mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
The Swift benchmarking harness now has two distinct output formats:
* Default: Formatted text that's intended for human consumption.
Right now, this is just the minimum value, but we can augment that.
* `--json`: each output line is a JSON-encoded object that contains raw data
This information is intended for use by python scripts that aggregate
or compare multiple independent tests.
Previously, we tried to use the same output for both purposes. This required
the python scripts to do more complex parsing of textual layouts, and also meant
that the python scripts had only summary data to work with instead of full raw
sample information. This in turn made it almost impossible to derive meaningful
comparisons between runs or to aggregate multiple runs.
Typical output in the new JSON format looks like this:
```
{"number":89, "name":"PerfTest", "samples":[1.23, 2.35], "max_rss":16384}
{"number":91, "name":"OtherTest", "samples":[14.8, 19.7]}
```
This format is easy to parse in Python. Just iterate over
lines and decode each one separately. Also note that the
optional fields (`"max_rss"` above) are trivial to handle:
```
import json
for l in lines:
j = json.loads(l)
# Default 0 if not present
max_rss = j.get("max_rss", 0)
```
Note the `"samples"` array includes the runtime for each individual run.
Because optional fields are so much easier to handle in this form, I reworked
the Python logic to translate old formats into this JSON format for more
uniformity. Hopefully, we can simplify the code in a year or so by stripping
out the old log formats entirely, along with some of the redundant statistical
calculations. In particular, the python logic still makes an effort to preserve
mean, median, max, min, stdev, and other statistical data whenever the full set
of samples is not present. Once we've gotten to a point where we're always
keeping full samples, we can compute any such information on the fly as needed,
eliminating the need to record it.
This is a pretty big rearchitecture of the core benchmarking logic. In order to
try to keep things a bit more manageable, I have not taken this opportunity to
replace any of the actual statistics used in the higher level code or to change
how the actual samples are measured. (But I expect this rearchitecture will make
such changes simpler.) In particular, this should not actually change any
benchmark results.
For the future, please keep this general principle in mind: Statistical
summaries (averages, medians, etc) should as a rule be computed for immediate
output and rarely if ever stored or used as input for other processing. Instead,
aim to store and transfer raw data from which statistics can be recomputed as
necessary.
925 lines
32 KiB
Python
Executable File
925 lines
32 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
# ===--- compare_perf_tests.py -------------------------------------------===//
|
|
#
|
|
# This source file is part of the Swift.org open source project
|
|
#
|
|
# Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
# Licensed under Apache License v2.0 with Runtime Library Exception
|
|
#
|
|
# See https://swift.org/LICENSE.txt for license information
|
|
# See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
#
|
|
# ===---------------------------------------------------------------------===//
|
|
"""
|
|
This script compares performance test logs and issues a formatted report.
|
|
|
|
Invoke `$ compare_perf_tests.py -h ` for complete list of options.
|
|
|
|
class `PerformanceTestResult` collects information about a single test
|
|
class `LogParser` converts log files into `PerformanceTestResult`s.
|
|
class `ResultComparison` compares new and old `PerformanceTestResult`s.
|
|
class `TestComparator` analyzes changes between the old and new test results.
|
|
class `ReportFormatter` creates the test comparison report in specified format.
|
|
|
|
"""
|
|
|
|
import argparse
|
|
import functools
|
|
import json
|
|
import re
|
|
import statistics
|
|
import sys
|
|
|
|
|
|
class PerformanceTestResult(object):
|
|
u"""Result from executing an individual Swift Benchmark Suite benchmark.
|
|
|
|
Reported by the test driver (Benchmark_O, Benchmark_Onone, Benchmark_Osize
|
|
or Benchmark_Driver).
|
|
|
|
It supports log formats emitted by the test driver.
|
|
"""
|
|
|
|
@classmethod
|
|
def fromOldFormat(cls, header, line):
|
|
"""Original format with statistics for normal distribution (MEAN, SD):
|
|
#,TEST,SAMPLES,MIN(μs),MAX(μs),MEAN(μs),SD(μs),MEDIAN(μs),MAX_RSS(B),PAGES,ICS,YIELD
|
|
Note that MAX_RSS, PAGES, ICS, YIELD are all optional
|
|
"""
|
|
csv_row = line.split(",") if "," in line else line.split()
|
|
labels = header.split(",") if "," in header else header.split()
|
|
|
|
# Synthesize a JSON form with the basic values:
|
|
num_samples = int(csv_row[2])
|
|
json_data = {
|
|
"number": int(csv_row[0]),
|
|
"name": csv_row[1],
|
|
"num_samples": num_samples,
|
|
}
|
|
|
|
# Map remaining columns according to label
|
|
field_map = [
|
|
("ICS", "ics"),
|
|
("MAX_RSS", "max_rss"), # Must precede "MAX"
|
|
("MAX", "max"),
|
|
("MEAN", "mean"),
|
|
("MEDIAN", "median"),
|
|
("MIN", "min"),
|
|
("PAGES", "pages"),
|
|
("SD", "sd"),
|
|
("YIELD", "yield")
|
|
]
|
|
for label, value in zip(labels, csv_row):
|
|
for match, json_key in field_map:
|
|
if match in label:
|
|
json_data[json_key] = float(value)
