Files
swift-mirror/lib/Frontend/ModuleInterfaceBuilder.cpp
Brent Royal-Gordon a27fdad4e5 Provide fallback SourceLoc for swiftinterface build errors
When a swiftinterface fails to build for any of various reasons, we try to diagnose the failure at the site of the `import` declaration. But if the import is implicitly added—which happens for many SDK modules, like the standard library and ClangImporter overlays—there is no source location for the import, so the error ends up being diagnosed at <unknown>:0. This causes a number of issues; most notably, Xcode doesn’t display the diagnostic as prominently as others.

This change falls back to diagnosing the error at line 1, column 1 of the swiftinterface file itself. This is perhaps not an ideal location, and it won’t help with I/O errors where we can’t open the swiftinterface file (and therefore can’t diagnose an error in it), but it should improve the way we display most module interface building errors.
2020-03-17 18:44:31 -07:00

490 lines
19 KiB
C++

//===----- ModuleInterfaceBuilder.cpp - Compiles .swiftinterface files ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "textual-module-interface"
#include "ModuleInterfaceBuilder.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/DiagnosticsFrontend.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/FileSystem.h"
#include "swift/AST/Module.h"
#include "llvm/ADT/StringSet.h"
#include "swift/Basic/Defer.h"
#include "swift/Frontend/Frontend.h"
#include "swift/Frontend/ModuleInterfaceSupport.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/Serialization/SerializationOptions.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/xxhash.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/CrashRecoveryContext.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/LockFileManager.h"
using namespace swift;
using FileDependency = SerializationOptions::FileDependency;
namespace path = llvm::sys::path;
/// If the file dependency in \p FullDepPath is inside the \p Base directory,
/// this returns its path relative to \p Base. Otherwise it returns None.
static Optional<StringRef> getRelativeDepPath(StringRef DepPath,
StringRef Base) {
// If Base is the root directory, or DepPath does not start with Base, bail.
if (Base.size() <= 1 || !DepPath.startswith(Base)) {
return None;
}
assert(DepPath.size() > Base.size() &&
"should never depend on a directory");
// Is the DepName something like ${Base}/foo.h"?
if (path::is_separator(DepPath[Base.size()]))
return DepPath.substr(Base.size() + 1);
// Is the DepName something like "${Base}foo.h", where Base
// itself contains a trailing slash?
if (path::is_separator(Base.back()))
return DepPath.substr(Base.size());
// We have something next to Base, like "Base.h", that's somehow
// become a dependency.
return None;
}
void ModuleInterfaceBuilder::configureSubInvocationInputsAndOutputs(
StringRef OutPath) {
auto &SubFEOpts = subInvocation.getFrontendOptions();
SubFEOpts.RequestedAction = FrontendOptions::ActionType::EmitModuleOnly;
SubFEOpts.InputsAndOutputs.addPrimaryInputFile(interfacePath);
SupplementaryOutputPaths SOPs;
SOPs.ModuleOutputPath = OutPath.str();
// Pick a primary output path that will cause problems to use.
StringRef MainOut = "/<unused>";
SubFEOpts.InputsAndOutputs
.setMainAndSupplementaryOutputs({MainOut}, {SOPs});
}
void ModuleInterfaceBuilder::configureSubInvocation(
const SearchPathOptions &SearchPathOpts,
const LangOptions &LangOpts,
ClangModuleLoader *ClangLoader) {
// Start with a SubInvocation that copies various state from our
// invoking ASTContext.
subInvocation.setImportSearchPaths(SearchPathOpts.ImportSearchPaths);
subInvocation.setFrameworkSearchPaths(SearchPathOpts.FrameworkSearchPaths);
subInvocation.setSDKPath(SearchPathOpts.SDKPath);
subInvocation.setInputKind(InputFileKind::SwiftModuleInterface);
subInvocation.setRuntimeResourcePath(SearchPathOpts.RuntimeResourcePath);
subInvocation.setTargetTriple(LangOpts.Target);
subInvocation.setModuleName(moduleName);
subInvocation.setClangModuleCachePath(moduleCachePath);
subInvocation.getFrontendOptions().PrebuiltModuleCachePath =
prebuiltCachePath;
subInvocation.getFrontendOptions().TrackSystemDeps = trackSystemDependencies;
// Respect the detailed-record preprocessor setting of the parent context.
