Files
swift-mirror/stdlib/public/runtime/SwiftObject.mm
Arnold Schwaighofer 39fa2f0228 Use the swift calling convention for swift functions
Use the generic type lowering algorithm described in
"docs/CallingConvention.rst#physical-lowering" to map from IRGen's explosion
type to the type expected by the ABI.

Change IRGen to use the swift calling convention (swiftcc) for native swift
functions.

Use the 'swiftself' attribute on self parameters and for closures contexts.

Use the 'swifterror' parameter for swift error parameters.

Change functions in the runtime that are called as native swift functions to use
the swift calling convention.

rdar://19978563
2017-02-14 12:17:57 -08:00

1483 lines
46 KiB
Plaintext

//===--- SwiftObject.mm - Native Swift Object root class ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This implements the Objective-C root class that provides basic `id`-
// compatibility and `NSObject` protocol conformance for pure Swift classes.
//
//===----------------------------------------------------------------------===//
#include "swift/Runtime/Config.h"
#if SWIFT_OBJC_INTEROP
#include <objc/NSObject.h>
#include <objc/runtime.h>
#include <objc/message.h>
#include <objc/objc.h>
#endif
#include "llvm/ADT/StringRef.h"
#include "swift/Basic/Demangle.h"
#include "swift/Basic/LLVM.h"
#include "swift/Basic/Lazy.h"
#include "swift/Runtime/Heap.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Runtime/ObjCBridge.h"
#include "swift/Strings.h"
#include "../SwiftShims/RuntimeShims.h"
#include "Private.h"
#include "SwiftObject.h"
#include "swift/Runtime/Debug.h"
#if SWIFT_OBJC_INTEROP
#include <dlfcn.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <unordered_map>
#if SWIFT_OBJC_INTEROP
# import <CoreFoundation/CFBase.h> // for CFTypeID
# import <Foundation/Foundation.h>
# include <malloc/malloc.h>
# include <dispatch/dispatch.h>
#endif
using namespace swift;
#if SWIFT_HAS_ISA_MASKING
OBJC_EXPORT __attribute__((__weak_import__))
const uintptr_t objc_debug_isa_class_mask;
static uintptr_t computeISAMask() {
// The versions of the Objective-C runtime which use non-pointer
// ISAs also export this symbol.
if (auto runtimeSymbol = &objc_debug_isa_class_mask)
return *runtimeSymbol;
return ~uintptr_t(0);
}
SWIFT_ALLOWED_RUNTIME_GLOBAL_CTOR_BEGIN
uintptr_t swift::swift_isaMask = computeISAMask();
SWIFT_ALLOWED_RUNTIME_GLOBAL_CTOR_END
#endif
const ClassMetadata *swift::_swift_getClass(const void *object) {
#if SWIFT_OBJC_INTEROP
if (!isObjCTaggedPointer(object))
return _swift_getClassOfAllocated(object);
return reinterpret_cast<const ClassMetadata*>(object_getClass((id) object));
#else
return _swift_getClassOfAllocated(object);
#endif
}
#if SWIFT_OBJC_INTEROP
static SwiftObject *_allocHelper(Class cls) {
// XXX FIXME
// When we have layout information, do precise alignment rounding
// For now, assume someone is using hardware vector types
#if defined(__x86_64__) || defined(__i386__)
const size_t mask = 32 - 1;
#else
const size_t mask = 16 - 1;
#endif
return reinterpret_cast<SwiftObject *>(swift::swift_allocObject(
reinterpret_cast<HeapMetadata const *>(cls),
class_getInstanceSize(cls), mask));
}
NSString *swift::convertStringToNSString(String *swiftString) {
typedef SWIFT_CC(swift) NSString *ConversionFn(void *sx, void *sy, void *sz);
// Cached lookup of swift_convertStringToNSString, which is in Foundation.
static std::atomic<ConversionFn *> TheConvertStringToNSString(nullptr);
auto convertStringToNSString =
TheConvertStringToNSString.load(std::memory_order_relaxed);
if (!convertStringToNSString) {
convertStringToNSString = (ConversionFn *)(uintptr_t)
dlsym(RTLD_DEFAULT, "swift_convertStringToNSString");
// If Foundation hasn't loaded yet, fall back to returning the static string
// "SwiftObject". The likelihood of someone invoking -description without
// ObjC interop is low.
if (!convertStringToNSString)
return @"SwiftObject";
TheConvertStringToNSString.store(convertStringToNSString,
std::memory_order_relaxed);
}
return convertStringToNSString(swiftString->x,
swiftString->y,
swiftString->z);
}
static NSString *_getDescription(SwiftObject *obj) {
String tmp;
swift_retain((HeapObject*)obj);
swift_getSummary(&tmp, (OpaqueValue*)&obj, _swift_getClassOfAllocated(obj));
return [convertStringToNSString(&tmp) autorelease];
}
static NSString *_getClassDescription(Class cls) {
return NSStringFromClass(cls);
}
@implementation SwiftObject
+ (void)initialize {}
+ (instancetype)allocWithZone:(struct _NSZone *)zone {
assert(zone == nullptr);
return _allocHelper(self);
}
+ (instancetype)alloc {
// we do not support "placement new" or zones,
// so there is no need to call allocWithZone
return _allocHelper(self);
}
+ (Class)class {
return self;
}
- (Class)class {
return (Class) _swift_getClassOfAllocated(self);
}
+ (Class)superclass {
return (Class) _swift_getSuperclass((const ClassMetadata*) self);
}
- (Class)superclass {
return (Class) _swift_getSuperclass(_swift_getClassOfAllocated(self));
}
+ (BOOL)isMemberOfClass:(Class)cls {
return cls == (Class) _swift_getClassOfAllocated(self);
}
- (BOOL)isMemberOfClass:(Class)cls {
return cls == (Class) _swift_getClassOfAllocated(self);
}
- (instancetype)self {
return self;
}
- (BOOL)isProxy {
return NO;
}
- (struct _NSZone *)zone {
auto zone = malloc_zone_from_ptr(self);
return (struct _NSZone *)(zone ? zone : malloc_default_zone());
}
- (void)doesNotRecognizeSelector: (SEL) sel {
Class cls = (Class) _swift_getClassOfAllocated(self);
fatalError(/* flags = */ 0,
"Unrecognized selector %c[%s %s]\n",
class_isMetaClass(cls) ? '+' : '-',
class_getName(cls), sel_getName(sel));
}
- (id)retain {
auto SELF = reinterpret_cast<HeapObject *>(self);
swift_retain(SELF);
return self;
}
- (void)release {
auto SELF = reinterpret_cast<HeapObject *>(self);
swift_release(SELF);
}
- (id)autorelease {
return _objc_rootAutorelease(self);
}
- (NSUInteger)retainCount {
return swift::swift_retainCount(reinterpret_cast<HeapObject *>(self));
}
- (BOOL)_isDeallocating {
return swift_isDeallocating(reinterpret_cast<HeapObject *>(self));
}
- (BOOL)_tryRetain {
return swift_tryRetain(reinterpret_cast<HeapObject*>(self)) != nullptr;
}
- (BOOL)allowsWeakReference {
return !swift_isDeallocating(reinterpret_cast<HeapObject *>(self));
}
- (BOOL)retainWeakReference {
return swift_tryRetain(reinterpret_cast<HeapObject*>(self)) != nullptr;
}
// Retaining the class object itself is a no-op.