|
|
break
|
|
|
|
# Heroic: Reconstruct samples if we have enough info
|
|
# This is generally a bad idea, but sadly necessary for the
|
|
# old format that doesn't provide raw sample data.
|
|
if num_samples == 1 and "min" in json_data:
|
|
json_data["samples"] = [
|
|
json_data["min"]
|
|
]
|
|
elif num_samples == 2 and "min" in json_data and "max" in json_data:
|
|
json_data["samples"] = [
|
|
json_data["min"],
|
|
json_data["max"]
|
|
]
|
|
elif (num_samples == 3
|
|
and "min" in json_data
|
|
and "max" in json_data
|
|
and "median" in json_data):
|
|
json_data["samples"] = [
|
|
json_data["min"],
|
|
json_data["median"],
|
|
json_data["max"]
|
|
]
|
|
|
|
return PerformanceTestResult(json_data)
|
|
|
|
@classmethod
|
|
def fromQuantileFormat(cls, header, line):
|
|
"""Quantiles format with variable number of columns depending on the
|
|
number of quantiles:
|
|
#,TEST,SAMPLES,QMIN(μs),MEDIAN(μs),MAX(μs)
|
|
#,TEST,SAMPLES,QMIN(μs),Q1(μs),Q2(μs),Q3(μs),MAX(μs),MAX_RSS(B)
|
|
The number of columns between QMIN and MAX depends on the test driver's
|
|
`--quantile`parameter. In both cases, the last column, MAX_RSS is optional.
|
|
|
|
Delta encoding: If a header name includes 𝚫, that column stores the
|
|
difference from the previous column. E.g, a header
|
|
"#,TEST,SAMPLES,QMIN(μs),MEDIAN(μs),𝚫MAX(μs)" indicates the final "MAX"
|
|
column must be computed by adding the value in that column to the value
|
|
of the previous "MEDIAN" column.
|
|
"""
|
|
csv_row = line.split(",") if "," in line else line.split()
|
|
labels = header.split(",")
|
|
|
|
for i in range(1, len(labels)):
|
|
if "𝚫" in labels[i] or "Δ" in labels[i]:
|
|
prev = int(csv_row[i - 1])
|
|
inc = int(csv_row[i]) if csv_row[i] != '' else 0
|
|
csv_row[i] = str(prev + inc)
|
|
|
|
# Synthesize a JSON form and then initialize from that
|
|
json_data = {
|
|
"number": int(csv_row[0]),
|
|
"name": csv_row[1],
|
|
"num_samples": int(csv_row[2]),
|
|
}
|
|
# Process optional trailing fields MAX_RSS, PAGES, ICS, YIELD
|
|
i = len(labels) - 1
|
|
while True:
|
|
if "MAX_RSS" in labels[i]:
|
|
json_data["max_rss"] = float(csv_row[i])
|
|
elif "PAGES" in labels[i]:
|
|
json_data["pages"] = float(csv_row[i])
|
|
elif "ICS" in labels[i]:
|
|
json_data["ics"] = float(csv_row[i])
|
|
elif "YIELD" in labels[i]:
|
|
json_data["yield"] = float(csv_row[i])
|
|
else:
|
|
break
|
|
i -= 1
|
|
if i < 0:
|
|
break
|
|
|
|
# Rest is the quantiles (includes min/max columns)
|
|
quantiles = [float(q) for q in csv_row[3:i + 1]]
|
|
|
|
# Heroic effort:
|
|
# If we have enough quantiles, we can reconstruct the samples
|
|
# This is generally a bad idea, but sadly necessary since
|
|
# the quantile format doesn't provide raw sample data.
|
|
if json_data["num_samples"] == len(quantiles):
|
|
json_data["samples"] = sorted(quantiles)
|
|
elif json_data["num_samples"] == 2:
|
|
json_data["samples"] = [quantiles[0], quantiles[-1]]
|
|
elif json_data["num_samples"] == 1:
|
|
json_data["samples"] = [quantiles[0]]
|
|
else:
|
|
json_data["quantiles"] = quantiles
|
|
if len(quantiles) > 0:
|
|
json_data["min"] = quantiles[0]
|
|
json_data["max"] = quantiles[-1]
|
|
json_data["median"] = quantiles[(len(quantiles) - 1) // 2]
|
|
|
|
return PerformanceTestResult(json_data)
|
|
|
|
@classmethod
|
|
def fromJSONFormat(cls, line):
|
|
"""JSON format stores a test result as a JSON object on a single line
|
|
|
|
Compared to the legacy tab-separated/comma-separated formats, this makes
|
|
it much easier to add new fields, handle optional fields, and allows us
|
|
to include the full set of samples so we can use better statistics
|
|
downstream.