// This, and the "raw" clang module format it implicitly enables, are
// required by sourcekitd.
if (ClangLoader) {
auto &Opts = ClangLoader->getClangInstance().getPreprocessorOpts();
if (Opts.DetailedRecord) {
subInvocation.getClangImporterOptions().DetailedPreprocessingRecord = true;
}
}
// Inhibit warnings from the SubInvocation since we are assuming the user
// is not in a position to fix them.
subInvocation.getDiagnosticOptions().SuppressWarnings = true;
// Inherit this setting down so that it can affect error diagnostics (mostly
// by making them non-fatal).
subInvocation.getLangOptions().DebuggerSupport = LangOpts.DebuggerSupport;
// Disable this; deinitializers always get printed with `@objc` even in
// modules that don't import Foundation.
subInvocation.getLangOptions().EnableObjCAttrRequiresFoundation = false;
// Tell the subinvocation to serialize dependency hashes if asked to do so.
auto &frontendOpts = subInvocation.getFrontendOptions();
frontendOpts.SerializeModuleInterfaceDependencyHashes =
serializeDependencyHashes;
// Tell the subinvocation to remark on rebuilds from an interface if asked
// to do so.
frontendOpts.RemarkOnRebuildFromModuleInterface =
remarkOnRebuildFromInterface;
}
bool ModuleInterfaceBuilder::extractSwiftInterfaceVersionAndArgs(
swift::version::Version &Vers, StringRef &CompilerVersion,
llvm::StringSaver &SubArgSaver, SmallVectorImpl<const char *> &SubArgs) {
llvm::vfs::FileSystem &fs = *sourceMgr.getFileSystem();
auto FileOrError = swift::vfs::getFileOrSTDIN(fs, interfacePath);
if (!FileOrError) {
// Don't use this->diagnose() because it'll just try to re-open
// interfacePath.
diags.diagnose(diagnosticLoc, diag::error_open_input_file,
interfacePath, FileOrError.getError().message());
return true;
}
auto SB = FileOrError.get()->getBuffer();
auto VersRe = getSwiftInterfaceFormatVersionRegex();
auto CompRe = getSwiftInterfaceCompilerVersionRegex();
auto FlagRe = getSwiftInterfaceModuleFlagsRegex();
SmallVector<StringRef, 1> VersMatches, FlagMatches, CompMatches;
if (!VersRe.match(SB, &VersMatches)) {
diagnose(diag::error_extracting_version_from_module_interface);
return true;
}
if (!FlagRe.match(SB, &FlagMatches)) {
diagnose(diag::error_extracting_flags_from_module_interface);
return true;
}
assert(VersMatches.size() == 2);
assert(FlagMatches.size() == 2);
// FIXME We should diagnose this at a location that makes sense:
Vers = swift::version::Version(VersMatches[1], SourceLoc(), &diags);
llvm::cl::TokenizeGNUCommandLine(FlagMatches[1], SubArgSaver, SubArgs);
if (CompRe.match(SB, &CompMatches)) {
assert(CompMatches.size() == 2);
CompilerVersion = SubArgSaver.save(CompMatches[1]);
}
else {
// Don't diagnose; handwritten module interfaces don't include this field.