+ (id)retain {
return self;
}
+ (void)release {
/* empty */
}
+ (id)autorelease {
return self;
}
+ (NSUInteger)retainCount {
return ULONG_MAX;
}
+ (BOOL)_isDeallocating {
return NO;
}
+ (BOOL)_tryRetain {
return YES;
}
+ (BOOL)allowsWeakReference {
return YES;
}
+ (BOOL)retainWeakReference {
return YES;
}
- (void)dealloc {
swift_rootObjCDealloc(reinterpret_cast<HeapObject *>(self));
}
- (BOOL)isKindOfClass:(Class)someClass {
for (auto cls = _swift_getClassOfAllocated(self); cls != nullptr;
cls = _swift_getSuperclass(cls))
if (cls == (const ClassMetadata*) someClass)
return YES;
return NO;
}
+ (BOOL)isSubclassOfClass:(Class)someClass {
for (auto cls = (const ClassMetadata*) self; cls != nullptr;
cls = _swift_getSuperclass(cls))
if (cls == (const ClassMetadata*) someClass)
return YES;
return NO;
}
+ (BOOL)respondsToSelector:(SEL)sel {
if (!sel) return NO;
return class_respondsToSelector((Class) _swift_getClassOfAllocated(self), sel);
}
- (BOOL)respondsToSelector:(SEL)sel {
if (!sel) return NO;
return class_respondsToSelector((Class) _swift_getClassOfAllocated(self), sel);
}
+ (BOOL)instancesRespondToSelector:(SEL)sel {
if (!sel) return NO;
return class_respondsToSelector(self, sel);
}
- (BOOL)conformsToProtocol:(Protocol*)proto {
if (!proto) return NO;
auto selfClass = (Class) _swift_getClassOfAllocated(self);
// Walk the superclass chain.
while (selfClass) {
if (class_conformsToProtocol(selfClass, proto))
return YES;
selfClass = class_getSuperclass(selfClass);
}
return NO;
}
+ (BOOL)conformsToProtocol:(Protocol*)proto {
if (!proto) return NO;
// Walk the superclass chain.
Class selfClass = self;
while (selfClass) {
if (class_conformsToProtocol(selfClass, proto))
return YES;
selfClass = class_getSuperclass(selfClass);
}
return NO;
}
- (NSUInteger)hash {
return (NSUInteger)self;
}
- (BOOL)isEqual:(id)object {
return self == object;
}
- (id)performSelector:(SEL)aSelector {
return ((id(*)(id, SEL))objc_msgSend)(self, aSelector);
}
- (id)performSelector:(SEL)aSelector withObject:(id)object {
return ((id(*)(id, SEL, id))objc_msgSend)(self, aSelector, object);
}
- (id)performSelector:(SEL)aSelector withObject:(id)object1
withObject:(id)object2 {
return ((id(*)(id, SEL, id, id))objc_msgSend)(self, aSelector, object1,
object2);
}
- (NSString *)description {
return _getDescription(self);
}
- (NSString *)debugDescription {
return _getDescription(self);
}
+ (NSString *)description {
return _getClassDescription(self);
}
+ (NSString *)debugDescription {
return _getClassDescription(self);
}
- (NSString *)_copyDescription {
// The NSObject version of this pushes an autoreleasepool in case -description
// autoreleases, but we're OK with leaking things if we're at the top level
// of the main thread with no autorelease pool.
return [[self description] retain];
}
- (CFTypeID)_cfTypeID {
// Adopt the same CFTypeID as NSObject.
static CFTypeID result;
static dispatch_once_t predicate;
dispatch_once_f(&predicate, &result, [](void *resultAddr) {
id obj = [[NSObject alloc] init];
*(CFTypeID*)resultAddr = [obj _cfTypeID];
[obj release];
});
return result;
}
// Foundation collections expect these to be implemented.
- (BOOL)isNSArray__ { return NO; }
- (BOOL)isNSDictionary__ { return NO; }
- (BOOL)isNSSet__ { return NO; }
- (BOOL)isNSOrderedSet__ { return NO; }
- (BOOL)isNSNumber__ { return NO; }
- (BOOL)isNSData__ { return NO; }
- (BOOL)isNSDate__ { return NO; }
- (BOOL)isNSString__ { return NO; }
- (BOOL)isNSValue__ { return NO; }
@end
#endif
/// Decide dynamically whether the given class uses native Swift
/// reference-counting.
bool swift::usesNativeSwiftReferenceCounting(const ClassMetadata *theClass) {
#if SWIFT_OBJC_INTEROP
if (!theClass->isTypeMetadata()) return false;
return (theClass->getFlags() & ClassFlags::UsesSwift1Refcounting);
#else
return true;
#endif
}
/// Decide dynamically whether the given type metadata uses native Swift
/// reference-counting. The metadata is known to correspond to a class
/// type, but note that does not imply being known to be a ClassMetadata
/// due to the existence of ObjCClassWrapper.
