Files
swift-mirror/lib/SILOptimizer/SILCombiner/SILCombinerMiscVisitors.cpp
Erik Eckstein b08710d911 SIL: add a bare attribute to alloc_ref
The `bare` attribute indicates that the object header is not used throughout the lifetime of the object.
This means, no reference counting operations are performed on the object and its metadata is not used.
The header of bare objects doesn't need to be initialized.
2023-06-29 06:57:05 +02:00

2169 lines
76 KiB
C++

//===--- SILCombinerMiscVisitors.cpp --------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-combine"
#include "SILCombiner.h"
#include "swift/AST/SemanticAttrs.h"
#include "swift/Basic/STLExtras.h"
#include "swift/SIL/BasicBlockBits.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/DynamicCasts.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/NodeBits.h"
#include "swift/SIL/PatternMatch.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
#include "swift/SILOptimizer/Utils/BasicBlockOptUtils.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/Devirtualize.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/CommandLine.h"
using namespace swift;
using namespace swift::PatternMatch;
/// This flag is used to disable alloc stack optimizations to ease testing of
/// other SILCombine optimizations.
static llvm::cl::opt<bool>
DisableAllocStackOpts("sil-combine-disable-alloc-stack-opts",
llvm::cl::init(false));
SILInstruction*
SILCombiner::visitAllocExistentialBoxInst(AllocExistentialBoxInst *AEBI) {
// Optimize away the pattern below that happens when exceptions are created
// and in some cases, due to inlining, are not needed.
//
// %6 = alloc_existential_box $Error, $ColorError
// %6a = project_existential_box %6
// %7 = enum $VendingMachineError, #ColorError.Red
// store %7 to %6a : $*ColorError
// debug_value %6 : $Error
// strong_release %6 : $Error
//
// %6 = alloc_existential_box $Error, $ColorError
// %6a = project_existential_box %6
// %7 = enum $VendingMachineError, #ColorError.Red
// store %7 to [init] %6a : $*ColorError
// debug_value %6 : $Error
// destroy_value %6 : $Error
SILValue boxedValue =
getConcreteValueOfExistentialBox(AEBI, /*ignoreUser*/ nullptr);
if (!boxedValue)
return nullptr;
// Check if the box is destroyed at a single place. That's the end of its
// lifetime.
SILInstruction *singleDestroy = nullptr;
if (hasOwnership()) {
if (auto *use = AEBI->getSingleConsumingUse()) {
singleDestroy = dyn_cast<DestroyValueInst>(use->getUser());
}
} else {
for (Operand *use : AEBI->getUses()) {
auto *user = use->getUser();
if (isa<StrongReleaseInst>(user) || isa<ReleaseValueInst>(user)) {
if (singleDestroy)
return nullptr;
singleDestroy = user;
}
}
}
if (!singleDestroy)
return nullptr;
// Release the value that was stored into the existential box. The box
// is going away so we need to release the stored value.
// NOTE: It's important that the release is inserted at the single
// release of the box and not at the store, because a balancing retain could
// be _after_ the store, e.g:
// %box = alloc_existential_box
// %addr = project_existential_box %box
// store %value to %addr
// retain_value %value // must insert the release after this retain
// strong_release %box
Builder.setInsertionPoint(singleDestroy);
Builder.emitDestroyValueOperation(AEBI->getLoc(), boxedValue);
eraseInstIncludingUsers(AEBI);
return nullptr;
}
/// Return the enum case injected by an inject_enum_addr if it is the only
/// instruction which writes to \p Addr.
static EnumElementDecl *getInjectEnumCaseTo(SILValue Addr) {
while (true) {
// For everything else than an alloc_stack we cannot easily prove that we
// see all writes.
if (!isa<AllocStackInst>(Addr))
return nullptr;
SILInstruction *WritingInst = nullptr;
int NumWrites = 0;
for (auto *Use : getNonDebugUses(Addr)) {
SILInstruction *User = Use->getUser();
switch (User->getKind()) {
// Handle a very narrow set of known not harmful instructions.
case swift::SILInstructionKind::DestroyAddrInst:
case swift::SILInstructionKind::DeallocStackInst:
case swift::SILInstructionKind::SwitchEnumAddrInst:
break;
case swift::SILInstructionKind::ApplyInst:
case swift::SILInstructionKind::TryApplyInst: {
// Check if the addr is only passed to in_guaranteed arguments.
FullApplySite AI(User);
for (Operand &Op : AI.getArgumentOperands()) {
if (Op.get() == Addr &&
AI.getArgumentConvention(Op) !=
SILArgumentConvention::Indirect_In_Guaranteed)
return nullptr;
}
break;
}
case swift::SILInstructionKind::InjectEnumAddrInst:
WritingInst = User;
++NumWrites;
break;
case swift::SILInstructionKind::CopyAddrInst:
if (Addr == cast<CopyAddrInst>(User)->getDest()) {
WritingInst = User;
++NumWrites;
}
break;
default:
return nullptr;
}
}
if (NumWrites != 1)
return nullptr;
if (auto *IEA = dyn_cast<InjectEnumAddrInst>(WritingInst))
return IEA->getElement();
// In case of a copy_addr continue with the source of the copy.
Addr = dyn_cast<CopyAddrInst>(WritingInst)->getSrc();
}
}
SILInstruction *SILCombiner::visitSwitchEnumAddrInst(SwitchEnumAddrInst *SEAI) {
SILValue Addr = SEAI->getOperand();
// Convert switch_enum_addr -> br
//
// If the only thing which writes to the address is an inject_enum_addr. We
// only perform these optimizations when we are not in OSSA since this
// eliminates an edge from the CFG and we want SILCombine in OSSA to never do
// that, so in the future we can invalidate less.
if (!SEAI->getFunction()->hasOwnership()) {
if (EnumElementDecl *EnumCase = getInjectEnumCaseTo(Addr)) {
SILBasicBlock *Dest = SEAI->getCaseDestination(EnumCase);
// If the only instruction which writes to Addr is an inject_enum_addr we
// know that there cannot be an enum payload.
assert(Dest->getNumArguments() == 0 &&
"didn't expect a payload argument");
Builder.createBranch(SEAI->getLoc(), Dest);
return eraseInstFromFunction(*SEAI);
}
}
SILType Ty = Addr->getType();
if (!Ty.isLoadable(*SEAI->getFunction()))
return nullptr;
// Promote switch_enum_addr to switch_enum if the enum is loadable.
// switch_enum_addr %ptr : $*Optional<SomeClass>, case ...
// ->
// %value = load %ptr
// switch_enum %value
//
// If we are using ownership, we perform a load_borrow right before the new
// switch_enum and end the borrow scope right afterwards.
Builder.setCurrentDebugScope(SEAI->getDebugScope());
SmallVector<std::pair<EnumElementDecl *, SILBasicBlock *>, 8> Cases;
for (int i : range(SEAI->getNumCases())) {
Cases.push_back(SEAI->getCase(i));
}
SILBasicBlock *Default = SEAI->hasDefault() ? SEAI->getDefaultBB() : nullptr;
SILValue EnumVal = Builder.emitLoadBorrowOperation(SEAI->getLoc(), Addr);
auto *sei = Builder.createSwitchEnum(SEAI->getLoc(), EnumVal, Default, Cases);
if (Builder.hasOwnership()) {
for (int i : range(sei->getNumCases())) {
auto c = sei->getCase(i);
if (c.first->hasAssociatedValues()) {
auto eltType = Addr->getType().getEnumElementType(
c.first, Builder.getModule(), Builder.getTypeExpansionContext());
eltType = eltType.getObjectType();
sei->createResult(c.second, eltType);
}
Builder.setInsertionPoint(c.second->front().getIterator());
Builder.emitEndBorrowOperation(sei->getLoc(), EnumVal);
}
sei->createDefaultResult();
if (auto defaultBlock = sei->getDefaultBBOrNull()) {
Builder.setInsertionPoint(defaultBlock.get()->front().getIterator());
Builder.emitEndBorrowOperation(sei->getLoc(), EnumVal);
}
}
return eraseInstFromFunction(*SEAI);
}
SILInstruction *SILCombiner::visitSelectEnumAddrInst(SelectEnumAddrInst *seai) {
// Canonicalize a select_enum_addr: if the default refers to exactly one case,
// then replace the default with that case.
Builder.setCurrentDebugScope(seai->getDebugScope());
if (seai->hasDefault()) {
NullablePtr<EnumElementDecl> elementDecl = seai->getUniqueCaseForDefault();
if (elementDecl.isNonNull()) {
// Construct a new instruction by copying all the case entries.
SmallVector<std::pair<EnumElementDecl *, SILValue>, 4> caseValues;
for (int idx = 0, numIdcs = seai->getNumCases(); idx < numIdcs; ++idx) {
caseValues.push_back(seai->getCase(idx));
}
// Add the default-entry of the original instruction as case-entry.
caseValues.push_back(
std::make_pair(elementDecl.get(), seai->getDefaultResult()));
return Builder.createSelectEnumAddr(
seai->getLoc(), seai->getEnumOperand(), seai->getType(), SILValue(),
caseValues);
}
}
// Promote select_enum_addr to select_enum if the enum is loadable.
// = select_enum_addr %ptr : $*Optional<SomeClass>, case ...
