Files
swift-mirror/lib/SILOptimizer/Analysis/ArraySemantic.cpp
Joe Groff 03c7919b4a SIL: Add fields to SILFunctionType for substituted function types.
https://forums.swift.org/t/improving-the-representation-of-polymorphic-interfaces-in-sil-with-substituted-function-types/29711

This prepares SIL to be able to more accurately preserve the calling convention of
polymorphic generic interfaces by letting the type system represent "substituted function types".
We add a couple of fields to SILFunctionType to support this:

- A substitution map, accessed by `getSubstitutions()`, which maps the generic signature
  of the function to its concrete implementation. This will allow, for instance, a protocol
  witness for a requirement of type `<Self: P> (Self, ...) -> ...` for a concrete conforming
  type `Foo` to express its type as `<Self: P> (Self, ...) -> ... for <Foo>`, preserving the relation
  to the protocol interface without relying on the pile of hacks that is the `witness_method`
  protocol.

- A bool for whether the generic signature of the function is "implied" by the substitutions.
  If true, the generic signature isn't really part of the calling convention of the function.
  This will allow closure types to distinguish a closure being passed to a generic function, like
  `<T, U> in (*T, *U) -> T for <Int, String>`, from the concrete type `(*Int, *String) -> Int`,
  which will make it easier for us to differentiate the representation of those as types, for
  instance by giving them different pointer authentication discriminators to harden arm64e
  code.

This patch is currently NFC, it just introduces the new APIs and takes a first pass at updating
code to use them. Much more work will need to be done once we start exercising these new
fields.

This does bifurcate some existing APIs:

- SILFunctionType now has two accessors to get its generic signature.
  `getSubstGenericSignature` gets the generic signature that is used to apply its
  substitution map, if any. `getInvocationGenericSignature` gets the generic signature
  used to invoke the function at apply sites. These differ if the generic signature is
  implied.
- SILParameterInfo and SILResultInfo values carry the unsubstituted types of the parameters
  and results of the function. They now have two APIs to get that type. `getInterfaceType`
  returns the unsubstituted type of the generic interface, and
  `getArgumentType`/`getReturnValueType` produce the substituted type that is used at
  apply sites.
2019-10-25 13:38:51 -07:00

