Files
swift-mirror/lib/SILOptimizer/Analysis/AccessStorageAnalysis.cpp
Tim Kientzle 1d961ba22d Add #include "swift/Basic/Assertions.h" to a lot of source files
Although I don't plan to bring over new assertions wholesale
into the current qualification branch, it's entirely possible
that various minor changes in main will use the new assertions;
having this basic support in the release branch will simplify that.
(This is why I'm adding the includes as a separate pass from
rewriting the individual assertions)
2024-06-05 19:37:30 -07:00

551 lines
20 KiB
C++

//===--- AccessStorageAnalysis.cpp - Accessed Storage Analysis ---------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-sea"
#include "swift/Basic/Assertions.h"
#include "swift/SILOptimizer/Analysis/AccessStorageAnalysis.h"
#include "swift/SILOptimizer/Analysis/BasicCalleeAnalysis.h"
#include "swift/SILOptimizer/Analysis/FunctionOrder.h"
#include "swift/SILOptimizer/PassManager/PassManager.h"
using namespace swift;
// -----------------------------------------------------------------------------
// MARK: Accessing the results.
// -----------------------------------------------------------------------------
bool AccessStorageResult::hasNoNestedConflict(
const AccessStorage &otherStorage) const {
assert(otherStorage.isUniquelyIdentified());
assert(!hasUnidentifiedAccess());
return getStorageAccessInfo(otherStorage).hasNoNestedConflict();
}
bool AccessStorageResult::mayConflictWith(
SILAccessKind otherAccessKind, const AccessStorage &otherStorage) const {
if (hasUnidentifiedAccess()
&& accessKindMayConflict(otherAccessKind,
unidentifiedAccess.value())) {
return true;
}
for (auto &storageAccess : storageAccessSet) {
assert(storageAccess && "FunctionAccessStorage mapped invalid storage.");
if (!accessKindMayConflict(otherAccessKind, storageAccess.getAccessKind()))
continue;
if (!otherStorage.isDistinctFrom(storageAccess))
return true;
}
return false;
}
StorageAccessInfo AccessStorageResult::getStorageAccessInfo(
const AccessStorage &otherStorage) const {
// Construct a fake StorageAccessInfo to do a hash lookup for the real
// StorageAccessInfo. The DenseSet key is limited to the AccessStorage base
// class members.
StorageAccessInfo storageKey(otherStorage, SILAccessKind::Read, false);
auto iter = storageAccessSet.find(storageKey);
assert(iter != storageAccessSet.end());
return *iter;
}
// -----------------------------------------------------------------------------
// MARK: Constructing the results.
// -----------------------------------------------------------------------------
static bool updateAccessKind(SILAccessKind &LHS, SILAccessKind RHS) {
bool changed = false;
// Assume we don't track Init/Deinit.
if (LHS == SILAccessKind::Read && RHS == SILAccessKind::Modify) {
LHS = RHS;
changed = true;
}
return changed;
}
static bool updateOptionalAccessKind(std::optional<SILAccessKind> &LHS,
std::optional<SILAccessKind> RHS) {
if (RHS == std::nullopt)
return false;
if (LHS == std::nullopt) {
LHS = RHS;
return true;
}
return updateAccessKind(LHS.value(), RHS.value());
}
bool StorageAccessInfo::mergeFrom(const StorageAccessInfo &RHS) {
bool changed = false;
SILAccessKind accessKind = getAccessKind();
assert(accessKind == SILAccessKind::Read
|| accessKind == SILAccessKind::Modify && "uninitialized info");
if (updateAccessKind(accessKind, RHS.getAccessKind())) {
setAccessKind(accessKind);
changed = true;
}
if (hasNoNestedConflict() && !RHS.hasNoNestedConflict()) {
setNoNestedConflict(false);
changed = true;
}
return changed;
}
bool AccessStorageResult::updateUnidentifiedAccess(SILAccessKind accessKind) {
if (unidentifiedAccess == std::nullopt) {
unidentifiedAccess = accessKind;
return true;
}
return updateAccessKind(unidentifiedAccess.value(), accessKind);
}
// Merge the given AccessStorageResult in `other` into this
// AccessStorageResult. Use the given `transformStorage` to map `other`
// AccessStorage into this context. If `other` is from a callee, argument
// substitution will be performed if possible. However, there's no guarantee
// that the merged access values will belong to this region.