|
|
|
|
The code here includes optional support for min, max,
|
|
median, mean, etc. supported by the older formats, though in practice,
|
|
you shouldn't rely on those: Just store the full samples and then
|
|
compute whatever statistics you need as required.
|
|
"""
|
|
json_data = json.loads(line)
|
|
return PerformanceTestResult(json_data)
|
|
|
|
def __init__(self, json_data):
|
|
if isinstance(json_data, str):
|
|
json_data = json.loads(json_data)
|
|
|
|
# We always have these
|
|
assert (json_data.get("number") is not None)
|
|
assert (json_data.get("name") is not None)
|
|
self.test_num = json_data["number"]
|
|
self.name = json_data["name"]
|
|
|
|
# We always have either samples or num_samples
|
|
assert (json_data.get("num_samples") is not None
|
|
or json_data.get("samples") is not None)
|
|
self.num_samples = json_data.get("num_samples") or len(json_data["samples"])
|
|
self.samples = json_data.get("samples") or []
|
|
|
|
# Everything else is optional and can be read
|
|
# out of the JSON data if needed
|
|
# See max_rss() below for an example of this.
|
|
self.json_data = dict(json_data)
|
|
|
|
def __repr__(self):
|
|
return "PerformanceTestResult(" + json.dumps(self.json_data) + ")"
|
|
|
|
def json(self):
|
|
"""Return a single-line JSON form of this result
|
|
|
|
This can be parsed back via fromJSONFormat above.
|
|
It can also represent all data stored by the older
|
|
formats, so there's no reason to not use it everywhere.
|
|
"""
|
|
data = dict(self.json_data)
|
|
|
|
# In case these got modified
|
|
data["number"] = self.test_num
|
|
data["name"] = self.name
|
|
|
|
# If we have full sample data, use that and
|
|
# drop any lingering pre-computed statistics
|
|
# (It's better for downstream consumers to just
|
|
# compute whatever statistics they need from scratch.)
|
|
if len(self.samples) == self.num_samples:
|
|
data["samples"] = self.samples
|
|
data.pop("num_samples", None)
|
|
data.pop("min", None)
|
|
data.pop("max", None)
|
|
data.pop("mean", None)
|
|
data.pop("sd", None)
|
|
data.pop("q1", None)
|
|
data.pop("median", None)
|
|
data.pop("q3", None)
|
|
data.pop("quantiles", None)
|
|
else:
|
|
# Preserve other pre-existing JSON statistics
|
|
data["num_samples"] = self.num_samples
|
|
|
|
return json.dumps(data)
|
|
|
|
def __str__(self):
|
|
return self.json()
|
|
|
|
@property
|
|
def setup(self):
|
|
"""TODO: Implement this
|
|
"""
|
|
return 0
|
|
|
|
|
|
@property
|
|
def max_rss(self):
|
|
"""Return max_rss if available
|
|
"""
|
|
return self.json_data.get("max_rss")
|
|
|
|
@property
|
|
def mem_pages(self):
|
|
"""Return pages if available
|
|
"""
|
|
return self.json_data.get("pages")
|
|
|
|
@property
|
|
def involuntary_cs(self):
|
|
"""Return involuntary context switches if available
|
|
"""
|
|
return self.json_data.get("ics")
|
|
|
|
@property
|
|
def yield_count(self):
|
|
"""Return voluntary yield count if available
|
|
"""
|
|
return self.json_data.get("yield")
|
|
|
|
@property
|
|
def min_value(self):
|
|
"""Return the minimum value from all samples
|
|
|
|
If we have full samples, compute it directly.
|
|
In the legacy case, we might not have full samples,
|
|
so in that case we'll return a value that was given
|
|
to us initially (if any).
|
|
|
|
Eventually (after December 2023), this can be simplified
|
|
to just `return min(self.samples)`, since by then
|
|
the legacy forms should no longer be in use.
|
|
"""
|
|
if self.num_samples == len(self.samples):
|
|
return min(self.samples)
|
|
return self.json_data.get("min")
|
|
|
|
@property
|
|
def max_value(self):
|
|
"""Return the maximum sample value
|
|
|
|
See min_value comments for details on the legacy behavior."""
