mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
To eliminate copies which become newly spurious, Mem2Reg canonicalizes the lifetimes of values that are stored and of newly introduced phis after rewriting. It's possible, however, for the values that are stored to be deleted during canonicalization if a value and its copy are both stored to the address. Such values must not be canonicalized. So check whether values have been erased before canonicalizing them. rdar://113762355
2348 lines
88 KiB
C++
2348 lines
88 KiB
C++
//===--- SILMem2Reg.cpp - Promotes AllocStacks to registers ---------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass promotes AllocStack instructions into virtual register
|
|
// references. It only handles load, store and deallocation
|
|
// instructions. The algorithm is based on:
|
|
//
|
|
// Sreedhar and Gao. A linear time algorithm for placing phi-nodes. POPL '95.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-mem2reg"
|
|
|
|
#include "swift/AST/DiagnosticsSIL.h"
|
|
#include "swift/Basic/GraphNodeWorklist.h"
|
|
#include "swift/Basic/TaggedUnion.h"
|
|
#include "swift/SIL/BasicBlockDatastructures.h"
|
|
#include "swift/SIL/Dominance.h"
|
|
#include "swift/SIL/OSSALifetimeCompletion.h"
|
|
#include "swift/SIL/Projection.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILFunction.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "swift/SIL/StackList.h"
|
|
#include "swift/SIL/TypeLowering.h"
|
|
#include "swift/SILOptimizer/Analysis/BasicCalleeAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
|
|
#include "swift/SILOptimizer/PassManager/Passes.h"
|
|
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
|
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/CanonicalizeBorrowScope.h"
|
|
#include "swift/SILOptimizer/Utils/CanonicalizeOSSALifetime.h"
|
|
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/OwnershipOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/ScopeOptUtils.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <algorithm>
|
|
#include <queue>
|
|
|
|
using namespace swift;
|
|
using namespace swift::siloptimizer;
|
|
|
|
STATISTIC(NumAllocStackFound, "Number of AllocStack found");
|
|
STATISTIC(NumAllocStackCaptured, "Number of AllocStack captured");
|
|
STATISTIC(NumInstRemoved, "Number of Instructions removed");
|
|
|
|
llvm::cl::opt<bool> Mem2RegDisableLifetimeCanonicalization(
|
|
"sil-mem2reg-disable-lifetime-canonicalization", llvm::cl::init(false),
|
|
llvm::cl::desc("Don't canonicalize any lifetimes during Mem2Reg."));
|
|
|
|
static bool lexicalLifetimeEnsured(AllocStackInst *asi);
|
|
static bool isGuaranteedLexicalValue(SILValue src);
|
|
|
|
namespace {
|
|
|
|
using DomTreeNode = llvm::DomTreeNodeBase<SILBasicBlock>;
|
|
using DomTreeLevelMap = llvm::DenseMap<DomTreeNode *, unsigned>;
|
|
|
|
/// A transient structure containing the values that are accessible in some
|
|
/// context: coming into a block, going out of the block, or within a block
|
|
/// (during promoteAllocationInBlock and removeSingleBlockAllocation).
|
|
///
|
|
/// At block boundaries, these are phi arguments or initializationPoints. As we
|
|
/// iterate over a block, a way to keep track of the current (running) value
|
|
/// within a block.
|
|
class LiveValues {
|
|
public:
|
|
struct Owned {
|
|
SILValue stored = SILValue();
|
|
SILValue move = SILValue();
|
|
|
|
/// Create an instance of the minimum values required to replace a usage of
|
|
/// an AllocStackInst. It consists of only one value.
|
|
///
|
|
/// Whether the one value occupies the stored or the move field depends on
|
|
/// whether the alloc_stack is lexical. If it is lexical, then usages of
|
|
/// the asi will be replaced with usages of the move field; otherwise,
|
|
/// those usages will be replaced with usages of the stored field. The
|
|
/// implementation constructs an instance to match those requirements.
|
|
static Owned toReplace(AllocStackInst *asi, SILValue replacement) {
|
|
if (lexicalLifetimeEnsured(asi))
|
|
return {SILValue(), replacement};
|
|
return {replacement, SILValue()};
|
|
}
|
|
|
|
/// The value with which usages of the provided AllocStackInst should be
|
|
/// replaced.
|
|
SILValue replacement(AllocStackInst *asi, SILInstruction *toReplace) {
|
|
if (!lexicalLifetimeEnsured(asi)) {
|
|
return stored;
|
|
}
|
|
// We should have created a move of the @owned stored value.
|
|
assert(move);
|
|
return move;
|
|
}
|
|
|
|
bool canEndLexicalLifetime() {
|
|
// If running value originates from a load which was not preceded by a
|
|
// store in the same basic block, then we don't have enough information
|
|
// to end a lexical lifetime. In that case, the lifetime end will be
|
|
// added later, when we have enough information, namely the live in
|
|
// values, to end it.
|
|
return move;
|
|
}
|
|
};
|
|
struct Guaranteed {
|
|
SILValue stored = SILValue();
|
|
SILValue borrow = SILValue();
|
|
|
|
/// Create an instance of the minimum values required to replace a usage of
|
|
/// an AllocStackInst. It consists of only one value.
|
|
///
|
|
/// Whether the one value occupies the stored or the borrow field depends
|
|
/// on whether the alloc_stack is lexical. If it is lexical, then usages
|
|
/// of \p asi will be replaced with usages of the borrow field; otherwise,
|
|
/// those usages will be replaced with usages of the stored field. The
|
|
/// implementation constructs an instance to match those requirements.
|
|
static Guaranteed toReplace(AllocStackInst *asi, SILValue replacement) {
|
|
if (lexicalLifetimeEnsured(asi))
|
|
return {SILValue(), replacement};
|
|
return {replacement, SILValue()};
|
|
}
|
|
|
|
/// The value with which usages of the provided AllocStackInst should be
|
|
/// replaced.
|
|
SILValue replacement(AllocStackInst *asi, SILInstruction *toReplace) {
|
|
if (!lexicalLifetimeEnsured(asi)) {
|
|
return stored;
|
|
}
|
|
// For guaranteed lexical AllocStackInsts--i.e. those that are
|
|
// store_borrow locations--we may have created a borrow if the stored
|
|
// value is a non-lexical guaranteed value.
|
|
assert(isGuaranteedLexicalValue(stored) || borrow);
|
|
return borrow ? borrow : stored;
|
|
}
|
|
|
|
bool canEndLexicalLifetime() {
|
|
// There are two different cases when we don't create a lexical lifetime
|
|
// end for a guaranteed running value:
|
|
//
|
|
// If the source of the store_borrow is already lexical, then the running
|
|
// value doesn't have a lexical lifetime of its own which could be ended.
|
|
//
|
|
// If running value originates from a load which was not preceded by a
|
|
// store_borrow in the same basic block, then we don't have enough
|
|
// information to end a lexical lifetime. In that case, the lifetime end
|
|
// will be added later, when we have enough information, namely the live
|
|
// in values, to end it.
|
|
return borrow;
|
|
}
|
|
};
|
|
|
|
private:
|
|
using Storage = TaggedUnion<Owned, Guaranteed>;
|
|
Storage storage;
|
|
|
|
LiveValues(Storage storage) : storage(storage) {}
|
|
|
|
static LiveValues forGuaranteed(Guaranteed values) {
|
|
return {Storage(values)};
|
|
}
|
|
|
|
static LiveValues forOwned(Owned values) { return {Storage(values)}; }
|
|
|
|
public:
|
|
enum class Kind {
|
|
Owned,
|
|
Guaranteed,
|
|
};
|
|
|
|
Kind getKind() {
|
|
if (storage.isa<Owned>()) {
|
|
return Kind::Owned;
|
|
}
|
|
return Kind::Guaranteed;
|
|
}
|
|
|
|
bool isOwned() { return getKind() == Kind::Owned; }
|
|
|
|
bool isGuaranteed() { return getKind() == Kind::Guaranteed; }
|
|
|
|
static LiveValues forGuaranteed(SILValue stored, SILValue borrow) {
|
|
return LiveValues::forGuaranteed({stored, borrow});
|
|
}
|
|
|
|
static LiveValues forOwned(SILValue stored, SILValue move) {
|
|
return LiveValues::forOwned({stored, move});
|
|
}
|
|
|
|
static LiveValues forValues(SILValue stored, SILValue lexical) {
|
|
if (stored->getOwnershipKind() == OwnershipKind::Guaranteed) {
|
|
return LiveValues::forGuaranteed({stored, lexical});
|
|
}
|
|
return LiveValues::forOwned({stored, lexical});
|
|
}
|
|
|
|
static LiveValues toReplace(AllocStackInst *asi, SILValue replacement) {
|
|
if (replacement->getOwnershipKind() == OwnershipKind::Guaranteed) {
|
|
return LiveValues::forGuaranteed(Guaranteed::toReplace(asi, replacement));
|
|
}
|
|
return LiveValues::forOwned(Owned::toReplace(asi, replacement));
|
|
}
|
|
|
|
Owned getOwned() { return storage.get<Owned>(); }
|
|
|
|
Guaranteed getGuaranteed() { return storage.get<Guaranteed>(); }
|
|
|
|
SILValue replacement(AllocStackInst *asi, SILInstruction *toReplace) {
|
|
if (auto *owned = storage.dyn_cast<Owned>()) {
|
|
return owned->replacement(asi, toReplace);
|
|
}
|
|
auto &guaranteed = storage.get<Guaranteed>();
|
|
return guaranteed.replacement(asi, toReplace);
|
|
}
|
|
|
|
SILValue getStored() {
|
|
if (auto *owned = storage.dyn_cast<Owned>()) {
|
|
return owned->stored;
|
|
}
|
|
auto &guaranteed = storage.get<Guaranteed>();
|
|
return guaranteed.stored;
|
|
}
|
|
|
|
bool canEndLexicalLifetime() {
|
|
if (auto *owned = storage.dyn_cast<Owned>()) {
|
|
return owned->canEndLexicalLifetime();
|
|
}
|
|
auto &guaranteed = storage.get<Guaranteed>();
|
|
return guaranteed.canEndLexicalLifetime();
|
|
}
|
|
};
|
|
|
|
/// A transient structure used only by promoteAllocationInBlock and
|
|
/// removeSingleBlockAllocation.
|
|
///
|
|
/// A pair of a CFG-position-relative value T and a boolean indicating whether
|
|
/// the alloc_stack's storage is valid at the position where that value exists.
|
|
template <typename T>
|
|
struct StorageStateTracking {
|
|
/// The value which exists at some CFG position.
|
|
T value;
|
|
/// Whether the stack storage is initialized at that position.
|
|
bool isStorageValid;
|
|
};
|
|
|
|
} // anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Make the specified instruction cease to be a user of its operands and add it
|
|
/// to the list of instructions to delete.
|
|
///
|
|
/// This both (1) removes the specified instruction from the list of users of
|
|
/// its operands, avoiding disrupting logic that examines those users and (2)
|
|
/// keeps the specified instruction in place, allowing it to be used for
|
|
/// insertion until instructionsToDelete is culled.
|
|
static void
|
|
prepareForDeletion(SILInstruction *inst,
|
|
SmallVectorImpl<SILInstruction *> &instructionsToDelete) {
|
|
for (auto &operand : inst->getAllOperands()) {
|
|
operand.set(SILUndef::get(operand.get()->getType(), *inst->getFunction()));
|
|
}
|
|
instructionsToDelete.push_back(inst);
|
|
}
|
|
|
|
static void
|
|
replaceDestroy(DestroyAddrInst *dai, SILValue newValue, SILBuilderContext &ctx,
|
|
InstructionDeleter &deleter,
|
|
SmallVectorImpl<SILInstruction *> &instructionsToDelete) {
|
|
SILFunction *f = dai->getFunction();
|
|
auto ty = dai->getOperand()->getType();
|
|
|
|
assert(ty.isLoadable(*f) && "Unexpected promotion of address-only type!");
|
|
|
|
assert(newValue ||
|
|
(ty.is<TupleType>() && ty.getAs<TupleType>()->getNumElements() == 0));
|
|
|
|
SILBuilderWithScope builder(dai, ctx);
|
|
|
|
auto &typeLowering = f->getTypeLowering(ty);
|
|
|
|
bool expand = shouldExpand(dai->getModule(),
|
|
dai->getOperand()->getType().getObjectType());
|
|
using TypeExpansionKind = Lowering::TypeLowering::TypeExpansionKind;
|
|
auto expansionKind = expand ? TypeExpansionKind::MostDerivedDescendents
|
|
: TypeExpansionKind::None;
|
|
typeLowering.emitLoweredDestroyValue(builder, dai->getLoc(), newValue,
|
|
expansionKind);
|
|
|
|
prepareForDeletion(dai, instructionsToDelete);
|
|
}
|
|
|
|
/// Whether the specified debug_value's operand names the address at the
|
|
/// indicated alloc_stack.