// ->
// %value = load %ptr
// = select_enum %value
SILType ty = seai->getEnumOperand()->getType();
if (!ty.isLoadable(*seai->getFunction()))
return nullptr;
SmallVector<std::pair<EnumElementDecl *, SILValue>, 8> cases;
for (int i = 0, e = seai->getNumCases(); i < e; ++i)
cases.push_back(seai->getCase(i));
SILValue defaultCase =
seai->hasDefault() ? seai->getDefaultResult() : SILValue();
auto enumVal =
Builder.emitLoadBorrowOperation(seai->getLoc(), seai->getEnumOperand());
auto *result = Builder.createSelectEnum(seai->getLoc(), enumVal,
seai->getType(), defaultCase, cases);
Builder.emitEndBorrowOperation(seai->getLoc(), enumVal);
replaceInstUsesWith(*seai, result);
return eraseInstFromFunction(*seai);
}
SILInstruction *SILCombiner::visitSwitchValueInst(SwitchValueInst *svi) {
SILValue cond = svi->getOperand();
BuiltinIntegerType *condTy = cond->getType().getAs<BuiltinIntegerType>();
if (!condTy || !condTy->isFixedWidth(1))
return nullptr;
SILBasicBlock *falseBB = nullptr;
SILBasicBlock *trueBB = nullptr;
for (unsigned idx : range(svi->getNumCases())) {
auto switchCase = svi->getCase(idx);
auto *caseVal = dyn_cast<IntegerLiteralInst>(switchCase.first);
if (!caseVal)
return nullptr;
SILBasicBlock *destBB = switchCase.second;
assert(destBB->args_empty() &&
"switch_value case destination cannot take arguments");
if (caseVal->getValue() == 0) {
assert(!falseBB && "double case value 0 in switch_value");
falseBB = destBB;
} else {
assert(!trueBB && "double case value 1 in switch_value");
trueBB = destBB;
}
}
if (svi->hasDefault()) {
assert(svi->getDefaultBB()->args_empty() &&
"switch_value default destination cannot take arguments");
if (!falseBB) {
falseBB = svi->getDefaultBB();
} else if (!trueBB) {
trueBB = svi->getDefaultBB();
}
}
if (!falseBB || !trueBB)
return nullptr;
Builder.setCurrentDebugScope(svi->getDebugScope());
return Builder.createCondBranch(svi->getLoc(), cond, trueBB, falseBB);
}
namespace {
/// A SILInstruction visitor that analyzes alloc stack values for dead live
/// range and promotion opportunities.
///
/// init_existential_addr instructions behave like memory allocation within the
/// allocated object. We can promote the init_existential_addr allocation into a
/// dedicated allocation.
///
/// We detect this pattern
/// %0 = alloc_stack $LogicValue
/// %1 = init_existential_addr %0 : $*LogicValue, $*Bool
/// ...
/// use of %1
/// ...
/// destroy_addr %0 : $*LogicValue
/// dealloc_stack %0 : $*LogicValue
///
/// At the same we time also look for dead alloc_stack live ranges that are only
/// copied into.
///
/// %0 = alloc_stack
/// copy_addr %src, %0
/// destroy_addr %0 : $*LogicValue
/// dealloc_stack %0 : $*LogicValue
struct AllocStackAnalyzer : SILInstructionVisitor<AllocStackAnalyzer> {
/// The alloc_stack that we are analyzing.
AllocStackInst *ASI;
/// Do all of the users of the alloc stack allow us to perform optimizations.
bool LegalUsers = true;
/// If we saw an init_existential_addr in the use list of the alloc_stack,
/// this is the init_existential_addr. We are conservative in the face of
/// having multiple init_existential_addr. In such a case, we say that the use
/// list of the alloc_stack does not allow for optimizations to occur.
InitExistentialAddrInst *IEI = nullptr;
/// If we saw an open_existential_addr in the use list of the alloc_stack,
/// this is the open_existential_addr. We are conservative in the case of
/// multiple open_existential_addr. In such a case, we say that the use list
/// of the alloc_stack does not allow for optimizations to occur.
OpenExistentialAddrInst *OEI = nullptr;
/// Did we see any copies into the alloc stack.
bool HaveSeenCopyInto = false;
public:
AllocStackAnalyzer(AllocStackInst *ASI) : ASI(ASI) {}
/// Analyze the alloc_stack instruction's uses.
void analyze() {
// Scan all of the uses of the AllocStack and check if it is not used for
// anything other than the init_existential_addr/open_existential_addr
// container.
for (auto *Op : getNonDebugUses(ASI)) {
visit(Op->getUser());
// If we found a non-legal user, bail early.
if (!LegalUsers)
break;
}
}
/// Given an unhandled case, we have an illegal use for our optimization
/// purposes. Set LegalUsers to false and return.
void visitSILInstruction(SILInstruction *I) { LegalUsers = false; }
// Destroy and dealloc are both fine.
void visitDestroyAddrInst(DestroyAddrInst *I) {}
void visitDeinitExistentialAddrInst(DeinitExistentialAddrInst *I) {}
void visitDeallocStackInst(DeallocStackInst *I) {}
void visitInitExistentialAddrInst(InitExistentialAddrInst *I) {
// If we have already seen an init_existential_addr, we cannot
// optimize. This is because we only handle the single init_existential_addr
// case.
if (IEI || HaveSeenCopyInto) {
LegalUsers = false;
return;
}
IEI = I;
}
void visitOpenExistentialAddrInst(OpenExistentialAddrInst *I) {
// If we have already seen an open_existential_addr, we cannot
// optimize. This is because we only handle the single open_existential_addr
// case.
if (OEI) {
LegalUsers = false;
return;
}
// Make sure that the open_existential does not have any uses except
// destroy_addr.
for (auto *Use : getNonDebugUses(I)) {
if (!isa<DestroyAddrInst>(Use->getUser())) {
LegalUsers = false;
return;
}
}
OEI = I;
}
void visitCopyAddrInst(CopyAddrInst *I) {
if (IEI) {
LegalUsers = false;
return;
}
// Copies into the alloc_stack live range are safe.
if (I->getDest() == ASI) {
HaveSeenCopyInto = true;
return;
}
LegalUsers = false;
}
};
} // end anonymous namespace
/// Returns true if there is a retain instruction between \p from and the
/// destroy or deallocation of \p alloc.
static bool somethingIsRetained(SILInstruction *from, AllocStackInst *alloc) {
llvm::SmallVector<SILInstruction *, 8> workList;
BasicBlockSet handled(from->getFunction());
workList.push_back(from);
while (!workList.empty()) {
SILInstruction *start = workList.pop_back_val();
for (auto iter = start->getIterator(), end = start->getParent()->end();
iter != end;
++iter) {
SILInstruction *inst = &*iter;
if (isa<RetainValueInst>(inst) || isa<StrongRetainInst>(inst)) {
return true;
}
if ((isa<DeallocStackInst>(inst) || isa<DestroyAddrInst>(inst)) &&
inst->getOperand(0) == alloc) {
break;
}
if (isa<TermInst>(inst)) {
for (SILBasicBlock *succ : start->getParent()->getSuccessors()) {
if (handled.insert(succ))
workList.push_back(&*succ->begin());
}
}
}
}
return false;
}
/// Replaces an alloc_stack of an enum by an alloc_stack of the payload if only
/// one enum case (with payload) is stored to that location.
///
/// For example:
///
/// %loc = alloc_stack $Optional<T>
/// %payload = init_enum_data_addr %loc
/// store %value to %payload
/// ...
/// %take_addr = unchecked_take_enum_data_addr %loc
/// %l = load %take_addr
///
/// is transformed to
///
/// %loc = alloc_stack $T
/// store %value to %loc
/// ...
/// %l = load %loc
bool SILCombiner::optimizeStackAllocatedEnum(AllocStackInst *AS) {
EnumDecl *enumDecl = AS->getType().getEnumOrBoundGenericEnum();
if (!enumDecl)
return false;
EnumElementDecl *element = nullptr;
unsigned numInits =0;
unsigned numTakes = 0;
SILBasicBlock *initBlock = nullptr;
SILBasicBlock *takeBlock = nullptr;
SILType payloadType;
// First step: check if the stack location is only used to hold one specific
// enum case with payload.
for (auto *use : AS->getUses()) {
SILInstruction *user = use->getUser();
switch (user->getKind()) {
case SILInstructionKind::DestroyAddrInst:
case SILInstructionKind::DeallocStackInst:
case SILInstructionKind::InjectEnumAddrInst:
// We'll check init_enum_addr below.
break;
case SILInstructionKind::DebugValueInst:
if (DebugValueInst::hasAddrVal(user))
break;
return false;
case SILInstructionKind::InitEnumDataAddrInst: {
auto *ieda = cast<InitEnumDataAddrInst>(user);
auto *el = ieda->getElement();
if (element && el != element)
return false;
element = el;
assert(!payloadType || payloadType == ieda->getType());
payloadType = ieda->getType();
numInits++;
initBlock = user->getParent();
break;
}
case SILInstructionKind::UncheckedTakeEnumDataAddrInst: {
auto *el = cast<UncheckedTakeEnumDataAddrInst>(user)->getElement();
if (element && el != element)
return false;
element = el;
numTakes++;
takeBlock = user->getParent();
break;
}
default:
return false;
}
}
if (!element || !payloadType)
return false;
// If the enum has a single init-take pair in a single block, we know that
// the enum cannot contain any valid payload outside that init-take pair.
//
// This also means that we can ignore any inject_enum_addr of another enum
// case, because this can only inject a case without a payload.
bool singleInitTakePair =
(numInits == 1 && numTakes == 1 && initBlock == takeBlock);
if (!singleInitTakePair) {
// No single init-take pair: We cannot ignore inject_enum_addrs with a
// mismatching case.
for (auto *use : AS->getUses()) {
if (auto *inject = dyn_cast<InjectEnumAddrInst>(use->getUser())) {
if (inject->getElement() != element)
return false;
}
}
}
// Second step: replace the enum alloc_stack with a payload alloc_stack.
auto *newAlloc = Builder.createAllocStack(
AS->getLoc(), payloadType, AS->getVarInfo(), AS->hasDynamicLifetime());
while (!AS->use_empty()) {
Operand *use = *AS->use_begin();
SILInstruction *user = use->getUser();
switch (user->getKind()) {
case SILInstructionKind::InjectEnumAddrInst:
eraseInstFromFunction(*user);
break;
case SILInstructionKind::DestroyAddrInst:
if (singleInitTakePair) {
// It's not possible that the enum has a payload at the destroy_addr,
// because it must have already been taken by the take of the
// single init-take pair.