CompilerVersion = "(unspecified, file possibly handwritten)";
}
return false;
}
bool ModuleInterfaceBuilder::collectDepsForSerialization(
CompilerInstance &SubInstance, SmallVectorImpl<FileDependency> &Deps,
bool IsHashBased) {
llvm::vfs::FileSystem &fs = *sourceMgr.getFileSystem();
auto &Opts = SubInstance.getASTContext().SearchPathOpts;
SmallString<128> SDKPath(Opts.SDKPath);
path::native(SDKPath);
SmallString<128> ResourcePath(Opts.RuntimeResourcePath);
path::native(ResourcePath);
auto DTDeps = SubInstance.getDependencyTracker()->getDependencies();
SmallVector<StringRef, 16> InitialDepNames(DTDeps.begin(), DTDeps.end());
InitialDepNames.push_back(interfacePath);
InitialDepNames.insert(InitialDepNames.end(),
extraDependencies.begin(), extraDependencies.end());
llvm::StringSet<> AllDepNames;
SmallString<128> Scratch;
for (const auto &InitialDepName : InitialDepNames) {
path::native(InitialDepName, Scratch);
StringRef DepName = Scratch.str();
assert(moduleCachePath.empty() || !DepName.startswith(moduleCachePath));
// Serialize the paths of dependencies in the SDK relative to it.
Optional<StringRef> SDKRelativePath = getRelativeDepPath(DepName, SDKPath);
StringRef DepNameToStore = SDKRelativePath.getValueOr(DepName);
bool IsSDKRelative = SDKRelativePath.hasValue();
// Forwarding modules add the underlying prebuilt module to their
// dependency list -- don't serialize that.
if (!prebuiltCachePath.empty() && DepName.startswith(prebuiltCachePath))
continue;
if (AllDepNames.insert(DepName).second && dependencyTracker) {
dependencyTracker->addDependency(DepName, /*isSystem*/IsSDKRelative);
}
// Don't serialize compiler-relative deps so the cache is relocatable.
if (DepName.startswith(ResourcePath))
continue;
auto Status = fs.status(DepName);
if (!Status)
return true;
/// Lazily load the dependency buffer if we need it. If we're not
/// dealing with a hash-based dependencies, and if the dependency is
/// not a .swiftmodule, we can avoid opening the buffer.
std::unique_ptr<llvm::MemoryBuffer> DepBuf = nullptr;
auto getDepBuf = [&]() -> llvm::MemoryBuffer * {
if (DepBuf) return DepBuf.get();
if (auto Buf = fs.getBufferForFile(DepName, /*FileSize=*/-1,
/*RequiresNullTerminator=*/false)) {
DepBuf = std::move(Buf.get());
return DepBuf.get();
}
return nullptr;
};
if (IsHashBased) {
auto buf = getDepBuf();
if (!buf) return true;
uint64_t hash = xxHash64(buf->getBuffer());
Deps.push_back(
FileDependency::hashBased(DepNameToStore, IsSDKRelative,
Status->getSize(), hash));
} else {
uint64_t mtime =
Status->getLastModificationTime().time_since_epoch().count();
Deps.push_back(
FileDependency::modTimeBased(DepNameToStore, IsSDKRelative,
Status->getSize(), mtime));
}
}
return false;
}
bool ModuleInterfaceBuilder::buildSwiftModuleInternal(
StringRef OutPath, bool ShouldSerializeDeps,
std::unique_ptr<llvm::MemoryBuffer> *ModuleBuffer) {
auto outerPrettyStackState = llvm::SavePrettyStackState();
bool SubError = false;
bool RunSuccess = llvm::CrashRecoveryContext().RunSafelyOnThread([&] {
// Pretend we're on the original thread for pretty-stack-trace purposes.
auto savedInnerPrettyStackState = llvm::SavePrettyStackState();
llvm::RestorePrettyStackState(outerPrettyStackState);
SWIFT_DEFER {
llvm::RestorePrettyStackState(savedInnerPrettyStackState);
};
llvm::vfs::FileSystem &fs = *sourceMgr.getFileSystem();
// Note that we don't assume cachePath is the same as the Clang
// module cache path at this point.