|
|
///
|
|
/// If it's a guaranteed alloc_stack (i.e. a store_borrow location), that
|
|
/// includes the values produced by any store_borrows whose destinations are the
|
|
/// alloc_stack since those values amount to aliases for the alloc_stack's
|
|
/// storage.
|
|
static bool isDebugValueOfAllocStack(DebugValueInst *dvi, AllocStackInst *asi) {
|
|
auto value = dvi->getOperand();
|
|
if (value == asi)
|
|
return true;
|
|
auto *sbi = dyn_cast<StoreBorrowInst>(value);
|
|
if (!sbi)
|
|
return false;
|
|
return sbi->getDest() == asi;
|
|
}
|
|
|
|
/// Promote a DebugValue w/ address value to a DebugValue of non-address value.
|
|
static void promoteDebugValueAddr(DebugValueInst *dvai, SILValue value,
|
|
SILBuilderContext &ctx,
|
|
InstructionDeleter &deleter) {
|
|
assert(dvai->getOperand()->getType().isLoadable(*dvai->getFunction()) &&
|
|
"Unexpected promotion of address-only type!");
|
|
assert(value && "Expected valid value");
|
|
|
|
// Avoid inserting the same debug_value twice.
|
|
//
|
|
// We remove the di expression when comparing since:
|
|
//
|
|
// 1. dvai is on will always have the deref diexpr since it is on addresses.
|
|
//
|
|
// 2. We are only trying to delete debug_var that are on values... values will
|
|
// never have an op_deref meaning that the comparison will always fail and
|
|
// not serve out purpose here.
|
|
auto dvaiWithoutDIExpr = dvai->getVarInfo()->withoutDIExpr();
|
|
for (auto *use : value->getUses()) {
|
|
if (auto *dvi = dyn_cast<DebugValueInst>(use->getUser())) {
|
|
if (!dvi->hasAddrVal() && *dvi->getVarInfo() == dvaiWithoutDIExpr) {
|
|
deleter.forceDelete(dvai);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Drop op_deref if dvai is actually a debug_value instruction
|
|
auto varInfo = *dvai->getVarInfo();
|
|
if (isa<DebugValueInst>(dvai)) {
|
|
auto &diExpr = varInfo.DIExpr;
|
|
if (diExpr)
|
|
diExpr.eraseElement(diExpr.element_begin());
|
|
}
|
|
|
|
SILBuilderWithScope b(dvai, ctx);
|
|
b.createDebugValue(dvai->getLoc(), value, std::move(varInfo));
|
|
deleter.forceDelete(dvai);
|
|
}
|
|
|
|
/// Returns true if \p I is a load which loads from \p ASI.
|
|
static bool isLoadFromStack(SILInstruction *i, AllocStackInst *asi) {
|
|
if (!isa<LoadInst>(i) && !isa<LoadBorrowInst>(i))
|
|
return false;
|
|
|
|
if (auto *lbi = dyn_cast<LoadBorrowInst>(i)) {
|
|
if (BorrowedValue(lbi).hasReborrow())
|
|
return false;
|
|
}
|
|
|
|
// Skip struct and tuple address projections.
|
|
ValueBase *op = i->getOperand(0);
|
|
while (op != asi) {
|
|
if (!isa<UncheckedAddrCastInst>(op) && !isa<StructElementAddrInst>(op) &&
|
|
!isa<TupleElementAddrInst>(op) && !isa<StoreBorrowInst>(op))
|
|
return false;
|
|
if (auto *sbi = dyn_cast<StoreBorrowInst>(op)) {
|
|
op = sbi->getDest();
|
|
continue;
|
|
}
|
|
op = cast<SingleValueInstruction>(op)->getOperand(0);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Collects all load instructions which (transitively) use \p i as address.
|
|
static void collectLoads(SILInstruction *i,
|
|
SmallVectorImpl<SILInstruction *> &foundLoads) {
|
|
if (isa<LoadInst>(i) || isa<LoadBorrowInst>(i)) {
|
|
foundLoads.push_back(i);
|
|
return;
|
|
}
|
|
if (!isa<UncheckedAddrCastInst>(i) && !isa<StructElementAddrInst>(i) &&
|
|
!isa<TupleElementAddrInst>(i))
|
|
return;
|
|
|
|
// Recursively search for other loads in the instruction's uses.
|
|
for (auto *use : cast<SingleValueInstruction>(i)->getUses()) {
|
|
collectLoads(use->getUser(), foundLoads);
|
|
}
|
|
}
|
|
|
|
/// Returns true if \p I is an address of a LoadInst, skipping struct and
|
|
/// tuple address projections. Sets \p singleBlock to null if the load (or
|
|
/// it's address is not in \p singleBlock.
|
|
/// This function looks for these patterns:
|
|
/// 1. (load %ASI)
|
|
/// 2. (load (struct_element_addr/tuple_element_addr/unchecked_addr_cast %ASI))
|
|
static bool isAddressForLoad(SILInstruction *load, SILBasicBlock *&singleBlock,
|
|
bool &involvesUntakableProjection) {
|
|
if (auto *li = dyn_cast<LoadInst>(load)) {
|
|
// SILMem2Reg is disabled when we find a load [take] of an untakable
|
|
// projection. See below for further discussion.
|
|
if (involvesUntakableProjection &&
|
|
li->getOwnershipQualifier() == LoadOwnershipQualifier::Take) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (isa<LoadBorrowInst>(load)) {
|
|
if (involvesUntakableProjection) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (!isa<UncheckedAddrCastInst>(load) && !isa<StructElementAddrInst>(load) &&
|
|
!isa<TupleElementAddrInst>(load))
|
|
return false;
|
|
|
|
// None of the projections are lowered to owned values:
|
|
//
|
|
// struct_element_addr and tuple_element_addr instructions are lowered to
|
|
// struct_extract and tuple_extract instructions respectively. These both
|
|
// have guaranteed ownership (since they forward ownership and can only be
|
|
// used on a guaranteed value).
|
|
//
|
|
// unchecked_addr_cast instructions are lowered to unchecked_bitwise_cast
|
|
// instructions. These have unowned ownership.
|
|
//
|
|
// So in no case can a load [take] be lowered into the new projected value
|
|
// (some sequence of struct_extract, tuple_extract, and
|
|
// unchecked_bitwise_cast instructions) taking over ownership of the original
|
|
// value. Without additional changes.
|
|
//
|
|
// For example, for a sequence of element_addr projections could be
|
|
// transformed into a sequence of destructure instructions, followed by a
|
|
// sequence of structure instructions where all the original values are
|
|
// kept in place but the taken value is "knocked out" and replaced with
|
|
// undef. The running value would then be set to the newly structed
|
|
// "knockout" value.
|
|
//
|
|
// Alternatively, a new copy of the running value could be created and a new
|
|
// set of destroys placed after its last uses.
|
|
involvesUntakableProjection = true;
|
|
|
|
// Recursively search for other (non-)loads in the instruction's uses.
|
|
auto *svi = cast<SingleValueInstruction>(load);
|
|
for (auto *use : svi->getUses()) {
|
|
SILInstruction *user = use->getUser();
|
|
if (user->getParent() != singleBlock)
|
|
singleBlock = nullptr;
|
|
|
|
if (!isAddressForLoad(user, singleBlock, involvesUntakableProjection))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if \p I is a dead struct_element_addr or tuple_element_addr.
|
|
static bool isDeadAddrProjection(SILInstruction *inst) {
|
|
if (!isa<UncheckedAddrCastInst>(inst) && !isa<StructElementAddrInst>(inst) &&
|
|
!isa<TupleElementAddrInst>(inst))
|
|
return false;
|
|
|
|
// Recursively search for uses which are dead themselves.
|
|
for (auto UI : cast<SingleValueInstruction>(inst)->getUses()) {
|
|
SILInstruction *II = UI->getUser();
|
|
if (!isDeadAddrProjection(II))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if this \p def is captured.
|
|
/// Sets \p inSingleBlock to true if all uses of \p def are in a single block.
|
|
static bool isCaptured(SILValue def, bool *inSingleBlock) {
|
|
SILBasicBlock *singleBlock = def->getParentBlock();
|
|
|
|
// For all users of the def
|
|
for (auto *use : def->getUses()) {
|
|
SILInstruction *user = use->getUser();
|
|
|
|
if (user->getParent() != singleBlock)
|
|
singleBlock = nullptr;
|
|
|
|
// Loads are okay.
|
|
bool involvesUntakableProjection = false;
|
|
if (isAddressForLoad(user, singleBlock, involvesUntakableProjection))
|
|
continue;
|
|
|
|
// We can store into an AllocStack (but not the pointer).
|
|
if (auto *si = dyn_cast<StoreInst>(user))
|
|
if (si->getDest() == def)
|
|
continue;
|
|
|
|
if (auto *sbi = dyn_cast<StoreBorrowInst>(user)) {
|
|
if (sbi->getDest() == def) {
|
|
if (isCaptured(sbi, inSingleBlock)) {
|
|
return true;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Deallocation is also okay, as are DebugValue w/ address value. We will
|
|
// promote the latter into normal DebugValue.
|
|
if (isa<DeallocStackInst>(user) || DebugValueInst::hasAddrVal(user))
|
|
continue;
|
|
|
|
if (isa<EndBorrowInst>(user))
|
|
continue;
|
|
|
|
// Destroys of loadable types can be rewritten as releases, so
|
|
// they are fine.
|
|
if (auto *dai = dyn_cast<DestroyAddrInst>(user))
|
|
if (dai->getOperand()->getType().isLoadable(*dai->getFunction()))
|
|
continue;
|
|
|
|
// Other instructions are assumed to capture the AllocStack.
|
|
LLVM_DEBUG(llvm::dbgs() << "*** AllocStack is captured by: " << *user);
|
|
return true;
|
|
}
|
|
|
|
// None of the users capture the AllocStack.
|
|
*inSingleBlock = (singleBlock != nullptr);
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if the \p def is only stored into.
|
|
static bool isWriteOnlyAllocation(SILValue def) {
|
|
assert(isa<AllocStackInst>(def) || isa<StoreBorrowInst>(def));
|
|
|
|
// For all users of the def:
|
|
for (auto *use : def->getUses()) {
|
|
SILInstruction *user = use->getUser();
|
|
|
|
// It is okay to store into the AllocStack.
|
|
if (auto *si = dyn_cast<StoreInst>(user))
|
|
if (!isa<AllocStackInst>(si->getSrc()))
|
|
continue;
|
|
|
|
if (auto *sbi = dyn_cast<StoreBorrowInst>(user)) {
|
|
// Since all uses of the alloc_stack will be via store_borrow, check if
|
|
// there are any non-writes from the store_borrow location.
|
|
if (!isWriteOnlyAllocation(sbi)) {
|
|
return false;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Deallocation is also okay.
|
|
if (isa<DeallocStackInst>(user))
|
|
continue;
|
|
|
|
if (isa<EndBorrowInst>(user))
|
|
continue;
|
|
|
|
// If we haven't already promoted the AllocStack, we may see
|
|
// DebugValue uses.
|
|
if (DebugValueInst::hasAddrVal(user))
|
|
continue;
|
|
|
|
if (isDeadAddrProjection(user))
|
|
continue;
|
|
|
|
// Can't do anything else with it.
|
|
LLVM_DEBUG(llvm::dbgs() << "*** AllocStack has non-write use: " << *user);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
replaceLoad(SILInstruction *inst, SILValue newValue, AllocStackInst *asi,
|
|
SILBuilderContext &ctx, InstructionDeleter &deleter,
|
|
SmallVectorImpl<SILInstruction *> &instructionsToDelete) {
|
|
assert(isa<LoadInst>(inst) || isa<LoadBorrowInst>(inst));
|
|
ProjectionPath projections(newValue->getType());
|
|
SILValue op = inst->getOperand(0);
|
|
SILBuilderWithScope builder(inst, ctx);
|
|
SILOptScope scope;
|
|
|
|
while (op != asi) {
|
|
assert(isa<UncheckedAddrCastInst>(op) || isa<StructElementAddrInst>(op) ||
|
|
isa<TupleElementAddrInst>(op) ||
|
|
isa<StoreBorrowInst>(op) &&
|
|
"found instruction that should have been skipped in "
|
|
"isLoadFromStack");
|
|
if (auto *sbi = dyn_cast<StoreBorrowInst>(op)) {
|
|
op = sbi->getDest();
|
|
continue;
|
|
}
|
|
auto *projInst = cast<SingleValueInstruction>(op);
|
|
projections.push_back(Projection(projInst));
|
|
op = projInst->getOperand(0);
|
|
}
|
|
|
|
for (const auto &proj : llvm::reverse(projections)) {
|
|
assert(proj.getKind() == ProjectionKind::BitwiseCast ||
|
|
proj.getKind() == ProjectionKind::Struct ||
|
|
proj.getKind() == ProjectionKind::Tuple);
|
|
|
|
// struct_extract and tuple_extract expect guaranteed operand ownership
|
|
// non-trivial RunningVal is owned. Insert borrow operation to convert them
|
|
// to guaranteed!