SWIFT_CC(swift)
SWIFT_RUNTIME_EXPORT
bool
swift_objc_class_usesNativeSwiftReferenceCounting(const Metadata *theClass) {
#if SWIFT_OBJC_INTEROP
// If this is ObjC wrapper metadata, the class is definitely not using
// Swift ref-counting.
if (isa<ObjCClassWrapperMetadata>(theClass)) return false;
// Otherwise, it's class metadata.
return usesNativeSwiftReferenceCounting(cast<ClassMetadata>(theClass));
#else
return true;
#endif
}
// The non-pointer bits, excluding the ObjC tag bits.
static auto const unTaggedNonNativeBridgeObjectBits
= heap_object_abi::SwiftSpareBitsMask
& ~heap_object_abi::ObjCReservedBitsMask;
#if SWIFT_OBJC_INTEROP
#if defined(__x86_64__)
static uintptr_t const objectPointerIsObjCBit = 0x4000000000000000ULL;
#elif defined(__arm64__)
static uintptr_t const objectPointerIsObjCBit = 0x4000000000000000ULL;
#else
static uintptr_t const objectPointerIsObjCBit = 0x00000002U;
#endif
static bool usesNativeSwiftReferenceCounting_allocated(const void *object) {
assert(!isObjCTaggedPointerOrNull(object));
#if SWIFT_HAS_OPAQUE_ISAS
// Fast path for opaque ISAs. We don't want to call _swift_getClassOfAllocated
// as that will call object_getClass. Instead we can look at the bits in the
// ISA and tell if its a non-pointer opaque ISA which means it is definitely
// an ObjC object and doesn't use native swift reference counting.
if (_swift_isNonPointerIsaObjCClass(object))
return false;
return usesNativeSwiftReferenceCounting(_swift_getClassOfAllocatedFromPointer(object));
#endif
return usesNativeSwiftReferenceCounting(_swift_getClassOfAllocated(object));
}
void swift::swift_unknownRetain_n(void *object, int n)
SWIFT_CC(DefaultCC_IMPL) {
if (isObjCTaggedPointerOrNull(object)) return;
if (usesNativeSwiftReferenceCounting_allocated(object)) {
swift_retain_n(static_cast<HeapObject *>(object), n);
return;
}
for (int i = 0; i < n; ++i)
objc_retain(static_cast<id>(object));
}
void swift::swift_unknownRelease_n(void *object, int n)
SWIFT_CC(DefaultCC_IMPL) {
if (isObjCTaggedPointerOrNull(object)) return;
if (usesNativeSwiftReferenceCounting_allocated(object))
return swift_release_n(static_cast<HeapObject *>(object), n);
for (int i = 0; i < n; ++i)
objc_release(static_cast<id>(object));
}
void swift::swift_unknownRetain(void *object)
SWIFT_CC(DefaultCC_IMPL) {
if (isObjCTaggedPointerOrNull(object)) return;
if (usesNativeSwiftReferenceCounting_allocated(object)) {
swift_retain(static_cast<HeapObject *>(object));
return;
}
objc_retain(static_cast<id>(object));
}
void swift::swift_unknownRelease(void *object)
SWIFT_CC(DefaultCC_IMPL) {
if (isObjCTaggedPointerOrNull(object)) return;
if (usesNativeSwiftReferenceCounting_allocated(object))
return SWIFT_RT_ENTRY_CALL(swift_release)(static_cast<HeapObject *>(object));
return objc_release(static_cast<id>(object));
}
void swift::swift_nonatomic_unknownRetain_n(void *object, int n)
SWIFT_CC(DefaultCC_IMPL) {
if (isObjCTaggedPointerOrNull(object)) return;
if (usesNativeSwiftReferenceCounting_allocated(object)) {
swift_nonatomic_retain_n(static_cast<HeapObject *>(object), n);
return;
}
for (int i = 0; i < n; ++i)
objc_retain(static_cast<id>(object));
}
void swift::swift_nonatomic_unknownRelease_n(void *object, int n)
SWIFT_CC(DefaultCC_IMPL) {
if (isObjCTaggedPointerOrNull(object)) return;
if (usesNativeSwiftReferenceCounting_allocated(object))
return swift_nonatomic_release_n(static_cast<HeapObject *>(object), n);
for (int i = 0; i < n; ++i)
objc_release(static_cast<id>(object));
}
void swift::swift_nonatomic_unknownRetain(void *object)
SWIFT_CC(DefaultCC_IMPL) {
if (isObjCTaggedPointerOrNull(object)) return;
if (usesNativeSwiftReferenceCounting_allocated(object)) {
swift_nonatomic_retain(static_cast<HeapObject *>(object));
return;
}
objc_retain(static_cast<id>(object));
}
void swift::swift_nonatomic_unknownRelease(void *object)
SWIFT_CC(DefaultCC_IMPL) {
if (isObjCTaggedPointerOrNull(object)) return;
if (usesNativeSwiftReferenceCounting_allocated(object))
return SWIFT_RT_ENTRY_CALL(swift_release)(static_cast<HeapObject *>(object));
return objc_release(static_cast<id>(object));
}
/// Return true iff the given BridgeObject is not known to use native
/// reference-counting.
///
/// Precondition: object does not encode a tagged pointer
static bool isNonNative_unTagged_bridgeObject(void *object) {
static_assert((heap_object_abi::SwiftSpareBitsMask & objectPointerIsObjCBit) ==
objectPointerIsObjCBit,
"isObjC bit not within spare bits");
return (uintptr_t(object) & objectPointerIsObjCBit) != 0;
}
#endif
// Mask out the spare bits in a bridgeObject, returning the object it
// encodes.