//
// Return true if these results changed, requiring further propagation through
// the call graph.
bool AccessStorageResult::mergeAccesses(
const AccessStorageResult &other,
std::function<StorageAccessInfo(const StorageAccessInfo &)>
transformStorage) {
// The cost of BottomUpIPAnalysis can be quadratic for large recursive call
// graphs. That cost is multiplied by the size of storageAccessSet. Slowdowns
// can occur ~1000 elements. 200 is large enough to cover "normal" code,
// while ensuring compile time isn't affected.
if (storageAccessSet.size() > 200) {
setWorstEffects();
return true;
}
// To save compile time, if this storage already has worst-case effects, avoid
// growing its storageAccessSet.
if (hasWorstEffects())
return false;
// When `this` == `other` (for self-recursion), insertion in DenseMap
// invalidates the iterator. We still need to propagate and merge in that case
// because arguments can be recursively dependent. The alternative would be
// treating all self-recursion conservatively.
const AccessStorageResult *otherRegionAccesses = &other;
AccessStorageResult regionAccessCopy;
if (this == &other) {
regionAccessCopy = other;
otherRegionAccesses = &regionAccessCopy;
}
bool changed = false;
// Nondeterministically iterate for the sole purpose of inserting into another
// unordered set.
for (auto &rawStorageInfo : otherRegionAccesses->storageAccessSet) {
const StorageAccessInfo &otherStorageInfo =
transformStorage(rawStorageInfo);
// If transformStorage() returns invalid storage object for local storage,
// that should not be merged with the caller.
if (!otherStorageInfo)
continue;
if (otherStorageInfo.getKind() == AccessStorage::Unidentified) {
changed |= updateUnidentifiedAccess(otherStorageInfo.getAccessKind());
continue;
}
// Attempt to add identified AccessStorage to this map.
auto result = insertStorageAccess(otherStorageInfo);
if (result.second) {
// A new AccessStorage key was added to this map.
changed = true;
continue;
}
// Merge StorageAccessInfo into already-mapped AccessStorage.
changed |= result.first->mergeFrom(otherStorageInfo);
}
if (other.unidentifiedAccess != std::nullopt)
changed |= updateUnidentifiedAccess(other.unidentifiedAccess.value());
return changed;
}
bool AccessStorageResult::mergeFrom(const AccessStorageResult &other) {
// Merge accesses from other. Both `this` and `other` are either from the same
// function or are both callees of the same call site, so their parameters
// indices coincide. transformStorage is the identity function.
return mergeAccesses(other, [](const StorageAccessInfo &s) { return s; });
}
/// Returns the argument of the full apply or partial apply corresponding to the
/// callee's parameter index, or returns an invalid SILValue if the applied
/// closure cannot be found. This walks up the apply chain starting at the given
/// `fullApply` to find the applied argument.
static SILValue getCallerArg(FullApplySite fullApply, unsigned paramIndex) {
if (paramIndex < fullApply.getNumArguments())
return fullApply.getArgument(paramIndex);
SILValue callee = fullApply.getCalleeOrigin();
auto *PAI = dyn_cast<PartialApplyInst>(callee);
if (!PAI)
return SILValue();
unsigned appliedIndex =
paramIndex - ApplySite(PAI).getCalleeArgIndexOfFirstAppliedArg();
if (appliedIndex < PAI->getNumArguments())
return PAI->getArgument(appliedIndex);
// This must be a chain of partial_applies. We don't expect this in practice,
// so handle it conservatively.
return SILValue();
}
/// Transform AccessStorage from a callee into the caller context. If this is
/// uniquely identified local storage, then return an invalid storage object.