// We _have_ to remove the destroy_addr, because we also remove all
// inject_enum_addrs which might inject a payload-less case before
// the destroy_addr.
eraseInstFromFunction(*user);
} else {
// The enum payload can still be valid at the destroy_addr, so we have
// to keep the destroy_addr. Just replace the enum with the payload
// (and because it's not a singleInitTakePair, we can be sure that the
// enum cannot have any other case than the payload case).
use->set(newAlloc);
}
break;
case SILInstructionKind::DeallocStackInst:
use->set(newAlloc);
break;
case SILInstructionKind::InitEnumDataAddrInst:
case SILInstructionKind::UncheckedTakeEnumDataAddrInst: {
auto *svi = cast<SingleValueInstruction>(user);
svi->replaceAllUsesWith(newAlloc);
eraseInstFromFunction(*svi);
break;
}
case SILInstructionKind::DebugValueInst:
if (DebugValueInst::hasAddrVal(user)) {
eraseInstFromFunction(*user);
break;
}
LLVM_FALLTHROUGH;
default:
llvm_unreachable("unexpected alloc_stack user");
}
}
return true;
}
SILInstruction *SILCombiner::visitAllocStackInst(AllocStackInst *AS) {
if (AS->getFunction()->hasOwnership())
return nullptr;
if (optimizeStackAllocatedEnum(AS))
return nullptr;
// If we are testing SILCombine and we are asked not to eliminate
// alloc_stacks, just return.
if (DisableAllocStackOpts)
return nullptr;
AllocStackAnalyzer Analyzer(AS);
Analyzer.analyze();
// If when analyzing, we found a user that makes our optimization, illegal,
// bail early.
if (!Analyzer.LegalUsers)
return nullptr;
InitExistentialAddrInst *IEI = Analyzer.IEI;
OpenExistentialAddrInst *OEI = Analyzer.OEI;
// If the only users of the alloc_stack are alloc, destroy and
// init_existential_addr then we can promote the allocation of the init
// existential.
// Be careful with open archetypes, because they cannot be moved before
// their definitions.
if (IEI && !OEI &&
!IEI->getLoweredConcreteType().hasOpenedExistential()) {
assert(!IEI->getLoweredConcreteType().isOpenedExistential());
auto *ConcAlloc = Builder.createAllocStack(
AS->getLoc(), IEI->getLoweredConcreteType(), AS->getVarInfo());
IEI->replaceAllUsesWith(ConcAlloc);
eraseInstFromFunction(*IEI);
for (auto UI = AS->use_begin(), UE = AS->use_end(); UI != UE;) {
auto *Op = *UI;
++UI;
if (auto *DA = dyn_cast<DestroyAddrInst>(Op->getUser())) {
Builder.setInsertionPoint(DA);
Builder.createDestroyAddr(DA->getLoc(), ConcAlloc);
eraseInstFromFunction(*DA);
continue;
}
if (isa<DeinitExistentialAddrInst>(Op->getUser())) {
eraseInstFromFunction(*Op->getUser());
continue;
}
if (!isa<DeallocStackInst>(Op->getUser()))
continue;
auto *DS = cast<DeallocStackInst>(Op->getUser());
Builder.setInsertionPoint(DS);
Builder.createDeallocStack(DS->getLoc(), ConcAlloc);
eraseInstFromFunction(*DS);
}
return eraseInstFromFunction(*AS);
}
// If we have a live 'live range' or a live range that we have not sen a copy
// into, bail.
if (!Analyzer.HaveSeenCopyInto || IEI)
return nullptr;
// Otherwise remove the dead live range that is only copied into.
//
// TODO: Do we not remove purely dead live ranges here? Seems like we should.
SmallPtrSet<SILInstruction *, 16> ToDelete;
SmallVector<CopyAddrInst *, 4> takingCopies;
for (auto *Op : AS->getUses()) {
// Replace a copy_addr [take] %src ... by a destroy_addr %src if %src is
// no the alloc_stack.
// Otherwise, just delete the copy_addr.
if (auto *CopyAddr = dyn_cast<CopyAddrInst>(Op->getUser())) {
if (CopyAddr->isTakeOfSrc() && CopyAddr->getSrc() != AS) {
takingCopies.push_back(CopyAddr);
}
}
if (auto *OEAI = dyn_cast<OpenExistentialAddrInst>(Op->getUser())) {
for (auto *Op : OEAI->getUses()) {
assert(isa<DestroyAddrInst>(Op->getUser()) ||
Op->getUser()->isDebugInstruction() && "Unexpected instruction");
ToDelete.insert(Op->getUser());
}
}
assert(isa<CopyAddrInst>(Op->getUser()) ||
isa<OpenExistentialAddrInst>(Op->getUser()) ||
isa<DestroyAddrInst>(Op->getUser()) ||
isa<DeallocStackInst>(Op->getUser()) ||
isa<DeinitExistentialAddrInst>(Op->getUser()) ||
Op->getUser()->isDebugInstruction() && "Unexpected instruction");
ToDelete.insert(Op->getUser());
}
// Check if a retain is moved after the copy_addr. If the retained object
// happens to be the source of the copy_addr it might be only kept alive by
// the stack location. This cannot happen with OSSA.
// TODO: remove this check once we have OSSA.
for (CopyAddrInst *copy : takingCopies) {
if (somethingIsRetained(copy, AS))
return nullptr;
}
for (CopyAddrInst *copy : takingCopies) {
SILBuilderWithScope destroyBuilder(copy, Builder.getBuilderContext());
destroyBuilder.createDestroyAddr(copy->getLoc(), copy->getSrc());
}
// Erase the 'live-range'
for (auto *Inst : ToDelete) {
Inst->replaceAllUsesOfAllResultsWithUndef();
eraseInstFromFunction(*Inst);
}
return eraseInstFromFunction(*AS);
}
SILInstruction *SILCombiner::visitAllocRefInst(AllocRefInst *AR) {
// Check if the only uses are deallocating stack or deallocating.
SmallPtrSet<SILInstruction *, 16> ToDelete;
bool HasNonRemovableUses = false;
for (auto UI = AR->use_begin(), UE = AR->use_end(); UI != UE;) {
auto *Op = *UI;
++UI;
auto *User = Op->getUser();
if (!isa<DeallocRefInst>(User) && !isa<SetDeallocatingInst>(User) &&
!isa<FixLifetimeInst>(User) && !isa<DeallocStackRefInst>(User)) {
HasNonRemovableUses = true;
break;
}
ToDelete.insert(User);
}
if (HasNonRemovableUses)
return nullptr;
// Remove the instruction and all its uses.
for (auto *I : ToDelete)
eraseInstFromFunction(*I);
eraseInstFromFunction(*AR);
return nullptr;
}
/// Returns the base address if \p val is an index_addr with constant index.
static SILValue isConstIndexAddr(SILValue val, unsigned &index) {
auto *IA = dyn_cast<IndexAddrInst>(val);
if (!IA)
return nullptr;
auto *Index = dyn_cast<IntegerLiteralInst>(IA->getIndex());
// Limiting to 32 bits is more than enough. The reason why not limiting to 64
// bits is to leave room for overflow when we add two indices.
if (!Index || Index->getValue().getActiveBits() > 32)
return nullptr;
index = Index->getValue().getZExtValue();
return IA->getBase();
}
SILInstruction *SILCombiner::visitLoadBorrowInst(LoadBorrowInst *lbi) {
// If we have a load_borrow that only has non_debug end_borrow uses, delete
// it.
if (llvm::all_of(getNonDebugUses(lbi), [](Operand *use) {
return isa<EndBorrowInst>(use->getUser());
})) {
eraseInstIncludingUsers(lbi);
return nullptr;
}
return nullptr;
}
/// Optimize nested index_addr instructions:
/// Example in SIL pseudo code:
/// %1 = index_addr %ptr, x
/// %2 = index_addr %1, y
/// ->
/// %2 = index_addr %ptr, x+y
SILInstruction *SILCombiner::visitIndexAddrInst(IndexAddrInst *IA) {
unsigned index = 0;
SILValue base = isConstIndexAddr(IA, index);
if (!base)
return nullptr;
unsigned index2 = 0;
SILValue base2 = isConstIndexAddr(base, index2);
if (!base2)
return nullptr;
auto *newIndex = Builder.createIntegerLiteral(IA->getLoc(),
IA->getIndex()->getType(), index + index2);
return Builder.createIndexAddr(IA->getLoc(), base2, newIndex,
IA->needsStackProtection() || cast<IndexAddrInst>(base)->needsStackProtection());
}
SILInstruction *SILCombiner::visitCondFailInst(CondFailInst *CFI) {
// Remove runtime asserts such as overflow checks and bounds checks.
if (RemoveCondFails)
return eraseInstFromFunction(*CFI);
auto *I = dyn_cast<IntegerLiteralInst>(CFI->getOperand());
if (!I)
return nullptr;
// Erase. (cond_fail 0)
if (!I->getValue().getBoolValue())
return eraseInstFromFunction(*CFI);
// Remove any code that follows a (cond_fail 1) and set the block's
// terminator to unreachable.
// Nothing more to do here
if (isa<UnreachableInst>(std::next(SILBasicBlock::iterator(CFI))))
return nullptr;
// Collect together all the instructions after this point
llvm::SmallVector<SILInstruction *, 32> ToRemove;
for (auto Inst = CFI->getParent()->rbegin(); &*Inst != CFI; ++Inst)
ToRemove.push_back(&*Inst);
for (auto *Inst : ToRemove) {
// Replace any still-remaining uses with undef and erase.
Inst->replaceAllUsesOfAllResultsWithUndef();
eraseInstFromFunction(*Inst);
}
// Add an `unreachable` to be the new terminator for this block
Builder.setInsertionPoint(CFI->getParent());
Builder.createUnreachable(ArtificialUnreachableLocation());
return nullptr;
}
SILInstruction *SILCombiner::visitCopyValueInst(CopyValueInst *cvi) {
assert(cvi->getFunction()->hasOwnership());
// Sometimes when RAUWing code we get copy_value on .none values (consider
// transformations around function types that result in given a copy_value a
// thin_to_thick_function argument). In such a case, just RAUW with the
// copy_value's operand since it is a no-op.
if (cvi->getOperand()->getOwnershipKind() == OwnershipKind::None) {
replaceInstUsesWith(*cvi, cvi->getOperand());
return eraseInstFromFunction(*cvi);
}
return nullptr;
}
SILInstruction *SILCombiner::visitDestroyValueInst(DestroyValueInst *dvi) {
assert(dvi->getFunction()->hasOwnership());
// Sometimes when RAUWing code we get destroy_value on .none values. In such a
// case, just delete the destroy_value.