if (!moduleCachePath.empty())
(void)llvm::sys::fs::create_directories(moduleCachePath);
configureSubInvocationInputsAndOutputs(OutPath);
FrontendOptions &FEOpts = subInvocation.getFrontendOptions();
const auto &InputInfo = FEOpts.InputsAndOutputs.firstInput();
StringRef InPath = InputInfo.file();
const auto &OutputInfo =
InputInfo.getPrimarySpecificPaths().SupplementaryOutputs;
StringRef OutPath = OutputInfo.ModuleOutputPath;
llvm::BumpPtrAllocator SubArgsAlloc;
llvm::StringSaver SubArgSaver(SubArgsAlloc);
SmallVector<const char *, 16> SubArgs;
swift::version::Version Vers;
StringRef emittedByCompiler;
if (extractSwiftInterfaceVersionAndArgs(Vers, emittedByCompiler,
SubArgSaver, SubArgs)) {
SubError = true;
return;
}
// For now: we support anything with the same "major version" and assume
// minor versions might be interesting for debugging, or special-casing a
// compatible field variant.
if (Vers.asMajorVersion() != InterfaceFormatVersion.asMajorVersion()) {
diagnose(diag::unsupported_version_of_module_interface, interfacePath,
Vers);
SubError = true;
return;
}
SmallString<32> ExpectedModuleName = subInvocation.getModuleName();
if (subInvocation.parseArgs(SubArgs, diags)) {
SubError = true;
return;
}
if (subInvocation.getModuleName() != ExpectedModuleName) {
auto DiagKind = diag::serialization_name_mismatch;
if (subInvocation.getLangOptions().DebuggerSupport)
DiagKind = diag::serialization_name_mismatch_repl;
diagnose(DiagKind, subInvocation.getModuleName(), ExpectedModuleName);
SubError = true;
return;
}
// Build the .swiftmodule; this is a _very_ abridged version of the logic
// in performCompile in libFrontendTool, specialized, to just the one
// module-serialization task we're trying to do here.
LLVM_DEBUG(llvm::dbgs() << "Setting up instance to compile "
<< InPath << " to " << OutPath << "\n");
CompilerInstance SubInstance;
SubInstance.getSourceMgr().setFileSystem(&fs);
ForwardingDiagnosticConsumer FDC(diags);
SubInstance.addDiagnosticConsumer(&FDC);
SubInstance.createDependencyTracker(FEOpts.TrackSystemDeps);
SWIFT_DEFER {
// Make sure to emit a generic top-level error if a module fails to
// load. This is not only good for users; it also makes sure that we've
// emitted an error in the parent diagnostic engine, which is what
// determines whether the process exits with a proper failure status.
if (SubInstance.getASTContext().hadError()) {
auto builtByCompiler =
getSwiftInterfaceCompilerVersionForCurrentCompiler(
SubInstance.getASTContext());
diagnose(diag::module_interface_build_failed, moduleName,
emittedByCompiler == builtByCompiler, emittedByCompiler,
builtByCompiler);
}
};
if (SubInstance.setup(subInvocation)) {
SubError = true;
return;
}
LLVM_DEBUG(llvm::dbgs() << "Performing sema\n");
SubInstance.performSema();
if (SubInstance.getASTContext().hadError()) {
LLVM_DEBUG(llvm::dbgs() << "encountered errors\n");
SubError = true;
return;
}
SILOptions &SILOpts = subInvocation.getSILOptions();
auto Mod = SubInstance.getMainModule();
auto &TC = SubInstance.getSILTypes();
auto SILMod = performSILGeneration(Mod, TC, SILOpts);
if (!SILMod) {
LLVM_DEBUG(llvm::dbgs() << "SILGen did not produce a module\n");
SubError = true;
return;
}
// Setup the callbacks for serialization, which can occur during the
// optimization pipeline.