///
/// Precondition: object does not encode a tagged pointer
static void* toPlainObject_unTagged_bridgeObject(void *object) {
return (void*)(uintptr_t(object) & ~unTaggedNonNativeBridgeObjectBits);
}
void *swift::swift_bridgeObjectRetain(void *object)
SWIFT_CC(DefaultCC_IMPL) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object))
return object;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object)) {
swift_retain(static_cast<HeapObject *>(objectRef));
return static_cast<HeapObject *>(objectRef);
}
return objc_retain(static_cast<id>(objectRef));
#else
swift_retain(static_cast<HeapObject *>(objectRef));
return static_cast<HeapObject *>(objectRef);
#endif
}
SWIFT_RUNTIME_EXPORT
void *swift::swift_nonatomic_bridgeObjectRetain(void *object)
SWIFT_CC(DefaultCC_IMPL) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object))
return object;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object)) {
swift_nonatomic_retain(static_cast<HeapObject *>(objectRef));
return static_cast<HeapObject *>(objectRef);
}
return objc_retain(static_cast<id>(objectRef));
#else
swift_nonatomic_retain(static_cast<HeapObject *>(objectRef));
return static_cast<HeapObject *>(objectRef);
#endif
}
SWIFT_RUNTIME_EXPORT
void swift::swift_bridgeObjectRelease(void *object)
SWIFT_CC(DefaultCC_IMPL) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object))
return;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object))
return swift_release(static_cast<HeapObject *>(objectRef));
return objc_release(static_cast<id>(objectRef));
#else
swift_release(static_cast<HeapObject *>(objectRef));
#endif
}
void swift::swift_nonatomic_bridgeObjectRelease(void *object)
SWIFT_CC(DefaultCC_IMPL) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object))
return;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object))
return swift_nonatomic_release(static_cast<HeapObject *>(objectRef));
return objc_release(static_cast<id>(objectRef));
#else
swift_nonatomic_release(static_cast<HeapObject *>(objectRef));
#endif
}
void *swift::swift_bridgeObjectRetain_n(void *object, int n)
SWIFT_CC(DefaultCC_IMPL) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object))
return object;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
void *objc_ret = nullptr;
if (!isNonNative_unTagged_bridgeObject(object)) {
swift_retain_n(static_cast<HeapObject *>(objectRef), n);
return static_cast<HeapObject *>(objectRef);
}
for (int i = 0;i < n; ++i)
objc_ret = objc_retain(static_cast<id>(objectRef));
return objc_ret;
#else
swift_retain_n(static_cast<HeapObject *>(objectRef), n);
return static_cast<HeapObject *>(objectRef);
#endif
}
void swift::swift_bridgeObjectRelease_n(void *object, int n)
SWIFT_CC(DefaultCC_IMPL) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object))
return;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object))
return swift_release_n(static_cast<HeapObject *>(objectRef), n);
for (int i = 0; i < n; ++i)
objc_release(static_cast<id>(objectRef));
#else
swift_release_n(static_cast<HeapObject *>(objectRef), n);
#endif
}
void *swift::swift_nonatomic_bridgeObjectRetain_n(void *object, int n)
SWIFT_CC(DefaultCC_IMPL) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object))
return object;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
void *objc_ret = nullptr;
if (!isNonNative_unTagged_bridgeObject(object)) {
swift_nonatomic_retain_n(static_cast<HeapObject *>(objectRef), n);
return static_cast<HeapObject *>(objectRef);
}
for (int i = 0;i < n; ++i)
objc_ret = objc_retain(static_cast<id>(objectRef));
return objc_ret;
#else
swift_nonatomic_retain_n(static_cast<HeapObject *>(objectRef), n);
return static_cast<HeapObject *>(objectRef);
#endif
}
void swift::swift_nonatomic_bridgeObjectRelease_n(void *object, int n)
SWIFT_CC(DefaultCC_IMPL) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object))
return;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object))
return swift_nonatomic_release_n(static_cast<HeapObject *>(objectRef), n);
for (int i = 0; i < n; ++i)
objc_release(static_cast<id>(objectRef));
#else
swift_nonatomic_release_n(static_cast<HeapObject *>(objectRef), n);
#endif
}
#if SWIFT_OBJC_INTEROP
/*****************************************************************************/
/**************************** UNOWNED REFERENCES *****************************/
/*****************************************************************************/
// Swift's native unowned references are implemented purely with
// reference-counting: as long as an unowned reference is held to an object,
// it can be destroyed but never deallocated, being that it remains fully safe
// to pass around a pointer and perform further reference-counting operations.
//
// For imported class types (meaning ObjC, for now, but in principle any
// type which supports ObjC-style weak references but not directly Swift-style
// unowned references), we have to implement this on top of the weak-reference
// support, at least for now. But we'd like to be able to statically take
// advantage of Swift's representational advantages when we know that all the
// objects involved are Swift-native. That means that whatever scheme we use
// for unowned references needs to interoperate with code just doing naive
// loads and stores, at least when the ObjC case isn't triggered.
//
// We have to be sensitive about making unreasonable assumptions about the
// implementation of ObjC weak references, and we definitely cannot modify
// memory owned by the ObjC runtime. In the long run, direct support from
// the ObjC runtime can allow an efficient implementation that doesn't violate
// those requirements, both by allowing us to directly check whether a weak
// reference was cleared by deallocation vs. just initialized to nil and by
// guaranteeing a bit pattern that distinguishes Swift references. In the
// meantime, out-of-band allocation is inefficient but not ridiculously so.
//
// Note that unowned references need not provide guaranteed behavior in
// the presence of read/write or write/write races on the reference itself.
// Furthermore, and unlike weak references, they also do not need to be
// safe against races with the deallocation of the object. It is the user's
// responsibility to ensure that the reference remains valid at the time
// that the unowned reference is read.
namespace {
/// An Objective-C unowned reference. Given an unknown unowned reference
/// in memory, it is an ObjC unowned reference if the IsObjCFlag bit
/// is set; if so, the pointer stored in the reference actually points
/// to out-of-line storage containing an ObjC weak reference.
