SILBasicBlock *OrigEntryBB = &*OrigF->begin();
SILBasicBlock *ClonedEntryBB = CloneF.createBasicBlock();
auto cloneConv = CloneF.getConventions();
// Only clone the arguments that remain in the new function type. The trailing
// arguments are now propagated through the partial apply.
assert(!IsCloningConstant && "incorrect mode");
SmallVector<SILValue, 4> entryArgs;
entryArgs.reserve(OrigEntryBB->getArguments().size());
unsigned ArgIdx = 0;
for (unsigned NewArgEnd = cloneConv.getNumSILArguments(); ArgIdx != NewArgEnd;
++ArgIdx) {
SILArgument *Arg = OrigEntryBB->getArgument(ArgIdx);
auto *MappedValue = ClonedEntryBB->createFunctionArgument(
remapType(Arg->getType()), Arg->getDecl());
MappedValue->copyFlags(cast<SILFunctionArgument>(Arg));
entryArgs.push_back(MappedValue);
}
assert(OrigEntryBB->args_size() - ArgIdx == PartialApplyArgs.size()
&& "unexpected number of partial apply arguments");
// Replace the rest of the old arguments with constants.
getBuilder().setInsertionPoint(ClonedEntryBB);
IsCloningConstant = true;
llvm::SmallVector<KeyPathInst *, 8> toDestroy;
for (SILValue PartialApplyArg : PartialApplyArgs) {
assert(getConstant(PartialApplyArg) &&
"expected a constant arg to partial apply");
cloneConstValue(PartialApplyArg);
if (auto *kp = dyn_cast<KeyPathInst>(getMappedValue(PartialApplyArg))) {
toDestroy.push_back(kp);
}
// The PartialApplyArg from the caller is now mapped to its cloned
// instruction. Also map the original argument to the cloned instruction.
entryArgs.push_back(getMappedValue(PartialApplyArg));
++ArgIdx;
}
IsCloningConstant = false;
// Clear information about cloned values from the caller function.
clearClonerState();
// Visit original BBs in depth-first preorder, starting with the
// entry block, cloning all instructions and terminators.
cloneFunctionBody(OrigF, ClonedEntryBB, entryArgs);
// Destroy all the inserted keypaths at the function exits.
for (KeyPathInst *kpToDestroy : toDestroy) {
SILLocation loc = RegularLocation::getAutoGeneratedLocation();
for (SILBasicBlock &clonedBB : CloneF) {
TermInst *term = clonedBB.getTerminator();
if (term->isFunctionExiting()) {
SILBuilder builder(term);
if (CloneF.hasOwnership()) {
builder.createDestroyValue(loc, kpToDestroy);
} else {
builder.createStrongRelease(loc, kpToDestroy, builder.getDefaultAtomicity());
}
}
}
}
}
CanSILFunctionType getPartialApplyInterfaceResultType(PartialApplyInst *PAI) {
// The new partial_apply will no longer take any arguments--they are all
// expressed as literals. So its callee signature will be the same as its
// return signature.
auto FTy = PAI->getType().castTo<SILFunctionType>();
assert(!PAI->hasSubstitutions() ||
!PAI->getSubstitutionMap().hasArchetypes());
FTy = cast<SILFunctionType>(
FTy->mapTypeOutOfContext()->getCanonicalType());
auto NewFTy = FTy;
return NewFTy;
}
/// Given a partial_apply instruction, create a specialized callee by removing
/// all constant arguments and adding constant literals to the specialized
/// function body.
SILFunction *CapturePropagation::specializeConstClosure(PartialApplyInst *PAI,
SILFunction *OrigF) {
IsSerialized_t Serialized = IsNotSerialized;
if (PAI->getFunction()->isSerialized())
Serialized = IsSerialized;
std::string Name = getClonedName(PAI, Serialized, OrigF);
// See if we already have a version of this function in the module. If so,
// just return it.
if (auto *NewF = OrigF->getModule().lookUpFunction(Name)) {
assert(NewF->isSerialized() == Serialized);
LLVM_DEBUG(llvm::dbgs()
<< " Found an already specialized version of the callee: ";
NewF->printName(llvm::dbgs()); llvm::dbgs() << "\n");
return NewF;
}
// The new partial_apply will no longer take any arguments--they are all
// expressed as literals. So its callee signature will be the same as its
// return signature.