|
|
if (proj.getKind() == ProjectionKind::Struct ||
|
|
proj.getKind() == ProjectionKind::Tuple) {
|
|
if (auto opVal = scope.borrowValue(inst, newValue)) {
|
|
assert(*opVal != newValue &&
|
|
"Valid value should be different from input value");
|
|
newValue = *opVal;
|
|
}
|
|
}
|
|
newValue =
|
|
proj.createObjectProjection(builder, inst->getLoc(), newValue).get();
|
|
}
|
|
|
|
op = inst->getOperand(0);
|
|
|
|
if (auto *lbi = dyn_cast<LoadBorrowInst>(inst)) {
|
|
if (lexicalLifetimeEnsured(asi) &&
|
|
newValue->getOwnershipKind() == OwnershipKind::Guaranteed) {
|
|
SmallVector<SILInstruction *, 4> endBorrows;
|
|
for (auto *ebi : lbi->getUsersOfType<EndBorrowInst>()) {
|
|
endBorrows.push_back(ebi);
|
|
}
|
|
for (auto *ebi : endBorrows) {
|
|
prepareForDeletion(ebi, instructionsToDelete);
|
|
}
|
|
lbi->replaceAllUsesWith(newValue);
|
|
} else {
|
|
auto *borrow = SILBuilderWithScope(lbi, ctx).createBeginBorrow(
|
|
lbi->getLoc(), newValue, asi->isLexical());
|
|
lbi->replaceAllUsesWith(borrow);
|
|
}
|
|
} else {
|
|
auto *li = cast<LoadInst>(inst);
|
|
// Replace users of the loaded value with `newValue`
|
|
// If we have a load [copy], replace the users with copy_value of `newValue`
|
|
if (li->getOwnershipQualifier() == LoadOwnershipQualifier::Copy) {
|
|
li->replaceAllUsesWith(builder.createCopyValue(li->getLoc(), newValue));
|
|
} else {
|
|
li->replaceAllUsesWith(newValue);
|
|
}
|
|
}
|
|
|
|
// Pop the scope so that we emit cleanups.
|
|
std::move(scope).popAtEndOfScope(&*builder.getInsertionPoint());
|
|
|
|
// Delete the load
|
|
prepareForDeletion(inst, instructionsToDelete);
|
|
|
|
while (op != asi && op->use_empty()) {
|
|
assert(isa<UncheckedAddrCastInst>(op) || isa<StructElementAddrInst>(op) ||
|
|
isa<TupleElementAddrInst>(op) || isa<StoreBorrowInst>(op));
|
|
if (auto *sbi = dyn_cast<StoreBorrowInst>(op)) {
|
|
SILValue next = sbi->getDest();
|
|
deleter.forceDelete(sbi);
|
|
op = next;
|
|
continue;
|
|
}
|
|
auto *inst = cast<SingleValueInstruction>(op);
|
|
SILValue next = inst->getOperand(0);
|
|
deleter.forceDelete(inst);
|
|
op = next;
|
|
}
|
|
}
|
|
|
|
/// Instantiate the specified empty type by recursively tupling and structing
|
|
/// the empty types aggregated together at each level.
|
|
static SILValue createValueForEmptyType(SILType ty,
|
|
SILInstruction *insertionPoint,
|
|
SILBuilderContext &ctx) {
|
|
auto *function = insertionPoint->getFunction();
|
|
assert(ty.isEmpty(*function));
|
|
if (auto tupleTy = ty.getAs<TupleType>()) {
|
|
SmallVector<SILValue, 4> elements;
|
|
for (unsigned idx : range(tupleTy->getNumElements())) {
|
|
SILType elementTy = ty.getTupleElementType(idx);
|
|
auto element = createValueForEmptyType(elementTy, insertionPoint, ctx);
|
|
elements.push_back(element);
|
|
}
|
|
SILBuilderWithScope builder(insertionPoint, ctx);
|
|
return builder.createTuple(insertionPoint->getLoc(), ty, elements);
|
|
} else if (auto *decl = ty.getStructOrBoundGenericStruct()) {
|
|
TypeExpansionContext tec = *function;
|
|
auto &module = function->getModule();
|
|
if (decl->isResilient(tec.getContext()->getParentModule(),
|
|
tec.getResilienceExpansion())) {
|
|
llvm::errs() << "Attempting to create value for illegal empty type:\n";
|
|
ty.print(llvm::errs());
|
|
llvm::report_fatal_error("illegal empty type: resilient struct");
|
|
}
|
|
SmallVector<SILValue, 4> elements;
|
|
for (auto *field : decl->getStoredProperties()) {
|
|
auto elementTy = ty.getFieldType(field, module, tec);
|
|
auto element = createValueForEmptyType(elementTy, insertionPoint, ctx);
|
|
elements.push_back(element);
|
|
}
|
|
SILBuilderWithScope builder(insertionPoint, ctx);
|
|
return builder.createStruct(insertionPoint->getLoc(), ty, elements);
|
|
}
|
|
llvm::errs() << "Attempting to create value for illegal empty type:\n";
|
|
ty.print(llvm::errs());
|
|
llvm::report_fatal_error("illegal empty type: neither tuple nor struct.");
|
|
}
|
|
|
|
/// Whether lexical lifetimes should be added for the values stored into the
|
|
/// alloc_stack.
|
|
static bool lexicalLifetimeEnsured(AllocStackInst *asi) {
|
|
return asi->getFunction()->hasOwnership() &&
|
|
asi->getFunction()
|
|
->getModule()
|
|
.getASTContext()
|
|
.SILOpts.LexicalLifetimes == LexicalLifetimesOption::On &&
|
|
asi->isLexical() &&
|
|
!asi->getElementType().isTrivial(*asi->getFunction());
|
|
}
|
|
|
|
static bool isGuaranteedLexicalValue(SILValue src) {
|
|
return src->getOwnershipKind() == OwnershipKind::Guaranteed &&
|
|
src->isLexical();
|
|
}
|
|
|
|
/// Returns true if we have enough information to end the lifetime.
|
|
static bool canEndLexicalLifetime(LiveValues values) {
|
|
return values.canEndLexicalLifetime();
|
|
}
|
|
|
|
static SILValue getLexicalValueForStore(SILInstruction *inst,
|
|
AllocStackInst *asi) {
|
|
assert(isa<StoreInst>(inst) || isa<StoreBorrowInst>(inst));
|
|
|
|
SILValue stored = inst->getOperand(CopyLikeInstruction::Src);
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Found Store def " << stored);
|
|
|
|
if (!lexicalLifetimeEnsured(asi)) {
|
|
return SILValue();
|
|
}
|
|
if (isa<StoreBorrowInst>(inst)) {
|
|
if (isGuaranteedLexicalValue(stored)) {
|
|
return SILValue();
|
|
}
|
|
auto borrow = cast<BeginBorrowInst>(inst->getNextInstruction());
|
|
return borrow;
|
|
}
|
|
auto move = cast<MoveValueInst>(inst->getNextInstruction());
|
|
return move;
|
|
}
|
|
|
|
/// Begin a lexical borrow scope for the value stored into the provided
|
|
/// StoreInst after that instruction.
|
|
///
|
|
/// The beginning of the scope looks like
|
|
///
|
|
/// %lifetime = move_value [lexical] %original
|
|
///
|
|
/// Because the value was consumed by the original store instruction, it can
|
|
/// be rewritten to be consumed by a lexical move_value.
|
|
static StorageStateTracking<LiveValues>
|
|
beginOwnedLexicalLifetimeAfterStore(AllocStackInst *asi, StoreInst *inst) {
|
|
assert(lexicalLifetimeEnsured(asi));
|
|
SILValue stored = inst->getOperand(CopyLikeInstruction::Src);
|
|
SILLocation loc = RegularLocation::getAutoGeneratedLocation(inst->getLoc());
|
|
|
|
MoveValueInst *mvi = nullptr;
|
|
SILBuilderWithScope::insertAfter(inst, [&](SILBuilder &builder) {
|
|
mvi = builder.createMoveValue(loc, stored, /*isLexical*/ true);
|
|
});
|
|
StorageStateTracking<LiveValues> vals = {LiveValues::forOwned(stored, mvi),
|
|
/*isStorageValid=*/true};
|
|
return vals;
|
|
}
|
|
|
|
/// Begin a lexical borrow scope for the value stored via the provided
|
|
/// StoreBorrowInst after that instruction. Only do so if the stored value is
|
|
/// non-lexical.
|
|
static StorageStateTracking<LiveValues>
|
|
beginGuaranteedLexicalLifetimeAfterStore(AllocStackInst *asi,
|
|
StoreBorrowInst *inst) {
|
|
assert(lexicalLifetimeEnsured(asi));
|
|
SILValue stored = inst->getOperand(CopyLikeInstruction::Src);
|
|
SILLocation loc = RegularLocation::getAutoGeneratedLocation(inst->getLoc());
|
|
|
|
if (isGuaranteedLexicalValue(stored)) {
|
|
return {LiveValues::forGuaranteed(stored, {}), /*isStorageValid*/ true};
|
|
}
|
|
auto *borrow = SILBuilderWithScope(inst->getNextInstruction())
|
|
.createBeginBorrow(loc, stored, /*isLexical*/ true);
|
|
return {LiveValues::forGuaranteed(stored, borrow), /*isStorageValid*/ true};
|
|
}
|
|
|
|
/// End the lexical borrow scope for an @owned stored value described by the
|
|
/// provided LiveValues struct before the specified instruction.
|
|
///
|
|
/// The end of the scope looks like
|
|
///
|
|
/// destroy_value %lifetime
|
|
///
|
|
/// This instruction corresponds to the following instructions that begin a
|
|
/// lexical borrow scope:
|
|
///
|
|
/// %lifetime = move_value [lexical] %original
|
|
///
|
|
/// However, no intervention is required to explicitly end the lifetime because
|
|
/// it will already have been ended naturally by destroy_addrs (or equivalent)
|
|
/// of the alloc_stack.
|
|
static void endOwnedLexicalLifetimeBeforeInst(AllocStackInst *asi,
|
|
SILInstruction *beforeInstruction,
|
|
SILBuilderContext &ctx,
|
|
LiveValues::Owned values) {
|
|
assert(lexicalLifetimeEnsured(asi));
|
|
assert(beforeInstruction);
|
|
}
|
|
|
|
/// End the lexical borrow scope for an @guaranteed stored value described by
|
|
/// the provided LiveValues struct before the specified instruction.
|
|
static void endGuaranteedLexicalLifetimeBeforeInst(
|
|
AllocStackInst *asi, SILInstruction *beforeInstruction,
|
|
SILBuilderContext &ctx, LiveValues::Guaranteed values) {
|
|
assert(lexicalLifetimeEnsured(asi));
|
|
assert(beforeInstruction);
|
|
assert(values.borrow);
|
|
|
|
SILBuilderWithScope builder(beforeInstruction);
|
|
builder.createEndBorrow(RegularLocation::getAutoGeneratedLocation(),
|
|
values.borrow);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Single Stack Allocation Promotion
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// Promotes a single AllocStackInst into registers..
|
|
class StackAllocationPromoter {
|
|
using BlockToInstMap = llvm::DenseMap<SILBasicBlock *, SILInstruction *>;
|
|
|
|
// Use a priority queue keyed on dominator tree level so that inserted nodes
|
|
// are handled from the bottom of the dom tree upwards.
|
|
using DomTreeNodePair = std::pair<DomTreeNode *, unsigned>;
|
|
using NodePriorityQueue =
|
|
std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
|
|
llvm::less_second>;
|
|
|
|
/// The AllocStackInst that we are handling.
|
|
AllocStackInst *asi;
|
|
|
|
/// The unique deallocation instruction. This value could be NULL if there are
|
|
/// multiple deallocations.
|
|
DeallocStackInst *dsi;
|
|
|
|
/// Dominator info.
|
|
DominanceInfo *domInfo;
|
|
|
|
/// Map from dominator tree node to tree level.
|
|
DomTreeLevelMap &domTreeLevels;
|
|
|
|
/// The SIL builder used when creating new instructions during register
|
|
/// promotion.
|
|
SILBuilderContext &ctx;
|
|
|
|
InstructionDeleter &deleter;
|
|
|
|
/// Instructions that could not be deleted immediately with forceDelete until
|
|
/// StackAllocationPromoter finishes its run.
|
|
///
|
|
/// There are two reasons why an instruction might not be deleted:
|
|
/// (1) new instructions are inserted before or after it
|
|
/// (2) it ensures that an instruction remains used, preventing it from being
|
|
/// deleted
|
|
SmallVectorImpl<SILInstruction *> &instructionsToDelete;
|
|
|
|
/// The last instruction in each block that initializes the storage that is
|
|
/// not succeeded by an instruction that deinitializes it.
