Files
swift-mirror/stdlib/public/Concurrency/Deque/Deque+Collection.swift
Franz Busch 8dda2274bc Replace custom Deque implementation with swift-collection Deque
# Motivation
For AsyncStream we created a custom internal Deque implementation to use for the buffering. This implementation was relatively bare-bones compared to the one in swift-collections. Furthermore, it lacked some methods that we need to implement the new `AsyncStream` APIs that support producer backpressure.

# Modification
This PR copies over the Deque implementation of swift-collections and makes it internal and non-inlinable.

# Result
We now have a fully functional Deque.
2023-07-23 08:33:03 +01:00

850 lines
31 KiB
Swift
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
//
//===----------------------------------------------------------------------===//
/// This file is copied from swift-collections and should not be modified here.
/// Rather all changes should be made to swift-collections and copied back.
import Swift
extension _Deque: Sequence {
// Implementation note: we could also use the default `IndexingIterator` here.
// This custom implementation performs direct storage access to eliminate any
// and all index validation overhead. It also optimizes away repeated
// conversions from indices to storage slots.
/// An iterator over the members of a deque.
struct Iterator: IteratorProtocol {
internal var _storage: _Deque._Storage
internal var _nextSlot: _Slot
internal var _endSlot: _Slot
internal init(_storage: _Deque._Storage, start: _Slot, end: _Slot) {
self._storage = _storage
self._nextSlot = start
self._endSlot = end
}
internal init(_base: _Deque) {
self = _base._storage.read { handle in
let start = handle.startSlot
let end = Swift.min(start.advanced(by: handle.count), handle.limSlot)
return Self(_storage: _base._storage, start: start, end: end)
}
}
internal init(_base: _Deque, from index: Int) {
self = _base._storage.read { handle in
assert(index >= 0 && index <= handle.count)
let start = handle.slot(forOffset: index)
if index == handle.count {
return Self(_storage: _base._storage, start: start, end: start)
}
var end = handle.endSlot
if start >= end { end = handle.limSlot }
return Self(_storage: _base._storage, start: start, end: end)
}
}
internal mutating func _swapSegment() -> Bool {
assert(_nextSlot == _endSlot)
return _storage.read { handle in
let end = handle.endSlot
if end == .zero || end == _nextSlot {
return false
}
_endSlot = end
_nextSlot = .zero
return true
}
}
/// Advances to the next element and returns it, or `nil` if no next element
/// exists.
///
/// Once `nil` has been returned, all subsequent calls return `nil`.
mutating func next() -> Element? {
if _nextSlot == _endSlot {
guard _swapSegment() else { return nil }
}
assert(_nextSlot < _endSlot)
let slot = _nextSlot
_nextSlot = _nextSlot.advanced(by: 1)
return _storage.read { handle in
return handle.ptr(at: slot).pointee
}
}
}
/// Returns an iterator over the elements of the deque.
///
/// - Complexity: O(1)
func makeIterator() -> Iterator {
Iterator(_base: self)
}
__consuming func _copyToContiguousArray() -> ContiguousArray<Element> {
ContiguousArray(unsafeUninitializedCapacity: _storage.count) { target, count in
_storage.read { source in
let segments = source.segments()
let c = segments.first.count
target[..<c]._rebased()._initialize(from: segments.first)
count += segments.first.count
if let second = segments.second {
target[c ..< c + second.count]._rebased()._initialize(from: second)
count += second.count
}
assert(count == source.count)
}
}
}
__consuming func _copyContents(
initializing target: UnsafeMutableBufferPointer<Element>
) -> (Iterator, UnsafeMutableBufferPointer<Element>.Index) {
_storage.read { source in
let segments = source.segments()
let c1 = Swift.min(segments.first.count, target.count)
target[..<c1]._rebased()._initialize(from: segments.first.prefix(c1)._rebased())
guard target.count > c1, let second = segments.second else {
return (Iterator(_base: self, from: c1), c1)
}
let c2 = Swift.min(second.count, target.count - c1)
target[c1 ..< c1 + c2]._rebased()._initialize(from: second.prefix(c2)._rebased())
return (Iterator(_base: self, from: c1 + c2), c1 + c2)
}
}
/// Call `body(b)`, where `b` is an unsafe buffer pointer to the deque's
/// contiguous storage, if available. If the deque's contents aren't stored
/// contiguously, `body` is not called and `nil` is returned. The supplied
/// buffer pointer is only valid for the duration of the call.
