mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
Without this fix, the new 'consuming' and 'borrowing' keywords cannot
be used with trivial types. Which means, for example, they can't be
used in macro expansions that work on various types.
Fixes patterns like:
public func test1(i: consuming Int) -> Int {
takeClosure { [i = copy i] in i }
}
public func test2(i: borrowing Int) -> Int {
takeClosure { [i = copy i] in i }
}
public func test3(i: consuming Int) -> Int {
takeClosure { i }
}
// Sadly, test4 is still incorrectly diagnosed.
public func test4(i: borrowing Int) -> Int {
takeClosure { i }
}
Fixes rdar://112795074 (Crash compiling function that has a macro annotation and uses `consuming`)
1657 lines
62 KiB
C++
1657 lines
62 KiB
C++
//===--- CapturePromotion.cpp - Promotes closure captures -----------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2021 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
///
|
|
/// Promotes captures from 'inout' (i.e. by-reference) to by-value
|
|
/// ==============================================================
|
|
///
|
|
/// Swift's closure model is that all local variables are capture by reference.
|
|
/// This produces a very simple programming model which is great to use, but
|
|
/// relies on the optimizer to promote by-ref captures to by-value (i.e.
|
|
/// by-copy) captures for decent performance. Consider this simple example:
|
|
///
|
|
/// func foo(a : () -> ()) {} // assume this has an unknown body
|
|
///
|
|
/// func bar() {
|
|
/// var x = 42
|
|
///
|
|
/// foo({ print(x) })
|
|
/// }
|
|
///
|
|
/// Since x is captured by-ref by the closure, x must live on the heap. By
|
|
/// looking at bar without any knowledge of foo, we can know that it is safe to
|
|
/// promote this to a by-value capture, allowing x to live on the stack under
|
|
/// the following conditions:
|
|
///
|
|
/// 1. If x is not modified in the closure body and is only loaded.
|
|
/// 2. If we can prove that all mutations to x occur before the closure is
|
|
/// formed.
|
|
///
|
|
/// Under these conditions if x is loadable then we can even load the given
|
|
/// value and pass it as a scalar instead of an address.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-capture-promotion"
|
|
|
|
#include "swift/AST/DiagnosticsSIL.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
#include "swift/Basic/FrozenMultiMap.h"
|
|
#include "swift/SIL/OwnershipUtils.h"
|
|
#include "swift/SIL/SILCloner.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SIL/TypeSubstCloner.h"
|
|
#include "swift/SILOptimizer/PassManager/Passes.h"
|
|
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
|
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
|
|
#include "swift/SILOptimizer/Utils/SpecializationMangler.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include <tuple>
|
|
|
|
using namespace swift;
|
|
|
|
STATISTIC(NumCapturesPromoted, "Number of captures promoted");
|
|
|
|
namespace {
|
|
using IndicesSet = llvm::SmallSet<unsigned, 4>;
|
|
using PartialApplyIndicesMap = llvm::DenseMap<PartialApplyInst *, IndicesSet>;
|
|
} // anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Reachability Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// Transient reference to a block set within ReachabilityInfo.
|
|
///
|
|
/// This is a bitset that conveniently flattens into a matrix allowing bit-wise
|
|
/// operations without masking.
|
|
///
|
|
/// TODO: If this sticks around, maybe we'll make a BitMatrix ADT.
|
|
class ReachingBlockSet {
|
|
public:
|
|
enum { BITWORD_SIZE = (unsigned)sizeof(uint64_t) * CHAR_BIT };
|
|
|
|
constexpr static size_t numBitWordsForNumBlocks(unsigned NumBlocks) {
|
|
return (NumBlocks + BITWORD_SIZE - 1) / BITWORD_SIZE;
|
|
}
|
|
|
|
/// Transient reference to a reaching block matrix.
|
|
struct ReachingBlockMatrix {
|
|
uint64_t *bits;
|
|
unsigned numBitWords; // Words per row.
|
|
|
|
ReachingBlockMatrix() : bits(nullptr), numBitWords(0) {}
|
|
|
|
bool empty() const { return !bits; }
|
|
};
|
|
|
|
static ReachingBlockMatrix allocateMatrix(unsigned numBlocks) {
|
|
ReachingBlockMatrix m;
|
|
m.numBitWords = numBitWordsForNumBlocks(numBlocks);
|
|
m.bits = new uint64_t[numBlocks * m.numBitWords];
|
|
memset(m.bits, 0, numBlocks * m.numBitWords * sizeof(uint64_t));
|
|
return m;
|
|
}
|
|
static void deallocateMatrix(ReachingBlockMatrix &m) {
|
|
delete[] m.bits;
|
|
m.bits = nullptr;
|
|
m.numBitWords = 0;
|
|
}
|
|
static ReachingBlockSet allocateSet(unsigned numBlocks) {
|
|
ReachingBlockSet s;
|
|
s.numBitWords = numBitWordsForNumBlocks(numBlocks);
|
|
s.bits = new uint64_t[s.numBitWords];
|
|
return s;
|
|
}
|
|
static void deallocateSet(ReachingBlockSet &s) {
|
|
delete[] s.bits;
|
|
s.bits = nullptr;
|
|
s.numBitWords = 0;
|
|
}
|
|
|
|
private:
|
|
uint64_t *bits;
|
|
unsigned numBitWords;
|
|
|
|
public:
|
|
ReachingBlockSet() : bits(nullptr), numBitWords(0) {}
|
|
|
|
ReachingBlockSet(unsigned blockID, ReachingBlockMatrix &m)
|
|
: bits(&m.bits[blockID * m.numBitWords]), numBitWords(m.numBitWords) {}
|
|
|
|
bool test(unsigned id) const {
|
|
assert(id / BITWORD_SIZE < numBitWords && "block ID out-of-bounds");
|
|
unsigned int modulus = id % BITWORD_SIZE;
|
|
long shifted = 1L << modulus;
|
|
return bits[id / BITWORD_SIZE] & shifted;
|
|
}
|
|
|
|
void set(unsigned id) {
|
|
unsigned int modulus = id % BITWORD_SIZE;
|
|
long shifted = 1L << modulus;
|
|
assert(id / BITWORD_SIZE < numBitWords && "block ID out-of-bounds");
|
|
bits[id / BITWORD_SIZE] |= shifted;
|
|
}
|
|
|
|
ReachingBlockSet &operator|=(const ReachingBlockSet &rhs) {
|
|
for (unsigned i : range(numBitWords))
|
|
bits[i] |= rhs.bits[i];
|
|
return *this;
|
|
}
|
|
|
|
void clear() { memset(bits, 0, numBitWords * sizeof(uint64_t)); }
|
|
|
|
bool operator==(const ReachingBlockSet &rhs) const {
|
|
assert(numBitWords == rhs.numBitWords && "mismatched sets");
|
|
for (unsigned i : range(numBitWords))
|
|
if (bits[i] != rhs.bits[i])
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool operator!=(const ReachingBlockSet &rhs) const { return !(*this == rhs); }
|
|
|
|
ReachingBlockSet(const ReachingBlockSet &rhs)
|
|
: bits(rhs.bits), numBitWords(rhs.numBitWords) {}
|
|
const ReachingBlockSet &operator=(const ReachingBlockSet &RHS) {
|
|
assert(numBitWords == RHS.numBitWords && "mismatched sets");
|
|
for (unsigned i : range(numBitWords))
|
|
bits[i] = RHS.bits[i];
|
|
return *this;
|
|
}
|
|
};
|
|
|
|
/// Store the reachability matrix: ToBlock -> FromBlocks.
|
|
class ReachabilityInfo {
|
|
SILFunction *f;
|
|
llvm::DenseMap<SILBasicBlock *, unsigned> blockMap;
|
|
ReachingBlockSet::ReachingBlockMatrix matrix;
|
|
|
|
public:
|
|
ReachabilityInfo(SILFunction *f) : f(f) {}
|
|
~ReachabilityInfo() { ReachingBlockSet::deallocateMatrix(matrix); }
|
|
|
|
bool isComputed() const { return !matrix.empty(); }
|
|
|
|
bool isReachable(SILBasicBlock *From, SILBasicBlock *To);
|
|
|
|
private:
|
|
void compute();
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Compute ReachabilityInfo so that it can answer queries about
|
|
/// whether a given basic block in a function is reachable from another basic
|
|
/// block in the function.
|
|
///
|
|
/// FIXME: Computing global reachability requires initializing an N^2
|
|
/// bitset. This could be avoided by computing reachability on-the-fly
|
|
/// for each alloc_box by walking backward from mutations.
|
|
void ReachabilityInfo::compute() {
|
|
assert(!isComputed() && "already computed");
|
|
|
|
unsigned n = 0;
|
|
for (auto &block : *f)
|
|
blockMap.insert({&block, n++});
|
|
matrix = ReachingBlockSet::allocateMatrix(n);
|
|
ReachingBlockSet newSet = ReachingBlockSet::allocateSet(n);
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Computing Reachability for " << f->getName()
|
|
<< " with " << n << " blocks.\n");
|
|
|
|
// Iterate to a fix point, two times for a topological DAG.
|
|
bool madeChange;
|
|
do {
|
|
madeChange = false;
|
|
|
|
// Visit all blocks in a predictable order, hopefully close to topological.