|
|
///
|
|
/// The live-out values for every block can be derived from these.
|
|
///
|
|
/// This is either a StoreInst or a StoreBorrowInst.
|
|
///
|
|
/// If the alloc_stack is non-lexical, the only live-out value is the source
|
|
/// operand of the instruction.
|
|
///
|
|
/// If the alloc_stack is lexical but the stored value is already lexical, no
|
|
/// additional lexical lifetime is necessary and as an optimization can be
|
|
/// omitted. In that case, the only live-out value is the source operand of
|
|
/// the instruction. This optimization has been implemented for guaranteed
|
|
/// alloc_stacks.
|
|
///
|
|
/// If the alloc_stack is lexical and the stored value is not already lexical,
|
|
/// a lexical lifetime must be introduced that matches the duration in which
|
|
/// the value remains in the alloc_stack:
|
|
/// - For owned alloc_stacks, a move_value [lexical] of the stored value is
|
|
/// created. That move_value is the instruction after the store, and it is
|
|
/// the other running value.
|
|
/// - For guaranteed alloc_stacks, a begin_borrow [lexical] of the
|
|
/// store_borrow'd value is created. That begin_borrow is the instruction
|
|
/// after the store_borrow, and it is the other running value.
|
|
BlockToInstMap initializationPoints;
|
|
|
|
/// The first instruction in each block that deinitializes the storage that is
|
|
/// not preceded by an instruction that initializes it.
|
|
///
|
|
/// That includes:
|
|
/// store
|
|
/// destroy_addr
|
|
/// load [take]
|
|
/// Or
|
|
/// end_borrow
|
|
/// Ending lexical lifetimes before these instructions is one way that the
|
|
/// cross-block lexical lifetimes of initializationPoints can be ended in
|
|
/// StackAllocationPromoter::endLexicalLifetime.
|
|
BlockToInstMap deinitializationPoints;
|
|
|
|
public:
|
|
/// C'tor.
|
|
StackAllocationPromoter(
|
|
AllocStackInst *inputASI, DominanceInfo *inputDomInfo,
|
|
DomTreeLevelMap &inputDomTreeLevels, SILBuilderContext &inputCtx,
|
|
InstructionDeleter &deleter,
|
|
SmallVectorImpl<SILInstruction *> &instructionsToDelete)
|
|
: asi(inputASI), dsi(nullptr), domInfo(inputDomInfo),
|
|
domTreeLevels(inputDomTreeLevels), ctx(inputCtx), deleter(deleter),
|
|
instructionsToDelete(instructionsToDelete) {
|
|
// Scan the users in search of a deallocation instruction.
|
|
for (auto *use : asi->getUses()) {
|
|
if (auto *foundDealloc = dyn_cast<DeallocStackInst>(use->getUser())) {
|
|
// Don't record multiple dealloc instructions.
|
|
if (dsi) {
|
|
dsi = nullptr;
|
|
break;
|
|
}
|
|
// Record the deallocation instruction.
|
|
dsi = foundDealloc;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Promote the Allocation.
|
|
void run(BasicBlockSetVector &livePhiBlocks);
|
|
|
|
private:
|
|
/// Promote AllocStacks into SSA.
|
|
void promoteAllocationToPhi(BasicBlockSetVector &livePhiBlocks);
|
|
|
|
/// Replace the dummy nodes with new block arguments.
|
|
void addBlockArguments(BasicBlockSetVector &phiBlocks);
|
|
|
|
/// Check if \p phi is a proactively added phi by SILMem2Reg
|
|
bool isProactivePhi(SILPhiArgument *phi,
|
|
const BasicBlockSetVector &phiBlocks);
|
|
|
|
/// Check if \p proactivePhi is live.
|
|
bool isNecessaryProactivePhi(SILPhiArgument *proactivePhi,
|
|
const BasicBlockSetVector &phiBlocks);
|
|
|
|
/// Given a \p proactivePhi that is live, backward propagate liveness to
|
|
/// other proactivePhis.
|
|
void propagateLiveness(SILPhiArgument *proactivePhi,
|
|
const BasicBlockSetVector &phiBlocks,
|
|
SmallPtrSetImpl<SILPhiArgument *> &livePhis);
|
|
|
|
/// End the lexical borrow scope that is introduced for lexical alloc_stack
|
|
/// instructions.
|
|
void endLexicalLifetime(BasicBlockSetVector &phiBlocks);
|
|
|
|
/// Fix all of the branch instructions and the uses to use
|
|
/// the AllocStack definitions (which include stores and Phis).
|
|
void fixBranchesAndUses(BasicBlockSetVector &blocks,
|
|
BasicBlockSetVector &liveBlocks);
|
|
|
|
/// update the branch instructions with the new Phi argument.
|
|
/// The blocks in \p PhiBlocks are blocks that define a value, \p Dest is
|
|
/// the branch destination, and \p Pred is the predecessors who's branch we
|
|
/// modify.
|
|
void fixPhiPredBlock(BasicBlockSetVector &phiBlocks, SILBasicBlock *dest,
|
|
SILBasicBlock *pred);
|
|
|
|
/// Get the values for this AllocStack variable that are flowing out of
|
|
/// StartBB.
|
|
llvm::Optional<LiveValues> getLiveOutValues(BasicBlockSetVector &phiBlocks,
|
|
SILBasicBlock *startBlock);
|
|
|
|
/// Get the values for this AllocStack variable that are flowing out of
|
|
/// StartBB or undef if there are none.
|
|
LiveValues getEffectiveLiveOutValues(BasicBlockSetVector &phiBlocks,
|
|
SILBasicBlock *startBlock);
|
|
|
|
/// Get the values for this AllocStack variable that are flowing into block.
|
|
llvm::Optional<LiveValues> getLiveInValues(BasicBlockSetVector &phiBlocks,
|
|
SILBasicBlock *block);
|
|
|
|
/// Get the values for this AllocStack variable that are flowing into block or
|
|
/// undef if there are none.
|
|
LiveValues getEffectiveLiveInValues(BasicBlockSetVector &phiBlocks,
|
|
SILBasicBlock *block);
|
|
|
|
/// Prune AllocStacks usage in the function. Scan the function
|
|
/// and remove in-block usage of the AllocStack. Leave only the first
|
|
/// load and the last store.
|
|
void pruneAllocStackUsage();
|
|
|
|
/// Promote all of the AllocStacks in a single basic block in one
|
|
/// linear scan. This function deletes all of the loads and stores except
|
|
/// for the first load and the last store.
|
|
/// \returns the last StoreInst found, whose storage was not subsequently
|
|
/// deinitialized
|
|
SILInstruction *promoteAllocationInBlock(SILBasicBlock *block);
|
|
};
|
|
|
|
} // end of namespace
|
|
|
|
SILInstruction *StackAllocationPromoter::promoteAllocationInBlock(
|
|
SILBasicBlock *blockPromotingWithin) {
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Promoting ASI in block: " << *asi);
|
|
|
|
// RunningVal is the current value in the stack location.
|
|
// We don't know the value of the alloca until we find the first store.
|
|
//
|
|
// States:
|
|
// - None: no values have been encountered within this block
|
|
// - Some + !isStorageValid: a value was encountered but is no longer stored--
|
|
// it has been destroy_addr'd, etc
|
|
// - Some + isStorageValid: a value was encountered and is currently stored
|
|
llvm::Optional<StorageStateTracking<LiveValues>> runningVals;
|
|
// The most recent StoreInst or StoreBorrowInst that encountered while
|
|
// iterating over the block. The final value will be returned to the caller
|
|
// which will use it to determine the live-out value of the block.
|
|
SILInstruction *lastStoreInst = nullptr;
|
|
|
|
// For all instructions in the block.
|
|
for (auto bbi = blockPromotingWithin->begin(),
|
|
bbe = blockPromotingWithin->end();
|
|
bbi != bbe;) {
|
|
SILInstruction *inst = &*bbi;
|
|
++bbi;
|
|
|
|
if (isLoadFromStack(inst, asi)) {
|
|
assert(!runningVals || runningVals->isStorageValid);
|
|
auto *li = dyn_cast<LoadInst>(inst);
|
|
if (li && li->getOwnershipQualifier() == LoadOwnershipQualifier::Take) {
|
|
if (lexicalLifetimeEnsured(asi)) {
|
|
// End the lexical lifetime at a load [take]. The storage is no
|
|
// longer keeping the value alive.
|
|
if (runningVals && canEndLexicalLifetime(runningVals->value)) {
|
|
// End it right now if we have enough information.
|
|
endOwnedLexicalLifetimeBeforeInst(asi, /*beforeInstruction=*/li,
|
|
ctx,
|
|
runningVals->value.getOwned());
|
|
} else {
|
|
// If we don't have enough information, end it endLexicalLifetime.
|
|
assert(!deinitializationPoints[blockPromotingWithin]);
|
|
deinitializationPoints[blockPromotingWithin] = li;
|
|
}
|
|
}
|
|
if (runningVals)
|
|
runningVals->isStorageValid = false;
|
|
}
|
|
|
|
if (runningVals) {
|
|
// If we are loading from the AllocStackInst and we already know the
|
|
// content of the Alloca then use it.
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Promoting load: " << *inst);
|
|
replaceLoad(inst, runningVals->value.replacement(asi, inst), asi, ctx,
|
|
deleter, instructionsToDelete);
|
|
++NumInstRemoved;
|
|
} else if (li && li->getOperand() == asi &&
|
|
li->getOwnershipQualifier() != LoadOwnershipQualifier::Copy) {
|
|
// If we don't know the content of the AllocStack then the loaded
|
|
// value *is* the new value;
|
|
// Don't use result of load [copy] as a RunningVal, it necessitates
|
|
// additional logic for cleanup of consuming instructions of the result.
|
|
// StackAllocationPromoter::fixBranchesAndUses will later handle it.
|
|
LLVM_DEBUG(llvm::dbgs() << "*** First load: " << *li);
|
|
runningVals = {LiveValues::toReplace(asi, /*replacement=*/li),
|
|
/*isStorageValid=*/true};
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Remove stores and record the value that we are saving as the running
|
|
// value.
|
|
if (auto *si = dyn_cast<StoreInst>(inst)) {
|
|
if (si->getDest() != asi)
|
|
continue;
|
|
|
|
// If we see a store [assign], always convert it to a store [init]. This
|
|
// simplifies further processing.
|
|
if (si->getOwnershipQualifier() == StoreOwnershipQualifier::Assign) {
|
|
if (runningVals) {
|
|
assert(runningVals->isStorageValid);
|
|
SILBuilderWithScope(si, ctx).createDestroyValue(
|
|
si->getLoc(), runningVals->value.replacement(asi, si));
|
|
} else {
|
|
SILBuilderWithScope localBuilder(si, ctx);
|
|
auto *newLoad = localBuilder.createLoad(si->getLoc(), asi,
|
|
LoadOwnershipQualifier::Take);
|
|
localBuilder.createDestroyValue(si->getLoc(), newLoad);
|
|
if (lexicalLifetimeEnsured(asi)) {
|
|
assert(!deinitializationPoints[blockPromotingWithin]);
|
|
deinitializationPoints[blockPromotingWithin] = si;
|
|
}
|
|
}
|
|
si->setOwnershipQualifier(StoreOwnershipQualifier::Init);
|
|
}
|
|
|
|
// If we met a store before this one, delete it.
|
|
if (lastStoreInst) {
|
|
assert(cast<StoreInst>(lastStoreInst)->getOwnershipQualifier() !=
|
|
StoreOwnershipQualifier::Assign &&
|
|
"store [assign] to the stack location should have been "
|
|
"transformed to a store [init]");
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "*** Removing redundant store: " << lastStoreInst);
|
|
++NumInstRemoved;
|
|
prepareForDeletion(lastStoreInst, instructionsToDelete);
|
|
}
|
|
|
|
auto oldRunningVals = runningVals;
|
|
// The stored value is the new running value.
|
|
runningVals = {LiveValues::toReplace(asi, /*replacement=*/si->getSrc()),
|
|
/*isStorageValid=*/true};
|
|
// The current store is now the lastStoreInst (until we see
|
|
// another).
|
|
lastStoreInst = si;
|
|
if (lexicalLifetimeEnsured(asi)) {
|
|
if (oldRunningVals && oldRunningVals->isStorageValid &&
|
|
canEndLexicalLifetime(oldRunningVals->value)) {
|
|
endOwnedLexicalLifetimeBeforeInst(asi, /*beforeInstruction=*/si, ctx,
|
|
oldRunningVals->value.getOwned());
|
|
}
|
|
runningVals = beginOwnedLexicalLifetimeAfterStore(asi, si);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (auto *sbi = dyn_cast<StoreBorrowInst>(inst)) {
|
|
if (sbi->getDest() != asi)
|
|
continue;
|
|
|
|
// If we met a store before this one, delete it.