//
// As an example, consider transformations around function types that result
// in a thin_to_thick_function being passed to a destroy_value.
if (dvi->getOperand()->getOwnershipKind() == OwnershipKind::None) {
eraseInstFromFunction(*dvi);
return nullptr;
}
return nullptr;
}
/// Create a value from stores to an address.
///
/// If there are only stores to \p addr, return the stored value. Also, if there
/// are address projections, create aggregate instructions for it.
/// If builder is null, it's just a dry-run to check if it's possible.
static SILValue createValueFromAddr(SILValue addr, SILBuilder *builder,
SILLocation loc) {
SmallVector<SILValue, 4> elems;
enum Kind {
none, store, tuple
} kind = none;
for (Operand *use : addr->getUses()) {
SILInstruction *user = use->getUser();
if (user->isDebugInstruction())
continue;
auto *st = dyn_cast<StoreInst>(user);
if (st && kind == none && st->getDest() == addr) {
elems.push_back(st->getSrc());
kind = store;
// We cannot just return st->getSrc() here because we also have to check
// if the store destination is the only use of addr.
continue;
}
if (auto *telem = dyn_cast<TupleElementAddrInst>(user)) {
if (kind == none) {
elems.resize(addr->getType().castTo<TupleType>()->getNumElements());
kind = tuple;
}
if (kind == tuple) {
if (elems[telem->getFieldIndex()])
return SILValue();
elems[telem->getFieldIndex()] = createValueFromAddr(telem, builder, loc);
continue;
}
}
// TODO: handle StructElementAddrInst to create structs.
return SILValue();
}
switch (kind) {
case none:
return SILValue();
case store:
assert(elems.size() == 1);
return elems[0];
case tuple:
if (std::any_of(elems.begin(), elems.end(),
[](SILValue v){ return !(bool)v; }))
return SILValue();
if (builder) {
return builder->createTuple(loc, addr->getType().getObjectType(), elems);
}
// Just return anything not null for the dry-run.
return elems[0];
}
llvm_unreachable("invalid kind");
}
/// Simplify the following two frontend patterns:
///
/// %payload_addr = init_enum_data_addr %payload_allocation
/// store %payload to %payload_addr
/// inject_enum_addr %payload_allocation, $EnumType.case
///
/// inject_enum_addr %nopayload_allocation, $EnumType.case
///
/// for a concrete enum type $EnumType.case to:
///
/// %1 = enum $EnumType, $EnumType.case, %payload
/// store %1 to %payload_addr
///
/// %1 = enum $EnumType, $EnumType.case
/// store %1 to %nopayload_addr
///
/// We leave the cleaning up to mem2reg.
SILInstruction *
SILCombiner::visitInjectEnumAddrInst(InjectEnumAddrInst *IEAI) {
if (IEAI->getFunction()->hasOwnership())
return nullptr;
// Given an inject_enum_addr of a concrete type without payload, promote it to
// a store of an enum. Mem2reg/load forwarding will clean things up for us. We
// can't handle the payload case here due to the flow problems caused by the
// dependency in between the enum and its data.
// Disable this for empty typle type because empty tuple stack locations maybe
// uninitialized. And converting to value form loses tag information.
if (IEAI->getElement()->hasAssociatedValues()) {
SILType elemType = IEAI->getOperand()->getType().getEnumElementType(
IEAI->getElement(), IEAI->getFunction());
if (elemType.isEmpty(*IEAI->getFunction())) {
return nullptr;
}
}
assert(IEAI->getOperand()->getType().isAddress() && "Must be an address");
Builder.setCurrentDebugScope(IEAI->getDebugScope());
if (IEAI->getOperand()->getType().isAddressOnly(*IEAI->getFunction())) {
// Check for the following pattern inside the current basic block:
// inject_enum_addr %payload_allocation, $EnumType.case1
// ... no insns storing anything into %payload_allocation
// select_enum_addr %payload_allocation,
// case $EnumType.case1: %Result1,
// case case $EnumType.case2: %bResult2
// ...
//
// Replace the select_enum_addr by %Result1
auto *Term = IEAI->getParent()->getTerminator();
if (isa<CondBranchInst>(Term) || isa<SwitchValueInst>(Term)) {
auto BeforeTerm = std::prev(std::prev(IEAI->getParent()->end()));
auto *SEAI = dyn_cast<SelectEnumAddrInst>(BeforeTerm);
if (!SEAI)
return nullptr;
if (SEAI->getOperand() != IEAI->getOperand())
return nullptr;
SILBasicBlock::iterator II = IEAI->getIterator();
StoreInst *SI = nullptr;
for (;;) {
SILInstruction *CI = &*II;
if (CI == SEAI)
break;
++II;
SI = dyn_cast<StoreInst>(CI);
if (SI) {
if (SI->getDest() == IEAI->getOperand())
return nullptr;
}
// Allow all instructions in between, which don't have any dependency to
// the store.
if (AA->mayWriteToMemory(&*II, IEAI->getOperand()))
return nullptr;
}
auto *InjectedEnumElement = IEAI->getElement();
auto Result = SEAI->getCaseResult(InjectedEnumElement);
// Replace select_enum_addr by the result
replaceInstUsesWith(*SEAI, Result);
return nullptr;
}
// Check for the following pattern inside the current basic block:
// inject_enum_addr %payload_allocation, $EnumType.case1
// ... no insns storing anything into %payload_allocation
// switch_enum_addr %payload_allocation,
// case $EnumType.case1: %bbX,
// case case $EnumType.case2: %bbY
// ...
//
// Replace the switch_enum_addr by select_enum_addr, switch_value.
if (auto *SEI = dyn_cast<SwitchEnumAddrInst>(Term)) {
if (SEI->getOperand() != IEAI->getOperand())
return nullptr;
SILBasicBlock::iterator II = IEAI->getIterator();
StoreInst *SI = nullptr;
for (;;) {
SILInstruction *CI = &*II;
if (CI == SEI)
break;
++II;
SI = dyn_cast<StoreInst>(CI);
if (SI) {
if (SI->getDest() == IEAI->getOperand())
return nullptr;
}
// Allow all instructions in between, which don't have any dependency to
// the store.
if (AA->mayWriteToMemory(&*II, IEAI->getOperand()))
return nullptr;
}
// Replace switch_enum_addr by a branch instruction.
SILBuilderWithScope B(SEI);
SmallVector<std::pair<EnumElementDecl *, SILValue>, 8> CaseValues;
SmallVector<std::pair<SILValue, SILBasicBlock *>, 8> CaseBBs;
auto IntTy = SILType::getBuiltinIntegerType(32, B.getASTContext());
for (int i = 0, e = SEI->getNumCases(); i < e; ++i) {
auto Pair = SEI->getCase(i);
auto *IL = B.createIntegerLiteral(SEI->getLoc(), IntTy, APInt(32, i, false));
SILValue ILValue = SILValue(IL);
CaseValues.push_back(std::make_pair(Pair.first, ILValue));
CaseBBs.push_back(std::make_pair(ILValue, Pair.second));
}
SILValue DefaultValue;
SILBasicBlock *DefaultBB = nullptr;
if (SEI->hasDefault()) {
auto *IL = B.createIntegerLiteral(
SEI->getLoc(), IntTy,
APInt(32, static_cast<uint64_t>(SEI->getNumCases()), false));
DefaultValue = SILValue(IL);
DefaultBB = SEI->getDefaultBB();
}
auto *SEAI = B.createSelectEnumAddr(SEI->getLoc(), SEI->getOperand(), IntTy, DefaultValue, CaseValues);
B.createSwitchValue(SEI->getLoc(), SILValue(SEAI), DefaultBB, CaseBBs);
return eraseInstFromFunction(*SEI);
}
return nullptr;
}
// If the enum does not have a payload create the enum/store since we don't
// need to worry about payloads.
if (!IEAI->getElement()->hasAssociatedValues()) {
EnumInst *E =
Builder.createEnum(IEAI->getLoc(), SILValue(), IEAI->getElement(),
IEAI->getOperand()->getType().getObjectType());
Builder.createStore(IEAI->getLoc(), E, IEAI->getOperand(),
StoreOwnershipQualifier::Unqualified);
return eraseInstFromFunction(*IEAI);
}
// Ok, we have a payload enum, make sure that we have a store previous to
// us...