|
|
for (auto &block : *f) {
|
|
ReachingBlockSet curSet(blockMap[&block], matrix);
|
|
if (!madeChange) {
|
|
// If we have not detected a change yet, then calculate new
|
|
// reachabilities into a new bit vector so we can determine if any
|
|
// change has occurred.
|
|
newSet = curSet;
|
|
for (auto pi = block.pred_begin(), pe = block.pred_end(); pi != pe;
|
|
++pi) {
|
|
unsigned predID = blockMap[*pi];
|
|
ReachingBlockSet predSet(predID, matrix);
|
|
newSet |= predSet;
|
|
newSet.set(predID);
|
|
}
|
|
if (newSet != curSet) {
|
|
curSet = newSet;
|
|
madeChange = true;
|
|
}
|
|
} else {
|
|
// Otherwise, just update the existing reachabilities in-place.
|
|
for (auto *predBlock : block.getPredecessorBlocks()) {
|
|
unsigned predID = blockMap[predBlock];
|
|
ReachingBlockSet predSet(predID, matrix);
|
|
curSet |= predSet;
|
|
curSet.set(predID);
|
|
}
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " Block " << blockMap[&block] << " reached by ";
|
|
for (unsigned i
|
|
: range(n)) {
|
|
if (curSet.test(i))
|
|
llvm::dbgs() << i << " ";
|
|
} llvm::dbgs()
|
|
<< "\n");
|
|
}
|
|
} while (madeChange);
|
|
|
|
ReachingBlockSet::deallocateSet(newSet);
|
|
}
|
|
|
|
/// Return true if the To basic block is reachable from the From basic
|
|
/// block. A block is considered reachable from itself only if its entry can be
|
|
/// recursively reached from its own exit.
|
|
bool ReachabilityInfo::isReachable(SILBasicBlock *fromBlock,
|
|
SILBasicBlock *toBlock) {
|
|
if (!isComputed())
|
|
compute();
|
|
|
|
auto fi = blockMap.find(fromBlock), ti = blockMap.find(toBlock);
|
|
assert(fi != blockMap.end() && ti != blockMap.end());
|
|
ReachingBlockSet fromSet(ti->second, matrix);
|
|
return fromSet.test(fi->second);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ClosureCloner
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// A SILCloner subclass which clones a closure function while converting
|
|
/// one or more captures from 'inout' (by-reference) to by-value.
|
|
class ClosureCloner : public SILClonerWithScopes<ClosureCloner> {
|
|
public:
|
|
friend class SILInstructionVisitor<ClosureCloner>;
|
|
friend class SILCloner<ClosureCloner>;
|
|
|
|
ClosureCloner(SILOptFunctionBuilder &funcBuilder, SILFunction *orig,
|
|
IsSerialized_t serialized, StringRef clonedName,
|
|
IndicesSet &promotableIndices, ResilienceExpansion expansion);
|
|
|
|
void populateCloned();
|
|
|
|
SILFunction *getCloned() { return &getBuilder().getFunction(); }
|
|
|
|
static SILFunction *
|
|
constructClonedFunction(SILOptFunctionBuilder &funcBuilder,
|
|
PartialApplyInst *pai, FunctionRefInst *fri,
|
|
IndicesSet &promotableIndices,
|
|
ResilienceExpansion resilienceExpansion);
|
|
|
|
private:
|
|
static SILFunction *initCloned(SILOptFunctionBuilder &funcBuilder,
|
|
SILFunction *orig, IsSerialized_t serialized,
|
|
StringRef clonedName,
|
|
IndicesSet &promotableIndices,
|
|
ResilienceExpansion expansion);
|
|
|
|
SILValue getProjectBoxMappedVal(SILValue operandValue);
|
|
|
|
void visitDebugValueInst(DebugValueInst *inst);
|
|
void visitDestroyValueInst(DestroyValueInst *inst);
|
|
void visitStructElementAddrInst(StructElementAddrInst *inst);
|
|
void visitLoadInst(LoadInst *inst);
|
|
void visitLoadBorrowInst(LoadBorrowInst *inst);
|
|
void visitEndBorrowInst(EndBorrowInst *inst);
|
|
void visitProjectBoxInst(ProjectBoxInst *inst);
|
|
void visitBeginAccessInst(BeginAccessInst *inst);
|
|
void visitEndAccessInst(EndAccessInst *inst);
|
|
|
|
ResilienceExpansion resilienceExpansion;
|
|
SILFunction *origF;
|
|
IndicesSet &promotableIndices;
|
|
llvm::DenseMap<SILArgument *, SILValue> boxArgumentMap;
|
|
llvm::DenseMap<ProjectBoxInst *, SILValue> projectBoxArgumentMap;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
ClosureCloner::ClosureCloner(SILOptFunctionBuilder &funcBuilder,
|
|
SILFunction *orig, IsSerialized_t serialized,
|
|
StringRef clonedName,
|
|
IndicesSet &promotableIndices,
|
|
ResilienceExpansion resilienceExpansion)
|
|
: SILClonerWithScopes<ClosureCloner>(
|
|
*initCloned(funcBuilder, orig, serialized, clonedName,
|
|
promotableIndices, resilienceExpansion)),
|
|
origF(orig), promotableIndices(promotableIndices) {
|
|
assert(orig->getDebugScope()->Parent != getCloned()->getDebugScope()->Parent);
|
|
}
|
|
|
|
/// Compute the SILParameterInfo list for the new cloned closure.
|
|
///
|
|
/// Our goal as a result of this transformation is to:
|
|
///
|
|
/// 1. Let through all arguments not related to a promotable box.
|
|
/// 2. Replace container box value arguments for the cloned closure with the
|
|
/// transformed address or value argument.
|
|
static void
|
|
computeNewArgInterfaceTypes(SILFunction *f, IndicesSet &promotableIndices,
|
|
SmallVectorImpl<SILParameterInfo> &outTys,
|
|
ResilienceExpansion expansion) {
|
|
auto fnConv = f->getConventions();
|
|
auto parameters = fnConv.funcTy->getParameters();
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Preparing New Args!\n");
|
|
|
|
auto &types = f->getModule().Types;
|
|
|
|
// For each parameter in the old function...
|
|
for (unsigned index : indices(parameters)) {
|
|
auto ¶m = parameters[index];
|
|
|
|
// The PromotableIndices index is expressed as the argument index (num
|
|
// indirect result + param index). Add back the num indirect results to get
|
|
// the arg index when working with PromotableIndices.
|
|
unsigned argIndex = index + fnConv.getSILArgIndexOfFirstParam();
|
|
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Index: " << index << "; PromotableIndices: "
|
|
<< (promotableIndices.count(argIndex) ? "yes" : "no")
|
|
<< " Param: ";
|
|
param.print(llvm::dbgs()));
|
|
|
|
if (!promotableIndices.count(argIndex)) {
|
|
outTys.push_back(param);
|
|
continue;
|
|
}
|
|
|
|
// Perform the proper conversions and then add it to the new parameter list
|
|
// for the type.
|
|
assert(!param.isFormalIndirect());
|
|
auto paramTy =
|
|
param.getSILStorageType(fnConv.silConv.getModule(), fnConv.funcTy,
|
|
TypeExpansionContext::minimal());
|
|
auto paramBoxTy = paramTy.castTo<SILBoxType>();
|
|
assert(paramBoxTy->getLayout()->getFields().size() == 1 &&
|
|
"promoting compound box not implemented yet");
|
|
auto paramBoxedTy =
|
|
getSILBoxFieldType(TypeExpansionContext(*f), paramBoxTy, types, 0);
|
|
assert(expansion == f->getResilienceExpansion());
|
|
auto ¶mTL = types.getTypeLowering(paramBoxedTy, *f);
|
|
ParameterConvention convention;
|
|
if (paramTL.isAddressOnly()) {
|
|
convention = ParameterConvention::Indirect_In;
|
|
} else if (paramTL.isTrivial()) {
|
|
convention = ParameterConvention::Direct_Unowned;
|
|
} else {
|
|
convention = param.isGuaranteed() ? ParameterConvention::Direct_Guaranteed
|
|
: ParameterConvention::Direct_Owned;
|
|
}
|
|
outTys.push_back(SILParameterInfo(paramBoxedTy.getASTType(), convention));
|
|
}
|
|
}
|
|
|
|
static std::string getSpecializedName(SILFunction *f, IsSerialized_t serialized,
|
|
IndicesSet &promotableIndices) {
|
|
auto p = Demangle::SpecializationPass::CapturePromotion;
|
|
Mangle::FunctionSignatureSpecializationMangler mangler(p, serialized, f);
|
|
auto fnConv = f->getConventions();
|
|
|
|
for (unsigned argIdx = 0, endIdx = fnConv.getNumSILArguments();
|
|
argIdx < endIdx; ++argIdx) {
|
|
if (!promotableIndices.count(argIdx))
|
|
continue;
|
|
mangler.setArgumentBoxToValue(argIdx);
|
|
}
|
|
return mangler.mangle();
|
|
}
|
|
|
|
/// Create the function corresponding to the clone of the original
|
|
/// closure with the signature modified to reflect promotable captures (which
|
|
/// are given by PromotableIndices, such that each entry in the set is the
|
|
/// index of the box containing the variable in the closure's argument list, and
|
|
/// the address of the box's contents is the argument immediately following each
|
|
/// box argument); does not actually clone the body of the function
|
|
///
|
|
/// *NOTE* PromotableIndices only contains the container value of the box, not
|
|
/// the address value.