789 lines
28 KiB
C++

//===--- ArraySemantic.cpp - Wrapper around array semantic calls. ---------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/ADT/StringSwitch.h"
using namespace swift;
static ParameterConvention
getSelfParameterConvention(ApplyInst *SemanticsCall) {
FunctionRefInst *FRI = cast<FunctionRefInst>(SemanticsCall->getCallee());
SILFunction *F = FRI->getInitiallyReferencedFunction();
auto FnTy = F->getLoweredFunctionType();
return FnTy->getSelfParameter().getConvention();
}
/// Make sure that all parameters are passed with a reference count
/// neutral parameter convention except for self.
bool swift::ArraySemanticsCall::isValidSignature() {
assert(SemanticsCall && getKind() != ArrayCallKind::kNone &&
"Need an array semantic call");
FunctionRefInst *FRI = cast<FunctionRefInst>(SemanticsCall->getCallee());
SILFunction *F = FRI->getInitiallyReferencedFunction();
auto FnTy = F->getLoweredFunctionType();
auto &Mod = F->getModule();
// Check whether we have a valid signature for semantic calls that we hoist.
switch (getKind()) {
// All other calls can be consider valid.
default: break;
case ArrayCallKind::kArrayPropsIsNativeTypeChecked: {
// @guaranteed/@owned Self
if (SemanticsCall->getNumArguments() != 1)
return false;
auto SelfConvention = FnTy->getSelfParameter().getConvention();
return SelfConvention == ParameterConvention::Direct_Guaranteed ||
SelfConvention == ParameterConvention::Direct_Owned;
}
case ArrayCallKind::kCheckIndex: {
// Int, @guaranteed/@owned Self
if (SemanticsCall->getNumArguments() != 2 ||
!SemanticsCall->getArgument(0)->getType().isTrivial(*F))
return false;
auto SelfConvention = FnTy->getSelfParameter().getConvention();
return SelfConvention == ParameterConvention::Direct_Guaranteed ||
SelfConvention == ParameterConvention::Direct_Owned;
}
case ArrayCallKind::kCheckSubscript: {
// Int, Bool, Self
if (SemanticsCall->getNumArguments() != 3 ||
!SemanticsCall->getArgument(0)->getType().isTrivial(*F))
return false;
if (!SemanticsCall->getArgument(1)->getType().isTrivial(*F))
return false;
auto SelfConvention = FnTy->getSelfParameter().getConvention();
return SelfConvention == ParameterConvention::Direct_Guaranteed ||
SelfConvention == ParameterConvention::Direct_Owned;
}
case ArrayCallKind::kMakeMutable: {
auto SelfConvention = FnTy->getSelfParameter().getConvention();
return SelfConvention == ParameterConvention::Indirect_Inout;
}
case ArrayCallKind::kArrayUninitialized: {
// Make sure that if we are a _adoptStorage call that our storage is
// uniquely referenced by us.
SILValue Arg0 = SemanticsCall->getArgument(0);
if (Arg0->getType().isExistentialType()) {
auto *AllocBufferAI = dyn_cast<ApplyInst>(Arg0);
if (!AllocBufferAI)
return false;
auto *AllocFn = AllocBufferAI->getReferencedFunctionOrNull();
if (!AllocFn || AllocFn->getName() != "swift_bufferAllocate" ||
!hasOneNonDebugUse(AllocBufferAI))
return false;
}
return true;
}
case ArrayCallKind::kWithUnsafeMutableBufferPointer: {
SILFunctionConventions origConv(SemanticsCall->getOrigCalleeType(), Mod);
if (origConv.getNumIndirectSILResults() != 1
|| SemanticsCall->getNumArguments() != 3)
return false;
auto SelfConvention = FnTy->getSelfParameter().getConvention();
return SelfConvention == ParameterConvention::Indirect_Inout;
}
}
return true;
}
/// Match array semantic calls.
swift::ArraySemanticsCall::ArraySemanticsCall(SILValue V,
StringRef semanticName,
bool matchPartialName)
: SemanticsCall(nullptr) {
if (auto AI = dyn_cast<ApplyInst>(V))
initialize(AI, semanticName, matchPartialName);
}
/// Match array semantic calls.
swift::ArraySemanticsCall::ArraySemanticsCall(SILInstruction *I,
StringRef semanticName,
bool matchPartialName)
: SemanticsCall(nullptr) {
if (auto AI = dyn_cast<ApplyInst>(I))
initialize(AI, semanticName, matchPartialName);
}
/// Match array semantic calls.
swift::ArraySemanticsCall::ArraySemanticsCall(ApplyInst *AI,
StringRef semanticName,
bool matchPartialName)
: SemanticsCall(nullptr) {
initialize(AI, semanticName, matchPartialName);
}
void ArraySemanticsCall::initialize(ApplyInst *AI, StringRef semanticName,
bool matchPartialName) {
auto *fn = AI->getReferencedFunctionOrNull();
if (!fn)
return;
if (!(matchPartialName
? fn->hasSemanticsAttrThatStartsWith(semanticName)
: fn->hasSemanticsAttr(semanticName)))
return;
SemanticsCall = AI;
// Need a 'self' argument otherwise this is not a semantic call that
// we recognize.
if (getKind() < ArrayCallKind::kArrayInit && !hasSelf())