SILValue ASO = IEAI->getOperand();
if (!isa<AllocStackInst>(ASO)) {
return nullptr;
}
InitEnumDataAddrInst *DataAddrInst = nullptr;
InjectEnumAddrInst *EnumAddrIns = nullptr;
InstructionSetWithSize WriteSet(IEAI->getFunction());
for (auto UsersIt : ASO->getUses()) {
SILInstruction *CurrUser = UsersIt->getUser();
if (CurrUser->isDeallocatingStack()) {
// we don't care about the dealloc stack instructions
continue;
}
if (CurrUser->isDebugInstruction() || isa<LoadInst>(CurrUser)) {
// These Instructions are a non-risky use we can ignore
continue;
}
if (auto *CurrInst = dyn_cast<InitEnumDataAddrInst>(CurrUser)) {
if (DataAddrInst) {
return nullptr;
}
DataAddrInst = CurrInst;
continue;
}
if (auto *CurrInst = dyn_cast<InjectEnumAddrInst>(CurrUser)) {
if (EnumAddrIns) {
return nullptr;
}
EnumAddrIns = CurrInst;
continue;
}
if (isa<StoreInst>(CurrUser)) {
// The only MayWrite Instruction we can safely handle
WriteSet.insert(CurrUser);
continue;
}
// It is too risky to continue if it is any other instruction.
return nullptr;
}
if (!DataAddrInst || !EnumAddrIns) {
return nullptr;
}
assert((EnumAddrIns == IEAI) &&
"Found InitEnumDataAddrInst differs from IEAI");
// Make sure the enum pattern instructions are the only ones which write to
// this location
if (!WriteSet.empty()) {
// Analyze the instructions (implicit dominator analysis)
// If we find any of MayWriteSet, return nullptr
SILBasicBlock *InitEnumBB = DataAddrInst->getParent();
assert(InitEnumBB && "DataAddrInst is not in a valid Basic Block");
llvm::SmallVector<SILInstruction *, 64> Worklist;
Worklist.push_back(IEAI);
BasicBlockSet Preds(InitEnumBB->getParent());
Preds.insert(IEAI->getParent());
while (!Worklist.empty()) {
SILInstruction *CurrIns = Worklist.pop_back_val();
SILBasicBlock *CurrBB = CurrIns->getParent();
if (CurrBB->isEntry() && CurrBB != InitEnumBB) {
// reached prologue without encountering the init bb
return nullptr;
}
for (auto InsIt = ++CurrIns->getIterator().getReverse();
InsIt != CurrBB->rend(); ++InsIt) {
SILInstruction *Ins = &*InsIt;
if (Ins == DataAddrInst) {
// don't care about what comes before init enum in the basic block
break;
}
if (WriteSet.contains(Ins) != 0) {
return nullptr;
}
}
if (CurrBB == InitEnumBB) {
continue;
}
// Go to predecessors and do all that again
for (SILBasicBlock *Pred : CurrBB->getPredecessorBlocks()) {
// If it's already in the set, then we've already queued and/or
// processed the predecessors.
if (Preds.insert(Pred)) {
Worklist.push_back(&*Pred->rbegin());
}
}
}
}
// Check if we can replace all stores to the enum data with an enum of the
// stored value. We can also handle tuples as payloads, e.g.
//
// %payload_addr = init_enum_data_addr %enum_addr
// %elem0_addr = tuple_element_addr %payload_addr, 0
// %elem1_addr = tuple_element_addr %payload_addr, 1
// store %payload0 to %elem0_addr
// store %payload1 to %elem1_addr
// inject_enum_addr %enum_addr, $EnumType.case
//
if (createValueFromAddr(DataAddrInst, nullptr, DataAddrInst->getLoc())) {
SILValue en =
createValueFromAddr(DataAddrInst, &Builder, DataAddrInst->getLoc());
assert(en);
// In that case, create the payload enum/store.
EnumInst *E = Builder.createEnum(
DataAddrInst->getLoc(), en, DataAddrInst->getElement(),
DataAddrInst->getOperand()->getType().getObjectType());
Builder.createStore(DataAddrInst->getLoc(), E, DataAddrInst->getOperand(),
StoreOwnershipQualifier::Unqualified);
// Cleanup.
getInstModCallbacks().notifyWillBeDeleted(DataAddrInst);
deleter.forceDeleteWithUsers(DataAddrInst);
deleter.forceDelete(IEAI);
deleter.cleanupDeadInstructions();
return nullptr;
}
// Check whether we have an apply initializing the enum.
// %iedai = init_enum_data_addr %enum_addr
// = apply(%iedai,...)
// inject_enum_addr %enum_addr
//
// We can localize the store to an alloc_stack.
// Allowing us to perform the same optimization as for the store.
//
// %alloca = alloc_stack
// apply(%alloca,...)
// %load = load %alloca
// %1 = enum $EnumType, $EnumType.case, %load
// store %1 to %nopayload_addr
//
auto *AI = dyn_cast_or_null<ApplyInst>(getSingleNonDebugUser(DataAddrInst));
if (!AI)
return nullptr;
unsigned ArgIdx = 0;
Operand *EnumInitOperand = nullptr;
for (auto &Opd : AI->getArgumentOperands()) {
// Found an apply that initializes the enum. We can optimize this by
// localizing the initialization to an alloc_stack and loading from it.
DataAddrInst = dyn_cast<InitEnumDataAddrInst>(Opd.get());
if (DataAddrInst && DataAddrInst->getOperand() == IEAI->getOperand()
&& ArgIdx < AI->getSubstCalleeConv().getNumIndirectSILResults()) {
EnumInitOperand = &Opd;
break;
}
++ArgIdx;
}
if (!EnumInitOperand) {
return nullptr;
}
// Localize the address access.
Builder.setInsertionPoint(AI);
auto *AllocStack = Builder.createAllocStack(DataAddrInst->getLoc(),
EnumInitOperand->get()->getType());
EnumInitOperand->set(AllocStack);
Builder.setInsertionPoint(std::next(SILBasicBlock::iterator(AI)));
SILValue Load(Builder.createLoad(DataAddrInst->getLoc(), AllocStack,
LoadOwnershipQualifier::Unqualified));
EnumInst *E = Builder.createEnum(
DataAddrInst->getLoc(), Load, DataAddrInst->getElement(),
DataAddrInst->getOperand()->getType().getObjectType());
Builder.createStore(DataAddrInst->getLoc(), E, DataAddrInst->getOperand(),
StoreOwnershipQualifier::Unqualified);
Builder.createDeallocStack(DataAddrInst->getLoc(), AllocStack);
eraseInstFromFunction(*DataAddrInst);
return eraseInstFromFunction(*IEAI);
}
SILInstruction *
SILCombiner::
visitUnreachableInst(UnreachableInst *UI) {
// Make sure that this unreachable instruction
// is the last instruction in the basic block.
if (UI->getParent()->getTerminator() == UI)
return nullptr;
// Collect together all the instructions after this point
llvm::SmallVector<SILInstruction *, 32> ToRemove;
for (auto Inst = UI->getParent()->rbegin(); &*Inst != UI; ++Inst)
ToRemove.push_back(&*Inst);
for (auto *Inst : ToRemove) {
// Replace any still-remaining uses with undef values and erase.
Inst->replaceAllUsesOfAllResultsWithUndef();
eraseInstFromFunction(*Inst);
}
return nullptr;
}
/// We really want to eliminate unchecked_take_enum_data_addr. Thus if we find
/// one go through all of its uses and see if they are all loads and address
/// projections (in many common situations this is true). If so, perform:
///
/// (load (unchecked_take_enum_data_addr x)) -> (unchecked_enum_data (load x))
///
/// FIXME: Implement this for address projections.
///
/// Also remove dead unchecked_take_enum_data_addr:
/// (destroy_addr (unchecked_take_enum_data_addr x)) -> (destroy_addr x)
SILInstruction *SILCombiner::visitUncheckedTakeEnumDataAddrInst(
UncheckedTakeEnumDataAddrInst *tedai) {
// If our TEDAI has no users, there is nothing to do.
if (tedai->use_empty())
return nullptr;
bool onlyLoads = true;
bool onlyDestroys = true;
for (auto U : getNonDebugUses(tedai)) {
// Check if it is load. If it is not a load, bail...
if (!isa<LoadInst>(U->getUser()) && !isa<LoadBorrowInst>(U->getUser()))
onlyLoads = false;
// If we have a load_borrow, perform an additional check that we do not have
// any reborrow uses. We do not handle reborrows in this optimization.
if (auto *lbi = dyn_cast<LoadBorrowInst>(U->getUser())) {
// false if any consuming use is not an end_borrow.
for (auto *use : lbi->getConsumingUses()) {
if (!isa<EndBorrowInst>(use->getUser())) {
onlyLoads = false;
break;
}
}
}
if (!isa<DestroyAddrInst>(U->getUser()))
onlyDestroys = false;
}
if (onlyDestroys) {
// The unchecked_take_enum_data_addr is dead: remove it and replace all
// destroys with a destroy of its operand.
while (!tedai->use_empty()) {
Operand *use = *tedai->use_begin();
SILInstruction *user = use->getUser();
if (auto *dai = dyn_cast<DestroyAddrInst>(user)) {
dai->setOperand(tedai->getOperand());
} else {
assert(user->isDebugInstruction());
eraseInstFromFunction(*user);
}
}
return eraseInstFromFunction(*tedai);
}
if (!onlyLoads)
return nullptr;
// If our enum type is address only, we cannot do anything here. The key
// thing to remember is that an enum is address only if any of its cases are
// address only. So we *could* have a loadable payload resulting from the
// TEDAI without the TEDAI being loadable itself.
if (tedai->getOperand()->getType().isAddressOnly(*tedai->getFunction()))
return nullptr;
// Grab the EnumAddr.
SILLocation loc = tedai->getLoc();
Builder.setCurrentDebugScope(tedai->getDebugScope());
SILValue enumAddr = tedai->getOperand();
EnumElementDecl *enumElt = tedai->getElement();
SILType payloadType = tedai->getType().getObjectType();
// Go back through a second time now that we know all of our users are
// loads. Perform the transformation on each load at the load's use site. The
// reason that we have to do this is that otherwise we would be hoisting the
// loads causing us to need to consider additional ARC issues.
while (!tedai->use_empty()) {
auto *use = *tedai->use_begin();
auto *user = use->getUser();
// Delete debug insts.
if (user->isDebugInstruction()) {
eraseInstFromFunction(*user);
continue;
}
// Insert a new Load of the enum and extract the data from that.