///
/// Often, the optimizer can eliminate bounds- and uniqueness-checks within an
/// algorithm, but when that fails, invoking the same algorithm on the unsafe
/// buffer supplied to `body` lets you trade safety for speed.
///
/// - Parameters:
/// - body: The function to invoke.
///
/// - Returns: The value returned by `body`, or `nil` if `body` wasn't called.
///
/// - Complexity: O(1) when this instance has a unique reference to its
/// underlying storage; O(`count`) otherwise.
func withContiguousStorageIfAvailable<R>(
_ body: (UnsafeBufferPointer<Element>) throws -> R
) rethrows -> R? {
return try _storage.read { handle in
let endSlot = handle.startSlot.advanced(by: handle.count)
guard endSlot.position <= handle.capacity else { return nil }
return try body(handle.buffer(for: handle.startSlot ..< endSlot))
}
}
}
extension _Deque: RandomAccessCollection {
typealias Index = Int
typealias SubSequence = Slice<Self>
typealias Indices = Range<Int>
/// The number of elements in the deque.
///
/// - Complexity: O(1)
var count: Int { _storage.count }
/// The position of the first element in a nonempty deque.
///
/// For an instance of `Deque`, `startIndex` is always zero. If the deque is
/// empty, `startIndex` is equal to `endIndex`.
///
/// - Complexity: O(1)
var startIndex: Int { 0 }
/// The deques past the end positionthat is, the position one greater than
/// the last valid subscript argument.
///
/// For an instance of `Deque`, `endIndex` is always equal to its `count`. If
/// the deque is empty, `endIndex` is equal to `startIndex`.
///
/// - Complexity: O(1)
var endIndex: Int { count }
/// The indices that are valid for subscripting this deque, in ascending order.
///
/// - Complexity: O(1)
var indices: Range<Int> { 0 ..< count }
/// Returns the position immediately after the given index.
///
/// - Parameter `i`: A valid index of the deque. `i` must be less than
/// `endIndex`.
///
/// - Returns: The next valid index immediately after `i`.
///
/// - Complexity: O(1)
func index(after i: Int) -> Int {
// Note: Like `Array`, index manipulation methods on deques don't trap on
// invalid indices. (Indices are still validated on element access.)
return i + 1
}
/// Replaces the given index with its successor.
///
/// - Parameter `i`: A valid index of the deque. `i` must be less than
/// `endIndex`.
///
/// - Complexity: O(1)
func formIndex(after i: inout Int) {
// Note: Like `Array`, index manipulation methods on deques
// don't trap on invalid indices.
// (Indices are still validated on element access.)
i += 1
}
/// Returns the position immediately before the given index.
///
/// - Parameter `i`: A valid index of the deque. `i` must be greater than
/// `startIndex`.
///
/// - Returns: The preceding valid index immediately before `i`.
///
/// - Complexity: O(1)
func index(before i: Int) -> Int {
// Note: Like `Array`, index manipulation methods on deques don't trap on
// invalid indices. (Indices are still validated on element access.)
return i - 1
}
/// Replaces the given index with its predecessor.
///
/// - Parameter `i`: A valid index of the deque. `i` must be greater than `startIndex`.
///
/// - Complexity: O(1)
func formIndex(before i: inout Int) {
// Note: Like `Array`, index manipulation methods on deques don't trap on
// invalid indices. (Indices are still validated on element access.)
i -= 1
}
/// Returns an index that is the specified distance from the given index.
///
/// The value passed as `distance` must not offset `i` beyond the bounds of
/// the collection.
///
/// - Parameters:
/// - i: A valid index of the deque.
/// - `distance`: The distance by which to offset `i`.