|
|
SILFunction *
|
|
ClosureCloner::initCloned(SILOptFunctionBuilder &functionBuilder,
|
|
SILFunction *orig, IsSerialized_t serialized,
|
|
StringRef clonedName, IndicesSet &promotableIndices,
|
|
ResilienceExpansion resilienceExpansion) {
|
|
SILModule &mod = orig->getModule();
|
|
|
|
// Compute the arguments for our new function.
|
|
SmallVector<SILParameterInfo, 4> clonedInterfaceArgTys;
|
|
computeNewArgInterfaceTypes(orig, promotableIndices, clonedInterfaceArgTys,
|
|
resilienceExpansion);
|
|
|
|
SILFunctionType *origFTI = orig->getLoweredFunctionType();
|
|
|
|
// Create the thin function type for the cloned closure.
|
|
auto clonedTy = SILFunctionType::get(
|
|
origFTI->getInvocationGenericSignature(), origFTI->getExtInfo(),
|
|
origFTI->getCoroutineKind(), origFTI->getCalleeConvention(),
|
|
clonedInterfaceArgTys, origFTI->getYields(), origFTI->getResults(),
|
|
origFTI->getOptionalErrorResult(),
|
|
origFTI->getPatternSubstitutions(),
|
|
origFTI->getInvocationSubstitutions(),
|
|
mod.getASTContext(), origFTI->getWitnessMethodConformanceOrInvalid());
|
|
|
|
assert((orig->isTransparent() || orig->isBare() || orig->getLocation()) &&
|
|
"SILFunction missing location");
|
|
assert((orig->isTransparent() || orig->isBare() || orig->getDebugScope()) &&
|
|
"SILFunction missing DebugScope");
|
|
assert(!orig->isGlobalInit() && "Global initializer cannot be cloned");
|
|
|
|
auto *fn = functionBuilder.createFunction(
|
|
orig->getLinkage(), clonedName, clonedTy, orig->getGenericEnvironment(),
|
|
orig->getLocation(), orig->isBare(), IsNotTransparent, serialized,
|
|
IsNotDynamic, IsNotDistributed, IsNotRuntimeAccessible,
|
|
orig->getEntryCount(), orig->isThunk(), orig->getClassSubclassScope(),
|
|
orig->getInlineStrategy(), orig->getEffectsKind(), orig,
|
|
orig->getDebugScope());
|
|
for (auto &attr : orig->getSemanticsAttrs())
|
|
fn->addSemanticsAttr(attr);
|
|
return fn;
|
|
}
|
|
|
|
/// Populate the body of the cloned closure, modifying instructions as
|
|
/// necessary to take into consideration the promoted capture(s)
|
|
void ClosureCloner::populateCloned() {
|
|
SILFunction *cloned = getCloned();
|
|
|
|
// Create arguments for the entry block
|
|
SILBasicBlock *origEntryBB = &*origF->begin();
|
|
SILBasicBlock *clonedEntryBB = cloned->createBasicBlock();
|
|
getBuilder().setInsertionPoint(clonedEntryBB);
|
|
|
|
SmallVector<SILValue, 4> entryArgs;
|
|
entryArgs.reserve(origEntryBB->getArguments().size());
|
|
|
|
unsigned argNo = 0;
|
|
auto ai = origEntryBB->args_begin(), ae = origEntryBB->args_end();
|
|
for (; ai != ae; ++argNo, ++ai) {
|
|
if (!promotableIndices.count(argNo)) {
|
|
// Simply create a new argument which copies the original argument
|
|
auto *mappedValue = clonedEntryBB->createFunctionArgument(
|
|
(*ai)->getType(), (*ai)->getDecl());
|
|
mappedValue->copyFlags(cast<SILFunctionArgument>(*ai));
|
|
entryArgs.push_back(mappedValue);
|
|
continue;
|
|
}
|
|
|
|
// Handle the case of a promoted capture argument.
|
|
auto boxTy = (*ai)->getType().castTo<SILBoxType>();
|
|
assert(boxTy->getLayout()->getFields().size() == 1 &&
|
|
"promoting compound box not implemented");
|
|
auto boxedTy = getSILBoxFieldType(TypeExpansionContext(*cloned), boxTy,
|
|
cloned->getModule().Types, 0)
|
|
.getObjectType();
|
|
auto *newArg =
|
|
clonedEntryBB->createFunctionArgument(boxedTy, (*ai)->getDecl());
|
|
newArg->copyFlags(cast<SILFunctionArgument>(*ai));
|
|
SILValue mappedValue = newArg;
|
|
|
|
// If SIL ownership is enabled, we need to perform a borrow here if we have
|
|
// a non-trivial value. We know that our value is not written to and it does
|
|
// not escape. The use of a borrow enforces this.
|
|
if (mappedValue->getOwnershipKind() != OwnershipKind::None) {
|
|
SILLocation loc(const_cast<ValueDecl *>((*ai)->getDecl()));
|
|
mappedValue = getBuilder().emitBeginBorrowOperation(loc, mappedValue);
|
|
}
|
|
entryArgs.push_back(mappedValue);
|
|
|
|
boxArgumentMap.insert(std::make_pair(*ai, mappedValue));
|
|
|
|
// Track the projections of the box.
|
|
for (auto *use : (*ai)->getUses()) {
|
|
if (auto *pbi = dyn_cast<ProjectBoxInst>(use->getUser())) {
|
|
projectBoxArgumentMap.insert(std::make_pair(pbi, mappedValue));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Visit original BBs in depth-first preorder, starting with the
|
|
// entry block, cloning all instructions and terminators.
|
|
cloneFunctionBody(origF, clonedEntryBB, entryArgs);
|
|
}
|
|
|
|
SILFunction *ClosureCloner::constructClonedFunction(
|
|
SILOptFunctionBuilder &funcBuilder, PartialApplyInst *pai,
|
|
FunctionRefInst *fri, IndicesSet &promotableIndices,
|
|
ResilienceExpansion resilienceExpansion) {
|
|
SILFunction *f = pai->getFunction();
|
|
|
|
// Create the Cloned Name for the function.
|
|
SILFunction *origF = fri->getReferencedFunction();
|
|
|
|
IsSerialized_t isSerialized = IsNotSerialized;
|
|
if (f->isSerialized())
|
|
isSerialized = IsSerialized_t::IsSerialized;
|
|
|
|
auto clonedName = getSpecializedName(origF, isSerialized, promotableIndices);
|
|
|
|
// If we already have such a cloned function in the module then just use it.
|
|
if (auto *prevF = f->getModule().lookUpFunction(clonedName)) {
|
|
assert(prevF->isSerialized() == isSerialized);
|
|
return prevF;
|
|
}
|
|
|
|
// Otherwise, create a new clone.
|
|
ClosureCloner cloner(funcBuilder, origF, isSerialized, clonedName,
|
|
promotableIndices, resilienceExpansion);
|
|
cloner.populateCloned();
|
|
return cloner.getCloned();
|
|
}
|
|
|
|
/// If this operand originates from a mapped ProjectBox, return the mapped
|
|
/// value. Otherwise return an invalid value.
|
|
SILValue ClosureCloner::getProjectBoxMappedVal(SILValue operandValue) {
|
|
if (auto *bai = dyn_cast<BeginAccessInst>(operandValue))
|
|
operandValue = bai->getSource();
|
|
if (auto *pbi = dyn_cast<ProjectBoxInst>(operandValue)) {
|
|
auto iter = projectBoxArgumentMap.find(pbi);
|
|
if (iter != projectBoxArgumentMap.end())
|
|
return iter->second;
|
|
}
|
|
return SILValue();
|
|
}
|
|
|
|
/// Handle a debug_value instruction during cloning of a closure;
|
|
/// if its operand is the promoted address argument then lower it to
|
|
/// another debug_value, otherwise it is handled normally.
|
|
void ClosureCloner::visitDebugValueInst(DebugValueInst *inst) {
|
|
if (inst->hasAddrVal())
|
|
if (SILValue value = getProjectBoxMappedVal(inst->getOperand())) {
|
|
getBuilder().setCurrentDebugScope(getOpScope(inst->getDebugScope()));
|
|
getBuilder().createDebugValue(inst->getLoc(), value, *inst->getVarInfo());
|
|
return;
|
|
}
|
|
SILCloner<ClosureCloner>::visitDebugValueInst(inst);
|
|
}
|
|
|
|
/// Handle a destroy_value instruction during cloning of a closure; if it is a
|
|
/// destroy_value of a promoted box argument, then it is replaced with a
|
|
/// destroy_value of the new object type argument, otherwise it is handled
|
|
/// normally.
|
|
void ClosureCloner::visitDestroyValueInst(DestroyValueInst *inst) {
|
|
SILValue operand = inst->getOperand();
|
|
if (auto *arg = dyn_cast<SILArgument>(operand)) {
|
|
auto iter = boxArgumentMap.find(arg);
|
|
if (iter != boxArgumentMap.end()) {
|
|
// destroy_value of the box arguments get replaced with an end_borrow,
|
|
// destroy_value of the new object type argument.
|
|
SILFunction &f = getBuilder().getFunction();
|
|
auto &typeLowering = f.getTypeLowering(iter->second->getType());
|
|
SILBuilderWithPostProcess<ClosureCloner, 1> b(this, inst);
|
|
SILValue value = iter->second;
|
|
|
|
// We must have emitted a begin_borrow for any non-trivial value. Insert
|
|
// an end_borrow if so.