///
/// It is an invariant that this out-of-line storage is only ever
/// allocated and constructed for non-null object references, so if the
/// weak load yields null, it can only be because the object was deallocated.
struct ObjCUnownedReference : UnownedReference {
// Pretending that there's a subclass relationship here means that
// accesses to objects formally constructed as UnownedReferences will
// technically be aliasing violations. However, the language runtime
// will generally not see any such objects.
enum : uintptr_t { IsObjCMask = 0x1, IsObjCFlag = 0x1 };
/// The out-of-line storage of an ObjC unowned reference.
struct Storage {
/// A weak reference registered with the ObjC runtime.
mutable id WeakRef;
Storage(id ref) {
assert(ref && "creating storage for null reference?");
objc_initWeak(&WeakRef, ref);
}
Storage(const Storage &other) {
objc_copyWeak(&WeakRef, &other.WeakRef);
}
Storage &operator=(const Storage &other) = delete;
Storage &operator=(id ref) {
objc_storeWeak(&WeakRef, ref);
return *this;
}
~Storage() {
objc_destroyWeak(&WeakRef);
}
// Don't use the C++ allocator.
void *operator new(size_t size) { return malloc(size); }
void operator delete(void *ptr) { free(ptr); }
};
Storage *storage() {
assert(isa<ObjCUnownedReference>(this));
return reinterpret_cast<Storage*>(
reinterpret_cast<uintptr_t>(Value) & ~IsObjCMask);
}
static void initialize(UnownedReference *dest, id value) {
initializeWithStorage(dest, new Storage(value));
}
static void initializeWithCopy(UnownedReference *dest, Storage *src) {
initializeWithStorage(dest, new Storage(*src));
}
static void initializeWithStorage(UnownedReference *dest,
Storage *storage) {
dest->Value = (HeapObject*) (uintptr_t(storage) | IsObjCFlag);
}
static bool classof(const UnownedReference *ref) {
return (uintptr_t(ref->Value) & IsObjCMask) == IsObjCFlag;
}
};
}
static bool isObjCForUnownedReference(void *value) {
return (isObjCTaggedPointer(value) ||
!usesNativeSwiftReferenceCounting_allocated(value));
}
void swift::swift_unknownUnownedInit(UnownedReference *dest, void *value) {
if (!value) {
dest->Value = nullptr;
} else if (isObjCForUnownedReference(value)) {
ObjCUnownedReference::initialize(dest, (id) value);
} else {
swift_unownedInit(dest, (HeapObject*) value);
}
}
void swift::swift_unknownUnownedAssign(UnownedReference *dest, void *value) {
if (!value) {
swift_unknownUnownedDestroy(dest);
dest->Value = nullptr;
} else if (isObjCForUnownedReference(value)) {
if (auto objcDest = dyn_cast<ObjCUnownedReference>(dest)) {
objc_storeWeak(&objcDest->storage()->WeakRef, (id) value);
} else {
swift_unownedDestroy(dest);
ObjCUnownedReference::initialize(dest, (id) value);
}
} else {
if (auto objcDest = dyn_cast<ObjCUnownedReference>(dest)) {
delete objcDest->storage();
swift_unownedInit(dest, (HeapObject*) value);
} else {
swift_unownedAssign(dest, (HeapObject*) value);
}
}
}
void *swift::swift_unknownUnownedLoadStrong(UnownedReference *ref) {
if (!ref->Value) {
return nullptr;
} else if (auto objcRef = dyn_cast<ObjCUnownedReference>(ref)) {
auto result = (void*) objc_loadWeakRetained(&objcRef->storage()->WeakRef);
if (result == nullptr) {
_swift_abortRetainUnowned(nullptr);
}
return result;
} else {
return swift_unownedLoadStrong(ref);
}
}
void *swift::swift_unknownUnownedTakeStrong(UnownedReference *ref) {
if (!ref->Value) {
return nullptr;
} else if (auto objcRef = dyn_cast<ObjCUnownedReference>(ref)) {
auto storage = objcRef->storage();
auto result = (void*) objc_loadWeakRetained(&objcRef->storage()->WeakRef);
if (result == nullptr) {
_swift_abortRetainUnowned(nullptr);
}
delete storage;
return result;
} else {
return swift_unownedTakeStrong(ref);
}
}
void swift::swift_unknownUnownedDestroy(UnownedReference *ref) {
if (!ref->Value) {
// Nothing to do.
return;
} else if (auto objcRef = dyn_cast<ObjCUnownedReference>(ref)) {
delete objcRef->storage();
} else {
swift_unownedDestroy(ref);
}
}
void swift::swift_unknownUnownedCopyInit(UnownedReference *dest,
UnownedReference *src) {
assert(dest != src);
if (!src->Value) {
dest->Value = nullptr;
} else if (auto objcSrc = dyn_cast<ObjCUnownedReference>(src)) {
ObjCUnownedReference::initializeWithCopy(dest, objcSrc->storage());
} else {
swift_unownedCopyInit(dest, src);
}
}
void swift::swift_unknownUnownedTakeInit(UnownedReference *dest,
UnownedReference *src) {
assert(dest != src);
dest->Value = src->Value;
}
void swift::swift_unknownUnownedCopyAssign(UnownedReference *dest,
UnownedReference *src) {
if (dest == src) return;
if (auto objcSrc = dyn_cast<ObjCUnownedReference>(src)) {
if (auto objcDest = dyn_cast<ObjCUnownedReference>(dest)) {
// ObjC unfortunately doesn't expose a copy-assign operation.