|
|
if self.num_samples == len(self.samples):
|
|
return max(self.samples)
|
|
return self.json_data.get("max")
|
|
|
|
@property
|
|
def median(self):
|
|
"""Return the median sample value
|
|
|
|
See min_value comments for details on the legacy behavior."""
|
|
if self.num_samples == len(self.samples):
|
|
return statistics.median(self.samples)
|
|
return self.json_data.get("median")
|
|
|
|
# TODO: Eliminate q1 and q3. They're kept for now
|
|
# to preserve compatibility with older reports. But quantiles
|
|
# aren't really useful statistics, so just drop them.
|
|
@property
|
|
def q1(self):
|
|
"""Return the 25% quantile
|
|
|
|
See min_value comments for details on the legacy behavior."""
|
|
if self.num_samples == len(self.samples):
|
|
q = statistics.quantiles(self.samples, n=4)
|
|
return q[0]
|
|
return self.json_data.get("q1")
|
|
|
|
@property
|
|
def q3(self):
|
|
"""Return the 75% quantile
|
|
|
|
See min_value comments for details on the legacy behavior."""
|
|
if self.num_samples == len(self.samples):
|
|
q = statistics.quantiles(self.samples, n=4)
|
|
return q[2]
|
|
return self.json_data.get("q3")
|
|
|
|
@property
|
|
def mean(self):
|
|
"""Return the average
|
|
|
|
TODO: delete this; it's not useful"""
|
|
if self.num_samples == len(self.samples):
|
|
return statistics.mean(self.samples)
|
|
return self.json_data.get("mean")
|
|
|
|
@property
|
|
def sd(self):
|
|
"""Return the standard deviation
|
|
|
|
TODO: delete this; it's not useful"""
|
|
if self.num_samples == len(self.samples):
|
|
if len(self.samples) > 1:
|
|
return statistics.stdev(self.samples)
|
|
else:
|
|
return 0
|
|
return self.json_data.get("sd")
|
|
|
|
def merge(self, other):
|
|
"""Merge two results.
|
|
|
|
This is trivial in the non-legacy case: We just
|
|
pool all the samples.
|
|
|
|
In the legacy case (or the mixed legacy/non-legacy cases),
|
|
we try to estimate the min/max/mean/sd/median/etc based
|
|
on whatever information is available. After Dec 2023,
|
|
we should be able to drop the legacy support.
|
|
"""
|
|
# The following can be removed after Dec 2023
|
|
# (by which time the legacy support should no longer
|
|
# be necessary)
|
|
if self.num_samples != len(self.samples):
|
|
# If we don't have samples, we can't rely on being
|
|
# able to compute real statistics from those samples,
|
|
# so we make a best-effort attempt to estimate a joined
|
|
# statistic from whatever data we actually have.
|
|
|
|
# If both exist, take the minimum, else take whichever is set
|
|
other_min_value = other.min_value
|
|
if other_min_value is not None:
|
|
self_min_value = self.min_value
|
|
if self_min_value is not None:
|
|
self.json_data["min"] = min(other_min_value, self_min_value)
|
|
else:
|
|
self.json_data["min"] = other_min_value
|
|
|
|
# If both exist, take the maximum, else take whichever is set
|
|
other_max_value = other.max_value
|
|
if other_max_value is not None:
|
|
self_max_value = self.max_value
|
|
if self_max_value is not None:
|
|
self.json_data["max"] = max(other_max_value, self_max_value)
|
|
else:
|
|
self.json_data["max"] = other_max_value
|
|
|
|
# If both exist, take the weighted average, else take whichever is set
|
|
other_mean = other.mean
|
|
if other_mean is not None:
|
|
self_mean = self.mean
|
|
if self_mean is not None:
|
|
self.json_data["mean"] = (
|
|
(other_mean * other.num_samples
|
|
+ self_mean * self.num_samples)
|
|
/ (self.num_samples + other.num_samples)
|
|
)
|
|
else:
|
|
self.json_data["mean"] = other_mean
|
|
self.json_data.pop("median", None) # Remove median
|
|
self.json_data.pop("sd", None) # Remove stdev
|
|
self.json_data.pop("q1", None) # Remove 25% quantile
|
|
self.json_data.pop("q3", None) # Remove 75% quantile
|
|
self.json_data.pop("quantiles", None) # Remove quantiles
|
|
|
|
# Accumulate samples (if present) and num_samples (always)
|
|
self.samples += other.samples
|
|
self.num_samples += other.num_samples
|
|
|
|
# Metadata
|
|
# Use the smaller if both have a max_rss value
|
|
self.json_data["max_rss"] = other.max_rss
|
|
other_max_rss = other.max_rss
|
|
if other_max_rss is not None:
|
|
self_max_rss = self.max_rss
|
|
if self_max_rss is not None:
|
|
self.json_data["max_rss"] = min(self_max_rss, other_max_rss)
|
|
else:
|
|
self.json_data["max_rss"] = other_max_rss
|
|
|
|
|
|
class ResultComparison(object):
|
|
"""ResultComparison compares MINs from new and old PerformanceTestResult.