//
// NOTE: This is potentially hoisting the load, so we need to insert
// compensating destroys.
auto *svi = cast<SingleValueInstruction>(user);
SILValue newValue;
if (auto *oldLoad = dyn_cast<LoadInst>(svi)) {
SILBuilderWithScope localBuilder(oldLoad, Builder);
// If the old load is trivial and our enum addr is non-trivial, we need to
// use a load_borrow here. We know that the unchecked_enum_data will
// produce a trivial value meaning that we can just do a
// load_borrow/immediately end the lifetime here.
if (oldLoad->getOwnershipQualifier() == LoadOwnershipQualifier::Trivial &&
!enumAddr->getType().isTrivial(Builder.getFunction())) {
localBuilder.emitScopedBorrowOperation(
loc, enumAddr, [&](SILValue newLoad) {
newValue = localBuilder.createUncheckedEnumData(
loc, newLoad, enumElt, payloadType);
});
} else {
auto newLoad = localBuilder.emitLoadValueOperation(
loc, enumAddr, oldLoad->getOwnershipQualifier());
newValue = localBuilder.createUncheckedEnumData(loc, newLoad, enumElt,
payloadType);
}
} else if (auto *lbi = cast<LoadBorrowInst>(svi)) {
SILBuilderWithScope localBuilder(lbi, Builder);
auto newLoad = localBuilder.emitLoadBorrowOperation(loc, enumAddr);
for (auto ui = lbi->consuming_use_begin(), ue = lbi->consuming_use_end();
ui != ue; ui = lbi->consuming_use_begin()) {
// We already checked that all of our uses here are end_borrow above.
assert(isa<EndBorrowInst>(ui->getUser()) &&
"Expected only end_borrow consuming uses");
ui->set(newLoad);
}
// Any lifetime ending uses of our original load_borrow have been
// rewritten by the previous loop to be on the new load_borrow. The reason
// that we must do this is end_borrows only are placed on borrow
// introducing guaranteed values and our unchecked_enum_data (unlike the
// old load_borrow of the same type) is not one.
newValue = localBuilder.createUncheckedEnumData(loc, newLoad, enumElt,
payloadType);
}
assert(newValue);
// Replace all uses of the old load with the newValue and erase the old
// load.
replaceInstUsesWith(*svi, newValue);
eraseInstFromFunction(*svi);
}
return eraseInstFromFunction(*tedai);
}
SILInstruction *SILCombiner::visitCondBranchInst(CondBranchInst *CBI) {
// NOTE: All of the following optimizations do invalidates branches by
// replacing the branches, but do not modify the underlying CFG properties
// such as dominance and reachability.
// cond_br(xor(x, 1)), t_label, f_label -> cond_br x, f_label, t_label
// cond_br(x == 0), t_label, f_label -> cond_br x, f_label, t_label
// cond_br(x != 1), t_label, f_label -> cond_br x, f_label, t_label
SILValue X;
if (match(CBI->getCondition(),
m_CombineOr(
// xor(x, 1)
m_ApplyInst(BuiltinValueKind::Xor, m_SILValue(X), m_One()),
// xor(1,x)
m_ApplyInst(BuiltinValueKind::Xor, m_One(), m_SILValue(X)),
// x == 0
m_ApplyInst(BuiltinValueKind::ICMP_EQ, m_SILValue(X), m_Zero()),
// x != 1
m_ApplyInst(BuiltinValueKind::ICMP_NE, m_SILValue(X),
m_One()))) &&
X->getType() ==
SILType::getBuiltinIntegerType(1, CBI->getModule().getASTContext())) {
SmallVector<SILValue, 4> OrigTrueArgs, OrigFalseArgs;
for (const auto Op : CBI->getTrueArgs())
OrigTrueArgs.push_back(Op);
for (const auto Op : CBI->getFalseArgs())
OrigFalseArgs.push_back(Op);
return Builder.createCondBranch(CBI->getLoc(), X,
CBI->getFalseBB(), OrigFalseArgs,
CBI->getTrueBB(), OrigTrueArgs);
}
// cond_br (select_enum) -> switch_enum
// This pattern often occurs as a result of using optionals.
if (auto *SEI = dyn_cast<SelectEnumInst>(CBI->getCondition())) {
// No bb args should be passed
if (!CBI->getTrueArgs().empty() || !CBI->getFalseArgs().empty())
return nullptr;
auto EnumOperandTy = SEI->getEnumOperand()->getType();
// Type should be loadable
if (!EnumOperandTy.isLoadable(*SEI->getFunction()))
return nullptr;
// Result of the select_enum should be a boolean.
if (SEI->getType() != CBI->getCondition()->getType())
return nullptr;
// If any of cond_br edges are critical edges, do not perform
// the transformation, as SIL in canonical form may
// only have critical edges that are originating from cond_br
// instructions.
if (!CBI->getTrueBB()->getSinglePredecessorBlock())
return nullptr;
if (!CBI->getFalseBB()->getSinglePredecessorBlock())
return nullptr;
SILBasicBlock *DefaultBB = nullptr;
match_integer<0> Zero;
if (SEI->hasDefault()) {
// Default result should be an integer constant.
if (!isa<IntegerLiteralInst>(SEI->getDefaultResult()))
return nullptr;
bool isFalse = match(SEI->getDefaultResult(), Zero);
// Pick the default BB.
DefaultBB = isFalse ? CBI->getFalseBB() : CBI->getTrueBB();
}
if (!DefaultBB) {
// Find the targets for the majority of cases and pick it
// as a default BB.
unsigned TrueBBCases = 0;
unsigned FalseBBCases = 0;
for (int i = 0, e = SEI->getNumCases(); i < e; ++i) {
auto Pair = SEI->getCase(i);
if (isa<IntegerLiteralInst>(Pair.second)) {
bool isFalse = match(Pair.second, Zero);
if (!isFalse) {
++TrueBBCases;
} else {
++FalseBBCases;
}
continue;
}
return nullptr;
}
if (FalseBBCases > TrueBBCases)
DefaultBB = CBI->getFalseBB();
else
DefaultBB = CBI->getTrueBB();
}
assert(DefaultBB && "Default should be defined at this point");
unsigned NumTrueBBCases = 0;
unsigned NumFalseBBCases = 0;
if (DefaultBB == CBI->getFalseBB())
++NumFalseBBCases;
else
++NumTrueBBCases;
// We can now convert cond_br(select_enum) into switch_enum.
SmallVector<std::pair<EnumElementDecl *, SILBasicBlock *>, 8> Cases;
for (int i = 0, e = SEI->getNumCases(); i < e; ++i) {
auto Pair = SEI->getCase(i);
// Bail if one of the results is not an integer constant.
if (!isa<IntegerLiteralInst>(Pair.second))
return nullptr;
// Add a switch case.
bool isFalse = match(Pair.second, Zero);
if (!isFalse && DefaultBB != CBI->getTrueBB()) {
Cases.push_back(std::make_pair(Pair.first, CBI->getTrueBB()));
++NumTrueBBCases;
}
if (isFalse && DefaultBB != CBI->getFalseBB()) {
Cases.push_back(std::make_pair(Pair.first, CBI->getFalseBB()));
++NumFalseBBCases;
}
}
// Bail if a switch_enum would introduce a critical edge.
if (NumTrueBBCases > 1 || NumFalseBBCases > 1)
return nullptr;
if (!hasOwnership()) {
return Builder.createSwitchEnum(SEI->getLoc(), SEI->getEnumOperand(),
DefaultBB, Cases);
}
// If we do have ownership, we need to do significantly more
// work. Specifically:
//
// 1. Our select_enum may not be right next to our cond_br, so we need to
// lifetime extend our enum parameter to our switch_enum.
//
// 2. A switch_enum needs to propagate its operands into destination block
// arguments. We need to create those.
//
// 3. In each destination block, we need to create an argument and end the
// lifetime of that argument.
SILValue selectEnumOperand = SEI->getEnumOperand();
SILValue switchEnumOperand = selectEnumOperand;
if (selectEnumOperand->getOwnershipKind() != OwnershipKind::None) {
switchEnumOperand =
makeCopiedValueAvailable(selectEnumOperand, Builder.getInsertionBB());
}
auto *switchEnum = Builder.createSwitchEnum(
SEI->getLoc(), switchEnumOperand, DefaultBB, Cases);
auto enumOperandType = SEI->getEnumOperand()->getType();
for (auto pair : Cases) {
// We only need to create the phi argument if our case doesn't have an
// associated value.
auto *enumEltDecl = pair.first;
if (!enumEltDecl->hasAssociatedValues())
continue;
auto *block = pair.second;
auto enumEltType =
enumOperandType.getEnumElementType(enumEltDecl, block->getParent());
auto *arg = switchEnum->createResult(block, enumEltType);
SILBuilderWithScope innerBuilder(arg->getNextInstruction(), Builder);
// The switch enum may change ownership resulting in Guaranteed or None.
if (arg->getOwnershipKind() == OwnershipKind::Owned) {
auto loc = RegularLocation::getAutoGeneratedLocation();
innerBuilder.emitDestroyValueOperation(loc, arg);
}
}
if (auto defaultArg = switchEnum->createDefaultResult()) {
SILBuilderWithScope innerBuilder(defaultArg->getNextInstruction(), SEI);
// The switch enum may change ownership resulting in Guaranteed or None.
if (defaultArg->getOwnershipKind() == OwnershipKind::Owned) {
auto loc = RegularLocation::getAutoGeneratedLocation();
innerBuilder.emitDestroyValueOperation(loc, defaultArg);
}
}
return switchEnum;
}
return nullptr;
}
SILInstruction *SILCombiner::visitSelectEnumInst(SelectEnumInst *SEI) {
// Canonicalize a select_enum: if the default refers to exactly one case, then
// replace the default with that case.
if (SEI->hasDefault()) {
NullablePtr<EnumElementDecl> elementDecl = SEI->getUniqueCaseForDefault();
if (elementDecl.isNonNull()) {
// Construct a new instruction by copying all the case entries.
SmallVector<std::pair<EnumElementDecl *, SILValue>, 4> CaseValues;
for (int idx = 0, numIdcs = SEI->getNumCases(); idx < numIdcs; ++idx) {
CaseValues.push_back(SEI->getCase(idx));
}
// Add the default-entry of the original instruction as case-entry.