///
/// For correctness, AccessEnforcementOpts relies on all Argument access to
/// either be mapped into the caller's context or marked as an unidentified
/// access at the call site.
///
/// Note: This does *not* map the storage index into the caller function's index
/// range. (When the storage value doesn't need to be remapped, it returns the
/// original storage value.) It's simpler to set the storage index later when it
/// is actually added to the function's storageAccessSet.
static StorageAccessInfo
transformCalleeStorage(const StorageAccessInfo &storage,
FullApplySite fullApply) {
if (storage.isLocal()) {
// Do not merge local storage.
return StorageAccessInfo(AccessStorage(), storage);
}
// Remap reference storage. The caller's argument becomes the new object. The
// old storage info is inherited.
if (storage.isReference()) {
auto object = storage.getObject();
if (auto *arg = dyn_cast<SILFunctionArgument>(object)) {
if (SILValue argVal = getCallerArg(fullApply, arg->getIndex())) {
// Remap this storage info. The argument source value is now the new
// object. The old storage info is inherited.
auto callerStorage = storage.transformReference(argVal);
return StorageAccessInfo(callerStorage, storage);
}
}
// Continue using the callee value as the storage object.
return storage;
}
switch (storage.getKind()) {
case AccessStorage::Box:
case AccessStorage::Class:
case AccessStorage::Tail:
case AccessStorage::Stack:
llvm_unreachable("Handled immediately above");
case AccessStorage::Nested:
llvm_unreachable("Nested storage should not be used here");
case AccessStorage::Global:
// Global accesses is universal.
return storage;
case AccessStorage::Yield:
// Continue to hold on to yields from the callee because we don't have
// any better placeholder in the callee.
return storage;
case AccessStorage::Unidentified:
// For unidentified storage, continue to reference the value in the callee
// because we don't have any better placeholder for a callee-defined object.
return storage;
case AccessStorage::Argument: {
// Transitively search for the storage base in the caller.
if (SILValue argVal = getCallerArg(fullApply, storage.getParamIndex())) {
// Remap the argument source value and inherit the old storage info.
if (auto calleeStorage = AccessStorage::compute(argVal))
return StorageAccessInfo(calleeStorage, storage);
}
// If the argument can't be transformed, demote it to an unidentified
// access.
//
// This is an untested bailout. It is only reachable if the call graph
// contains an edge that getCallerArg is unable to analyze OR if
// AccessStorage::compute returns an invalid SILValue, which won't
// pass SIL verification.
//
// TODO: To handle invalid argVal, consider allowing Unidentified access for
// invalid values. This may be useful for partially invalidating results.
return StorageAccessInfo(
AccessStorage(storage.getValue(), AccessStorage::Unidentified),
storage);
}
}
llvm_unreachable("unhandled kind");
}
bool AccessStorageResult::mergeFromApply(
const AccessStorageResult &calleeAccess, FullApplySite fullApply) {
// Merge accesses from calleeAccess. Transform any Argument type
// AccessStorage into the caller context to be added to `this` storage map.
return mergeAccesses(calleeAccess, [&fullApply](const StorageAccessInfo &s) {
return transformCalleeStorage(s, fullApply);
});
}
template <typename B>
void AccessStorageResult::visitBeginAccess(B *beginAccess) {
if (beginAccess->getEnforcement() != SILAccessEnforcement::Dynamic)
return;
auto storage = AccessStorage::compute(beginAccess->getSource());
if (storage.getKind() == AccessStorage::Unidentified) {
// This also catches invalid storage.