SerializationOptions SerializationOpts;
std::string OutPathStr = OutPath;
SerializationOpts.OutputPath = OutPathStr.c_str();
SerializationOpts.ModuleLinkName = FEOpts.ModuleLinkName;
SerializationOpts.AutolinkForceLoad =
!subInvocation.getIRGenOptions().ForceLoadSymbolName.empty();
// Record any non-SDK module interface files for the debug info.
StringRef SDKPath = SubInstance.getASTContext().SearchPathOpts.SDKPath;
if (!getRelativeDepPath(InPath, SDKPath))
SerializationOpts.ModuleInterface = InPath;
SmallVector<FileDependency, 16> Deps;
bool serializeHashes = FEOpts.SerializeModuleInterfaceDependencyHashes;
if (collectDepsForSerialization(SubInstance, Deps, serializeHashes)) {
SubError = true;
return;
}
if (ShouldSerializeDeps)
SerializationOpts.Dependencies = Deps;
SILMod->setSerializeSILAction([&]() {
// We don't want to serialize module docs in the cache -- they
// will be serialized beside the interface file.
serializeToBuffers(Mod, SerializationOpts, ModuleBuffer,
/*ModuleDocBuffer*/nullptr,
/*SourceInfoBuffer*/nullptr,
SILMod.get());
});
LLVM_DEBUG(llvm::dbgs() << "Running SIL processing passes\n");
if (SubInstance.performSILProcessing(SILMod.get())) {
LLVM_DEBUG(llvm::dbgs() << "encountered errors\n");
SubError = true;
return;
}
SubError = SubInstance.getDiags().hadAnyError();
});
return !RunSuccess || SubError;
}
bool ModuleInterfaceBuilder::buildSwiftModule(StringRef OutPath,
bool ShouldSerializeDeps,
std::unique_ptr<llvm::MemoryBuffer> *ModuleBuffer,
llvm::function_ref<void()> RemarkRebuild) {
auto build = [&]() {
if (RemarkRebuild) {
RemarkRebuild();
}
return buildSwiftModuleInternal(OutPath, ShouldSerializeDeps, ModuleBuffer);
};
if (disableInterfaceFileLock) {
return build();
}
while (1) {
// Attempt to lock the interface file. Only one process is allowed to build
// module from the interface so we don't consume too much memory when multiple
// processes are doing the same.
// FIXME: We should surface the module building step to the build system so
// we don't need to synchronize here.
llvm::LockFileManager Locked(interfacePath);
switch (Locked) {
case llvm::LockFileManager::LFS_Error:{
// ModuleInterfaceBuilder takes care of correctness and locks are only
// necessary for performance. Fallback to building the module in case of any lock
// related errors.
if (RemarkRebuild) {
diagnose(diag::interface_file_lock_failure, interfacePath);
}
// Clear out any potential leftover.
Locked.unsafeRemoveLockFile();
LLVM_FALLTHROUGH;
}
case llvm::LockFileManager::LFS_Owned: {
return build();
}
case llvm::LockFileManager::LFS_Shared: {
// Someone else is responsible for building the module. Wait for them to
// finish.
switch (Locked.waitForUnlock(256)) {
case llvm::LockFileManager::Res_Success: {
// This process may have a different module output path. If the other
// process doesn't build the interface to this output path, we should try
// building ourselves.
auto bufferOrError = llvm::MemoryBuffer::getFile(OutPath);
if (!bufferOrError)
continue;
if (ModuleBuffer)
*ModuleBuffer = std::move(bufferOrError.get());
return false;
}
case llvm::LockFileManager::Res_OwnerDied: {
continue; // try again to get the lock.
}
case llvm::LockFileManager::Res_Timeout: {
// Since ModuleInterfaceBuilder takes care of correctness, we try waiting for
// another process to complete the build so swift does not do it done
// twice. If case of timeout, build it ourselves.
if (RemarkRebuild) {
diagnose(diag::interface_file_lock_timed_out, interfacePath);
}
// Clear the lock file so that future invocations can make progress.
Locked.unsafeRemoveLockFile();
continue;
}
}
break;
}
}
}
}