|
|
if (value->getOwnershipKind() != OwnershipKind::None) {
|
|
auto *bbi = cast<BeginBorrowInst>(value);
|
|
value = bbi->getOperand();
|
|
b.emitEndBorrowOperation(inst->getLoc(), bbi);
|
|
}
|
|
|
|
typeLowering.emitDestroyValue(b, inst->getLoc(), value);
|
|
return;
|
|
}
|
|
}
|
|
|
|
SILCloner<ClosureCloner>::visitDestroyValueInst(inst);
|
|
}
|
|
|
|
/// Handle an end_borrow instruction during cloning of a closure; if it is a
|
|
/// end_borrow from a load_borrow of a promoted box argument, then it is
|
|
/// deleted, otherwise it is handled normally.
|
|
void ClosureCloner::visitEndBorrowInst(EndBorrowInst *inst) {
|
|
SILValue operand = inst->getOperand();
|
|
|
|
if (auto *lbi = dyn_cast<LoadBorrowInst>(operand)) {
|
|
SILValue op = lbi->getOperand();
|
|
// When we check if we can do this, we only need to look through a single
|
|
// struct_element_addr since when checking if this is safe, we only look
|
|
// through a single struct_element_addr.
|
|
if (auto *sea = dyn_cast<StructElementAddrInst>(op))
|
|
op = sea->getOperand();
|
|
|
|
// If after optionally looking through a gep, we have our project_box, just
|
|
// eliminate the end_borrow.
|
|
if (getProjectBoxMappedVal(op))
|
|
return;
|
|
}
|
|
|
|
SILCloner<ClosureCloner>::visitEndBorrowInst(inst);
|
|
}
|
|
|
|
/// Handle a struct_element_addr instruction during cloning of a closure.
|
|
///
|
|
/// If its operand is the promoted address argument then ignore it, otherwise it
|
|
/// is handled normally.
|
|
void ClosureCloner::visitStructElementAddrInst(StructElementAddrInst *seai) {
|
|
if (getProjectBoxMappedVal(seai->getOperand()))
|
|
return;
|
|
|
|
SILCloner<ClosureCloner>::visitStructElementAddrInst(seai);
|
|
}
|
|
|
|
/// project_box of captured boxes can be eliminated.
|
|
void ClosureCloner::visitProjectBoxInst(ProjectBoxInst *pbi) {
|
|
if (auto *arg = dyn_cast<SILArgument>(pbi->getOperand()))
|
|
if (boxArgumentMap.count(arg))
|
|
return;
|
|
|
|
SILCloner<ClosureCloner>::visitProjectBoxInst(pbi);
|
|
}
|
|
|
|
/// If its operand is the promoted address argument then ignore it, otherwise it
|
|
/// is handled normally.
|
|
void ClosureCloner::visitBeginAccessInst(BeginAccessInst *bai) {
|
|
if (getProjectBoxMappedVal(bai->getSource()))
|
|
return;
|
|
|
|
SILCloner<ClosureCloner>::visitBeginAccessInst(bai);
|
|
}
|
|
|
|
/// If its operand is the promoted address argument then ignore it, otherwise it
|
|
/// is handled normally.
|
|
void ClosureCloner::visitEndAccessInst(EndAccessInst *eai) {
|
|
if (getProjectBoxMappedVal(eai->getBeginAccess()))
|
|
return;
|
|
|
|
SILCloner<ClosureCloner>::visitEndAccessInst(eai);
|
|
}
|
|
|
|
/// Handle a load_borrow instruction during cloning of a closure.
|
|
///
|
|
/// The two relevant cases are a direct load from a promoted address argument or
|
|
/// a load of a struct_element_addr of a promoted address argument.
|
|
void ClosureCloner::visitLoadBorrowInst(LoadBorrowInst *lbi) {
|
|
getBuilder().setCurrentDebugScope(getOpScope(lbi->getDebugScope()));
|
|
assert(lbi->getFunction()->hasOwnership() &&
|
|
"We should only see a load borrow in ownership qualified SIL");
|
|
if (SILValue value = getProjectBoxMappedVal(lbi->getOperand())) {
|
|
// Loads of the address argument get eliminated completely; the uses of
|
|
// the loads get mapped to uses of the new object type argument.
|
|
//
|
|
// We assume that the value is already guaranteed.
|
|
assert(
|
|
value->getOwnershipKind().isCompatibleWith(OwnershipKind::Guaranteed) &&
|
|
"Expected argument value to be guaranteed");
|
|
recordFoldedValue(lbi, value);
|
|
return;
|
|
}
|
|
|
|
auto *seai = dyn_cast<StructElementAddrInst>(lbi->getOperand());
|
|
if (!seai) {
|
|
SILCloner<ClosureCloner>::visitLoadBorrowInst(lbi);
|
|
return;
|
|
}
|
|
|
|
if (SILValue value = getProjectBoxMappedVal(seai->getOperand())) {
|
|
// Loads of a struct_element_addr of an argument get replaced with a
|
|
// struct_extract of the new passed in value. The value should be borrowed
|
|
// already, so we can just extract the value.
|
|
assert(
|
|
!getBuilder().getFunction().hasOwnership() ||
|
|
value->getOwnershipKind().isCompatibleWith(OwnershipKind::Guaranteed));
|
|
value = getBuilder().emitStructExtract(lbi->getLoc(), value,
|
|
seai->getField(), lbi->getType());
|
|
recordFoldedValue(lbi, value);
|
|
return;
|
|
}
|
|
|
|
SILCloner<ClosureCloner>::visitLoadBorrowInst(lbi);
|
|
return;
|
|
}
|
|
|
|
/// Handle a load instruction during cloning of a closure.
|
|
///
|
|
/// The two relevant cases are a direct load from a promoted address argument or
|
|
/// a load of a struct_element_addr of a promoted address argument.
|
|
void ClosureCloner::visitLoadInst(LoadInst *li) {
|
|
getBuilder().setCurrentDebugScope(getOpScope(li->getDebugScope()));
|
|
if (SILValue value = getProjectBoxMappedVal(li->getOperand())) {
|
|
// Loads of the address argument get eliminated completely; the uses of
|
|
// the loads get mapped to uses of the new object type argument.
|
|
//
|
|
// If we are compiling with SIL ownership, we need to take different
|
|
// behaviors depending on the type of load. Specifically, if we have a
|
|
// load [copy], then we need to add a copy_value here. If we have a take
|
|
// or trivial, we just propagate the value through.
|
|
if (li->getFunction()->hasOwnership() &&
|
|
li->getOwnershipQualifier() == LoadOwnershipQualifier::Copy) {
|
|
value = getBuilder().createCopyValue(li->getLoc(), value);
|
|
}
|
|
recordFoldedValue(li, value);
|
|
return;
|
|
}
|
|
|
|
auto *seai = dyn_cast<StructElementAddrInst>(li->getOperand());
|
|
if (!seai) {
|
|
SILCloner<ClosureCloner>::visitLoadInst(li);
|
|
return;
|
|
}
|
|
|
|
if (SILValue value = getProjectBoxMappedVal(seai->getOperand())) {
|
|
// Loads of a struct_element_addr of an argument get replaced with a
|
|
// struct_extract of the new passed in value. The value should be borrowed
|
|
// already, so we can just extract the value.
|
|
assert(
|
|
!getBuilder().getFunction().hasOwnership() ||
|
|
value->getOwnershipKind().isCompatibleWith(OwnershipKind::Guaranteed));
|
|
value = getBuilder().emitStructExtract(li->getLoc(), value,
|
|
seai->getField(), li->getType());
|
|
|
|
// If we were performing a load [copy], then we need to a perform a copy
|
|
// here since when cloning, we do not eliminate the destroy on the copied
|
|
// value.
|
|
if (li->getFunction()->hasOwnership() &&
|
|
li->getOwnershipQualifier() == LoadOwnershipQualifier::Copy) {
|
|
value = getBuilder().createCopyValue(li->getLoc(), value);
|
|
}
|
|
recordFoldedValue(li, value);
|
|
return;
|
|
}
|
|
SILCloner<ClosureCloner>::visitLoadInst(li);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// EscapeMutationScanningState
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
struct EscapeMutationScanningState {
|
|
/// The list of mutations in the partial_apply caller that we found.
|
|
SmallVector<Operand *, 8> accumulatedMutations;
|
|
|
|
/// The list of escapes in the partial_apply caller/callee of the box that we
|
|
/// found.
|
|
SmallVector<Operand *, 8> accumulatedEscapes;
|
|
|
|
/// A multimap that maps partial applies to the set of operands in the partial
|
|
/// applies referenced function that the pass has identified as being the use
|
|
/// that caused the partial apply to capture our box.
|
|
///
|
|
/// We use a frozen multi-map since our algorithm first accumulates this info
|
|
/// and then wants to use it, perfect for the 2-stage frozen multi map.
|
|
SmallFrozenMultiMap<PartialApplyInst *, Operand *, 16>
|
|
accumulatedCaptureCausingUses;
|
|
|
|
/// A flag that we use to ensure that we only ever see 1 project_box on an
|
|
/// alloc_box.
|
|
bool sawProjectBoxInst;
|
|
|
|
/// The global partial_apply -> index map.