|
|
|
|
It computes speedup ratio and improvement delta (%).
|
|
"""
|
|
|
|
def __init__(self, old, new):
|
|
"""Initialize with old and new `PerformanceTestResult`s to compare."""
|
|
self.old = old
|
|
self.new = new
|
|
assert old.name == new.name
|
|
self.name = old.name # Test name, convenience accessor
|
|
|
|
# Speedup ratio
|
|
self.ratio = (old.min_value + 0.001) / (new.min_value + 0.001)
|
|
|
|
# Test runtime improvement in %
|
|
ratio = (new.min_value + 0.001) / (old.min_value + 0.001)
|
|
self.delta = (ratio - 1) * 100
|
|
|
|
# Indication of dubious changes: when result's MIN falls inside the
|
|
# (MIN, MAX) interval of result they are being compared with.
|
|
self.is_dubious = (
|
|
(
|
|
old.min_value < new.min_value
|
|
and new.min_value < old.max_value
|
|
) or (
|
|
new.min_value < old.min_value
|
|
and old.min_value < new.max_value
|
|
)
|
|
)
|
|
|
|
|
|
class LogParser(object):
|
|
"""Converts log outputs into `PerformanceTestResult`s.
|
|
|
|
Supports various formats produced by the `Benchmark_Driver` and
|
|
`Benchmark_O`('Onone', 'Osize'). It can also merge together the
|
|
results from concatenated log files.
|
|
"""
|
|
|
|
def __init__(self):
|
|
"""Create instance of `LogParser`."""
|
|
self.results = []
|
|
|
|
def parse_results(self, lines):
|
|
"""Parse results from the lines of the log output from Benchmark*.
|
|
|
|
Returns a list of `PerformanceTestResult`s.
|
|
"""
|
|
match_json = re.compile(r"\s*({.*)")
|
|
match_header = re.compile(r"( *#[, \t]+TEST[, \t]+SAMPLES[, \t].*)")
|
|
match_legacy = re.compile(r" *(\d+[, \t].*)")
|
|
header = ""
|
|
for line in lines:
|
|
# Current format has a JSON-encoded object on each line
|
|
# That format is flexible so should be the only format
|
|
# used going forward
|
|
if match_json.match(line):
|
|
r = PerformanceTestResult.fromJSONFormat(line)
|
|
self.results.append(r)
|
|
elif match_header.match(line):
|
|
# Legacy formats use a header line (which can be
|
|
# inspected to determine the presence and order of columns)
|
|
header = line
|
|
elif match_legacy.match(line):
|
|
# Legacy format: lines of space- or tab-separated values
|
|
if "QMIN" in header:
|
|
r = PerformanceTestResult.fromQuantileFormat(header, line)
|
|
else:
|
|
r = PerformanceTestResult.fromOldFormat(header, line)
|
|
self.results.append(r)
|
|
else:
|
|
# Ignore unrecognized lines
|
|
# print('Skipping: ' + line.rstrip('\n'), file=sys.stderr, flush=True)
|
|
continue
|
|
return self.results
|
|
|
|
@staticmethod
|
|
def _results_from_lines(lines):
|
|
names = dict()
|
|
for r in LogParser().parse_results(lines):
|
|
if r.name not in names:
|
|
names[r.name] = r
|
|
else:
|
|
names[r.name].merge(r)
|
|
return names
|
|
|
|
@staticmethod
|
|
def results_from_string(log_contents):
|
|
"""Parse `PerformanceTestResult`s from the supplied string.
|
|
|
|
Returns dictionary of test names and `PerformanceTestResult`s.
|
|
"""
|
|
return LogParser._results_from_lines(log_contents.splitlines())
|
|
|
|
@staticmethod
|
|
def results_from_file(log_file):
|
|
"""Parse `PerformanceTestResult`s from the log file.
|
|
|
|
Returns dictionary of test names and `PerformanceTestResult`s.
|
|
"""
|
|
with open(log_file) as f:
|
|
return LogParser._results_from_lines(f.readlines())
|
|
|
|
|
|
class TestComparator(object):
|
|
"""Analyzes changes between the old and new test results.
|
|
|
|
It determines which tests were `added`, `removed` and which can be
|
|
compared. It then splits the `ResultComparison`s into 3 groups according to
|
|
the `delta_threshold` by the change in performance: `increased`,
|
|
`descreased` and `unchanged`. Whole computation is performed during
|
|
initialization and results are provided as properties on this object.