///
/// - Returns: An index offset by `distance` from the index `i`. If `distance`
/// is positive, this is the same value as the result of `distance` calls
/// to `index(after:)`. If `distance` is negative, this is the same value
/// as the result of `abs(distance)` calls to `index(before:)`.
///
/// - Complexity: O(1)
func index(_ i: Int, offsetBy distance: Int) -> Int {
// Note: Like `Array`, index manipulation methods on deques don't trap on
// invalid indices. (Indices are still validated on element access.)
return i + distance
}
/// Returns an index that is the specified distance from the given index,
/// unless that distance is beyond a given limiting index.
///
/// - Parameters:
/// - i: A valid index of the array.
/// - distance: The distance to offset `i`.
/// - limit: A valid index of the deque to use as a limit.
/// If `distance > 0`, then `limit` has no effect it is less than `i`.
/// Likewise, if `distance < 0`, then `limit` has no effect if it is
/// greater than `i`.
///
/// - Returns: An index offset by `distance` from the index `i`, unless that
/// index would be beyond `limit` in the direction of movement. In that
/// case, the method returns `nil`.
///
/// - Complexity: O(1)
func index(
_ i: Int,
offsetBy distance: Int,
limitedBy limit: Int
) -> Int? {
// Note: Like `Array`, index manipulation methods on deques
// don't trap on invalid indices.
// (Indices are still validated on element access.)
let l = limit - i
if distance > 0 ? l >= 0 && l < distance : l <= 0 && distance < l {
return nil
}
return i + distance
}
/// Returns the distance between two indices.
///
/// - Parameters:
/// - start: A valid index of the collection.
/// - end: Another valid index of the collection.
///
/// - Returns: The distance between `start` and `end`. If `end` is equal to
/// `start`, the result is zero. Otherwise the result is positive if `end`
/// is greater than `start`.
///
/// - Complexity: O(1)
func distance(from start: Int, to end: Int) -> Int {
// Note: Like `Array`, index manipulation method on deques
// don't trap on invalid indices.
// (Indices are still validated on element access.)
return end - start
}
/// Accesses the element at the specified position.
///
/// - Parameters:
/// - index: The position of the element to access. `index` must be greater
/// than or equal to `startIndex` and less than `endIndex`.
///
/// - Complexity: Reading an element from a deque is O(1). Writing is O(1)
/// unless the deques storage is shared with another deque, in which case
/// writing is O(`count`).
subscript(index: Int) -> Element {
get {
precondition(index >= 0 && index < count, "Index out of bounds")
return _storage.read { $0.ptr(at: $0.slot(forOffset: index)).pointee }
}
set {
precondition(index >= 0 && index < count, "Index out of bounds")
_storage.ensureUnique()
_storage.update { handle in
let slot = handle.slot(forOffset: index)
handle.ptr(at: slot).pointee = newValue
}
}
_modify {
precondition(index >= 0 && index < count, "Index out of bounds")
_storage.ensureUnique()
// We technically aren't supposed to escape storage pointers out of a
// managed buffer, so we escape a `(slot, value)` pair instead, leaving
// the corresponding slot temporarily uninitialized.
var (slot, value) = _storage.update { handle -> (_Slot, Element) in
let slot = handle.slot(forOffset: index)
return (slot, handle.ptr(at: slot).move())
}
defer {
_storage.update { handle in
handle.ptr(at: slot).initialize(to: value)
}
}
yield &value
}
}
/// Accesses a contiguous subrange of the deque's elements.
///
/// - Parameters:
/// - bounds: A range of the deque's indices. The bounds of the range must
/// be valid indices of the deque (including the `endIndex`).
///
/// The accessed slice uses the same indices for the same elements as the
/// original collection.
subscript(bounds: Range<Int>) -> Slice<Self> {
get {
precondition(bounds.lowerBound >= 0 && bounds.upperBound <= count,
"Invalid bounds")
return Slice(base: self, bounds: bounds)
}
set(source) {
precondition(bounds.lowerBound >= 0 && bounds.upperBound <= count,
"Invalid bounds")
self.replaceSubrange(bounds, with: source)
}
}
}
extension _Deque: MutableCollection {
/// Exchanges the values at the specified indices of the collection.