|
|
if (lastStoreInst) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "*** Removing redundant store: " << lastStoreInst);
|
|
++NumInstRemoved;
|
|
prepareForDeletion(lastStoreInst, instructionsToDelete);
|
|
}
|
|
|
|
// The stored value is the new running value.
|
|
runningVals = {LiveValues::toReplace(asi, sbi->getSrc()),
|
|
/*isStorageValid=*/true};
|
|
// The current store is now the lastStoreInst.
|
|
lastStoreInst = sbi;
|
|
if (lexicalLifetimeEnsured(asi)) {
|
|
runningVals = beginGuaranteedLexicalLifetimeAfterStore(asi, sbi);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// End the lexical lifetime of the store_borrow source.
|
|
if (auto *ebi = dyn_cast<EndBorrowInst>(inst)) {
|
|
if (!lexicalLifetimeEnsured(asi)) {
|
|
continue;
|
|
}
|
|
auto *sbi = dyn_cast<StoreBorrowInst>(ebi->getOperand());
|
|
if (!sbi) {
|
|
continue;
|
|
}
|
|
if (sbi->getDest() != asi) {
|
|
continue;
|
|
}
|
|
assert(!deinitializationPoints[blockPromotingWithin]);
|
|
deinitializationPoints[blockPromotingWithin] = inst;
|
|
if (!runningVals.has_value()) {
|
|
continue;
|
|
}
|
|
if (!runningVals->value.isGuaranteed()) {
|
|
continue;
|
|
}
|
|
if (sbi->getSrc() != runningVals->value.getGuaranteed().stored) {
|
|
continue;
|
|
}
|
|
// Mark storage as invalid and mark end_borrow as a deinit point.
|
|
runningVals->isStorageValid = false;
|
|
if (!canEndLexicalLifetime(runningVals->value)) {
|
|
continue;
|
|
}
|
|
endGuaranteedLexicalLifetimeBeforeInst(
|
|
asi, ebi->getNextInstruction(), ctx,
|
|
runningVals->value.getGuaranteed());
|
|
continue;
|
|
}
|
|
|
|
// Replace debug_value w/ address value with debug_value of
|
|
// the promoted value.
|
|
// if we have a valid value to use at this point. Otherwise we'll
|
|
// promote this when we deal with hooking up phis.
|
|
if (auto *dvi = DebugValueInst::hasAddrVal(inst)) {
|
|
if (isDebugValueOfAllocStack(dvi, asi) && runningVals)
|
|
promoteDebugValueAddr(dvi, runningVals->value.replacement(asi, dvi),
|
|
ctx, deleter);
|
|
continue;
|
|
}
|
|
|
|
// Replace destroys with a release of the value.
|
|
if (auto *dai = dyn_cast<DestroyAddrInst>(inst)) {
|
|
if (dai->getOperand() != asi) {
|
|
continue;
|
|
}
|
|
if (runningVals) {
|
|
replaceDestroy(dai, runningVals->value.replacement(asi, dai), ctx,
|
|
deleter, instructionsToDelete);
|
|
if (lexicalLifetimeEnsured(asi)) {
|
|
endOwnedLexicalLifetimeBeforeInst(asi, /*beforeInstruction=*/dai, ctx,
|
|
runningVals->value.getOwned());
|
|
}
|
|
runningVals->isStorageValid = false;
|
|
} else {
|
|
assert(!deinitializationPoints[blockPromotingWithin]);
|
|
deinitializationPoints[blockPromotingWithin] = dai;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Stop on deallocation.
|
|
if (auto *dsi = dyn_cast<DeallocStackInst>(inst)) {
|
|
if (dsi->getOperand() == asi)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (lastStoreInst && runningVals->isStorageValid) {
|
|
assert((isa<StoreBorrowInst>(lastStoreInst) ||
|
|
(cast<StoreInst>(lastStoreInst)->getOwnershipQualifier() !=
|
|
StoreOwnershipQualifier::Assign)) &&
|
|
"store [assign] to the stack location should have been "
|
|
"transformed to a store [init]");
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "*** Finished promotion. Last store: " << lastStoreInst);
|
|
return lastStoreInst;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Finished promotion with no stores.\n");
|
|
return nullptr;
|
|
}
|
|
|
|
void StackAllocationPromoter::addBlockArguments(
|
|
BasicBlockSetVector &phiBlocks) {
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Adding new block arguments.\n");
|
|
|
|
for (auto *block : phiBlocks) {
|
|
// The stored value or its lexical move.
|
|
block->createPhiArgument(asi->getElementType(), OwnershipKind::Owned);
|
|
}
|
|
}
|
|
|
|
llvm::Optional<LiveValues>
|
|
StackAllocationPromoter::getLiveOutValues(BasicBlockSetVector &phiBlocks,
|
|
SILBasicBlock *startBlock) {
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Searching for a value definition.\n");
|
|
// Walk the Dom tree in search of a defining value:
|
|
for (DomTreeNode *domNode = domInfo->getNode(startBlock); domNode;
|
|
domNode = domNode->getIDom()) {
|
|
SILBasicBlock *domBlock = domNode->getBlock();
|
|
|
|
// If there is a store (that must come after the phi), use its value.
|
|
BlockToInstMap::iterator it = initializationPoints.find(domBlock);
|
|
if (it != initializationPoints.end()) {
|
|
auto *inst = it->second;
|
|
auto stored = inst->getOperand(CopyLikeInstruction::Src);
|
|
auto lexical = getLexicalValueForStore(inst, asi);
|
|
return LiveValues::forValues(stored, lexical);
|
|
}
|
|
|
|
// If there is a Phi definition in this block:
|
|
if (phiBlocks.contains(domBlock)) {
|
|
// Return the dummy instruction that represents the new value that we will
|
|
// add to the basic block.
|
|
SILValue argument =
|
|
domBlock->getArgument(domBlock->getNumArguments() - 1);
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Found a dummy Phi def " << *argument);
|
|
auto values = LiveValues::toReplace(asi, argument);
|
|
return values;
|
|
}
|
|
|
|
// Move to the next dominating block.
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Walking up the iDOM.\n");
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Could not find a Def. Using Undef.\n");
|
|
return llvm::None;
|
|
}
|
|
|
|
LiveValues StackAllocationPromoter::getEffectiveLiveOutValues(
|
|
BasicBlockSetVector &phiBlocks, SILBasicBlock *startBlock) {
|
|
if (auto values = getLiveOutValues(phiBlocks, startBlock)) {
|
|
return *values;
|
|
}
|
|
auto *undef = SILUndef::get(asi->getElementType(), *asi->getFunction());
|
|
return LiveValues::forOwned(undef, undef);
|
|
}
|
|
|
|
llvm::Optional<LiveValues>
|
|
StackAllocationPromoter::getLiveInValues(BasicBlockSetVector &phiBlocks,
|
|
SILBasicBlock *block) {
|
|
// First, check if there is a Phi value in the current block. We know that
|
|
// our loads happen before stores, so we need to first check for Phi nodes
|
|
// in the first block, but stores first in all other stores in the idom
|
|
// chain.
|
|
if (phiBlocks.contains(block)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Found a local Phi definition.\n");
|
|
SILValue argument = block->getArgument(block->getNumArguments() - 1);
|
|
auto values = LiveValues::toReplace(asi, argument);
|
|
return values;
|
|
}
|
|
|
|
if (block->pred_empty() || !domInfo->getNode(block))
|
|
return llvm::None;
|
|
|
|
// No phi for this value in this block means that the value flowing
|
|
// out of the immediate dominator reaches here.
|
|
DomTreeNode *iDom = domInfo->getNode(block)->getIDom();
|
|
assert(iDom &&
|
|
"Attempt to get live-in value for alloc_stack in entry block!");
|
|
|
|
return getLiveOutValues(phiBlocks, iDom->getBlock());
|
|
}
|
|
|
|
LiveValues StackAllocationPromoter::getEffectiveLiveInValues(
|
|
BasicBlockSetVector &phiBlocks, SILBasicBlock *block) {
|
|
if (auto values = getLiveInValues(phiBlocks, block)) {
|
|
return *values;
|
|
}
|
|
auto *undef = SILUndef::get(asi->getElementType(), *asi->getFunction());
|
|
// TODO: Add another kind of LiveValues for undef.
|
|
return LiveValues::forOwned(undef, undef);
|
|
}
|
|
|
|
void StackAllocationPromoter::fixPhiPredBlock(BasicBlockSetVector &phiBlocks,
|
|
SILBasicBlock *destBlock,
|
|
SILBasicBlock *predBlock) {
|
|
TermInst *ti = predBlock->getTerminator();
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Fixing the terminator " << *ti << ".\n");
|
|
|
|
LiveValues values = getEffectiveLiveOutValues(phiBlocks, predBlock);
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Found the definition: "
|
|
<< values.getStored());
|
|
|
|
SmallVector<SILValue> vals;
|
|
vals.push_back(values.replacement(asi, nullptr));
|
|
|
|
addArgumentsToBranch(vals, destBlock, ti);
|
|
deleter.forceDelete(ti);
|
|
}
|
|
|
|
bool StackAllocationPromoter::isProactivePhi(
|
|
SILPhiArgument *phi, const BasicBlockSetVector &phiBlocks) {
|
|
auto *phiBlock = phi->getParentBlock();
|
|
return phiBlocks.contains(phiBlock) &&
|
|
phi == phiBlock->getArgument(phiBlock->getNumArguments() - 1);
|
|
}
|
|
|
|
bool StackAllocationPromoter::isNecessaryProactivePhi(
|
|
SILPhiArgument *proactivePhi, const BasicBlockSetVector &phiBlocks) {
|
|
assert(isProactivePhi(proactivePhi, phiBlocks));
|
|
for (auto *use : proactivePhi->getUses()) {
|
|
auto *branch = dyn_cast<BranchInst>(use->getUser());
|
|
// A non-branch use is a necessary use
|
|
if (!branch)
|
|
return true;
|
|
auto *destBB = branch->getDestBB();
|
|
auto opNum = use->getOperandNumber();
|
|
// A phi has a necessary use if it is used as a branch op for a
|
|
// non-proactive phi
|
|
if (!phiBlocks.contains(destBB) || (opNum != branch->getNumArgs() - 1))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void StackAllocationPromoter::propagateLiveness(
|
|
SILPhiArgument *proactivePhi, const BasicBlockSetVector &phiBlocks,
|
|
SmallPtrSetImpl<SILPhiArgument *> &livePhis) {
|
|
assert(isProactivePhi(proactivePhi, phiBlocks));
|
|
if (livePhis.contains(proactivePhi))
|
|
return;
|
|
// If liveness has not been propagated, go over the incoming operands and mark
|
|
// any operand values that are proactivePhis as live
|
|
livePhis.insert(proactivePhi);
|
|
SmallVector<SILValue> incomingPhiVals;
|
|
proactivePhi->getIncomingPhiValues(incomingPhiVals);
|
|
for (auto &inVal : incomingPhiVals) {
|
|
auto *inPhi = dyn_cast<SILPhiArgument>(inVal);
|
|
if (!inPhi)
|
|
continue;
|
|
if (!isProactivePhi(inPhi, phiBlocks))
|
|
continue;
|
|
propagateLiveness(inPhi, phiBlocks, livePhis);
|
|
}
|
|
}
|
|
|
|
void StackAllocationPromoter::fixBranchesAndUses(
|
|
BasicBlockSetVector &phiBlocks, BasicBlockSetVector &phiBlocksOut) {
|
|
// First update uses of the value.
|
|
SmallVector<SILInstruction *, 4> collectedLoads;
|
|
// Collect all alloc_stack uses.
|
|
SmallVector<Operand *, 4> uses(asi->getUses());
|
|
|
|
// Collect uses of store_borrows to alloc_stack.
|
|
for (unsigned i = 0; i < uses.size(); i++) {
|
|
auto *use = uses[i];
|
|
if (auto *sbi = dyn_cast<StoreBorrowInst>(use->getUser())) {
|
|
for (auto *sbuse : sbi->getUses()) {
|
|
uses.push_back(sbuse);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto ui = uses.begin(), ue = uses.end(); ui != ue;) {
|
|
auto *user = (*ui)->getUser();
|
|
++ui;
|
|
bool removedUser = false;
|
|
|
|
collectedLoads.clear();
|
|
collectLoads(user, collectedLoads);
|
|
for (auto *li : collectedLoads) {
|
|
// If this block has no predecessors then nothing dominates it and
|
|
// the instruction is unreachable. If the instruction we're
|
|
// examining is a value, replace it with undef. Either way, delete
|
|
// the instruction and move on.
|
|
SILBasicBlock *loadBlock = li->getParent();
|
|
auto def = getEffectiveLiveInValues(phiBlocks, loadBlock);
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Replacing " << *li << " with Def "
|
|
<< def.replacement(asi, li));
|
|
|
|
// Replace the load with the definition that we found.