|
|
llvm::DenseMap<PartialApplyInst *, unsigned> &globalIndexMap;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Partial Apply BoxArg Mutation/Escape/Capture Use Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static SILArgument *getBoxFromIndex(SILFunction *f, unsigned index) {
|
|
assert(f->isDefinition() && "Expected definition not external declaration!");
|
|
auto &entry = f->front();
|
|
return entry.getArgument(index);
|
|
}
|
|
|
|
static bool isNonMutatingLoad(SILInstruction *inst) {
|
|
if (isa<LoadBorrowInst>(inst))
|
|
return true;
|
|
auto *li = dyn_cast<LoadInst>(inst);
|
|
if (!li)
|
|
return false;
|
|
return li->getOwnershipQualifier() != LoadOwnershipQualifier::Take;
|
|
}
|
|
|
|
/// Given a partial_apply instruction and the argument index into its callee's
|
|
/// argument list of a box argument (which is followed by an argument for the
|
|
/// address of the box's contents), return true if this box has mutating
|
|
/// captures. Return false otherwise. All of the mutating captures that we find
|
|
/// are placed into \p accumulatedMutatingUses.
|
|
static bool
|
|
getPartialApplyArgMutationsAndEscapes(PartialApplyInst *pai,
|
|
SILArgument *boxArg,
|
|
EscapeMutationScanningState &state) {
|
|
SmallVector<ProjectBoxInst *, 2> projectBoxInsts;
|
|
|
|
// Conservatively do not allow any use of the box argument other than a
|
|
// strong_release or projection, since this is the pattern expected from
|
|
// SILGen.
|
|
SmallVector<Operand *, 32> incrementalEscapes;
|
|
SmallVector<Operand *, 32> incrementalCaptureCausingUses;
|
|
for (auto *use : boxArg->getUses()) {
|
|
if (isa<StrongReleaseInst>(use->getUser()) ||
|
|
isa<DestroyValueInst>(use->getUser()))
|
|
continue;
|
|
|
|
if (auto *pbi = dyn_cast<ProjectBoxInst>(use->getUser())) {
|
|
projectBoxInsts.push_back(pbi);
|
|
continue;
|
|
}
|
|
|
|
incrementalEscapes.push_back(use);
|
|
}
|
|
|
|
// Only allow loads of projections, either directly or via
|
|
// struct_element_addr instructions.
|
|
//
|
|
// TODO: This seems overly limited. Why not projections of tuples and other
|
|
// stuff? Also, why not recursive struct elements? This should be a helper
|
|
// function that mirrors isNonEscapingUse.
|
|
auto checkIfAddrUseMutating = [&](Operand *addrUse) -> bool {
|
|
unsigned initSize = incrementalEscapes.size();
|
|
auto *addrUser = addrUse->getUser();
|
|
if (auto *seai = dyn_cast<StructElementAddrInst>(addrUser)) {
|
|
for (auto *seaiUse : seai->getUses()) {
|
|
if (isNonMutatingLoad(seaiUse->getUser())) {
|
|
incrementalCaptureCausingUses.push_back(seaiUse);
|
|
} else {
|
|
incrementalEscapes.push_back(seaiUse);
|
|
}
|
|
}
|
|
return incrementalEscapes.size() != initSize;
|
|
}
|
|
|
|
if (isNonMutatingLoad(addrUser)) {
|
|
incrementalCaptureCausingUses.push_back(addrUse);
|
|
return false;
|
|
}
|
|
|
|
if (DebugValueInst::hasAddrVal(addrUser) ||
|
|
isa<MarkFunctionEscapeInst>(addrUser) || isa<EndAccessInst>(addrUser)) {
|
|
return false;
|
|
}
|
|
|
|
incrementalEscapes.push_back(addrUse);
|
|
return true;
|
|
};
|
|
|
|
for (auto *pbi : projectBoxInsts) {
|
|
for (auto *use : pbi->getUses()) {
|
|
if (auto *bai = dyn_cast<BeginAccessInst>(use->getUser())) {
|
|
for (auto *accessUseOper : bai->getUses()) {
|
|
checkIfAddrUseMutating(accessUseOper);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
checkIfAddrUseMutating(use);
|
|
}
|
|
}
|
|
|
|
auto &accCaptureCausingUses = state.accumulatedCaptureCausingUses;
|
|
while (!incrementalCaptureCausingUses.empty())
|
|
accCaptureCausingUses.insert(pai,
|
|
incrementalCaptureCausingUses.pop_back_val());
|
|
|
|
if (incrementalEscapes.empty())
|
|
return false;
|
|
while (!incrementalEscapes.empty())
|
|
state.accumulatedEscapes.push_back(incrementalEscapes.pop_back_val());
|
|
return true;
|
|
}
|
|
|
|
bool isPartialApplyNonEscapingUser(Operand *currentOp, PartialApplyInst *pai,
|
|
EscapeMutationScanningState &state) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Found partial: " << *pai);
|
|
|
|
unsigned opNo = currentOp->getOperandNumber();
|
|
assert(opNo != 0 && "Alloc box used as callee of partial apply?");
|
|
|
|
// If we've already seen this partial apply, then it means the same alloc box
|
|
// is being captured twice by the same closure, which is odd and unexpected:
|
|
// bail instead of trying to handle this case.
|
|
if (state.globalIndexMap.count(pai)) {
|
|
// TODO: Is it correct to treat this like an escape? We are just currently
|
|
// flagging all failures as warnings.
|
|
LLVM_DEBUG(llvm::dbgs() << " FAIL! Already seen.\n");
|
|
state.accumulatedEscapes.push_back(currentOp);
|
|
return false;
|
|
}
|
|
|
|
SILModule &mod = pai->getModule();
|
|
SILFunction *f = pai->getFunction();
|
|
auto closureType = pai->getType().castTo<SILFunctionType>();
|
|
SILFunctionConventions closureConv(closureType, mod);
|
|
|
|
// Calculate the index into the closure's argument list of the captured
|
|
// box pointer (the captured address is always the immediately following
|
|
// index so is not stored separately);
|
|
unsigned index = opNo - 1 + closureConv.getNumSILArguments();
|
|
|
|
auto *fn = pai->getReferencedFunctionOrNull();
|
|
|
|
// It is not safe to look at the content of dynamically replaceable functions
|
|
// since this pass looks at the content of Fn.
|
|
if (!fn || !fn->isDefinition() || fn->isDynamicallyReplaceable()) {
|
|
LLVM_DEBUG(llvm::dbgs() << " FAIL! Not a direct function definition "
|
|
"reference.\n");
|
|
state.accumulatedEscapes.push_back(currentOp);
|
|
return false;
|
|
}
|
|
|
|
SILArgument *boxArg = getBoxFromIndex(fn, index);
|
|
|
|
// For now, return false is the address argument is an address-only type,
|
|
// since we currently handle loadable types only.
|
|
// TODO: handle address-only types
|
|
// FIXME: Expansion
|
|
auto boxTy = boxArg->getType().castTo<SILBoxType>();
|
|
assert(boxTy->getLayout()->getFields().size() == 1 &&
|
|
"promoting compound box not implemented yet");
|
|
if (getSILBoxFieldType(TypeExpansionContext(*fn), boxTy, mod.Types, 0)
|
|
.isAddressOnly(*f)) {
|
|
LLVM_DEBUG(llvm::dbgs() << " FAIL! Box is an address only "
|
|
"argument!\n");
|
|
state.accumulatedEscapes.push_back(currentOp);
|
|
return false;
|
|
}
|
|
|
|
// Verify that this closure is known not to mutate the captured value; if
|
|
// it does, then conservatively refuse to promote any captures of this
|
|
// value.
|
|
if (getPartialApplyArgMutationsAndEscapes(pai, boxArg, state)) {
|
|
LLVM_DEBUG(llvm::dbgs() << " FAIL: Have a mutation or escape of a "
|
|
"partial apply arg?!\n");
|
|
return false;
|
|
}
|
|
|
|
// Record the index and continue.
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " Partial apply does not escape, may be optimizable!\n");
|
|
LLVM_DEBUG(llvm::dbgs() << " Index: " << index << "\n");
|
|
state.globalIndexMap.insert(std::make_pair(pai, index));
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Project Box Escaping Use Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class NonEscapingUserVisitor
|
|
: public SILInstructionVisitor<NonEscapingUserVisitor, bool> {
|
|
SmallVector<Operand *, 32> worklist;
|
|
SmallVectorImpl<Operand *> &accumulatedMutations;
|
|
SmallVectorImpl<Operand *> &accumulatedEscapes;
|
|
NullablePtr<Operand> currentOp;
|
|
|
|
public:
|
|
NonEscapingUserVisitor(Operand *initialOperand,
|
|
SmallVectorImpl<Operand *> &accumulatedMutations,
|
|
SmallVectorImpl<Operand *> &accumulatedEscapes)
|
|
: worklist(), accumulatedMutations(accumulatedMutations),
|
|
accumulatedEscapes(accumulatedEscapes), currentOp() {
|
|
worklist.push_back(initialOperand);
|
|
}
|
|
|
|
NonEscapingUserVisitor(const NonEscapingUserVisitor &) = delete;
|
|
NonEscapingUserVisitor &operator=(const NonEscapingUserVisitor &) = delete;
|
|
NonEscapingUserVisitor(NonEscapingUserVisitor &&) = delete;
|
|
NonEscapingUserVisitor &operator=(NonEscapingUserVisitor &&) = delete;
|
|
|
|
private:
|
|
void markCurrentOpAsMutation() {
|
|
accumulatedMutations.push_back(currentOp.get());
|
|
}
|
|
void markCurrentOpAsEscape() {
|
|
accumulatedEscapes.push_back(currentOp.get());
|
|
}
|
|
|
|
public:
|
|
bool compute() {
|
|
while (!worklist.empty()) {
|
|
currentOp = worklist.pop_back_val();
|
|
SILInstruction *user = currentOp.get()->getUser();
|
|
|
|
// Ignore type dependent operands.