|
|
|
|
The lists of `added`, `removed` and `unchanged` tests are sorted
|
|
alphabetically. The `increased` and `decreased` lists are sorted in
|
|
descending order by the amount of change.
|
|
"""
|
|
|
|
def __init__(self, old_results, new_results, delta_threshold):
|
|
"""Initialize with dictionaries of old and new benchmark results.
|
|
|
|
Dictionary keys are benchmark names, values are
|
|
`PerformanceTestResult`s.
|
|
"""
|
|
old_tests = set(old_results.keys())
|
|
new_tests = set(new_results.keys())
|
|
comparable_tests = new_tests.intersection(old_tests)
|
|
added_tests = new_tests.difference(old_tests)
|
|
removed_tests = old_tests.difference(new_tests)
|
|
|
|
self.added = sorted([new_results[t] for t in added_tests], key=lambda r: r.name)
|
|
self.removed = sorted(
|
|
[old_results[t] for t in removed_tests], key=lambda r: r.name
|
|
)
|
|
|
|
def compare(name):
|
|
return ResultComparison(old_results[name], new_results[name])
|
|
|
|
comparisons = list(map(compare, comparable_tests))
|
|
|
|
def partition(items, p):
|
|
return functools.reduce(
|
|
lambda x, y: x[not p(y)].append(y) or x, items, ([], [])
|
|
)
|
|
|
|
decreased, not_decreased = partition(
|
|
comparisons, lambda c: c.ratio < (1 - delta_threshold)
|
|
)
|
|
increased, unchanged = partition(
|
|
not_decreased, lambda c: c.ratio > (1 + delta_threshold)
|
|
)
|
|
|
|
# sorted partitions
|
|
names = [c.name for c in comparisons]
|
|
comparisons = dict(zip(names, comparisons))
|
|
self.decreased = [
|
|
comparisons[c.name] for c in sorted(decreased, key=lambda c: -c.delta)
|
|
]
|
|
self.increased = [
|
|
comparisons[c.name] for c in sorted(increased, key=lambda c: c.delta)
|
|
]
|
|
self.unchanged = [
|
|
comparisons[c.name] for c in sorted(unchanged, key=lambda c: c.name)
|
|
]
|
|
|
|
|
|
class ReportFormatter(object):
|
|
"""Creates the report from performance test comparison in specified format.
|
|
|
|
`ReportFormatter` formats the `PerformanceTestResult`s and
|
|
`ResultComparison`s provided by `TestComparator` into report table.
|
|
Supported formats are: `markdown` (used for displaying benchmark results on
|
|
GitHub), `git` and `html`.
|
|
"""
|
|
|
|
def __init__(self, comparator, changes_only, single_table=False):
|
|
"""Initialize with `TestComparator` and names of branches."""
|
|
self.comparator = comparator
|
|
self.changes_only = changes_only
|
|
self.single_table = single_table
|
|
|
|
PERFORMANCE_TEST_RESULT_HEADER = ("TEST", "MIN", "MAX", "MEAN", "MAX_RSS")
|
|
RESULT_COMPARISON_HEADER = ("TEST", "OLD", "NEW", "DELTA", "RATIO")
|
|
|
|
@staticmethod
|
|
def header_for(result):
|
|
"""Column labels for header row in results table."""
|
|
return (
|
|
ReportFormatter.PERFORMANCE_TEST_RESULT_HEADER
|
|
if isinstance(result, PerformanceTestResult)
|
|
else
|
|
# isinstance(result, ResultComparison)
|
|
ReportFormatter.RESULT_COMPARISON_HEADER
|
|
)
|
|
|
|
@staticmethod
|
|
def values(result):
|
|
"""Format values from PerformanceTestResult or ResultComparison.
|
|
|
|
Returns tuple of strings to display in the results table.
|
|
"""
|
|
return (
|
|
(
|
|
result.name,
|
|
str(result.min_value) if result.min_value is not None else "-",
|
|
str(result.max_value) if result.max_value is not None else "-",
|
|
str(result.mean) if result.mean is not None else "-",
|
|
str(result.max_rss) if result.max_rss is not None else "—",
|
|
)
|
|
if isinstance(result, PerformanceTestResult)
|
|
else
|
|
# isinstance(result, ResultComparison)
|
|
(
|
|
result.name,
|
|
str(result.old.min_value) if result.old.min_value else "-",
|
|
str(result.new.min_value) if result.new.min_value else "-",
|
|
"{0:+.1f}%".format(result.delta),
|
|
"{0:.2f}x{1}".format(result.ratio, " (?)" if result.is_dubious else ""),
|
|
)
|
|
)
|
|
|
|
def markdown(self):
|
|
"""Report results of benchmark comparisons in Markdown format."""