|
|
replaceLoad(li, def.replacement(asi, li), asi, ctx, deleter,
|
|
instructionsToDelete);
|
|
removedUser = true;
|
|
++NumInstRemoved;
|
|
}
|
|
|
|
if (removedUser)
|
|
continue;
|
|
|
|
// If this block has no predecessors then nothing dominates it and
|
|
// the instruction is unreachable. Delete the instruction and move
|
|
// on.
|
|
SILBasicBlock *userBlock = user->getParent();
|
|
|
|
if (auto *dvi = DebugValueInst::hasAddrVal(user)) {
|
|
// Replace debug_value w/ address-type value with
|
|
// a new debug_value w/ promoted value.
|
|
auto def = getEffectiveLiveInValues(phiBlocks, userBlock);
|
|
promoteDebugValueAddr(dvi, def.replacement(asi, dvi), ctx, deleter);
|
|
++NumInstRemoved;
|
|
continue;
|
|
}
|
|
|
|
// Replace destroys with a release of the value.
|
|
if (auto *dai = dyn_cast<DestroyAddrInst>(user)) {
|
|
auto def = getEffectiveLiveInValues(phiBlocks, userBlock);
|
|
replaceDestroy(dai, def.replacement(asi, dai), ctx, deleter,
|
|
instructionsToDelete);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Now that all of the uses are fixed we can fix the branches that point
|
|
// to the blocks with the added arguments.
|
|
// For each Block with a new Phi argument:
|
|
for (auto *block : phiBlocks) {
|
|
// Fix all predecessors.
|
|
for (auto pbbi = block->getPredecessorBlocks().begin(),
|
|
pbbe = block->getPredecessorBlocks().end();
|
|
pbbi != pbbe;) {
|
|
auto *predBlock = *pbbi;
|
|
++pbbi;
|
|
assert(predBlock && "Invalid block!");
|
|
fixPhiPredBlock(phiBlocks, block, predBlock);
|
|
}
|
|
}
|
|
|
|
// Fix ownership of proactively created non-trivial phis
|
|
if (asi->getFunction()->hasOwnership() &&
|
|
!asi->getType().isTrivial(*asi->getFunction())) {
|
|
SmallPtrSet<SILPhiArgument *, 4> livePhis;
|
|
|
|
for (auto *block : phiBlocks) {
|
|
auto *proactivePhi = cast<SILPhiArgument>(
|
|
block->getArgument(block->getNumArguments() - 1));
|
|
// First, check if the proactively added phi is necessary by looking at
|
|
// it's immediate uses.
|
|
if (isNecessaryProactivePhi(proactivePhi, phiBlocks)) {
|
|
// Backward propagate liveness to other dependent proactively added phis
|
|
propagateLiveness(proactivePhi, phiBlocks, livePhis);
|
|
}
|
|
}
|
|
// Go over all proactively added phis, and delete those that were not marked
|
|
// live above.
|
|
auto eraseLastPhiFromBlock = [](SILBasicBlock *block) {
|
|
auto *phi = cast<SILPhiArgument>(
|
|
block->getArgument(block->getNumArguments() - 1));
|
|
phi->replaceAllUsesWithUndef();
|
|
erasePhiArgument(block, block->getNumArguments() - 1,
|
|
/*cleanupDeadPhiOp*/ false);
|
|
};
|
|
for (auto *block : phiBlocks) {
|
|
auto *proactivePhi = cast<SILPhiArgument>(
|
|
block->getArgument(block->getNumArguments() - 1));
|
|
if (!livePhis.contains(proactivePhi)) {
|
|
eraseLastPhiFromBlock(block);
|
|
} else {
|
|
phiBlocksOut.insert(block);
|
|
}
|
|
}
|
|
} else {
|
|
for (auto *block : phiBlocks)
|
|
phiBlocksOut.insert(block);
|
|
}
|
|
}
|
|
|
|
/// End the lexical lifetimes that were introduced for storage to the
|
|
/// alloc_stack and have not already been ended.
|
|
///
|
|
/// Walk forward from the out-edge of each of the blocks which began but did not
|
|
/// end a borrow scope. The scope must be ended if any of the following three
|
|
/// conditions hold:
|
|
///
|
|
/// Normally, we are relying on the invariant that the storage's
|
|
/// deinitializations must jointly postdominate its initializations. That fact
|
|
/// allows us to simply end scopes when memory is deinitialized. There is only
|
|
/// one simple check to do:
|
|
///
|
|
/// (1) A block deinitializes the storage before initializing it.
|
|
///
|
|
/// These blocks and the relevant instruction within them are tracked by the
|
|
/// deinitializationPoints map.
|
|
///
|
|
/// If this were all we needed to do, we could just iterate over that map.
|
|
///
|
|
/// The above invariant does not help us with unreachable terminators, however.
|
|
/// Because it is valid to have the alloc_stack be initialized when exiting a
|
|
/// function via an unreachable, we can't rely on the memory having been
|
|
/// deinitialized. But we still need to ensure that borrow scopes are ended and
|
|
/// values are destroyed before getting to an unreachable.
|
|
///
|
|
/// (2.a) A block has as its terminator an UnreachableInst.
|
|
///
|
|
/// (2.b) A block's single successor does not have live-in values.
|
|
///
|
|
/// This can only happen if the successor is a CFG merge and all paths
|
|
/// from here lead to unreachable.
|
|
void StackAllocationPromoter::endLexicalLifetime(
|
|
BasicBlockSetVector &phiBlocks) {
|
|
if (!lexicalLifetimeEnsured(asi))
|
|
return;
|
|
|
|
// We need to separately consider and visit incoming unopened borrow scopes
|
|
// and outgoing unclosed borrow scopes. The reason is that a walk should stop
|
|
// on any path where it encounters an incoming unopened borrow scope but that
|
|
// should _NOT_ count as a visit of outgoing unclosed borrow scopes.
|
|
//
|
|
// Without this distinction, a case like the following wouldn't be visited
|
|
// properly:
|
|
//
|
|
// bb1:
|
|
// %addr = alloc_stack
|
|
// store %value to [init] %addr
|
|
// br bb2
|
|
// bb2:
|
|
// %value_2 = load [take] %addr
|
|
// store %value_2 to [init] %addr
|
|
// br bb3
|
|
// bb3:
|
|
// destroy_addr %addr
|
|
// dealloc_stack %addr
|
|
// %r = tuple ()
|
|
// return %r
|
|
//
|
|
// Both bb1 and bb2 have cross-block initialization points. Suppose that we
|
|
// visited bb1 first. We would see that it didn't have an incoming unopened
|
|
// borrow scope (already, we can tell something is amiss that we're
|
|
// considering this) and then add bb2 to the worklist--except it's already
|
|
// there. Next we would visit bb2. We would see that it had an incoming
|
|
// unopened borrow scope so we would close it. And then we'd be done. In
|
|
// particular, we'd leave the scope that opens in bb2 unclosed.
|
|
//
|
|
// The root cause here is that it's important to stop walking when we hit a
|
|
// scope close. Otherwise, we could keep walking down to blocks which don't
|
|
// have live-in or live-out values.
|
|
//
|
|
// Visiting the incoming and outgoing edges works as follows in the above
|
|
// example: The worklist is initialized with {(bb1, ::Out), (bb2, ::Out)}.
|
|
// When visiting (bb1, ::Out), we see that bb1 is neither unreachable nor
|
|
// has exactly one successor without live-in values. So we add (bb2, ::In) to
|
|
// the worklist. Next, we visit (bb2, ::Out). We see that it _also_ doesn't
|
|
// have an unreachable terminator or a unique successor without live-in
|
|
// values, so we add (bb3, ::In). Next, we visit (bb2, ::In). We see that
|
|
// it _does_ have an incoming unopened borrow scope, so we close it and stop.
|
|
// Finally, we visit (bb3, ::Out). We see that it too has an incoming
|
|
// unopened borrow scope so we close it and stop.
|
|
enum class AvailableValuesKind : uint8_t { In, Out };
|
|
|
|
using ScopeEndPosition =
|
|
llvm::PointerIntPair<SILBasicBlock *, 1, AvailableValuesKind>;
|
|
|
|
GraphNodeWorklist<ScopeEndPosition, 16> worklist;
|
|
for (auto pair : initializationPoints) {
|
|
worklist.insert({pair.getFirst(), AvailableValuesKind::Out});
|
|
}
|
|
while (!worklist.empty()) {
|
|
auto position = worklist.pop();
|
|
auto *bb = position.getPointer();
|
|
switch (position.getInt()) {
|
|
case AvailableValuesKind::In: {
|
|
if (auto *inst = deinitializationPoints[bb]) {
|
|
auto values = getLiveInValues(phiBlocks, bb);
|
|
if (isa<EndBorrowInst>(inst)) {
|
|
// Not all store_borrows will have a begin_borrow [lexical] that needs
|
|
// to be ended. If the source is already lexical, we don't create it.
|
|
if (!canEndLexicalLifetime(*values)) {
|
|
continue;
|
|
}
|
|
endGuaranteedLexicalLifetimeBeforeInst(
|
|
asi, /*beforeInstruction=*/inst, ctx, values->getGuaranteed());
|
|
continue;
|
|
}
|
|
endOwnedLexicalLifetimeBeforeInst(asi, /*beforeInstruction=*/inst, ctx,
|
|
values->getOwned());
|
|
continue;
|
|
}
|
|
worklist.insert({bb, AvailableValuesKind::Out});
|
|
break;
|
|
}
|
|
case AvailableValuesKind::Out: {
|
|
bool terminatesInUnreachable = isa<UnreachableInst>(bb->getTerminator());
|
|
auto uniqueSuccessorLacksLiveInValues = [&]() -> bool {
|
|
return bb->getSingleSuccessorBlock() &&
|
|
!getLiveInValues(phiBlocks, bb->getSingleSuccessorBlock());
|
|
};
|
|
if (terminatesInUnreachable || uniqueSuccessorLacksLiveInValues()) {
|
|
auto values = getLiveOutValues(phiBlocks, bb);
|
|
if (values->isGuaranteed()) {
|
|
if (!canEndLexicalLifetime(*values)) {
|
|
continue;
|
|
}
|
|
endGuaranteedLexicalLifetimeBeforeInst(
|
|
asi, /*beforeInstruction=*/bb->getTerminator(), ctx,
|
|
values->getGuaranteed());
|
|
continue;
|
|
}
|
|
endOwnedLexicalLifetimeBeforeInst(
|
|
asi, /*beforeInstruction=*/bb->getTerminator(), ctx,
|
|
values->getOwned());
|
|
continue;
|
|
}
|
|
for (auto *successor : bb->getSuccessorBlocks()) {
|
|
worklist.insert({successor, AvailableValuesKind::In});
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void StackAllocationPromoter::pruneAllocStackUsage() {
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Pruning : " << *asi);
|
|
BasicBlockSetVector functionBlocks(asi->getFunction());
|
|
|
|
// Insert all of the blocks that asi is live in.
|
|
for (auto *use : asi->getUses())
|
|
functionBlocks.insert(use->getUser()->getParent());
|
|
|
|
for (auto *sbi : asi->getUsersOfType<StoreBorrowInst>()) {
|
|
for (auto *use : sbi->getUses()) {
|
|
functionBlocks.insert(use->getUser()->getParent());
|
|
}
|
|
}
|
|
|
|
for (auto block : functionBlocks)
|
|
if (auto si = promoteAllocationInBlock(block)) {
|
|
// There was a final store/store_borrow instruction which was not
|
|
// followed by an instruction that deinitializes the memory. Record it
|
|
// as a cross-block initialization point.
|
|
initializationPoints[block] = si;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Finished pruning : " << *asi);
|
|
}
|
|
|
|
void StackAllocationPromoter::promoteAllocationToPhi(
|
|
BasicBlockSetVector &livePhiBlocks) {
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Placing Phis for : " << *asi);
|
|
|
|
// A list of blocks that will require new Phi values.
|
|
BasicBlockSetVector phiBlocks(asi->getFunction());
|
|
|
|
// The "piggy-bank" data-structure that we use for processing the dom-tree
|
|
// bottom-up.
|
|
NodePriorityQueue priorityQueue;
|
|
|
|
// Collect all of the stores into the AllocStack. We know that at this point
|
|
// we have at most one store per block.
|
|
for (auto *use : asi->getUses()) {
|
|
SILInstruction *user = use->getUser();
|
|
// We need to place Phis for this block.
|
|
if (isa<StoreInst>(user) || isa<StoreBorrowInst>(user)) {
|
|
// If the block is in the dom tree (dominated by the entry block).
|
|
if (auto *node = domInfo->getNode(user->getParent()))
|
|
priorityQueue.push(std::make_pair(node, domTreeLevels[node]));
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Found: " << priorityQueue.size()
|
|
<< " Defs\n");
|
|
|
|
// A list of nodes for which we already calculated the dominator frontier.