objc_destroyWeak(&objcDest->storage()->WeakRef);
objc_copyWeak(&objcDest->storage()->WeakRef,
&objcSrc->storage()->WeakRef);
return;
}
swift_unownedDestroy(dest);
ObjCUnownedReference::initializeWithCopy(dest, objcSrc->storage());
} else {
if (auto objcDest = dyn_cast<ObjCUnownedReference>(dest)) {
delete objcDest->storage();
swift_unownedCopyInit(dest, src);
} else {
swift_unownedCopyAssign(dest, src);
}
}
}
void swift::swift_unknownUnownedTakeAssign(UnownedReference *dest,
UnownedReference *src) {
assert(dest != src);
// There's not really anything more efficient to do here than this.
swift_unknownUnownedDestroy(dest);
dest->Value = src->Value;
}
/*****************************************************************************/
/****************************** WEAK REFERENCES ******************************/
/*****************************************************************************/
// FIXME: these are not really valid implementations; they assume too
// much about the implementation of ObjC weak references, and the
// loads from ->Value can race with clears by the runtime.
static void doWeakInit(WeakReference *addr, void *value, bool valueIsNative) {
assert(value != nullptr);
if (valueIsNative) {
swift_weakInit(addr, (HeapObject*) value);
} else {
objc_initWeak((id*) &addr->Value, (id) value);
}
}
static void doWeakDestroy(WeakReference *addr, bool valueIsNative) {
if (valueIsNative) {
swift_weakDestroy(addr);
} else {
objc_destroyWeak((id*) &addr->Value);
}
}
void swift::swift_unknownWeakInit(WeakReference *addr, void *value) {
if (isObjCTaggedPointerOrNull(value)) {
addr->Value = (uintptr_t) value;
return;
}
doWeakInit(addr, value, usesNativeSwiftReferenceCounting_allocated(value));
}
void swift::swift_unknownWeakAssign(WeakReference *addr, void *newValue) {
// If the incoming value is not allocated, this is just a destroy
// and re-initialize.
if (isObjCTaggedPointerOrNull(newValue)) {
swift_unknownWeakDestroy(addr);
addr->Value = (uintptr_t) newValue;
return;
}
bool newIsNative = usesNativeSwiftReferenceCounting_allocated(newValue);
// If the existing value is not allocated, this is just an initialize.
void *oldValue = (void*) addr->Value;
if (isObjCTaggedPointerOrNull(oldValue))
return doWeakInit(addr, newValue, newIsNative);
bool oldIsNative = isNativeSwiftWeakReference(addr);
// If they're both native, we can use the native function.
if (oldIsNative && newIsNative)
return swift_weakAssign(addr, (HeapObject*) newValue);
// If neither is native, we can use the ObjC function.
if (!oldIsNative && !newIsNative)
return (void) objc_storeWeak((id*) &addr->Value, (id) newValue);
// Otherwise, destroy according to one set of semantics and
// re-initialize with the other.
doWeakDestroy(addr, oldIsNative);
doWeakInit(addr, newValue, newIsNative);
}
void *swift::swift_unknownWeakLoadStrong(WeakReference *addr) {
if (isNativeSwiftWeakReference(addr)) {
return swift_weakLoadStrong(addr);
}
void *value = (void*) addr->Value;
if (isObjCTaggedPointerOrNull(value)) return value;
return (void*) objc_loadWeakRetained((id*) &addr->Value);
}
void *swift::swift_unknownWeakTakeStrong(WeakReference *addr) {
if (isNativeSwiftWeakReference(addr)) {
return swift_weakTakeStrong(addr);
}
void *value = (void*) addr->Value;
if (isObjCTaggedPointerOrNull(value)) return value;
void *result = (void*) objc_loadWeakRetained((id*) &addr->Value);
objc_destroyWeak((id*) &addr->Value);
return result;
}
void swift::swift_unknownWeakDestroy(WeakReference *addr) {
if (isNativeSwiftWeakReference(addr)) {
return swift_weakDestroy(addr);
}
id object = (id) addr->Value;
if (isObjCTaggedPointerOrNull(object)) return;
objc_destroyWeak((id*) &addr->Value);
}
void swift::swift_unknownWeakCopyInit(WeakReference *dest, WeakReference *src) {
if (isNativeSwiftWeakReference(src)) {
return swift_weakCopyInit(dest, src);
}
id object = (id) src->Value;
if (isObjCTaggedPointerOrNull(object)) {
dest->Value = (uintptr_t) object;
} else {
objc_copyWeak((id*) &dest->Value, (id*) src);
}
}
void swift::swift_unknownWeakTakeInit(WeakReference *dest, WeakReference *src) {
if (isNativeSwiftWeakReference(src)) {
return swift_weakTakeInit(dest, src);
}
id object = (id) src->Value;
if (isObjCTaggedPointerOrNull(object)) {
dest->Value = (uintptr_t) object;
} else {
objc_moveWeak((id*) &dest->Value, (id*) &src->Value);
}
}
void swift::swift_unknownWeakCopyAssign(WeakReference *dest, WeakReference *src) {
if (dest == src) return;
swift_unknownWeakDestroy(dest);
swift_unknownWeakCopyInit(dest, src);
}
void swift::swift_unknownWeakTakeAssign(WeakReference *dest, WeakReference *src) {
if (dest == src) return;
swift_unknownWeakDestroy(dest);
swift_unknownWeakTakeInit(dest, src);
}
#endif
/*****************************************************************************/
/******************************* DYNAMIC CASTS *******************************/
/*****************************************************************************/
#if SWIFT_OBJC_INTEROP
const void *
swift::swift_dynamicCastObjCClass(const void *object,
const ClassMetadata *targetType) {
// FIXME: We need to decide if this is really how we want to treat 'nil'.
if (object == nullptr)
return nullptr;
if ([(id)object isKindOfClass:(Class)targetType]) {
return object;
}
return nullptr;
}
const void *
swift::swift_dynamicCastObjCClassUnconditional(const void *object,
const ClassMetadata *targetType) {
// FIXME: We need to decide if this is really how we want to treat 'nil'.