///
/// Both parameters must be valid indices of the collection and not equal to
/// `endIndex`. Passing the same index as both `i` and `j` has no effect.
///
/// - Parameters:
/// - i: The index of the first value to swap.
/// - j: The index of the second value to swap.
///
/// - Complexity: O(1) when this instance has a unique reference to its
/// underlying storage; O(`count`) otherwise.
mutating func swapAt(_ i: Int, _ j: Int) {
precondition(i >= 0 && i < count, "Index out of bounds")
precondition(j >= 0 && j < count, "Index out of bounds")
_storage.ensureUnique()
_storage.update { handle in
let slot1 = handle.slot(forOffset: i)
let slot2 = handle.slot(forOffset: j)
handle.mutableBuffer.swapAt(slot1.position, slot2.position)
}
}
// FIXME: Implement `partition(by:)` by making storage contiguous,
// and partitioning that.
/// Call `body(b)`, where `b` is an unsafe buffer pointer to the deque's
/// mutable contiguous storage. If the deque's contents aren't stored
/// contiguously, `body` is not called and `nil` is returned. The supplied
/// buffer pointer is only valid for the duration of the call.
///
/// Often, the optimizer can eliminate bounds- and uniqueness-checks within an
/// algorithm, but when that fails, invoking the same algorithm on the unsafe
/// buffer supplied to `body` lets you trade safety for speed.
///
/// - Parameters:
/// - body: The function to invoke.
///
/// - Returns: The value returned by `body`, or `nil` if `body` wasn't called.
///
/// - Complexity: O(1) when this instance has a unique reference to its
/// underlying storage; O(`count`) otherwise. (Not counting the call to
/// `body`.)
mutating func withContiguousMutableStorageIfAvailable<R>(
_ body: (inout UnsafeMutableBufferPointer<Element>) throws -> R
) rethrows -> R? {
_storage.ensureUnique()
return try _storage.update { handle in
let endSlot = handle.startSlot.advanced(by: handle.count)
guard endSlot.position <= handle.capacity else {
// FIXME: Rotate storage such that it becomes contiguous.
return nil
}
let original = handle.mutableBuffer(for: handle.startSlot ..< endSlot)
var extract = original
defer {
precondition(extract.baseAddress == original.baseAddress && extract.count == original.count,
"Closure must not replace the provided buffer")
}
return try body(&extract)
}
}
mutating func _withUnsafeMutableBufferPointerIfSupported<R>(
_ body: (inout UnsafeMutableBufferPointer<Element>) throws -> R
) rethrows -> R? {
return try withContiguousMutableStorageIfAvailable(body)
}
}
extension _Deque: RangeReplaceableCollection {
/// Creates a new, empty deque.
///
/// This is equivalent to initializing with an empty array literal.
/// For example:
///
/// let deque1 = Deque<Int>()
/// print(deque1.isEmpty) // true
///
/// let deque2: Deque<Int> = []
/// print(deque2.isEmpty) // true
///
/// - Complexity: O(1)
init() {
_storage = _Storage()
}
/// Reserves enough space to store the specified number of elements.
///
/// If you are adding a known number of elements to a deque, use this method
/// to avoid multiple reallocations. It ensures that the deque has unique
/// storage, with space allocated for at least the requested number of
/// elements.
///
/// - Parameters:
/// - minimumCapacity: The requested number of elements to store.
///
/// - Complexity: O(`count`)
mutating func reserveCapacity(_ minimumCapacity: Int) {
_storage.ensureUnique(minimumCapacity: minimumCapacity, linearGrowth: true)
}
/// Replaces a range of elements with the elements in the specified
/// collection.
///
/// This method has the effect of removing the specified range of elements
/// from the deque and inserting the new elements at the same location. The
/// number of new elements need not match the number of elements being
/// removed.
///
/// - Parameters:
/// - subrange: The subrange of the deque to replace. The bounds of the
/// subrange must be valid indices of the deque (including the
/// `endIndex`).
/// - newElements: The new elements to add to the deque.