|
|
llvm::SmallPtrSet<DomTreeNode *, 32> visited;
|
|
|
|
SmallVector<DomTreeNode *, 32> worklist;
|
|
|
|
// Scan all of the definitions in the function bottom-up using the priority
|
|
// queue.
|
|
while (!priorityQueue.empty()) {
|
|
DomTreeNodePair rootPair = priorityQueue.top();
|
|
priorityQueue.pop();
|
|
DomTreeNode *root = rootPair.first;
|
|
unsigned rootLevel = rootPair.second;
|
|
|
|
// Walk all dom tree children of Root, inspecting their successors. Only
|
|
// J-edges, whose target level is at most Root's level are added to the
|
|
// dominance frontier.
|
|
worklist.clear();
|
|
worklist.push_back(root);
|
|
|
|
while (!worklist.empty()) {
|
|
DomTreeNode *node = worklist.pop_back_val();
|
|
SILBasicBlock *nodeBlock = node->getBlock();
|
|
|
|
// For all successors of the node:
|
|
for (auto &nodeBlockSuccs : nodeBlock->getSuccessors()) {
|
|
auto *successorNode = domInfo->getNode(nodeBlockSuccs);
|
|
|
|
// Skip D-edges (edges that are dom-tree edges).
|
|
if (successorNode->getIDom() == node)
|
|
continue;
|
|
|
|
// Ignore J-edges that point to nodes that are not smaller or equal
|
|
// to the root level.
|
|
unsigned succLevel = domTreeLevels[successorNode];
|
|
if (succLevel > rootLevel)
|
|
continue;
|
|
|
|
// Ignore visited nodes.
|
|
if (!visited.insert(successorNode).second)
|
|
continue;
|
|
|
|
// If the new PHInode is not dominated by the allocation then it's dead.
|
|
if (!domInfo->dominates(asi->getParent(), successorNode->getBlock()))
|
|
continue;
|
|
|
|
// If the new PHInode is properly dominated by the deallocation then it
|
|
// is obviously a dead PHInode, so we don't need to insert it.
|
|
if (dsi && domInfo->properlyDominates(dsi->getParent(),
|
|
successorNode->getBlock()))
|
|
continue;
|
|
|
|
// The successor node is a new PHINode. If this is a new PHI node
|
|
// then it may require additional definitions, so add it to the PQ.
|
|
if (phiBlocks.insert(nodeBlockSuccs))
|
|
priorityQueue.push(std::make_pair(successorNode, succLevel));
|
|
}
|
|
|
|
// Add the children in the dom-tree to the worklist.
|
|
for (auto *child : node->children())
|
|
if (!visited.count(child))
|
|
worklist.push_back(child);
|
|
}
|
|
}
|
|
|
|
// At this point we calculated the locations of all of the new Phi values.
|
|
// Next, add the Phi values and promote all of the loads and stores into the
|
|
// new locations.
|
|
|
|
// Replace the dummy values with new block arguments.
|
|
addBlockArguments(phiBlocks);
|
|
|
|
// Hook up the Phi nodes, loads, and debug_value_addr with incoming values.
|
|
fixBranchesAndUses(phiBlocks, livePhiBlocks);
|
|
|
|
endLexicalLifetime(livePhiBlocks);
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Finished placing Phis ***\n");
|
|
}
|
|
|
|
void StackAllocationPromoter::run(BasicBlockSetVector &livePhiBlocks) {
|
|
auto *function = asi->getFunction();
|
|
|
|
// Reduce the number of load/stores in the function to minimum.
|
|
// After this phase we are left with up to one load and store
|
|
// per block and the last store is recorded.
|
|
pruneAllocStackUsage();
|
|
|
|
// Replace AllocStacks with Phi-nodes.
|
|
promoteAllocationToPhi(livePhiBlocks);
|
|
|
|
// Make sure that all of the allocations were promoted into registers.
|
|
assert(isWriteOnlyAllocation(asi) && "Non-write uses left behind");
|
|
|
|
SmallVector<SILValue> valuesToComplete;
|
|
|
|
// Enum types may have incomplete lifetimes in address form, when promoted to
|
|
// value form after mem2reg, they will end up with incomplete ossa lifetimes.
|
|
// Use the lifetime completion utility to complete such lifetimes.
|
|
// First, collect the stored values to complete.
|
|
if (asi->getType().isOrHasEnum()) {
|
|
for (auto *block : livePhiBlocks) {
|
|
SILPhiArgument *argument = cast<SILPhiArgument>(
|
|
block->getArgument(block->getNumArguments() - 1));
|
|
assert(argument->isPhi());
|
|
valuesToComplete.push_back(argument);
|
|
}
|
|
for (auto it : initializationPoints) {
|
|
auto *si = it.second;
|
|
auto stored = si->getOperand(CopyLikeInstruction::Src);
|
|
valuesToComplete.push_back(stored);
|
|
if (auto lexical = getLexicalValueForStore(si, asi)) {
|
|
valuesToComplete.push_back(lexical);
|
|
}
|
|
}
|
|
}
|
|
|
|
// ... and erase the allocation.
|
|
deleter.forceDeleteWithUsers(asi);
|
|
|
|
// Now, complete lifetimes!
|
|
OSSALifetimeCompletion completion(function, domInfo);
|
|
|
|
// We may have incomplete lifetimes for enum locations on trivial paths.
|
|
// After promoting them, complete lifetime here.
|
|
for (auto it : valuesToComplete) {
|
|
// Set forceBoundaryCompletion as true so that we complete at boundary for
|
|
// lexical values as well.
|
|
completion.completeOSSALifetime(it, /* forceBoundaryCompletion */ true);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// General Memory To Registers Impl
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// Promote memory to registers
|
|
class MemoryToRegisters {
|
|
/// Lazily initialized map from DomTreeNode to DomTreeLevel.
|
|
///
|
|
/// DomTreeLevelMap is a DenseMap implying that if we initialize it, we always
|
|
/// will initialize a heap object with 64 objects. Thus by using an optional,
|
|
/// computing this lazily, we only do this if we actually need to do so.
|
|
llvm::Optional<DomTreeLevelMap> domTreeLevels;
|
|
|
|
/// The function that we are optimizing.
|
|
SILFunction &f;
|
|
|
|
/// Dominators.
|
|
DominanceInfo *domInfo;
|
|
|
|
NonLocalAccessBlockAnalysis *accessBlockAnalysis;
|
|
|
|
BasicCalleeAnalysis *calleeAnalysis;
|
|
|
|
/// The builder context used when creating new instructions during register
|
|
/// promotion.
|
|
SILBuilderContext ctx;
|
|
|
|
InstructionDeleter deleter;
|
|
SmallVector<SILInstruction *, 32> instructionsToDelete;
|
|
|
|
/// Returns the dom tree levels for the current function. Computes these
|
|
/// lazily.
|
|
DomTreeLevelMap &getDomTreeLevels() {
|
|
// If we already computed our levels, just return it.
|
|
if (auto &levels = domTreeLevels) {
|
|
return *levels;
|
|
}
|
|
|
|
// Otherwise, emplace the map and compute it.
|
|
domTreeLevels.emplace();
|
|
auto &levels = *domTreeLevels;
|
|
SmallVector<DomTreeNode *, 32> worklist;
|
|
DomTreeNode *rootNode = domInfo->getRootNode();
|
|
levels[rootNode] = 0;
|
|
worklist.push_back(rootNode);
|
|
while (!worklist.empty()) {
|
|
DomTreeNode *domNode = worklist.pop_back_val();
|
|
unsigned childLevel = levels[domNode] + 1;
|
|
for (auto *childNode : domNode->children()) {
|
|
levels[childNode] = childLevel;
|
|
worklist.push_back(childNode);
|
|
}
|
|
}
|
|
return *domTreeLevels;
|
|
}
|
|
|
|
/// Promote the specified stack location whose uses are all within a single
|
|
/// block.
|
|
///
|
|
/// Note: Deletes all of the users of the alloc_stack, including the
|
|
/// dealloc_stack but it does not remove the alloc_stack itself.
|
|
void removeSingleBlockAllocation(AllocStackInst *asi);
|
|
|
|
/// Attempt to promote the specified stack allocation. Its uses may be in a
|
|
/// single block or in multiple blocks.
|
|
///
|
|
/// Note: Populates instructionsToDelete with the instructions the caller is
|
|
/// responsible for deleting.
|
|
bool promoteAllocation(AllocStackInst *asi,
|
|
BasicBlockSetVector &livePhiBlocks);
|
|
|
|
/// Record all the values stored and store_borrow'd into the address so that
|
|
/// they can be canonicalized if promotion succeeds.
|
|
void collectStoredValues(AllocStackInst *asi, StackList<SILValue> &owned,
|
|
StackList<SILValue> &guaranteed);
|
|
|
|
/// Canonicalize the lifetimes of the specified owned and guaranteed values.
|
|
void canonicalizeValueLifetimes(StackList<SILValue> &owned,
|
|
StackList<SILValue> &guaranteed,
|
|
BasicBlockSetVector &livePhiBlocks);
|
|
|
|
public:
|
|
/// C'tor
|
|
MemoryToRegisters(SILFunction &inputFunc, DominanceInfo *inputDomInfo,
|
|
NonLocalAccessBlockAnalysis *accessBlockAnalysis,
|
|
BasicCalleeAnalysis *calleeAnalysis)
|
|
: f(inputFunc), domInfo(inputDomInfo),
|
|
accessBlockAnalysis(accessBlockAnalysis),
|
|
calleeAnalysis(calleeAnalysis), ctx(inputFunc.getModule()) {}
|
|
|
|
/// Promote memory to registers. Return True on change.
|
|
bool run();
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void MemoryToRegisters::removeSingleBlockAllocation(AllocStackInst *asi) {
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Promoting in-block: " << *asi);
|
|
|
|
SILBasicBlock *parentBlock = asi->getParent();
|
|
// The default value of the AllocStack is NULL because we don't have
|
|
// uninitialized variables in Swift.
|
|
llvm::Optional<StorageStateTracking<LiveValues>> runningVals;
|
|
|
|
// For all instructions in the block.
|
|
for (auto bbi = parentBlock->begin(), bbe = parentBlock->end(); bbi != bbe;) {
|
|
SILInstruction *inst = &*bbi;
|
|
++bbi;
|
|
|
|
// Remove instructions that we are loading from. Replace the loaded value
|
|
// with our running value.
|
|
if (isLoadFromStack(inst, asi)) {
|
|
if (!runningVals) {
|
|
// Loading from uninitialized memory is only acceptable if the type is
|
|
// empty--an aggregate of types without storage.
|
|
runningVals = {
|
|
LiveValues::toReplace(asi,
|
|
/*replacement=*/createValueForEmptyType(
|
|
asi->getElementType(), inst, ctx)),
|
|
/*isStorageValid=*/true};
|
|
}
|
|
assert(runningVals && runningVals->isStorageValid);
|
|
auto *loadInst = dyn_cast<LoadInst>(inst);
|
|
if (loadInst &&
|
|
loadInst->getOwnershipQualifier() == LoadOwnershipQualifier::Take) {
|
|
if (lexicalLifetimeEnsured(asi)) {
|
|
// End the lexical lifetime at a load [take]. The storage is no
|
|
// longer keeping the value alive.
|
|
endOwnedLexicalLifetimeBeforeInst(asi, /*beforeInstruction=*/inst,
|
|
ctx, runningVals->value.getOwned());
|
|
}
|
|
runningVals->isStorageValid = false;
|
|
}
|
|
replaceLoad(inst, runningVals->value.replacement(asi, inst), asi, ctx,
|
|
deleter, instructionsToDelete);
|
|
++NumInstRemoved;
|
|
continue;
|
|
}
|
|
|
|
// Remove stores and record the value that we are saving as the running
|
|
// value.