updateOptionalAccessKind(unidentifiedAccess, beginAccess->getAccessKind());
return;
}
StorageAccessInfo storageAccess(storage, beginAccess);
auto result = insertStorageAccess(storageAccess);
if (!result.second)
result.first->mergeFrom(storageAccess);
}
void AccessStorageResult::analyzeInstruction(SILInstruction *I) {
assert(!FullApplySite::isa(I) && "caller should merge");
if (auto *BAI = dyn_cast<BeginAccessInst>(I))
visitBeginAccess(BAI);
else if (auto *BUAI = dyn_cast<BeginUnpairedAccessInst>(I))
visitBeginAccess(BUAI);
}
void StorageAccessInfo::print(raw_ostream &os) const {
os << " [" << getSILAccessKindName(getAccessKind()) << "] ";
if (hasNoNestedConflict())
os << "[no_nested_conflict] ";
AccessStorage::print(os);
}
void StorageAccessInfo::dump() const { print(llvm::dbgs()); }
void AccessStorageResult::print(raw_ostream &os) const {
for (auto &storageAccess : storageAccessSet)
storageAccess.print(os);
if (unidentifiedAccess != std::nullopt) {
os << " unidentified accesses: "
<< getSILAccessKindName(unidentifiedAccess.value()) << "\n";
}
}
void AccessStorageResult::dump() const { print(llvm::dbgs()); }
// -----------------------------------------------------------------------------
// MARK: FunctionAccessStorage, implementation of
// GenericFunctionEffectAnalysis.
// -----------------------------------------------------------------------------
bool FunctionAccessStorage::summarizeFunction(SILFunction *F) {
assert(accessResult.isEmpty() && "expected uninitialized results.");
if (F->isDefinition())
return false;
// If the function definition is unavailable, set unidentifiedAccess to a
// conservative value, since analyzeInstruction will never be called.
//
// If FunctionSideEffects can be summarized, use that information.
auto b = F->getMemoryBehavior(/*observeRetains*/ false);
if (b == MemoryBehavior::MayHaveSideEffects) {
setWorstEffects();
// May as well consider this a successful summary since there are no
// instructions to visit anyway.
return true;
}
if (b >= MemoryBehavior::MayWrite) {
accessResult.setUnidentifiedAccess(SILAccessKind::Modify);
} else if (b == MemoryBehavior::MayRead) {
accessResult.setUnidentifiedAccess(SILAccessKind::Read);
}
// If function side effects is "readnone" then this result will have an empty
// storageAccessSet and unidentifiedAccess == None.
return true;
}
bool FunctionAccessStorage::summarizeCall(FullApplySite fullApply) {
assert(accessResult.isEmpty() && "expected uninitialized results.");
if (SILFunction *callee = fullApply.getReferencedFunctionOrNull()) {
if (callee->getName() == "_swift_stdlib_malloc_size" ||
callee->getName() == "_swift_stdlib_has_malloc_size") {
return true;
}
}
return false;
}
void AccessStorageAnalysis::initialize(
SILPassManager *PM) {
BCA = PM->getAnalysis<BasicCalleeAnalysis>();
}
void AccessStorageAnalysis::invalidate() {
functionInfoMap.clear();
allocator.DestroyAll();
LLVM_DEBUG(llvm::dbgs() << "invalidate all\n");
}
void AccessStorageAnalysis::invalidate(
SILFunction *F, InvalidationKind K) {
if (FunctionInfo *FInfo = functionInfoMap.lookup(F)) {
LLVM_DEBUG(llvm::dbgs() << " invalidate " << FInfo->F->getName() << '\n');
invalidateIncludingAllCallers(FInfo);
}
}
void AccessStorageAnalysis::getCalleeEffects(
FunctionAccessStorage &calleeEffects, FullApplySite fullApply) {
if (calleeEffects.summarizeCall(fullApply))
return;
auto callees = BCA->getCalleeList(fullApply);
if (!callees.allCalleesVisible() ||
// @callee_owned function calls implicitly release the context, which
// may call deinits of boxed values.