///
/// - Complexity: O(`self.count + newElements.count`). If the operation needs
/// to change the size of the deque, it minimizes the number of existing
/// items that need to be moved by shifting elements either before or after
/// `subrange`.
mutating func replaceSubrange<C: Collection>(
_ subrange: Range<Int>,
with newElements: __owned C
) where C.Element == Element {
precondition(subrange.lowerBound >= 0 && subrange.upperBound <= count, "Index range out of bounds")
let removalCount = subrange.count
let insertionCount = newElements.count
let deltaCount = insertionCount - removalCount
_storage.ensureUnique(minimumCapacity: count + deltaCount)
let replacementCount = Swift.min(removalCount, insertionCount)
let targetCut = subrange.lowerBound + replacementCount
let sourceCut = newElements.index(newElements.startIndex, offsetBy: replacementCount)
_storage.update { target in
target.uncheckedReplaceInPlace(
inOffsets: subrange.lowerBound ..< targetCut,
with: newElements[..<sourceCut])
if deltaCount < 0 {
let r = targetCut ..< subrange.upperBound
assert(replacementCount + r.count == removalCount)
target.uncheckedRemove(offsets: r)
} else if deltaCount > 0 {
target.uncheckedInsert(
contentsOf: newElements[sourceCut...],
count: deltaCount,
atOffset: targetCut)
}
}
}
/// Creates a new deque containing the specified number of a single, repeated
/// value.
///
/// - Parameters:
/// - repeatedValue: The element to repeat.
/// - count: The number of times to repeat the element. `count` must be zero
/// or greater.
///
/// - Complexity: O(`count`)
init(repeating repeatedValue: Element, count: Int) {
precondition(count >= 0)
self.init(minimumCapacity: count)
_storage.update { handle in
assert(handle.startSlot == .zero)
if count > 0 {
handle.ptr(at: .zero).initialize(repeating: repeatedValue, count: count)
}
handle.count = count
}
}
/// Creates a deque containing the elements of a sequence.
///
/// - Parameters:
/// - elements: The sequence of elements to turn into a deque.
///
/// - Complexity: O(*n*), where *n* is the number of elements in the sequence.
init<S: Sequence>(_ elements: S) where S.Element == Element {
self.init()
self.append(contentsOf: elements)
}
/// Creates a deque containing the elements of a collection.
///
/// - Parameters:
/// - elements: The collection of elements to turn into a deque.
///
/// - Complexity: O(`elements.count`)
init<C: Collection>(_ elements: C) where C.Element == Element {
let c = elements.count
guard c > 0 else { _storage = _Storage(); return }
self._storage = _Storage(minimumCapacity: c)
_storage.update { handle in
assert(handle.startSlot == .zero)
let target = handle.mutableBuffer(for: .zero ..< _Slot(at: c))
let done: Void? = elements._withContiguousStorageIfAvailable_SR14663 { source in
target._initialize(from: source)
}
if done == nil {
target._initialize(from: elements)
}
handle.count = c
}
}
/// Adds a new element at the end of the deque.
///
/// Use this method to append a single element to the end of a deque.
///
/// var numbers: Deque = [1, 2, 3, 4, 5]
/// numbers.append(100)
/// print(numbers)
/// // Prints "[1, 2, 3, 4, 5, 100]"
///
/// Because deques increase their allocated capacity using an exponential
/// strategy, appending a single element to a deque is an O(1) operation when
/// averaged over many calls to the `append(_:)` method. When a deque has
/// additional capacity and is not sharing its storage with another instance,
/// appending an element is O(1). When a deque needs to reallocate storage
/// before prepending or its storage is shared with another copy, appending is
/// O(`count`).
///
/// - Parameters:
/// - newElement: The element to append to the deque.
///
/// - Complexity: Amortized O(1)
///
/// - SeeAlso: `prepend(_:)`
mutating func append(_ newElement: Element) {
_storage.ensureUnique(minimumCapacity: count + 1)
_storage.update {
$0.uncheckedAppend(newElement)
}
}
/// Adds the elements of a sequence to the end of the deque.
///
/// Use this method to append the elements of a sequence to the front of this
/// deque. This example appends the elements of a `Range<Int>` instance to a
/// deque of integers.