|
|
return self._formatted_text(
|
|
label_formatter=lambda s: ("**" + s + "**"),
|
|
COLUMN_SEPARATOR=" | ",
|
|
DELIMITER_ROW=([":---"] + ["---:"] * 4),
|
|
SEPARATOR=" | | | | \n",
|
|
SECTION="""
|
|
<details {3}>
|
|
<summary>{0} ({1})</summary>
|
|
{2}
|
|
</details>
|
|
""",
|
|
)
|
|
|
|
def git(self):
|
|
"""Report results of benchmark comparisons in 'git' format."""
|
|
return self._formatted_text(
|
|
label_formatter=lambda s: s.upper(),
|
|
COLUMN_SEPARATOR=" ",
|
|
DELIMITER_ROW=None,
|
|
SEPARATOR="\n",
|
|
SECTION="""
|
|
{0} ({1}): \n{2}""",
|
|
)
|
|
|
|
def _column_widths(self):
|
|
changed = self.comparator.decreased + self.comparator.increased
|
|
results = changed if self.changes_only else changed + self.comparator.unchanged
|
|
results += self.comparator.added + self.comparator.removed
|
|
|
|
widths = [
|
|
map(len, columns)
|
|
for columns in [
|
|
ReportFormatter.PERFORMANCE_TEST_RESULT_HEADER,
|
|
ReportFormatter.RESULT_COMPARISON_HEADER,
|
|
]
|
|
+ [ReportFormatter.values(r) for r in results]
|
|
]
|
|
|
|
def max_widths(maximum, widths):
|
|
return map(max, zip(maximum, widths))
|
|
|
|
return list(functools.reduce(max_widths, widths, [0] * 5))
|
|
|
|
def _formatted_text(
|
|
self, label_formatter, COLUMN_SEPARATOR, DELIMITER_ROW, SEPARATOR, SECTION
|
|
):
|
|
widths = self._column_widths()
|
|
self.header_printed = False
|
|
|
|
def justify_columns(contents):
|
|
return [c.ljust(w) for w, c in zip(widths, contents)]
|
|
|
|
def row(contents):
|
|
return (
|
|
""
|
|
if not contents
|
|
else COLUMN_SEPARATOR.join(justify_columns(contents)) + "\n"
|
|
)
|
|
|
|
def header(title, column_labels):
|
|
labels = (
|
|
column_labels
|
|
if not self.single_table
|
|
else map(label_formatter, (title,) + column_labels[1:])
|
|
)
|
|
h = (
|
|
("" if not self.header_printed else SEPARATOR)
|
|
+ row(labels)
|
|
+ (row(DELIMITER_ROW) if not self.header_printed else "")
|
|
)
|
|
if self.single_table and not self.header_printed:
|
|
self.header_printed = True
|
|
return h
|
|
|
|
def format_columns(r, is_strong):
|
|
return r if not is_strong else r[:-1] + ("**" + r[-1] + "**",)
|
|
|
|
def table(title, results, is_strong=False, is_open=False):
|
|
if not results:
|
|
return ""
|
|
rows = [
|
|
row(format_columns(ReportFormatter.values(r), is_strong))
|
|
for r in results
|
|
]
|
|
table = header(
|
|
title if self.single_table else "",
|
|
ReportFormatter.header_for(results[0]),
|
|
) + "".join(rows)
|
|
return (
|
|
table
|
|
if self.single_table
|
|
else SECTION.format(
|
|
title, len(results), table, "open" if is_open else ""
|
|
)
|
|
)
|
|
|
|
return "\n" + "".join(
|
|
[
|
|
table("Regression", self.comparator.decreased, True, True),
|
|
table("Improvement", self.comparator.increased, True),
|
|
(
|
|
""
|
|
if self.changes_only
|
|
else table("No Changes", self.comparator.unchanged)
|
|
),
|
|
table("Added", self.comparator.added, is_open=True),
|
|
table("Removed", self.comparator.removed, is_open=True),
|
|
]
|
|
)
|
|
|
|
HTML = """
|
|
<!DOCTYPE html>
|
|
<html>
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
|
|
<style>
|
|
body {{ font-family: -apple-system, sans-serif; font-size: 14px; }}
|
|
table {{ border-spacing: 2px; border-color: gray; border-spacing: 0;
|
|
border-collapse: collapse; }}
|
|
table tr {{ background-color: #fff; border-top: 1px solid #c6cbd1; }}
|
|
table th, table td {{ padding: 6px 13px; border: 1px solid #dfe2e5; }}
|
|
th {{ text-align: center; padding-top: 130px; }}
|
|
td {{ text-align: right; }}
|
|
table td:first-child {{ text-align: left; }}
|
|
tr:nth-child(even) {{ background-color: #000000; }}
|
|
tr:nth-child(2n) {{ background-color: #f6f8fa; }}
|
|
</style>
|
|
</head>
|
|
<body>
|
|
<table>
|
|
{0}
|
|
</table>
|
|
</body>
|
|
</html>"""
|
|
|
|
HTML_HEADER_ROW = """
|
|
<tr>
|
|
<th align='left'>{0} ({1})</th>
|
|
<th align='left'>{2}</th>
|
|
<th align='left'>{3}</th>
|
|
<th align='left'>{4}</th>
|
|
<th align='left'>{5}</th>
|
|
</tr>
|
|
"""
|
|
|
|
HTML_ROW = """
|
|
<tr>
|
|
<td align='left'>{0}</td>
|
|
<td align='left'>{1}</td>
|
|
<td align='left'>{2}</td>
|
|
<td align='left'>{3}</td>
|
|
<td align='left'><font color='{4}'>{5}</font></td>
|
|
</tr>
|
|
"""
|
|
|
|
def html(self):
|
|
"""Report results of benchmark comparisons in HTML format."""