|
|
if (user->isTypeDependentOperand(*(currentOp.get())))
|
|
continue;
|
|
|
|
// Then visit the specific user. This routine returns true if the value
|
|
// does not escape. In such a case, continue.
|
|
if (visit(user)) {
|
|
continue;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Visit a random value base.
|
|
///
|
|
/// These are considered to be escapes.
|
|
bool visitSILInstruction(SILInstruction *inst) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " FAIL! Have unknown escaping user: " << *inst);
|
|
markCurrentOpAsEscape();
|
|
return false;
|
|
}
|
|
|
|
#define ALWAYS_NON_ESCAPING_INST(INST) \
|
|
bool visit##INST##Inst(INST##Inst *) { return true; }
|
|
// Marking the boxed value as escaping is OK. It's just a DI annotation.
|
|
ALWAYS_NON_ESCAPING_INST(MarkFunctionEscape)
|
|
// These remaining instructions are ok and don't count as mutations.
|
|
ALWAYS_NON_ESCAPING_INST(StrongRetain)
|
|
ALWAYS_NON_ESCAPING_INST(Load)
|
|
ALWAYS_NON_ESCAPING_INST(StrongRelease)
|
|
ALWAYS_NON_ESCAPING_INST(DestroyValue)
|
|
ALWAYS_NON_ESCAPING_INST(EndBorrow)
|
|
#undef ALWAYS_NON_ESCAPING_INST
|
|
|
|
bool visitDeallocBoxInst(DeallocBoxInst *dbi) {
|
|
markCurrentOpAsMutation();
|
|
return true;
|
|
}
|
|
|
|
bool visitEndAccessInst(EndAccessInst *) { return true; }
|
|
|
|
bool visitApplyInst(ApplyInst *ai) {
|
|
auto argIndex = currentOp.get()->getOperandNumber() - 1;
|
|
SILFunctionConventions substConv(ai->getSubstCalleeType(), ai->getModule());
|
|
auto convention = substConv.getSILArgumentConvention(argIndex);
|
|
if (!convention.isIndirectConvention()) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " FAIL! Found non indirect apply user: " << *ai);
|
|
markCurrentOpAsEscape();
|
|
return false;
|
|
}
|
|
markCurrentOpAsMutation();
|
|
return true;
|
|
}
|
|
|
|
/// Add the Operands of a transitive use instruction to the worklist.
|
|
void addUsesToWorklist(SingleValueInstruction *svi) {
|
|
for (auto *use : svi->getUses()) {
|
|
worklist.push_back(use);
|
|
}
|
|
}
|
|
|
|
/// This is separate from the normal copy value handling since we are matching
|
|
/// the old behavior of non-top-level uses not being able to have partial
|
|
/// apply and project box uses.
|
|
struct detail {
|
|
enum IsMutating_t {
|
|
IsNotMutating = 0,
|
|
IsMutating = 1,
|
|
};
|
|
};
|
|
#define RECURSIVE_INST_VISITOR(MUTATING, INST) \
|
|
bool visit##INST##Inst(INST##Inst *i) { \
|
|
if (bool(detail::MUTATING)) { \
|
|
markCurrentOpAsMutation(); \
|
|
} \
|
|
addUsesToWorklist(i); \
|
|
return true; \
|
|
}
|
|
// *NOTE* It is important that we do not have copy_value here. The reason why
|
|
// is that we only want to handle copy_value directly of the alloc_box without
|
|
// going through any other instructions. This protects our optimization later
|
|
// on.
|
|
//
|
|
// Additionally, copy_value is not a valid use of any of the instructions that
|
|
// we allow through.
|
|
//
|
|
// TODO: Can we ever hit copy_values here? If we do, we may be missing
|
|
// opportunities.
|
|
RECURSIVE_INST_VISITOR(IsNotMutating, StructElementAddr)
|
|
RECURSIVE_INST_VISITOR(IsNotMutating, TupleElementAddr)
|
|
RECURSIVE_INST_VISITOR(IsNotMutating, InitEnumDataAddr)
|
|
RECURSIVE_INST_VISITOR(IsNotMutating, OpenExistentialAddr)
|
|
// begin_access may signify a modification, but is considered nonmutating
|
|
// because we will peek though it's uses to find the actual mutation.
|
|
RECURSIVE_INST_VISITOR(IsNotMutating, BeginAccess)
|
|
RECURSIVE_INST_VISITOR(IsMutating, UncheckedTakeEnumDataAddr)
|
|
#undef RECURSIVE_INST_VISITOR
|
|
|
|
bool visitCopyAddrInst(CopyAddrInst *cai) {
|
|
if (currentOp.get()->getOperandNumber() == CopyAddrInst::Dest ||
|
|
cai->isTakeOfSrc())
|
|
markCurrentOpAsMutation();
|
|
return true;
|
|
}
|
|
|
|
bool visitMarkUnresolvedMoveAddrInst(MarkUnresolvedMoveAddrInst *mai) {
|
|
if (currentOp.get()->getOperandNumber() == MarkUnresolvedMoveAddrInst::Dest)
|
|
markCurrentOpAsMutation();
|
|
return true;
|
|
}
|
|
|
|
bool visitStoreInst(StoreInst *si) {
|
|
if (currentOp.get()->getOperandNumber() != 1) {
|
|
LLVM_DEBUG(llvm::dbgs() << " FAIL! Found store of pointer: " << *si);
|
|
markCurrentOpAsEscape();
|
|
return false;
|
|
}
|
|
markCurrentOpAsMutation();
|
|
return true;
|
|
}
|
|
|
|
bool visitAssignInst(AssignInst *ai) {
|
|
if (currentOp.get()->getOperandNumber() != 1) {
|
|
LLVM_DEBUG(llvm::dbgs() << " FAIL! Found store of pointer: " << *ai);
|
|
markCurrentOpAsEscape();
|
|
return false;
|
|
}
|
|
markCurrentOpAsMutation();
|
|
return true;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Given a use of an alloc_box instruction, return true if the use
|
|
/// definitely does not allow the box to escape; also, if the use is an
|
|
/// instruction which possibly mutates the contents of the box, then add it to
|
|
/// the Mutations vector.
|
|
static bool isNonEscapingUse(Operand *initialOp,
|
|
EscapeMutationScanningState &state) {
|
|
return NonEscapingUserVisitor(initialOp, state.accumulatedMutations,
|
|
state.accumulatedEscapes)
|
|
.compute();
|
|
}
|
|
|
|
static bool isProjectBoxNonEscapingUse(ProjectBoxInst *pbi,
|
|
EscapeMutationScanningState &state) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Found project box: " << *pbi);
|
|
|
|
for (Operand *addrOp : pbi->getUses()) {
|
|
if (!isNonEscapingUse(addrOp, state)) {
|
|
LLVM_DEBUG(llvm::dbgs() << " FAIL! Has escaping user of addr:"
|
|
<< *addrOp->getUser());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top Level AllocBox Escape/Mutation Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool findEscapeOrMutationUses(Operand *op,
|
|
EscapeMutationScanningState &state) {
|
|
SILInstruction *user = op->getUser();
|
|
|
|
if (auto *pai = dyn_cast<PartialApplyInst>(user)) {
|
|
return !isPartialApplyNonEscapingUser(op, pai, state);
|
|
}
|
|
|
|
// A mark_dependence user on a partial_apply is safe.
|
|
if (auto *mdi = dyn_cast<MarkDependenceInst>(user)) {
|
|
if (mdi->getBase() == op->get()) {
|
|
auto parent = mdi->getValue();
|
|
while ((mdi = dyn_cast<MarkDependenceInst>(parent))) {
|
|
parent = mdi->getValue();
|
|
}
|
|
if (isa<PartialApplyInst>(parent))
|
|
return false;
|
|
state.accumulatedEscapes.push_back(
|
|
&mdi->getOperandRef(MarkDependenceInst::Value));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (auto *pbi = dyn_cast<ProjectBoxInst>(user)) {
|
|
// It is assumed in later code that we will only have 1 project_box. This
|
|
// can be seen since there is no code for reasoning about multiple
|
|
// boxes. Just put in the restriction so we are consistent.
|
|
if (state.sawProjectBoxInst)
|
|
return true;
|
|
state.sawProjectBoxInst = true;
|
|
return !isProjectBoxNonEscapingUse(pbi, state);
|
|
}
|
|
|
|
// Given a top level copy value use or mark_uninitialized, check all of its
|
|
// user operands as if they were apart of the use list of the base operand.
|
|
//
|
|
// This is a separate code path from the non escaping user visitor check since
|
|
// we want to be more conservative around non-top level copies (i.e. a copy
|
|
// derived from a projection like instruction). In fact such a thing may not
|
|
// even make any sense!