///
/// var numbers: Deque = [1, 2, 3, 4, 5]
/// numbers.append(contentsOf: 10...15)
/// print(numbers)
/// // Prints "[1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15]"
///
/// - Parameter newElements: The elements to append to the deque.
///
/// - Complexity: Amortized O(`newElements.count`).
mutating func append<S: Sequence>(contentsOf newElements: S) where S.Element == Element {
let done: Void? = newElements._withContiguousStorageIfAvailable_SR14663 { source in
_storage.ensureUnique(minimumCapacity: count + source.count)
_storage.update { $0.uncheckedAppend(contentsOf: source) }
}
if done != nil {
return
}
let underestimatedCount = newElements.underestimatedCount
reserveCapacity(count + underestimatedCount)
var it: S.Iterator = _storage.update { target in
let gaps = target.availableSegments()
let (it, copied) = gaps.initialize(fromSequencePrefix: newElements)
target.count += copied
return it
}
while let next = it.next() {
_storage.ensureUnique(minimumCapacity: count + 1)
_storage.update { target in
target.uncheckedAppend(next)
let gaps = target.availableSegments()
target.count += gaps.initialize(fromPrefixOf: &it)
}
}
}
/// Adds the elements of a collection to the end of the deque.
///
/// Use this method to append the elements of a collection to the front of
/// this deque. This example appends the elements of a `Range<Int>` instance
/// to a deque of integers.
///
/// var numbers: Deque = [1, 2, 3, 4, 5]
/// numbers.append(contentsOf: 10...15)
/// print(numbers)
/// // Prints "[1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15]"
///
/// - Parameter newElements: The elements to append to the deque.
///
/// - Complexity: Amortized O(`newElements.count`).
mutating func append<C: Collection>(contentsOf newElements: C) where C.Element == Element {
let done: Void? = newElements._withContiguousStorageIfAvailable_SR14663 { source in
_storage.ensureUnique(minimumCapacity: count + source.count)
_storage.update { $0.uncheckedAppend(contentsOf: source) }
}
guard done == nil else { return }
let c = newElements.count
guard c > 0 else { return }
reserveCapacity(count + c)
_storage.update { target in
let gaps = target.availableSegments().prefix(c)
gaps.initialize(from: newElements)
target.count += c
}
}
/// Inserts a new element at the specified position.
///
/// The new element is inserted before the element currently at the specified
/// index. If you pass the deques `endIndex` as the `index` parameter, the
/// new element is appended to the deque.
///
/// - Parameters:
/// - newElement: The new element to insert into the deque.
/// - index: The position at which to insert the new element. `index` must
/// be a valid index of the deque (including `endIndex`).
///
/// - Complexity: O(`count`). The operation shifts existing elements either
/// towards the beginning or the end of the deque to minimize the number of
/// elements that need to be moved. When inserting at the start or the end,
/// this reduces the complexity to amortized O(1).
mutating func insert(_ newElement: Element, at index: Int) {
precondition(index >= 0 && index <= count,
"Can't insert element at invalid index")
_storage.ensureUnique(minimumCapacity: count + 1)
_storage.update { target in
if index == 0 {
target.uncheckedPrepend(newElement)
return
}
if index == count {
target.uncheckedAppend(newElement)
return
}
let gap = target.openGap(ofSize: 1, atOffset: index)
assert(gap.first.count == 1)
gap.first.baseAddress!.initialize(to: newElement)
}
}
/// Inserts the elements of a collection into the deque at the specified
/// position.
///
/// The new elements are inserted before the element currently at the
/// specified index. If you pass the deque's `endIndex` property as the
/// `index` parameter, the new elements are appended to the deque.
///
/// - Parameters:
/// - newElements: The new elements to insert into the deque.
/// - index: The position at which to insert the new elements. `index` must
/// be a valid index of the deque (including `endIndex`).