CaseValues.push_back(
std::make_pair(elementDecl.get(), SEI->getDefaultResult()));
return Builder.createSelectEnum(SEI->getLoc(), SEI->getEnumOperand(),
SEI->getType(), SILValue(), CaseValues);
}
}
// TODO: We should be able to flat-out replace the select_enum instruction
// with the selected value in another pass. For parity with the enum_is_tag
// combiner pass, handle integer literals for now.
auto *EI = dyn_cast<EnumInst>(SEI->getEnumOperand());
if (!EI)
return nullptr;
SILValue selected;
for (unsigned i = 0, e = SEI->getNumCases(); i < e; ++i) {
auto casePair = SEI->getCase(i);
if (casePair.first == EI->getElement()) {
selected = casePair.second;
break;
}
}
if (!selected)
selected = SEI->getDefaultResult();
if (auto *ILI = dyn_cast<IntegerLiteralInst>(selected)) {
return Builder.createIntegerLiteral(ILI->getLoc(), ILI->getType(),
ILI->getValue());
}
return nullptr;
}
SILInstruction *SILCombiner::visitTupleExtractInst(TupleExtractInst *TEI) {
// tuple_extract(apply([add|sub|...]overflow(x, 0)), 1) -> 0
// if it can be proven that no overflow can happen.
if (TEI->getFieldIndex() == 1) {
Builder.setCurrentDebugScope(TEI->getDebugScope());
if (auto *BI = dyn_cast<BuiltinInst>(TEI->getOperand()))
if (!canOverflow(BI))
return Builder.createIntegerLiteral(TEI->getLoc(), TEI->getType(),
APInt(1, 0));
}
return nullptr;
}
SILInstruction *SILCombiner::visitFixLifetimeInst(FixLifetimeInst *fli) {
// fix_lifetime(alloc_stack) -> fix_lifetime(load(alloc_stack))
Builder.setCurrentDebugScope(fli->getDebugScope());
if (auto *ai = dyn_cast<AllocStackInst>(fli->getOperand())) {
if (fli->getOperand()->getType().isLoadable(*fli->getFunction())) {
// load when ossa is disabled
auto load = Builder.emitLoadBorrowOperation(fli->getLoc(), ai);
Builder.createFixLifetime(fli->getLoc(), load);
// no-op when ossa is disabled
Builder.emitEndBorrowOperation(fli->getLoc(), load);
return eraseInstFromFunction(*fli);
}
}
return nullptr;
}
static llvm::Optional<SILType>
shouldReplaceCallByContiguousArrayStorageAnyObject(SILFunction &F,
CanType storageMetaTy) {
auto metaTy = dyn_cast<MetatypeType>(storageMetaTy);
if (!metaTy || metaTy->getRepresentation() != MetatypeRepresentation::Thick)
return llvm::None;
auto storageTy = metaTy.getInstanceType()->getCanonicalType();
if (!storageTy->is_ContiguousArrayStorage())
return llvm::None;
auto boundGenericTy = dyn_cast<BoundGenericType>(storageTy);
if (!boundGenericTy)
return llvm::None;
// On SwiftStdlib 5.7 we can replace the call.
auto &ctxt = storageMetaTy->getASTContext();
auto deployment = AvailabilityContext::forDeploymentTarget(ctxt);
if (!deployment.isContainedIn(ctxt.getSwift57Availability()))
return llvm::None;
auto genericArgs = boundGenericTy->getGenericArgs();
if (genericArgs.size() != 1)
return llvm::None;
auto ty = genericArgs[0]->getCanonicalType();
if (!ty->getClassOrBoundGenericClass() && !ty->isObjCExistentialType())
return llvm::None;
auto anyObjectTy = ctxt.getAnyObjectType();
auto arrayStorageTy =
BoundGenericClassType::get(ctxt.get_ContiguousArrayStorageDecl(), nullptr,
{anyObjectTy})
->getCanonicalType();
return F.getTypeLowering(arrayStorageTy).getLoweredType();
}
SILInstruction *
SILCombiner::
visitAllocRefDynamicInst(AllocRefDynamicInst *ARDI) {
SmallVector<SILValue, 4> Counts;
auto getCounts = [&] (AllocRefDynamicInst *AI) -> ArrayRef<SILValue> {
for (Operand &Op : AI->getTailAllocatedCounts()) {
Counts.push_back(Op.get());
}
return Counts;
};
// %1 = metatype $X.Type
// %2 = alloc_ref_dynamic %1 : $X.Type, Y
// ->
// alloc_ref X
Builder.setCurrentDebugScope(ARDI->getDebugScope());
SILValue MDVal = ARDI->getMetatypeOperand();
while (auto *UCI = dyn_cast<UpcastInst>(MDVal)) {
// For simplicity ignore a cast of an `alloc_ref [stack]`. It would need more
// work to keep its `dealloc_stack_ref` correct.
if (ARDI->canAllocOnStack())
return nullptr;
MDVal = UCI->getOperand();
}
SingleValueInstruction *NewInst = nullptr;
if (auto *MI = dyn_cast<MetatypeInst>(MDVal)) {
auto MetaTy = MI->getType().castTo<MetatypeType>();
auto InstanceTy = MetaTy.getInstanceType();
if (auto SelfTy = dyn_cast<DynamicSelfType>(InstanceTy))
InstanceTy = SelfTy.getSelfType();
auto SILInstanceTy = SILType::getPrimitiveObjectType(InstanceTy);
if (!SILInstanceTy.getClassOrBoundGenericClass())
return nullptr;
NewInst = Builder.createAllocRef(ARDI->getLoc(), SILInstanceTy,
ARDI->isObjC(), ARDI->canAllocOnStack(),
/*isBare=*/ false,
ARDI->getTailAllocatedTypes(),
getCounts(ARDI));
} else if (isa<SILArgument>(MDVal)) {
// checked_cast_br [exact] $Y.Type to $X.Type, bbSuccess, bbFailure
// ...
// bbSuccess(%T: $X.Type)
// alloc_ref_dynamic %T : $X.Type, $X
// ->
// alloc_ref $X
auto *PredBB = ARDI->getParent()->getSinglePredecessorBlock();
if (!PredBB)
return nullptr;
auto *CCBI = dyn_cast<CheckedCastBranchInst>(PredBB->getTerminator());
if (CCBI && CCBI->isExact() && ARDI->getParent() == CCBI->getSuccessBB()) {
auto MetaTy = cast<MetatypeType>(CCBI->getTargetFormalType());
auto InstanceTy = MetaTy.getInstanceType();
if (auto SelfTy = dyn_cast<DynamicSelfType>(InstanceTy))
InstanceTy = SelfTy.getSelfType();
auto SILInstanceTy = SILType::getPrimitiveObjectType(InstanceTy);
if (!SILInstanceTy.getClassOrBoundGenericClass())
return nullptr;
NewInst = Builder.createAllocRef(ARDI->getLoc(), SILInstanceTy,
ARDI->isObjC(), ARDI->canAllocOnStack(),
/*isBare=*/ false,
ARDI->getTailAllocatedTypes(),
getCounts(ARDI));
}
} else if (auto *AI = dyn_cast<ApplyInst>(MDVal)) {
if (ARDI->canAllocOnStack())
return nullptr;
SILFunction *SF = AI->getReferencedFunctionOrNull();
if (!SF)
return nullptr;
if (!SF->hasSemanticsAttr(semantics::ARRAY_GET_CONTIGUOUSARRAYSTORAGETYPE))
return nullptr;
auto use = AI->getSingleUse();
if (!use || use->getUser() != ARDI)
return nullptr;
auto storageTy = AI->getType().getASTType();
// getContiguousArrayStorageType<SomeClass> =>
// ContiguousArrayStorage<AnyObject>
auto instanceTy = shouldReplaceCallByContiguousArrayStorageAnyObject(
*AI->getFunction(), storageTy);
if (!instanceTy)
return nullptr;
NewInst = Builder.createAllocRef(
ARDI->getLoc(), *instanceTy, ARDI->isObjC(), false,
/*isBare=*/ false,
ARDI->getTailAllocatedTypes(), getCounts(ARDI));
NewInst = Builder.createUncheckedRefCast(ARDI->getLoc(), NewInst,
ARDI->getType());
return NewInst;
}
if (NewInst && NewInst->getType() != ARDI->getType()) {
// In case the argument was an upcast of the metatype, we have to upcast the
// resulting reference.
assert(!ARDI->canAllocOnStack() && "upcasting alloc_ref [stack] not supported");
NewInst = Builder.createUpcast(ARDI->getLoc(), NewInst, ARDI->getType());
}
return NewInst;
}
/// Returns true if \p val is a literal instruction or a struct of a literal
/// instruction.
/// What we want to catch here is a UnsafePointer<Int8> of a string literal.
static bool isLiteral(SILValue val) {
while (auto *str = dyn_cast<StructInst>(val)) {
if (str->getNumOperands() != 1)
return false;
val = str->getOperand(0);
}
return isa<LiteralInst>(val);
}
SILInstruction *SILCombiner::visitMarkDependenceInst(MarkDependenceInst *mdi) {
auto base = lookThroughOwnershipInsts(mdi->getBase());
// Simplify the base operand of a MarkDependenceInst to eliminate unnecessary
// instructions that aren't adding value.
//
// Conversions to Optional.Some(x) often happen here, this isn't important
// for us, we can just depend on 'x' directly.
if (auto *eiBase = dyn_cast<EnumInst>(base)) {
if (eiBase->hasOperand()) {
auto *use = &mdi->getOperandRef(MarkDependenceInst::Base);
OwnershipReplaceSingleUseHelper helper(ownershipFixupContext,
use, eiBase->getOperand());
if (helper) {
helper.perform();
tryEliminateOnlyOwnershipUsedForwardingInst(eiBase,
getInstModCallbacks());
return mdi;
}
}
}
// Conversions from a class to AnyObject also happen a lot, we can just depend
// on the class reference.
if (auto *ier = dyn_cast<InitExistentialRefInst>(base)) {
auto *use = &mdi->getOperandRef(MarkDependenceInst::Base);
OwnershipReplaceSingleUseHelper helper(ownershipFixupContext,
use, ier->getOperand());
if (helper) {
helper.perform();
tryEliminateOnlyOwnershipUsedForwardingInst(ier, getInstModCallbacks());
return mdi;
}
}
// Conversions from a class to AnyObject also happen a lot, we can just depend
// on the class reference.
if (auto *oeri = dyn_cast<OpenExistentialRefInst>(base)) {
auto *use = &mdi->getOperandRef(MarkDependenceInst::Base);
OwnershipReplaceSingleUseHelper helper(ownershipFixupContext,
use, oeri->getOperand());
if (helper) {
helper.perform();
tryEliminateOnlyOwnershipUsedForwardingInst(oeri, getInstModCallbacks());
return mdi;
}
}
// Sometimes due to specialization/builtins, we can get a mark_dependence
// whose base is a trivial typed object. In such a case, the mark_dependence
// does not have a meaning, so just eliminate it.