auto NewFTy = getPartialApplyInterfaceResultType(PAI);
NewFTy = NewFTy->getWithRepresentation(SILFunctionType::Representation::Thin);
GenericEnvironment *GenericEnv = nullptr;
if (NewFTy->getInvocationGenericSignature())
GenericEnv = OrigF->getGenericEnvironment();
SILOptFunctionBuilder FuncBuilder(*this);
SILFunction *NewF = FuncBuilder.createFunction(
SILLinkage::Shared, Name, NewFTy, GenericEnv, OrigF->getLocation(),
OrigF->isBare(), OrigF->isTransparent(), Serialized, IsNotDynamic,
IsNotDistributed, IsNotRuntimeAccessible, OrigF->getEntryCount(),
OrigF->isThunk(), OrigF->getClassSubclassScope(),
OrigF->getInlineStrategy(), OrigF->getEffectsKind(),
/*InsertBefore*/ OrigF, OrigF->getDebugScope());
if (!OrigF->hasOwnership()) {
NewF->setOwnershipEliminated();
}
LLVM_DEBUG(llvm::dbgs() << " Specialize callee as ";
NewF->printName(llvm::dbgs());
llvm::dbgs() << " " << NewFTy << "\n");
LLVM_DEBUG(if (PAI->hasSubstitutions()) {
llvm::dbgs() << "CapturePropagation of generic partial_apply:\n";
PAI->dumpInContext();
});
CapturePropagationCloner cloner(OrigF, NewF, PAI->getSubstitutionMap());
cloner.cloneClosure(PAI->getArguments());
assert(OrigF->getDebugScope()->Parent != NewF->getDebugScope()->Parent);
return NewF;
}
void CapturePropagation::rewritePartialApply(PartialApplyInst *OrigPAI,
SILFunction *SpecialF) {
LLVM_DEBUG(llvm::dbgs() << "\n Rewriting a partial apply:\n";
OrigPAI->dumpInContext();
llvm::dbgs() << " with special function: "
<< SpecialF->getName() << "\n";
llvm::dbgs() << "\nThe function being rewritten is:\n";
OrigPAI->getFunction()->dump());
SILBuilderWithScope Builder(OrigPAI);
auto FuncRef = Builder.createFunctionRef(OrigPAI->getLoc(), SpecialF);
auto *T2TF = Builder.createThinToThickFunction(OrigPAI->getLoc(), FuncRef,
OrigPAI->getType());
OrigPAI->replaceAllUsesWith(T2TF);
// Bypass any mark_dependence on the captures we specialized away.
//
// TODO: If we start to specialize away key path literals with operands
// (subscripts etc.), then a dependence of the new partial_apply on those
// operands may still exist. However, we should still leave the key path
// itself out of the dependency chain, and introduce dependencies on those
// operands instead, so that the key path object itself can be made dead.
for (auto user : T2TF->getUsersOfType<MarkDependenceInst>()) {
if (auto depUser = user->getBase()->getSingleUserOfType<PartialApplyInst>()){
if (depUser == OrigPAI) {
user->replaceAllUsesWith(T2TF);
}
}
}
// Remove any dealloc_stack users.
SmallVector<Operand*, 16> Uses(T2TF->getUses());
for (auto *Use : Uses)
if (auto *DS = dyn_cast<DeallocStackInst>(Use->getUser()))
DS->eraseFromParent();
recursivelyDeleteTriviallyDeadInstructions(OrigPAI, true);
LLVM_DEBUG(llvm::dbgs() << " Rewrote caller:\n" << *T2TF);
}
static bool isKeyPathFunction(FullApplySite FAS, SILValue keyPath) {
SILFunction *callee = FAS.getReferencedFunctionOrNull();
if (!callee)
return false;
if (callee->getName() == "swift_setAtWritableKeyPath" ||
callee->getName() == "swift_setAtReferenceWritableKeyPath") {
return FAS.getArgument(1) == keyPath;
}
if (callee->getName() == "swift_getAtKeyPath") {
return FAS.getArgument(2) == keyPath;
}
return false;
}
/// For now, we conservative only specialize if doing so can eliminate dynamic
/// dispatch.