///
/// - Complexity: O(`count + newElements.count`). The operation shifts
/// existing elements either towards the beginning or the end of the deque
/// to minimize the number of elements that need to be moved. When
/// inserting at the start or the end, this reduces the complexity to
/// amortized O(1).
mutating func insert<C: Collection>(
contentsOf newElements: __owned C, at index: Int
) where C.Element == Element {
precondition(index >= 0 && index <= count,
"Can't insert elements at an invalid index")
let newCount = newElements.count
_storage.ensureUnique(minimumCapacity: count + newCount)
_storage.update { target in
target.uncheckedInsert(contentsOf: newElements, count: newCount, atOffset: index)
}
}
/// Removes and returns the element at the specified position.
///
/// To close the resulting gap, all elements following the specified position
/// are (logically) moved up by one index position. (Internally, the deque may
/// actually decide to shift previous elements forward instead to minimize the
/// number of elements that need to be moved.)
///
/// - Parameters:
/// - index: The position of the element to remove. `index` must be a valid
/// index of the array.
///
/// - Returns: The element originally at the specified index.
///
/// - Complexity: O(`count`). Removing elements from the start or end of the
/// deque costs O(1) if the deque's storage isn't shared.
@discardableResult
mutating func remove(at index: Int) -> Element {
precondition(index >= 0 && index < self.count, "Index out of bounds")
// FIXME: Implement storage shrinking
_storage.ensureUnique()
return _storage.update { target in
// FIXME: Add direct implementation & see if it makes a difference
let result = self[index]
target.uncheckedRemove(offsets: index ..< index + 1)
return result
}
}
/// Removes the elements in the specified subrange from the deque.
/// All elements following the specified range are (logically) moved up to
/// close the resulting gap. (Internally, the deque may actually decide to
/// shift previous elements forward instead to minimize the number of elements
/// that need to be moved.)
///
/// - Parameters:
/// - bounds: The range of the collection to be removed. The bounds of the
/// range must be valid indices of the collection.
///
/// - Complexity: O(`count`). Removing elements from the start or end of the
/// deque costs O(`bounds.count`) if the deque's storage isn't shared.
mutating func removeSubrange(_ bounds: Range<Int>) {
precondition(bounds.lowerBound >= 0 && bounds.upperBound <= self.count,
"Index range out of bounds")
_storage.ensureUnique()
_storage.update { $0.uncheckedRemove(offsets: bounds) }
}
mutating func _customRemoveLast() -> Element? {
precondition(!isEmpty, "Cannot remove last element of an empty Deque")
_storage.ensureUnique()
return _storage.update { $0.uncheckedRemoveLast() }
}
mutating func _customRemoveLast(_ n: Int) -> Bool {
precondition(n >= 0, "Can't remove a negative number of elements")
precondition(n <= count, "Can't remove more elements than there are in the Collection")
_storage.ensureUnique()
_storage.update { $0.uncheckedRemoveLast(n) }
return true
}
/// Removes and returns the first element of the deque.
///
/// The collection must not be empty.
///
/// - Returns: The removed element.
///
/// - Complexity: O(1) if the underlying storage isn't shared; otherwise
/// O(`count`).
@discardableResult
mutating func removeFirst() -> Element {
precondition(!isEmpty, "Cannot remove first element of an empty Deque")
_storage.ensureUnique()
return _storage.update { $0.uncheckedRemoveFirst() }
}
/// Removes the specified number of elements from the beginning of the deque.
///
/// - Parameter n: The number of elements to remove from the deque. `n` must
/// be greater than or equal to zero and must not exceed the number of
/// elements in the deque.
///
/// - Complexity: O(`n`) if the underlying storage isn't shared; otherwise
/// O(`count`).
mutating func removeFirst(_ n: Int) {
precondition(n >= 0, "Can't remove a negative number of elements")
precondition(n <= count, "Can't remove more elements than there are in the Collection")
_storage.ensureUnique()
return _storage.update { $0.uncheckedRemoveFirst(n) }
}
/// Removes all elements from the deque.
///
/// - Parameter keepCapacity: Pass true to keep the existing storage capacity
/// of the deque after removing its elements. The default value is false.
///
/// - Complexity: O(`count`)
mutating func removeAll(keepingCapacity keepCapacity: Bool = false) {
if keepCapacity {
_storage.ensureUnique()
_storage.update { $0.uncheckedRemoveAll() }
} else {
self = _Deque()
}
}
}