|
|
if (isa<CopyValueInst>(user) || isa<MarkUninitializedInst>(user) ||
|
|
isa<BeginBorrowInst>(user)) {
|
|
bool foundSomeMutations = false;
|
|
for (auto *use : cast<SingleValueInstruction>(user)->getUses()) {
|
|
foundSomeMutations |= findEscapeOrMutationUses(use, state);
|
|
}
|
|
return foundSomeMutations;
|
|
}
|
|
|
|
// Verify that this use does not otherwise allow the alloc_box to
|
|
// escape.
|
|
return isNonEscapingUse(op, state);
|
|
}
|
|
|
|
/// We found a capture of \p abi in concurrent closure \p pai that we can not
|
|
/// promote to a by value capture. Emit a nice warning (FIXME: error) to warn
|
|
/// the user and provide the following information in the compiler feedback:
|
|
///
|
|
/// 1. The source loc where the variable's box is written to.
|
|
///
|
|
/// 2. The source loc of the captured variable's declaration.
|
|
///
|
|
/// 3. The source loc of the start of the concurrent closure that caused the
|
|
/// variable to be captured.
|
|
///
|
|
/// 4. All places in the concurrent closure that triggered the box's
|
|
/// capture. NOTE: For objects these are load points. For address only things
|
|
/// it is still open for debate at this point.
|
|
static void diagnoseInvalidCaptureByConcurrentClosure(
|
|
AllocBoxInst *abi, PartialApplyInst *pai,
|
|
const EscapeMutationScanningState &state, SILInstruction *mutatingUser) {
|
|
auto captureCausingUses = state.accumulatedCaptureCausingUses.find(pai);
|
|
if (!captureCausingUses) {
|
|
llvm::errs() << "Didn't find capture causing use of partial apply: "
|
|
<< *pai;
|
|
llvm::errs() << "Original Func: " << pai->getFunction()->getName() << '\n';
|
|
llvm::errs() << "Partial Applied Func: "
|
|
<< pai->getReferencedFunctionOrNull()->getName() << '\n';
|
|
llvm::report_fatal_error("standard compiler error");
|
|
}
|
|
|
|
auto &astCtx = pai->getFunction()->getASTContext();
|
|
auto &de = astCtx.Diags;
|
|
auto varInfo = abi->getVarInfo();
|
|
StringRef name = "<unknown>";
|
|
if (varInfo) {
|
|
name = varInfo->Name;
|
|
}
|
|
|
|
de.diagnoseWithNotes(
|
|
de.diagnose(mutatingUser->getLoc().getSourceLoc(),
|
|
diag::capturepromotion_concurrentcapture_mutation, name),
|
|
[&]() {
|
|
de.diagnose(abi->getLoc().getSourceLoc(),
|
|
diag::capturepromotion_variable_defined_here);
|
|
de.diagnose(pai->getLoc().getSourceLoc(),
|
|
diag::capturepromotion_concurrentcapture_closure_here);
|
|
for (auto *use : *captureCausingUses) {
|
|
de.diagnose(
|
|
use->getUser()->getLoc().getSourceLoc(),
|
|
diag::capturepromotion_concurrentcapture_capturinguse_here);
|
|
}
|
|
});
|
|
}
|
|
|
|
/// Examine an alloc_box instruction, returning true if at least one
|
|
/// capture of the boxed variable is promotable. If so, then the pair of the
|
|
/// partial_apply instruction and the index of the box argument in the closure's
|
|
/// argument list is added to IM.
|
|
static bool
|
|
examineAllocBoxInst(AllocBoxInst *abi, ReachabilityInfo &ri,
|
|
llvm::DenseMap<PartialApplyInst *, unsigned> &im) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Visiting alloc box: " << *abi);
|
|
EscapeMutationScanningState state{{}, {}, {}, false, im};
|
|
|
|
// Scan the box for escaping or mutating uses.
|
|
for (auto *use : abi->getUses()) {
|
|
findEscapeOrMutationUses(use, state);
|
|
}
|
|
|
|
if (!state.accumulatedEscapes.empty()) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Found escaping uses! Can not optimize this alloc box?!\n");
|
|
while (!state.accumulatedEscapes.empty()) {
|
|
auto *escapingUse = state.accumulatedEscapes.pop_back_val();
|
|
LLVM_DEBUG(llvm::dbgs() << "Escaping use: " << *escapingUse->getUser());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
state.accumulatedCaptureCausingUses.setFrozen();
|
|
LLVM_DEBUG(llvm::dbgs() << "We can optimize this alloc box!\n");
|
|
|
|
// Helper lambda function to determine if instruction b is strictly after
|
|
// instruction a, assuming both are in the same basic block.
|
|
auto isAfter = [](SILInstruction *a, SILInstruction *b) {
|
|
auto fIter = b->getParent()->begin();
|
|
auto bIter = b->getIterator();
|
|
auto aIter = a->getIterator();
|
|
while (bIter != fIter) {
|
|
--bIter;
|
|
if (aIter == bIter)
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "Checking for any mutations that invalidate captures...\n");
|
|
// Loop over all mutations to possibly invalidate captures.
|
|
for (auto *use : state.accumulatedMutations) {
|
|
auto iter = im.begin();
|
|
while (iter != im.end()) {
|
|
auto *user = use->getUser();
|
|
auto *pai = iter->first;
|
|
// The mutation invalidates a capture if it occurs in a block reachable
|
|
// from the block the partial_apply is in, or if it is in the same
|
|
// block is after the partial_apply.
|
|
if (ri.isReachable(pai->getParent(), user->getParent()) ||
|
|
(pai->getParent() == user->getParent() && isAfter(pai, user))) {
|
|
// If our partial apply is concurrent and we can not promote this, emit
|
|
// a warning that shows the variable, where the variable is captured,
|
|
// and the mutation that we found.
|
|
if (pai->getFunctionType()->isSendable()) {
|
|
diagnoseInvalidCaptureByConcurrentClosure(abi, pai, state, user);
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Invalidating: " << *pai);
|
|
LLVM_DEBUG(llvm::dbgs() << " Because of user: " << *user);
|
|
auto prev = iter++;
|
|
im.erase(prev);
|
|
continue;
|
|
}
|
|
++iter;
|
|
}
|
|
|
|
// If there are no valid captures left, then stop.
|
|
if (im.empty()) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Ran out of valid captures... bailing!\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " We can optimize this box!\n");
|
|
return true;
|
|
}
|
|
|
|
/// For an alloc_box or iterated copy_value alloc_box, get or create the
|
|
/// project_box for the copy or original alloc_box.
|
|
///
|
|
/// There are two possible case here:
|
|
///
|
|
/// 1. It could be an alloc box.
|
|
/// 2. It could be an iterated copy_value from an alloc_box.
|
|
///
|
|
/// Some important constraints from our initial safety condition checks:
|
|
///
|
|
/// 1. We only see a project_box paired with an alloc_box. e.x.:
|
|
///
|
|
/// (project_box (alloc_box)).
|
|
///
|
|
/// 2. We only see a mark_uninitialized when paired with an (alloc_box,
|
|
/// project_box). e.x.:
|
|
///
|
|
/// (project_box (mark_uninitialized (alloc_box)))
|
|
///
|
|
/// The asserts are to make sure that if the initial safety condition check
|
|
/// is changed, this code is changed as well.
|
|
static SILValue getOrCreateProjectBoxHelper(SILValue partialOperand) {
|
|
// If we have a copy_value, just create a project_box on the copy and return.
|
|
if (auto *cvi = dyn_cast<CopyValueInst>(partialOperand)) {
|
|
SILBuilderWithScope b(std::next(cvi->getIterator()));
|
|
return b.createProjectBox(cvi->getLoc(), cvi, 0);
|
|
}
|
|
|
|
// Otherwise, handle the alloc_box case. If we have a mark_uninitialized on
|
|
// the box, we know that we will have a project_box of that value due to SIL
|
|
// verifier invariants.
|
|
SingleValueInstruction *box = cast<AllocBoxInst>(partialOperand);
|
|
if (auto *mui = box->getSingleUserOfType<MarkUninitializedInst>()) {
|
|
if (auto *pbi = mui->getSingleUserOfType<ProjectBoxInst>()) {
|
|
return pbi;
|
|
}
|
|
}
|
|
|
|
// Otherwise, create a new project_box.
|
|
SILBuilderWithScope b(std::next(box->getIterator()));
|
|
return b.createProjectBox(box->getLoc(), box, 0);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top Level Processing of Partial Applies with AllocBox Args
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Change the base in mark_dependence.
|
|
static void
|
|
mapMarkDependenceArguments(SingleValueInstruction *root,
|
|
llvm::DenseMap<SILValue, SILValue> &map,
|
|
SmallVectorImpl<SILInstruction *> &toDelete) {
|
|
SmallVector<Operand *, 16> useWorklist(root->getUses());
|
|
for (auto *use : useWorklist) {
|
|
if (auto *mdi = dyn_cast<MarkDependenceInst>(use->getUser())) {
|
|
mapMarkDependenceArguments(mdi, map, toDelete);
|
|
auto iter = map.find(mdi->getBase());
|
|
if (iter != map.end()) {
|
|
mdi->setBase(iter->second);
|
|
}
|
|
// Remove mark_dependence on trivial values.