///
/// TODO: Check for other profitable constant propagation, like builtin compare.
static bool isProfitable(SILFunction *Callee) {
SILBasicBlock *EntryBB = &*Callee->begin();
for (auto *Arg : EntryBB->getArguments()) {
for (auto *Operand : Arg->getUses()) {
if (FullApplySite FAS = FullApplySite::isa(Operand->getUser())) {
if (FAS.getCallee() == Operand->get())
return true;
if (isKeyPathFunction(FAS, Arg))
return true;
}
}
}
return false;
}
/// Returns true if block \p BB only contains a return or throw of the first
/// block argument and side-effect-free instructions.
static bool onlyContainsReturnOrThrowOfArg(SILBasicBlock *BB) {
for (SILInstruction &I : *BB) {
if (isa<ReturnInst>(&I) || isa<ThrowInst>(&I)) {
SILValue RetVal = I.getOperand(0);
return BB->getNumArguments() == 1 && RetVal == BB->getArgument(0);
}
if (I.mayHaveSideEffects() || isa<TermInst>(&I))
return false;
}
llvm_unreachable("should have seen a terminator instruction");
}
/// Checks if \p Orig is a thunk which calls another function but without
/// passing the trailing \p numDeadParams dead parameters.
/// If a generic specialization was performed for a generic capture,
/// GenericSpecialized contains a tuple:
/// (new specialized function, old function)
static SILFunction *getSpecializedWithDeadParams(
SILOptFunctionBuilder &FuncBuilder,
PartialApplyInst *PAI, SILFunction *Orig, int numDeadParams,
std::pair<SILFunction *, SILFunction *> &GenericSpecialized) {
SILBasicBlock &EntryBB = *Orig->begin();
unsigned NumArgs = EntryBB.getNumArguments();
// Check if all dead parameters have trivial types. We don't support non-
// trivial types because it's very hard to find places where we can release
// those parameters (as a replacement for the removed partial_apply).
// TODO: maybe we can skip this restriction when we have semantic ARC.
for (unsigned Idx = NumArgs - numDeadParams; Idx < NumArgs; ++Idx) {
SILType ArgTy = EntryBB.getArgument(Idx)->getType();
if (!ArgTy.isTrivial(*Orig))
return nullptr;
}
SILFunction *Specialized = nullptr;
SILValue RetValue;
// Check all instruction of the entry block.
for (SILInstruction &I : EntryBB) {
if (auto FAS = FullApplySite::isa(&I)) {
// Check if this is the call of the specialized function.
// If the original partial_apply didn't have substitutions,
// also the specialized function must be not generic.
if (!PAI->hasSubstitutions() && FAS.hasSubstitutions())
return nullptr;
// Is it the only call?
if (Specialized)
return nullptr;
Specialized = FAS.getReferencedFunctionOrNull();
if (!Specialized)
return nullptr;
// Check if parameters are passes 1-to-1
unsigned NumArgs = FAS.getNumArguments();
if (EntryBB.getNumArguments() - numDeadParams != NumArgs)
return nullptr;
for (unsigned Idx = 0; Idx < NumArgs; ++Idx) {
if (FAS.getArgument(Idx) != (ValueBase *)EntryBB.getArgument(Idx))
return nullptr;
}
if (auto *TAI = dyn_cast<TryApplyInst>(&I)) {
// Check the normal and throw blocks of the try_apply.
if (onlyContainsReturnOrThrowOfArg(TAI->getNormalBB()) &&
onlyContainsReturnOrThrowOfArg(TAI->getErrorBB()))
return Specialized;
return nullptr;
}
assert(isa<ApplyInst>(&I) && "unknown FullApplySite instruction");
RetValue = cast<ApplyInst>(&I);
continue;
}
if (auto *RI = dyn_cast<ReturnInst>(&I)) {
// Check if we return the result of the apply.
if (RI->getOperand() != RetValue)
return nullptr;
continue;
}
if (I.mayHaveSideEffects() || isa<TermInst>(&I))
return nullptr;
}
auto Rep = Specialized->getLoweredFunctionType()->getRepresentation();
if (getSILFunctionLanguage(Rep) != SILFunctionLanguage::Swift)
return nullptr;
GenericSpecialized = std::make_pair(nullptr, nullptr);
if (PAI->hasSubstitutions()) {
if (Specialized->isExternalDeclaration())
return nullptr;
if (!Orig->shouldOptimize())
return nullptr;
// Perform a generic specialization of the Specialized function.