|
|
if (auto *si = dyn_cast<StoreInst>(inst)) {
|
|
if (si->getDest() != asi) {
|
|
continue;
|
|
}
|
|
if (si->getOwnershipQualifier() == StoreOwnershipQualifier::Assign) {
|
|
assert(runningVals && runningVals->isStorageValid);
|
|
SILBuilderWithScope(si, ctx).createDestroyValue(
|
|
si->getLoc(), runningVals->value.replacement(asi, si));
|
|
}
|
|
auto oldRunningVals = runningVals;
|
|
runningVals = {LiveValues::toReplace(asi, /*replacement=*/si->getSrc()),
|
|
/*isStorageValid=*/true};
|
|
if (lexicalLifetimeEnsured(asi)) {
|
|
if (oldRunningVals && oldRunningVals->isStorageValid) {
|
|
endOwnedLexicalLifetimeBeforeInst(asi, /*beforeInstruction=*/si, ctx,
|
|
oldRunningVals->value.getOwned());
|
|
}
|
|
runningVals = beginOwnedLexicalLifetimeAfterStore(asi, si);
|
|
}
|
|
deleter.forceDelete(si);
|
|
++NumInstRemoved;
|
|
continue;
|
|
}
|
|
|
|
if (auto *sbi = dyn_cast<StoreBorrowInst>(inst)) {
|
|
if (sbi->getDest() != asi) {
|
|
continue;
|
|
}
|
|
runningVals = {LiveValues::toReplace(asi, /*replacement=*/sbi->getSrc()),
|
|
/*isStorageValid=*/true};
|
|
if (lexicalLifetimeEnsured(asi)) {
|
|
runningVals = beginGuaranteedLexicalLifetimeAfterStore(asi, sbi);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (auto *ebi = dyn_cast<EndBorrowInst>(inst)) {
|
|
auto *sbi = dyn_cast<StoreBorrowInst>(ebi->getOperand());
|
|
if (!sbi) {
|
|
continue;
|
|
}
|
|
if (sbi->getDest() != asi) {
|
|
continue;
|
|
}
|
|
if (!runningVals.has_value()) {
|
|
continue;
|
|
}
|
|
if (!runningVals->value.isGuaranteed()) {
|
|
continue;
|
|
}
|
|
if (sbi->getSrc() != runningVals->value.getGuaranteed().stored) {
|
|
continue;
|
|
}
|
|
runningVals->isStorageValid = false;
|
|
if (!canEndLexicalLifetime(runningVals->value)) {
|
|
continue;
|
|
}
|
|
endGuaranteedLexicalLifetimeBeforeInst(
|
|
asi, ebi->getNextInstruction(), ctx,
|
|
runningVals->value.getGuaranteed());
|
|
continue;
|
|
}
|
|
|
|
// Replace debug_value w/ address value with debug_value of
|
|
// the promoted value.
|
|
if (auto *dvi = DebugValueInst::hasAddrVal(inst)) {
|
|
if (isDebugValueOfAllocStack(dvi, asi)) {
|
|
if (runningVals) {
|
|
promoteDebugValueAddr(dvi, runningVals->value.replacement(asi, dvi),
|
|
ctx, deleter);
|
|
} else {
|
|
// Drop debug_value of uninitialized void values.
|
|
assert(asi->getElementType().isVoid() &&
|
|
"Expected initialization of non-void type!");
|
|
deleter.forceDelete(dvi);
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Replace destroys with a release of the value.
|
|
if (auto *dai = dyn_cast<DestroyAddrInst>(inst)) {
|
|
if (dai->getOperand() == asi) {
|
|
assert(runningVals && runningVals->isStorageValid);
|
|
replaceDestroy(dai, runningVals->value.replacement(asi, dai), ctx,
|
|
deleter, instructionsToDelete);
|
|
if (lexicalLifetimeEnsured(asi)) {
|
|
endOwnedLexicalLifetimeBeforeInst(asi, /*beforeInstruction=*/dai, ctx,
|
|
runningVals->value.getOwned());
|
|
}
|
|
runningVals->isStorageValid = false;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Remove deallocation.
|
|
if (auto *dsi = dyn_cast<DeallocStackInst>(inst)) {
|
|
if (dsi->getOperand() == asi) {
|
|
deleter.forceDelete(dsi);
|
|
NumInstRemoved++;
|
|
// No need to continue scanning after deallocation.
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Remove dead address instructions that may be uses of the allocation.
|
|
auto *addrInst = dyn_cast<SingleValueInstruction>(inst);
|
|
while (addrInst && addrInst->use_empty() &&
|
|
(isa<StructElementAddrInst>(addrInst) ||
|
|
isa<TupleElementAddrInst>(addrInst) ||
|
|
isa<UncheckedAddrCastInst>(addrInst))) {
|
|
SILValue op = addrInst->getOperand(0);
|
|
deleter.forceDelete(addrInst);
|
|
++NumInstRemoved;
|
|
addrInst = dyn_cast<SingleValueInstruction>(op);
|
|
}
|
|
}
|
|
|
|
if (lexicalLifetimeEnsured(asi) && runningVals &&
|
|
runningVals->isStorageValid &&
|
|
runningVals->value.getStored()->getOwnershipKind().isCompatibleWith(
|
|
OwnershipKind::Owned)) {
|
|
// There is still valid storage after visiting all instructions in this
|
|
// block which are the only instructions involving this alloc_stack.
|
|
// This can only happen if all paths from this block end in unreachable.
|
|
//
|
|
// We need to end the lexical lifetime at the last possible location, at the
|
|
// boundary blocks which are the predecessors of dominance frontier
|
|
// dominated by the alloc_stack.
|
|
SmallVector<SILBasicBlock *, 4> boundary;
|
|
computeDominatedBoundaryBlocks(asi->getParent(), domInfo, boundary);
|
|
for (auto *block : boundary) {
|
|
auto *terminator = block->getTerminator();
|
|
endOwnedLexicalLifetimeBeforeInst(asi, /*beforeInstruction=*/terminator,
|
|
ctx, runningVals->value.getOwned());
|
|
}
|
|
}
|
|
}
|
|
|
|
void MemoryToRegisters::collectStoredValues(AllocStackInst *asi,
|
|
StackList<SILValue> &owned,
|
|
StackList<SILValue> &guaranteed) {
|
|
if (!f.hasOwnership())
|
|
return;
|
|
for (auto *use : asi->getUses()) {
|
|
auto *user = use->getUser();
|
|
if (auto *si = dyn_cast<StoreInst>(user)) {
|
|
owned.push_back(si->getSrc());
|
|
} else if (auto *sbi = dyn_cast<StoreBorrowInst>(user)) {
|
|
guaranteed.push_back(sbi->getSrc());
|
|
}
|
|
}
|
|
}
|
|
|
|
void MemoryToRegisters::canonicalizeValueLifetimes(
|
|
StackList<SILValue> &owned, StackList<SILValue> &guaranteed,
|
|
BasicBlockSetVector &livePhiBlocks) {
|
|
if (!f.hasOwnership())
|
|
return;
|
|
if (Mem2RegDisableLifetimeCanonicalization)
|
|
return;
|
|
|
|
for (auto *block : livePhiBlocks) {
|
|
// When a single alloc_stack is promoted, any block gains at most a single
|
|
// new phi, which appears at the end of its argument list. The collection
|
|
// \p livePhiBlocks consists of exactly those blocks which gained such a
|
|
// new phi.
|
|
SILPhiArgument *argument =
|
|
cast<SILPhiArgument>(block->getArgument(block->getNumArguments() - 1));
|
|
switch (argument->getOwnershipKind()) {
|
|
case OwnershipKind::Owned:
|
|
owned.push_back(argument);
|
|
break;
|
|
case OwnershipKind::Guaranteed:
|
|
guaranteed.push_back(argument);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
CanonicalizeOSSALifetime canonicalizer(
|
|
/*pruneDebug=*/true, /*maximizeLifetime=*/!f.shouldOptimize(), &f,
|
|
accessBlockAnalysis, domInfo, calleeAnalysis, deleter);
|
|
for (auto value : owned) {
|
|
if (isa<SILUndef>(value) || value->isMarkedAsDeleted())
|
|
continue;
|
|
auto root = CanonicalizeOSSALifetime::getCanonicalCopiedDef(value);
|
|
if (auto *copy = dyn_cast<CopyValueInst>(root)) {
|
|
if (SILValue borrowDef = CanonicalizeBorrowScope::getCanonicalBorrowedDef(
|
|
copy->getOperand())) {
|
|
guaranteed.push_back(copy);
|
|
continue;
|
|
}
|
|
}
|
|
canonicalizer.canonicalizeValueLifetime(root);
|
|
}
|
|
CanonicalizeBorrowScope borrowCanonicalizer(&f, deleter);
|
|
for (auto value : guaranteed) {
|
|
if (isa<SILUndef>(value) || value->isMarkedAsDeleted())
|
|
continue;
|
|
auto borrowee = CanonicalizeBorrowScope::getCanonicalBorrowedDef(value);
|
|
if (!borrowee)
|
|
continue;
|
|
BorrowedValue borrow(borrowee);
|
|
if (borrow.kind != BorrowedValueKind::SILFunctionArgument)
|
|
continue;
|
|
borrowCanonicalizer.canonicalizeBorrowScope(borrow);
|
|
}
|
|
}
|
|
|
|
/// Attempt to promote the specified stack allocation, returning true if so
|
|
/// or false if not. On success, this returns true and usually drops all of the
|
|
/// uses of the AllocStackInst, but never deletes the ASI itself. Callers
|
|
/// should check to see if the ASI is dead after this and remove it if so.
|
|
bool MemoryToRegisters::promoteAllocation(AllocStackInst *alloc,
|
|
BasicBlockSetVector &livePhiBlocks) {
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Memory to register looking at: " << *alloc);
|
|
++NumAllocStackFound;
|
|
|
|
// In OSSA, don't do Mem2Reg on non-trivial alloc_stack with dynamic_lifetime.
|
|
if (alloc->hasDynamicLifetime() && f.hasOwnership() &&
|
|
!alloc->getType().isTrivial(f)) {
|
|
return false;
|
|
}
|
|
|
|
// Don't handle captured AllocStacks.
|
|
bool inSingleBlock = false;
|
|
if (isCaptured(alloc, &inSingleBlock)) {
|
|
++NumAllocStackCaptured;
|
|
return false;
|
|
}
|
|
|
|
// Remove write-only AllocStacks.
|
|
if (isWriteOnlyAllocation(alloc) && !lexicalLifetimeEnsured(alloc)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Deleting store-only AllocStack: "<< *alloc);
|
|
deleter.forceDeleteWithUsers(alloc);
|
|
return true;
|
|
}
|
|
|
|
// For AllocStacks that are only used within a single basic blocks, use
|
|
// the linear sweep to remove the AllocStack.
|
|
if (inSingleBlock) {
|
|
removeSingleBlockAllocation(alloc);
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Deleting single block AllocStackInst: "
|
|
<< *alloc);
|
|
deleter.forceDeleteWithUsers(alloc);
|
|
return true;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Need to insert BB arguments for " << *alloc);
|
|
|
|
// Promote this allocation, lazily computing dom tree levels for this function
|
|
// if we have not done so yet.
|
|
auto &domTreeLevels = getDomTreeLevels();
|
|
StackAllocationPromoter(alloc, domInfo, domTreeLevels, ctx, deleter,
|
|
instructionsToDelete)
|
|
.run(livePhiBlocks);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MemoryToRegisters::run() {
|
|
bool madeChange = false;
|
|
|
|
if (f.getModule().getOptions().VerifyAll)
|
|
f.verifyCriticalEdges();
|
|
|
|
for (auto &block : f) {
|
|
// Don't waste time optimizing unreachable blocks.
|
|
if (!domInfo->isReachableFromEntry(&block)) {
|
|
continue;
|
|
}
|
|
for (SILInstruction &inst : block.reverseDeletableInstructions()) {
|
|
auto *asi = dyn_cast<AllocStackInst>(&inst);
|
|
if (!asi)
|
|
continue;
|
|
|
|
// Record stored values because promoting a store eliminates a consuming
|
|
// use of the stored value. If promotion succeeds, these values'
|
|
// lifetimes are canonicalized, eliminating unnecessary copies.
|
|
StackList<SILValue> ownedValues(&f);
|
|
StackList<SILValue> guaranteedValues(&f);
|
|
collectStoredValues(asi, ownedValues, guaranteedValues);
|
|
|
|
// The blocks which still have new phis after fixBranchesAndUses runs.
|
|
// These are not necessarily the same as phiBlocks because
|
|
// fixBranchesAndUses removes superfluous proactive phis.
|
|
BasicBlockSetVector livePhiBlocks(asi->getFunction());
|
|
if (promoteAllocation(asi, livePhiBlocks)) {
|
|
for (auto *inst : instructionsToDelete) {
|
|
deleter.forceDelete(inst);
|
|
}
|
|
instructionsToDelete.clear();
|
|
++NumInstRemoved;
|
|
canonicalizeValueLifetimes(ownedValues, guaranteedValues,
|
|
livePhiBlocks);
|
|
madeChange = true;
|
|
}
|
|
}
|
|
}
|
|
return madeChange;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top Level Entrypoint
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class SILMem2Reg : public SILFunctionTransform {
|
|
void run() override {
|
|
SILFunction *f = getFunction();
|
|
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "** Mem2Reg on function: " << f->getName() << " **\n");
|
|
|
|
auto *da = getAnalysis<DominanceAnalysis>();
|
|
auto *calleeAnalysis = getAnalysis<BasicCalleeAnalysis>();
|
|
auto *accessBlockAnalysis = getAnalysis<NonLocalAccessBlockAnalysis>();
|
|
|
|
bool madeChange =
|
|
MemoryToRegisters(*f, da->get(f), accessBlockAnalysis, calleeAnalysis)
|
|
.run();
|
|
if (madeChange)
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
SILTransform *swift::createMem2Reg() {
|
|
return new SILMem2Reg();
|
|
}
|