|
|
|
|
def row(name, old, new, delta, speedup, speedup_color):
|
|
return self.HTML_ROW.format(name, old, new, delta, speedup_color, speedup)
|
|
|
|
def header(contents):
|
|
return self.HTML_HEADER_ROW.format(*contents)
|
|
|
|
def table(title, results, speedup_color):
|
|
rows = [
|
|
row(*(ReportFormatter.values(r) + (speedup_color,))) for r in results
|
|
]
|
|
return (
|
|
""
|
|
if not rows
|
|
else header(
|
|
(title, len(results)) + ReportFormatter.header_for(results[0])[1:]
|
|
)
|
|
+ "".join(rows)
|
|
)
|
|
|
|
return self.HTML.format(
|
|
"".join(
|
|
[
|
|
table("Regression", self.comparator.decreased, "red"),
|
|
table("Improvement", self.comparator.increased, "green"),
|
|
(
|
|
""
|
|
if self.changes_only
|
|
else table("No Changes", self.comparator.unchanged, "black")
|
|
),
|
|
table("Added", self.comparator.added, ""),
|
|
table("Removed", self.comparator.removed, ""),
|
|
]
|
|
)
|
|
)
|
|
|
|
|
|
def parse_args(args):
|
|
"""Parse command line arguments and set default values."""
|
|
parser = argparse.ArgumentParser(description="Compare Performance tests.")
|
|
parser.add_argument(
|
|
"--old-file", help="Baseline performance test suite (csv file)", required=True
|
|
)
|
|
parser.add_argument(
|
|
"--new-file", help="New performance test suite (csv file)", required=True
|
|
)
|
|
parser.add_argument(
|
|
"--format",
|
|
choices=["markdown", "git", "html"],
|
|
help="Output format. Default is markdown.",
|
|
default="markdown",
|
|
)
|
|
parser.add_argument("--output", help="Output file name")
|
|
parser.add_argument(
|
|
"--changes-only", help="Output only affected tests", action="store_true"
|
|
)
|
|
parser.add_argument(
|
|
"--single-table",
|
|
help="Combine data in a single table in git and markdown formats",
|
|
action="store_true",
|
|
)
|
|
parser.add_argument(
|
|
"--delta-threshold",
|
|
help="Delta threshold. Default 0.05.",
|
|
type=float,
|
|
default=0.05,
|
|
)
|
|
return parser.parse_args(args)
|
|
|
|
|
|
def create_report(
|
|
old_results,
|
|
new_results,
|
|
delta_threshold,
|
|
format,
|
|
changes_only=True,
|
|
single_table=True,
|
|
):
|
|
comparator = TestComparator(old_results, new_results, delta_threshold)
|
|
formatter = ReportFormatter(comparator, changes_only, single_table)
|
|
formats = {
|
|
"markdown": formatter.markdown,
|
|
"git": formatter.git,
|
|
"html": formatter.html,
|
|
}
|
|
|
|
report = formats[format]()
|
|
return report
|
|
|
|
|
|
def main():
|
|
"""Compare benchmarks for changes in a formatted report."""
|
|
args = parse_args(sys.argv[1:])
|
|
report = create_report(
|
|
LogParser.results_from_file(args.old_file),
|
|
LogParser.results_from_file(args.new_file),
|
|
args.delta_threshold,
|
|
args.format,
|
|
args.changes_only,
|
|
args.single_table,
|
|
)
|
|
print(report)
|
|
|
|
if args.output:
|
|
with open(args.output, "w") as f:
|
|
f.write(report)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
sys.exit(main())
|