if (object == nullptr)
return nullptr;
if ([(id)object isKindOfClass:(Class)targetType]) {
return object;
}
Class sourceType = object_getClass((id)object);
swift_dynamicCastFailure(reinterpret_cast<const Metadata *>(sourceType),
targetType);
}
const void *
swift::swift_dynamicCastForeignClass(const void *object,
const ForeignClassMetadata *targetType) {
// FIXME: Actually compare CFTypeIDs, once they are available in the metadata.
return object;
}
const void *
swift::swift_dynamicCastForeignClassUnconditional(
const void *object,
const ForeignClassMetadata *targetType) {
// FIXME: Actual compare CFTypeIDs, once they are available in the metadata.
return object;
}
bool swift::objectConformsToObjCProtocol(const void *theObject,
const ProtocolDescriptor *protocol) {
return [((id) theObject) conformsToProtocol: (Protocol*) protocol];
}
bool swift::classConformsToObjCProtocol(const void *theClass,
const ProtocolDescriptor *protocol) {
return [((Class) theClass) conformsToProtocol: (Protocol*) protocol];
}
SWIFT_RUNTIME_EXPORT
const Metadata *swift_dynamicCastTypeToObjCProtocolUnconditional(
const Metadata *type,
size_t numProtocols,
Protocol * const *protocols) {
Class classObject;
switch (type->getKind()) {
case MetadataKind::Class:
// Native class metadata is also the class object.
classObject = (Class)type;
break;
case MetadataKind::ObjCClassWrapper:
// Unwrap to get the class object.
classObject = (Class)static_cast<const ObjCClassWrapperMetadata *>(type)
->Class;
break;
// Other kinds of type can never conform to ObjC protocols.
case MetadataKind::Struct:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Opaque:
case MetadataKind::Tuple:
case MetadataKind::Function:
case MetadataKind::Existential:
case MetadataKind::Metatype:
case MetadataKind::ExistentialMetatype:
case MetadataKind::ForeignClass:
swift_dynamicCastFailure(type, nameForMetadata(type).c_str(),
protocols[0], protocol_getName(protocols[0]));
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
assert(false && "not type metadata");
break;
}
for (size_t i = 0; i < numProtocols; ++i) {
if (![classObject conformsToProtocol:protocols[i]]) {
swift_dynamicCastFailure(type, nameForMetadata(type).c_str(),
protocols[i], protocol_getName(protocols[i]));
}
}
return type;
}
SWIFT_RUNTIME_EXPORT
const Metadata *swift_dynamicCastTypeToObjCProtocolConditional(
const Metadata *type,
size_t numProtocols,
Protocol * const *protocols) {
Class classObject;
switch (type->getKind()) {
case MetadataKind::Class:
// Native class metadata is also the class object.
classObject = (Class)type;
break;
case MetadataKind::ObjCClassWrapper:
// Unwrap to get the class object.
classObject = (Class)static_cast<const ObjCClassWrapperMetadata *>(type)
->Class;
break;
// Other kinds of type can never conform to ObjC protocols.
case MetadataKind::Struct:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Opaque:
case MetadataKind::Tuple:
case MetadataKind::Function:
case MetadataKind::Existential:
case MetadataKind::Metatype:
case MetadataKind::ExistentialMetatype:
case MetadataKind::ForeignClass:
return nullptr;
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
assert(false && "not type metadata");
break;
}
for (size_t i = 0; i < numProtocols; ++i) {
if (![classObject conformsToProtocol:protocols[i]]) {
return nullptr;
}
}
return type;
}
SWIFT_RUNTIME_EXPORT
id swift_dynamicCastObjCProtocolUnconditional(id object,
size_t numProtocols,
Protocol * const *protocols) {
for (size_t i = 0; i < numProtocols; ++i) {
if (![object conformsToProtocol:protocols[i]]) {
Class sourceType = object_getClass(object);
swift_dynamicCastFailure(sourceType, class_getName(sourceType),
protocols[i], protocol_getName(protocols[i]));
}
}
return object;
}
SWIFT_RUNTIME_EXPORT
id swift_dynamicCastObjCProtocolConditional(id object,
size_t numProtocols,
Protocol * const *protocols) {
for (size_t i = 0; i < numProtocols; ++i) {
if (![object conformsToProtocol:protocols[i]]) {
return nil;
}
}
return object;
}
void swift::swift_instantiateObjCClass(const ClassMetadata *_c) {
static const objc_image_info ImageInfo = {0, 0};
// Ensure the superclass is realized.
Class c = (Class) _c;
[class_getSuperclass(c) class];
// Register the class.
Class registered = objc_readClassPair(c, &ImageInfo);
assert(registered == c
&& "objc_readClassPair failed to instantiate the class in-place");
(void)registered;
}
SWIFT_RT_ENTRY_VISIBILITY
Class swift_getInitializedObjCClass(Class c)
SWIFT_CC(RegisterPreservingCC_IMPL) {
// Used when we have class metadata and we want to ensure a class has been
// initialized by the Objective-C runtime. We need to do this because the
// class "c" might be valid metadata, but it hasn't been initialized yet.
return [c class];
}
const ClassMetadata *
swift::swift_dynamicCastObjCClassMetatype(const ClassMetadata *source,
const ClassMetadata *dest) {
if ([(Class)source isSubclassOfClass:(Class)dest])
return source;
return nil;
}
const ClassMetadata *
swift::swift_dynamicCastObjCClassMetatypeUnconditional(
const ClassMetadata *source,
const ClassMetadata *dest) {
if ([(Class)source isSubclassOfClass:(Class)dest])
return source;
swift_dynamicCastFailure(source, dest);
}
#endif
const ClassMetadata *
swift::swift_dynamicCastForeignClassMetatype(const ClassMetadata *sourceType,
const ClassMetadata *targetType) {
// FIXME: Actually compare CFTypeIDs, once they are available in
// the metadata.
return sourceType;
}
const ClassMetadata *
swift::swift_dynamicCastForeignClassMetatypeUnconditional(
const ClassMetadata *sourceType,
const ClassMetadata *targetType)
{
// FIXME: Actually compare CFTypeIDs, once they arae available in
// the metadata.