{
SILType baseType = base->getType();
if (baseType.isObject()) {
if ((hasOwnership() && base->getOwnershipKind() == OwnershipKind::None) ||
baseType.isTrivial(*mdi->getFunction())) {
SILValue value = mdi->getValue();
replaceInstUsesWith(*mdi, value);
return eraseInstFromFunction(*mdi);
}
}
}
if (isLiteral(mdi->getValue())) {
// A literal lives forever, so no mark_dependence is needed.
// This pattern can occur after StringOptimization when a utf8CString of
// a literal is replace by the string_literal itself.
replaceInstUsesWith(*mdi, mdi->getValue());
return eraseInstFromFunction(*mdi);
}
return nullptr;
}
SILInstruction *
SILCombiner::visitClassifyBridgeObjectInst(ClassifyBridgeObjectInst *cboi) {
auto *urc = dyn_cast<UncheckedRefCastInst>(cboi->getOperand());
if (!urc)
return nullptr;
auto type = urc->getOperand()->getType().getASTType();
if (ClassDecl *cd = type->getClassOrBoundGenericClass()) {
if (!cd->isObjC()) {
auto int1Ty = SILType::getBuiltinIntegerType(1, Builder.getASTContext());
SILValue zero = Builder.createIntegerLiteral(cboi->getLoc(), int1Ty, 0);
return Builder.createTuple(cboi->getLoc(), {zero, zero});
}
}
return nullptr;
}
/// Returns true if reference counting and debug_value users of a global_value
/// can be deleted.
static bool checkGlobalValueUsers(SILValue val,
SmallVectorImpl<SILInstruction *> &toDelete) {
for (Operand *use : val->getUses()) {
SILInstruction *user = use->getUser();
if (isa<RefCountingInst>(user) || isa<DebugValueInst>(user)) {
toDelete.push_back(user);
continue;
}
if (auto *upCast = dyn_cast<UpcastInst>(user)) {
if (!checkGlobalValueUsers(upCast, toDelete))
return false;
continue;
}
// Projection instructions don't access the object header, so they don't
// prevent deleting reference counting instructions.
if (isa<RefElementAddrInst>(user) || isa<RefTailAddrInst>(user))
continue;
return false;
}
return true;
}
SILInstruction *
SILCombiner::legacyVisitGlobalValueInst(GlobalValueInst *globalValue) {
// Delete all reference count instructions on a global_value if the only other
// users are projections (ref_element_addr and ref_tail_addr).
SmallVector<SILInstruction *, 8> toDelete;
if (!checkGlobalValueUsers(globalValue, toDelete))
return nullptr;
for (SILInstruction *inst : toDelete) {
eraseInstFromFunction(*inst);
}
return nullptr;
}
// Simplify `differentiable_function_extract` of `differentiable_function`.
//
// Before:
// %diff_func = differentiable_function(%orig, %jvp, %vjp)
// %orig' = differentiable_function_extract [original] %diff_func
// %jvp' = differentiable_function_extract [jvp] %diff_func
// %vjp' = differentiable_function_extract [vjp] %diff_func
//
// After:
// %orig' = %orig
// %jvp' = %jvp
// %vjp' = %vjp
SILInstruction *
SILCombiner::visitDifferentiableFunctionExtractInst(DifferentiableFunctionExtractInst *DFEI) {
auto *DFI = dyn_cast<DifferentiableFunctionInst>(DFEI->getOperand());
if (!DFI)
return nullptr;
if (!DFI->hasExtractee(DFEI->getExtractee()))
return nullptr;
SILValue newValue = DFI->getExtractee(DFEI->getExtractee());
// If the type of the `differentiable_function` operand does not precisely
// match the type of the original `differentiable_function_extract`,
// create a `convert_function`.
if (newValue->getType() != DFEI->getType()) {
CanSILFunctionType opTI = newValue->getType().castTo<SILFunctionType>();
CanSILFunctionType resTI = DFEI->getType().castTo<SILFunctionType>();
if (!opTI->isABICompatibleWith(resTI, *DFEI->getFunction()).isCompatible())
return nullptr;
std::tie(newValue, std::ignore) =
castValueToABICompatibleType(&Builder, DFEI->getLoc(),
newValue,
newValue->getType(), DFEI->getType(), {});
}
replaceInstUsesWith(*DFEI, newValue);
return eraseInstFromFunction(*DFEI);
}
// Simplify `pack_length` with constant-length pack.
//
// Before:
// %len = pack_length $Pack{Int, String, Float}
//
// After:
// %len = integer_literal Builtin.Word, 3
SILInstruction *SILCombiner::visitPackLengthInst(PackLengthInst *PLI) {
auto PackTy = PLI->getPackType();
if (!PackTy->containsPackExpansionType()) {
return Builder.createIntegerLiteral(PLI->getLoc(), PLI->getType(),
PackTy->getNumElements());
}
return nullptr;
}
// Simplify `pack_element_get` where the index is a `dynamic_pack_index` with
// a constant operand.
//
// Before:
// %idx = integer_literal Builtin.Word, N
// %pack_idx = dynamic_pack_index %Pack{Int, String, Float}, %idx
// %pack_elt = pack_element_get %pack_value, %pack_idx, @element("...")
//
// After:
// %pack_idx = scalar_pack_index %Pack{Int, String, Float}, N
// %concrete_elt = pack_element_get %pack_value, %pack_idx, <<concrete type>>
// %pack_elt = unchecked_addr_cast %concrete_elt, @element("...")
SILInstruction *SILCombiner::visitPackElementGetInst(PackElementGetInst *PEGI) {
auto *DPII = dyn_cast<DynamicPackIndexInst>(PEGI->getIndex());
if (DPII == nullptr)
return nullptr;
auto PackTy = PEGI->getPackType();
if (PackTy->containsPackExpansionType())
return nullptr;
auto *Op = dyn_cast<IntegerLiteralInst>(DPII->getOperand());
if (Op == nullptr)
return nullptr;
if (Op->getValue().uge(PackTy->getNumElements()))
return nullptr;
unsigned Index = Op->getValue().getZExtValue();
auto *SPII = Builder.createScalarPackIndex(
DPII->getLoc(), Index, DPII->getIndexedPackType());
auto ElementTy = SILType::getPrimitiveAddressType(
PEGI->getPackType().getElementType(Index));
auto *NewPEGI = Builder.createPackElementGet(
PEGI->getLoc(), SPII, PEGI->getPack(),
ElementTy);
return Builder.createUncheckedAddrCast(
PEGI->getLoc(), NewPEGI, PEGI->getElementType());
}
// Simplify `tuple_pack_element_addr` where the index is a `dynamic_pack_index`
//with a constant operand.
//
// Before:
// %idx = integer_literal Builtin.Word, N
// %pack_idx = dynamic_pack_index %Pack{Int, String, Float}, %idx
// %tuple_elt = tuple_pack_element_addr %tuple_value, %pack_idx, @element("...")
//
// After:
// %concrete_elt = tuple_element_addr %tuple_value, N
// %tuple_elt = unchecked_addr_cast %concrete_elt, @element("...")
SILInstruction *
SILCombiner::visitTuplePackElementAddrInst(TuplePackElementAddrInst *TPEAI) {
auto *DPII = dyn_cast<DynamicPackIndexInst>(TPEAI->getIndex());
if (DPII == nullptr)
return nullptr;
auto PackTy = DPII->getIndexedPackType();
if (PackTy->containsPackExpansionType())
return nullptr;
auto *Op = dyn_cast<IntegerLiteralInst>(DPII->getOperand());
if (Op == nullptr)
return nullptr;
if (Op->getValue().uge(PackTy->getNumElements()))
return nullptr;
unsigned Index = Op->getValue().getZExtValue();
auto *TEAI = Builder.createTupleElementAddr(
TPEAI->getLoc(), TPEAI->getTuple(), Index);
return Builder.createUncheckedAddrCast(
TPEAI->getLoc(), TEAI, TPEAI->getElementType());
}
// This is a hack. When optimizing a simple pack expansion expression which
// forms a tuple from a pack, like `(repeat each t)`, after the above
// peepholes we end up with:
//
// %src = unchecked_addr_cast %real_src, @element("...")
// %dst = unchecked_addr_cast %real_dst, @element("...")
// copy_addr %src, %dst
//
// Simplify this to
//
// copy_addr %real_src, %real_dst
//
// Assuming that %real_src and %real_dst have the same type.
//
// In this simple case, this eliminates the opened element archetype entirely.
// However, a more principled peephole would be to transform an
// open_pack_element with a scalar index by replacing all usages of the
// element archetype with a concrete type.
SILInstruction *
SILCombiner::visitCopyAddrInst(CopyAddrInst *CAI) {
auto *Src = dyn_cast<UncheckedAddrCastInst>(CAI->getSrc());
auto *Dst = dyn_cast<UncheckedAddrCastInst>(CAI->getDest());
if (Src == nullptr || Dst == nullptr)
return nullptr;
if (Src->getType() != Dst->getType() ||
!Src->getType().is<ElementArchetypeType>())
return nullptr;
if (Src->getOperand()->getType() != Dst->getOperand()->getType())
return nullptr;
return Builder.createCopyAddr(
CAI->getLoc(), Src->getOperand(), Dst->getOperand(),
CAI->isTakeOfSrc(), CAI->isInitializationOfDest());
}