ReabstractionInfo ReInfo(
FuncBuilder.getModule().getSwiftModule(),
FuncBuilder.getModule().isWholeModule(), ApplySite(), Specialized,
PAI->getSubstitutionMap(), Specialized->isSerialized(),
/* ConvertIndirectToDirect */ false, /*dropMetatypeArgs=*/ false);
GenericFuncSpecializer FuncSpecializer(FuncBuilder,
Specialized,
ReInfo.getClonerParamSubstitutionMap(),
ReInfo);
SILFunction *GenericSpecializedFunc = FuncSpecializer.trySpecialization();
if (!GenericSpecializedFunc)
return nullptr;
GenericSpecialized = std::make_pair(GenericSpecializedFunc, Specialized);
return GenericSpecializedFunc;
}
return Specialized;
}
bool CapturePropagation::optimizePartialApply(PartialApplyInst *PAI) {
SILFunction *SubstF = PAI->getReferencedFunctionOrNull();
if (!SubstF)
return false;
if (SubstF->isExternalDeclaration())
return false;
if (PAI->hasSubstitutions() && PAI->getSubstitutionMap().hasArchetypes()) {
LLVM_DEBUG(llvm::dbgs()
<< "CapturePropagation: cannot handle partial specialization "
"of partial_apply:\n";
PAI->dumpInContext());
return false;
}
// First possibility: Is it a partial_apply where all partially applied
// arguments are dead?
std::pair<SILFunction *, SILFunction *> GenericSpecialized;
SILOptFunctionBuilder FuncBuilder(*this);
if (auto *NewFunc = getSpecializedWithDeadParams(FuncBuilder, PAI, SubstF,
PAI->getNumArguments(),
GenericSpecialized)) {
// `partial_apply` can be rewritten to `thin_to_thick_function` only if the
// specialized callee is `@convention(thin)`.
if (NewFunc->getRepresentation() == SILFunctionTypeRepresentation::Thin) {
rewritePartialApply(PAI, NewFunc);
if (GenericSpecialized.first) {
// Notify the pass manager about the new function.
addFunctionToPassManagerWorklist(GenericSpecialized.first,
GenericSpecialized.second);
}
return true;
}
}
// Second possibility: Are all partially applied arguments constant?
llvm::SmallVector<SILInstruction *, 8> toDelete;
for (const Operand &argOp : PAI->getArgumentOperands()) {
SILInstruction *constInst = getConstant(argOp.get());
if (!constInst)
return false;
if (auto *kp = dyn_cast<KeyPathInst>(constInst)) {
auto argConv = ApplySite(PAI).getArgumentConvention(argOp).Value;
// Only handle the common case of a guaranteed keypath arguments. That
// refers to the callee function.
if (argConv != SILArgumentConvention::Direct_Guaranteed)
return false;
// For escaping closures:
// To keep things simple, we don't do a liferange analysis to insert
// compensating destroys of the keypath.
// Instead we require that the PAI is the only use of the keypath (= the
// common case). This allows us to just delete the now unused keypath
// instruction.
//
// For non-escaping closures:
// The keypath is not consumed by the PAI. We don't need todelete the
// keypath instruction in this pass, but let dead-object-elimination clean
// it up later.
if (!PAI->isOnStack()) {
if (getSingleNonDebugUser(kp) != PAI)
return false;
toDelete.push_back(kp);
}
}
}
if (!isProfitable(SubstF))
return false;
LLVM_DEBUG(llvm::dbgs() << "Specializing closure for constant arguments:\n"
<< " " << SubstF->getName() << "\n"
<< *PAI);
++NumCapturesPropagated;
SILFunction *NewF = specializeConstClosure(PAI, SubstF);
rewritePartialApply(PAI, NewF);
recursivelyDeleteTriviallyDeadInstructions(toDelete, /*force*/ true);
addFunctionToPassManagerWorklist(NewF, SubstF);
return true;
}
void CapturePropagation::run() {
DominanceAnalysis *DA = PM->getAnalysis<DominanceAnalysis>();
auto *F = getFunction();
bool HasChanged = false;
// Don't optimize functions that are marked with the opt.never attribute.
if (!F->shouldOptimize())
return;
// Cache cold blocks per function.
ColdBlockInfo ColdBlocks(DA);
for (auto &BB : *F) {
if (ColdBlocks.isCold(&BB))
continue;
auto I = BB.begin();
while (I != BB.end()) {
SILInstruction *Inst = &*I;
++I;
if (auto *PAI = dyn_cast<PartialApplyInst>(Inst))
HasChanged |= optimizePartialApply(PAI);
}
}
if (HasChanged) {
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
}
}
SILTransform *swift::createCapturePropagation() {
return new CapturePropagation();
}