|
|
if (mdi->getBase()->getType().isTrivial(*mdi->getFunction())) {
|
|
mdi->replaceAllUsesWith(mdi->getValue());
|
|
toDelete.push_back(mdi);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Given a partial_apply instruction and a set of promotable indices,
|
|
/// clone the closure with the promoted captures and replace the partial_apply
|
|
/// with a partial_apply of the new closure, fixing up reference counting as
|
|
/// necessary. Also, if the closure is cloned, the cloned function is added to
|
|
/// the worklist.
|
|
static SILFunction *
|
|
processPartialApplyInst(SILOptFunctionBuilder &funcBuilder,
|
|
PartialApplyInst *pai, IndicesSet &promotableIndices,
|
|
SmallVectorImpl<SILFunction *> &worklist) {
|
|
SILFunction *f = pai->getFunction();
|
|
SILModule &mod = pai->getModule();
|
|
auto *fri = dyn_cast<FunctionRefInst>(pai->getCallee());
|
|
|
|
// Clone the closure with the given promoted captures.
|
|
SILFunction *clonedFn = ClosureCloner::constructClonedFunction(
|
|
funcBuilder, pai, fri, promotableIndices, f->getResilienceExpansion());
|
|
worklist.push_back(clonedFn);
|
|
|
|
// Initialize a SILBuilder and create a function_ref referencing the cloned
|
|
// closure.
|
|
SILBuilderWithScope builder(pai);
|
|
SILValue fnVal = builder.createFunctionRef(pai->getLoc(), clonedFn);
|
|
|
|
// Populate the argument list for a new partial_apply instruction, taking into
|
|
// consideration any captures.
|
|
auto calleeFunctionTy = pai->getCallee()->getType().castTo<SILFunctionType>();
|
|
auto substCalleeFunctionTy = calleeFunctionTy;
|
|
if (pai->hasSubstitutions())
|
|
substCalleeFunctionTy = calleeFunctionTy->substGenericArgs(
|
|
mod, pai->getSubstitutionMap(), TypeExpansionContext(*f));
|
|
SILFunctionConventions calleeConv(substCalleeFunctionTy, mod);
|
|
auto calleePInfo = substCalleeFunctionTy->getParameters();
|
|
SILFunctionConventions paConv(pai->getType().castTo<SILFunctionType>(), mod);
|
|
unsigned firstIndex = paConv.getNumSILArguments();
|
|
unsigned opNo = 1;
|
|
unsigned opCount = pai->getNumOperands() - pai->getNumTypeDependentOperands();
|
|
SmallVector<SILValue, 16> args;
|
|
auto numIndirectResults = calleeConv.getNumIndirectSILResults();
|
|
llvm::DenseMap<SILValue, SILValue> capturedMap;
|
|
llvm::SmallSet<SILValue, 16> newCaptures;
|
|
for (; opNo != opCount; ++opNo) {
|
|
unsigned index = opNo - 1 + firstIndex;
|
|
if (!promotableIndices.count(index)) {
|
|
args.push_back(pai->getOperand(opNo));
|
|
continue;
|
|
}
|
|
|
|
// First the grab the box and projected_box for the box value.
|
|
//
|
|
// *NOTE* Box may be a copy_value.
|
|
SILValue box = pai->getOperand(opNo);
|
|
SILValue addr = getOrCreateProjectBoxHelper(box);
|
|
|
|
auto &typeLowering = f->getTypeLowering(addr->getType());
|
|
auto newCaptured =
|
|
typeLowering.emitLoadOfCopy(builder, pai->getLoc(), addr, IsNotTake);
|
|
args.push_back(newCaptured);
|
|
|
|
capturedMap[box] = newCaptured;
|
|
newCaptures.insert(newCaptured);
|
|
|
|
// A partial_apply [stack] does not own the captured argument but we must
|
|
// destroy the projected object. We will do so after having created the new
|
|
// partial_apply below.
|
|
if (pai->isOnStack())
|
|
continue;
|
|
|
|
// Cleanup the captured argument.
|
|
//
|
|
// *NOTE* If we initially had a box, then this is on the actual
|
|
// alloc_box. Otherwise, it is on the specific iterated copy_value that we
|
|
// started with.
|
|
SILParameterInfo cpInfo = calleePInfo[index - numIndirectResults];
|
|
assert(calleeConv.getSILType(cpInfo, builder.getTypeExpansionContext()) ==
|
|
box->getType() &&
|
|
"SILType of parameter info does not match type of parameter");
|
|
releasePartialApplyCapturedArg(builder, pai->getLoc(), box, cpInfo);
|
|
++NumCapturesPromoted;
|
|
}
|
|
|
|
// Create a new partial apply with the new arguments.
|
|
auto *newPAI = builder.createPartialApply(
|
|
pai->getLoc(), fnVal, pai->getSubstitutionMap(), args,
|
|
pai->getType().getAs<SILFunctionType>()->getCalleeConvention(),
|
|
pai->isOnStack());
|
|
pai->replaceAllUsesWith(newPAI);
|
|
pai->eraseFromParent();
|
|
if (fri->use_empty()) {
|
|
fri->eraseFromParent();
|
|
// TODO: If this is the last use of the closure, and if it has internal
|
|
// linkage, we should remove it from the SILModule now.
|
|
}
|
|
|
|
if (newPAI->isOnStack()) {
|
|
// Insert destroy's of new captured arguments.
|
|
for (auto *use : newPAI->getUses()) {
|
|
if (auto *dsi = dyn_cast<DeallocStackInst>(use->getUser())) {
|
|
builder.setInsertionPoint(std::next(SILBasicBlock::iterator(dsi)));
|
|
insertDestroyOfCapturedArguments(
|
|
newPAI, builder,
|
|
[&](SILValue arg) -> SILValue {
|
|
return newCaptures.count(arg) ? arg : SILValue();
|
|
});
|
|
}
|
|
}
|
|
// Map the mark dependence arguments.
|
|
SmallVector<SILInstruction *, 16> toDelete;
|
|
mapMarkDependenceArguments(newPAI, capturedMap, toDelete);
|
|
for (auto *inst : toDelete)
|
|
inst->eraseFromParent();
|
|
}
|
|
|
|
return clonedFn;
|
|
}
|
|
|
|
static void constructMapFromPartialApplyToPromotableIndices(
|
|
SILFunction *f, PartialApplyIndicesMap &partialApplyIndicesAccumulator) {
|
|
ReachabilityInfo reachabilityInfo(f);
|
|
|
|
// This is a map from each partial apply to a single index which is a
|
|
// promotable box variable for the alloc_box currently being considered.
|
|
llvm::DenseMap<PartialApplyInst *, unsigned> incrementalIndexMap;
|
|
|
|
// Consider all alloc_box instructions in the function.
|
|
for (auto &block : *f) {
|
|
for (auto &inst : block) {
|
|
if (auto *abi = dyn_cast<AllocBoxInst>(&inst)) {
|
|
incrementalIndexMap.clear();
|
|
if (examineAllocBoxInst(abi, reachabilityInfo, incrementalIndexMap)) {
|
|
// If we are able to promote at least one capture of the alloc_box,
|
|
// then add the promotable index to the main map.
|
|
for (auto &indexPair : incrementalIndexMap)
|
|
partialApplyIndicesAccumulator[indexPair.first].insert(
|
|
indexPair.second);
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << "\n");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top Level Entrypoint
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class CapturePromotionPass : public SILModuleTransform {
|
|
/// The entry point to the transformation.
|
|
void run() override {
|
|
SmallVector<SILFunction *, 128> worklist;
|
|
for (auto &f : *getModule()) {
|
|
if (f.wasDeserializedCanonical() || !f.hasOwnership())
|
|
continue;
|
|
|
|
processFunction(&f, worklist);
|
|
}
|
|
|
|
while (!worklist.empty()) {
|
|
auto *f = worklist.pop_back_val();
|
|
if (!f->hasOwnership())
|
|
continue;
|
|
processFunction(f, worklist);
|
|
}
|
|
}
|
|
|
|
void processFunction(SILFunction *f,
|
|
SmallVectorImpl<SILFunction *> &worklist);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void CapturePromotionPass::processFunction(
|
|
SILFunction *func, SmallVectorImpl<SILFunction *> &worklist) {
|
|
assert(func->hasOwnership() &&
|
|
"Only can perform capture promotion on functions with ownership. All "
|
|
"functions in raw SIL should have OSSA now out of SILGen");
|
|
LLVM_DEBUG(llvm::dbgs() << "******** Performing Capture Promotion on: "
|
|
<< func->getName() << "********\n");
|
|
// This is a map from each partial apply to a set of indices of promotable
|
|
// box variables.
|
|
PartialApplyIndicesMap indicesMap;
|
|
constructMapFromPartialApplyToPromotableIndices(func, indicesMap);
|
|
|
|
// Do the actual promotions; all promotions on a single partial_apply are
|
|
// handled together.
|
|
SILOptFunctionBuilder funcBuilder(*this);
|
|
for (auto &indicesPair : indicesMap) {
|
|
PartialApplyInst *pai = indicesPair.first;
|
|
SILFunction *clonedFn =
|
|
processPartialApplyInst(funcBuilder, pai, indicesPair.second, worklist);
|
|
(void)clonedFn;
|
|
}
|
|
invalidateAnalysis(func, SILAnalysis::InvalidationKind::FunctionBody);
|
|
}
|
|
|
|
SILTransform *swift::createCapturePromotion() {
|
|
return new CapturePromotionPass();
|
|
}
|