return sourceType;
}
#if SWIFT_OBJC_INTEROP
// Given a non-nil object reference, return true iff the object uses
// native swift reference counting.
static bool usesNativeSwiftReferenceCounting_nonNull(
const void* object
) {
assert(object != nullptr);
return !isObjCTaggedPointer(object) &&
usesNativeSwiftReferenceCounting_allocated(object);
}
#endif
bool swift::swift_isUniquelyReferenced_nonNull_native(const HeapObject *object)
SWIFT_CC(RegisterPreservingCC_IMPL) {
assert(object != nullptr);
assert(!object->refCount.isDeallocating());
return object->refCount.isUniquelyReferenced();
}
bool swift::swift_isUniquelyReferenced_native(const HeapObject* object) {
return object != nullptr
&& swift::SWIFT_RT_ENTRY_CALL(swift_isUniquelyReferenced_nonNull_native)(object);
}
bool swift::swift_isUniquelyReferencedNonObjC_nonNull(const void* object) {
assert(object != nullptr);
return
#if SWIFT_OBJC_INTEROP
usesNativeSwiftReferenceCounting_nonNull(object) &&
#endif
SWIFT_RT_ENTRY_CALL(swift_isUniquelyReferenced_nonNull_native)((HeapObject*)object);
}
// Given an object reference, return true iff it is non-nil and refers
// to a native swift object with strong reference count of 1.
bool swift::swift_isUniquelyReferencedNonObjC(
const void* object
) {
return object != nullptr
&& swift_isUniquelyReferencedNonObjC_nonNull(object);
}
/// Return true if the given bits of a Builtin.BridgeObject refer to a
/// native swift object whose strong reference count is 1.
bool swift::swift_isUniquelyReferencedNonObjC_nonNull_bridgeObject(
uintptr_t bits
) {
auto bridgeObject = (void*)bits;
if (isObjCTaggedPointer(bridgeObject))
return false;
const auto object = toPlainObject_unTagged_bridgeObject(bridgeObject);
// Note: we could just return false if all spare bits are set,
// but in that case the cost of a deeper check for a unique native
// object is going to be a negligible cost for a possible big win.
#if SWIFT_OBJC_INTEROP
return !isNonNative_unTagged_bridgeObject(bridgeObject)
? SWIFT_RT_ENTRY_CALL(swift_isUniquelyReferenced_nonNull_native)(
(const HeapObject *)object)
: swift_isUniquelyReferencedNonObjC_nonNull(object);
#else
return SWIFT_RT_ENTRY_CALL(swift_isUniquelyReferenced_nonNull_native)(
(const HeapObject *)object);
#endif
}
/// Return true if the given bits of a Builtin.BridgeObject refer to a
/// native swift object whose strong reference count is 1.
bool swift::swift_isUniquelyReferencedOrPinnedNonObjC_nonNull_bridgeObject(
uintptr_t bits
) {
auto bridgeObject = (void*)bits;
if (isObjCTaggedPointer(bridgeObject))
return false;
const auto object = toPlainObject_unTagged_bridgeObject(bridgeObject);
// Note: we could just return false if all spare bits are set,
// but in that case the cost of a deeper check for a unique native
// object is going to be a negligible cost for a possible big win.
#if SWIFT_OBJC_INTEROP
if (isNonNative_unTagged_bridgeObject(bridgeObject))
return swift_isUniquelyReferencedOrPinnedNonObjC_nonNull(object);
#endif
return swift_isUniquelyReferencedOrPinned_nonNull_native(
(const HeapObject *)object);
}
/// Given a non-nil object reference, return true if the object is a
/// native swift object and either its strong reference count is 1 or
/// its pinned flag is set.
bool swift::swift_isUniquelyReferencedOrPinnedNonObjC_nonNull(
const void *object) {
assert(object != nullptr);
return
#if SWIFT_OBJC_INTEROP
usesNativeSwiftReferenceCounting_nonNull(object) &&
#endif
swift_isUniquelyReferencedOrPinned_nonNull_native(
(const HeapObject*)object);
}
// Given a non-@objc object reference, return true iff the
// object is non-nil and either has a strong reference count of 1
// or is pinned.
bool swift::swift_isUniquelyReferencedOrPinned_native(const HeapObject *object)
SWIFT_CC(RegisterPreservingCC_IMPL) {
return object != nullptr &&
swift_isUniquelyReferencedOrPinned_nonNull_native(object);
}
/// Given a non-nil native swift object reference, return true if
/// either the object has a strong reference count of 1 or its
/// pinned flag is set.
bool swift::swift_isUniquelyReferencedOrPinned_nonNull_native(
const HeapObject *object) SWIFT_CC(RegisterPreservingCC_IMPL) {
assert(object != nullptr);
assert(!object->refCount.isDeallocating());
return object->refCount.isUniquelyReferencedOrPinned();
}
using ClassExtents = TwoWordPair<size_t, size_t>;
SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT
ClassExtents::Return
swift_class_getInstanceExtents(const Metadata *c) {
assert(c && c->isClassObject());
auto metaData = c->getClassObject();
return ClassExtents{
metaData->getInstanceAddressPoint(),
metaData->getInstanceSize() - metaData->getInstanceAddressPoint()
};
}
#if SWIFT_OBJC_INTEROP
SWIFT_CC(swift)
SWIFT_RUNTIME_EXPORT
ClassExtents::Return
swift_objc_class_unknownGetInstanceExtents(const ClassMetadata* c) {
// Pure ObjC classes never have negative extents.
if (c->isPureObjC())
return ClassExtents{0, class_getInstanceSize((Class)c)};
return swift_class_getInstanceExtents(c);
}
#endif
const ClassMetadata *swift::getRootSuperclass() {
#if SWIFT_OBJC_INTEROP
static Lazy<const ClassMetadata *> SwiftObjectClass;
return SwiftObjectClass.get([](void *ptr) {
*((const ClassMetadata **) ptr) =
(const ClassMetadata *)[SwiftObject class];
});
#else
return nullptr;
#endif
}