// TODO: be less conservative about what destructors might be called.
fullApply.getOrigCalleeType()->isCalleeConsumed()) {
calleeEffects.setWorstEffects();
return;
}
// We can see all the callees, so merge the effects from all of them.
for (auto *callee : callees)
calleeEffects.mergeFrom(getEffects(callee));
}
void AccessStorageAnalysis::analyzeFunction(
FunctionInfo *functionInfo, FunctionOrder &bottomUpOrder,
int recursionDepth) {
functionInfo->needUpdateCallers = true;
if (bottomUpOrder.prepareForVisiting(functionInfo))
return;
auto *F = functionInfo->F;
if (functionInfo->functionEffects.summarizeFunction(F))
return;
LLVM_DEBUG(llvm::dbgs() << " >> analyze " << F->getName() << '\n');
// Check all instructions of the function
for (auto &BB : *F) {
for (auto &I : BB) {
if (auto fullApply = FullApplySite::isa(&I))
analyzeCall(functionInfo, fullApply, bottomUpOrder, recursionDepth);
else
functionInfo->functionEffects.analyzeInstruction(&I);
}
}
LLVM_DEBUG(llvm::dbgs() << " << finished " << F->getName() << '\n');
}
void AccessStorageAnalysis::analyzeCall(
FunctionInfo *functionInfo, FullApplySite fullApply,
FunctionOrder &bottomUpOrder, int recursionDepth) {
FunctionAccessStorage applyEffects;
if (applyEffects.summarizeCall(fullApply)) {
functionInfo->functionEffects.mergeFromApply(applyEffects, fullApply);
return;
}
if (recursionDepth >= MaxRecursionDepth) {
functionInfo->functionEffects.setWorstEffects();
return;
}
CalleeList callees = BCA->getCalleeList(fullApply);
if (!callees.allCalleesVisible() ||
// @callee_owned function calls implicitly release the context, which
// may call deinits of boxed values.
// TODO: be less conservative about what destructors might be called.
fullApply.getOrigCalleeType()->isCalleeConsumed()) {
functionInfo->functionEffects.setWorstEffects();
return;
}
// Derive the effects of the apply from the known callees.
// Defer merging callee effects until the callee is scheduled
for (SILFunction *callee : callees) {
FunctionInfo *calleeInfo = getFunctionInfo(callee);
calleeInfo->addCaller(functionInfo, fullApply);
if (!calleeInfo->isVisited()) {
// Recursively visit the called function.
analyzeFunction(calleeInfo, bottomUpOrder, recursionDepth + 1);
bottomUpOrder.tryToSchedule(calleeInfo);
}
}
}
void AccessStorageAnalysis::recompute(
FunctionInfo *initialInfo) {
allocNewUpdateID();
LLVM_DEBUG(llvm::dbgs() << "recompute function-effect analysis with UpdateID "
<< getCurrentUpdateID() << '\n');
// Collect and analyze all functions to recompute, starting at initialInfo.
FunctionOrder bottomUpOrder(getCurrentUpdateID());
analyzeFunction(initialInfo, bottomUpOrder, 0);
// Build the bottom-up order.
bottomUpOrder.tryToSchedule(initialInfo);
bottomUpOrder.finishScheduling();
// Second step: propagate the side-effect information up the call-graph until
// it stabilizes.
bool needAnotherIteration;
do {
LLVM_DEBUG(llvm::dbgs() << "new iteration\n");
needAnotherIteration = false;
for (FunctionInfo *functionInfo : bottomUpOrder) {
if (!functionInfo->needUpdateCallers)
continue;
LLVM_DEBUG(llvm::dbgs() << " update callers of "
<< functionInfo->F->getName() << '\n');
functionInfo->needUpdateCallers = false;
// Propagate the function effects to all callers.
for (const auto &E : functionInfo->getCallers()) {
assert(E.isValid());
// Only include callers which we are actually recomputing.
if (!bottomUpOrder.wasRecomputedWithCurrentUpdateID(E.Caller))
continue;
LLVM_DEBUG(llvm::dbgs() << " merge into caller "
<< E.Caller->F->getName() << '\n');
if (E.Caller->functionEffects.mergeFromApply(
functionInfo->functionEffects, FullApplySite(E.FAS))) {
E.Caller->needUpdateCallers = true;
if (!E.Caller->isScheduledAfter(functionInfo)) {
// This happens if we have a cycle in the call-graph.
needAnotherIteration = true;
}
}
}
}
} while (needAnotherIteration);
}
SILAnalysis *swift::createAccessStorageAnalysis(SILModule *) {
return new AccessStorageAnalysis();
}