SemanticsCall = nullptr;
// A arguments must be passed reference count neutral except for self.
if (SemanticsCall && !isValidSignature())
SemanticsCall = nullptr;
}
/// Determine which kind of array semantics call this is.
ArrayCallKind swift::ArraySemanticsCall::getKind() const {
if (!SemanticsCall)
return ArrayCallKind::kNone;
auto F = cast<FunctionRefInst>(SemanticsCall->getCallee())
->getInitiallyReferencedFunction();
ArrayCallKind Kind = ArrayCallKind::kNone;
for (auto &Attrs : F->getSemanticsAttrs()) {
auto Tmp =
llvm::StringSwitch<ArrayCallKind>(Attrs)
.Case("array.props.isNativeTypeChecked",
ArrayCallKind::kArrayPropsIsNativeTypeChecked)
.StartsWith("array.init", ArrayCallKind::kArrayInit)
.Case("array.uninitialized", ArrayCallKind::kArrayUninitialized)
.Case("array.check_subscript", ArrayCallKind::kCheckSubscript)
.Case("array.check_index", ArrayCallKind::kCheckIndex)
.Case("array.get_count", ArrayCallKind::kGetCount)
.Case("array.get_capacity", ArrayCallKind::kGetCapacity)
.Case("array.get_element", ArrayCallKind::kGetElement)
.Case("array.make_mutable", ArrayCallKind::kMakeMutable)
.Case("array.get_element_address",
ArrayCallKind::kGetElementAddress)
.Case("array.mutate_unknown", ArrayCallKind::kMutateUnknown)
.Case("array.reserve_capacity_for_append",
ArrayCallKind::kReserveCapacityForAppend)
.Case("array.withUnsafeMutableBufferPointer",
ArrayCallKind::kWithUnsafeMutableBufferPointer)
.Case("array.append_contentsOf", ArrayCallKind::kAppendContentsOf)
.Case("array.append_element", ArrayCallKind::kAppendElement)
.Default(ArrayCallKind::kNone);
if (Tmp != ArrayCallKind::kNone) {
assert(Kind == ArrayCallKind::kNone && "Multiple array semantic "
"strings?!");
Kind = Tmp;
}
}
return Kind;
}
bool swift::ArraySemanticsCall::hasSelf() const {
assert(SemanticsCall && "Must have a semantics call");
// Array.init and Array.uninitialized return 'self' @owned.
return SemanticsCall->getOrigCalleeType()->hasSelfParam();
}
SILValue swift::ArraySemanticsCall::getSelf() const {
return SemanticsCall->getSelfArgument();
}
Operand &swift::ArraySemanticsCall::getSelfOperand() const {
return SemanticsCall->getSelfArgumentOperand();
}
bool swift::ArraySemanticsCall::hasGuaranteedSelf() const {
if (!hasSelf())
return false;
return getSelfParameterConvention(SemanticsCall) ==
ParameterConvention::Direct_Guaranteed;
}
bool swift::ArraySemanticsCall::hasGetElementDirectResult() const {
assert(getKind() == ArrayCallKind::kGetElement &&
"must be an array.get_element call");
bool DirectResult =
(SemanticsCall->getOrigCalleeConv().getNumIndirectSILResults() == 0);
assert((DirectResult && SemanticsCall->getNumArguments() == 4 ||
!DirectResult && SemanticsCall->getNumArguments() == 5) &&
"wrong number of array.get_element call arguments");
return DirectResult;
}
SILValue swift::ArraySemanticsCall::getTypeCheckedArgument() const {
return SemanticsCall->getArgument(hasGetElementDirectResult() ? 1 : 2);
}
SILValue swift::ArraySemanticsCall::getSubscriptCheckArgument() const {
return SemanticsCall->getArgument(hasGetElementDirectResult() ? 2 : 3);
}
SILValue swift::ArraySemanticsCall::getIndex() const {
assert(SemanticsCall && "Must have a semantics call");
assert(SemanticsCall->getNumArguments() && "Must have arguments");
assert(getKind() == ArrayCallKind::kCheckSubscript ||
getKind() == ArrayCallKind::kCheckIndex ||
getKind() == ArrayCallKind::kGetElement ||
getKind() == ArrayCallKind::kGetElementAddress);
if (getKind() == ArrayCallKind::kGetElement)
return SemanticsCall->getArgument(hasGetElementDirectResult() ? 0 : 1);
return SemanticsCall->getArgument(0);
}
Optional<int64_t> swift::ArraySemanticsCall::getConstantIndex() const {
auto *IndexStruct = dyn_cast<StructInst>(getIndex());
if (!IndexStruct)
return None;
auto StructOpds = IndexStruct->getElements();
if (StructOpds.size() != 1)
return None;
auto *Literal = dyn_cast<IntegerLiteralInst>(StructOpds[0]);
if (!Literal)
return None;
auto Val = Literal->getValue();
if (Val.getNumWords()>1)
return None;
return Val.getSExtValue();
}
static bool canHoistArrayArgument(ApplyInst *SemanticsCall, SILValue Arr,
SILInstruction *InsertBefore,
DominanceInfo *DT) {
// We only know how to hoist inout, owned or guaranteed parameters.
auto Convention = getSelfParameterConvention(SemanticsCall);
if (Convention != ParameterConvention::Indirect_Inout &&
Convention != ParameterConvention::Direct_Owned &&
Convention != ParameterConvention::Direct_Guaranteed)
return false;
ValueBase *SelfVal = Arr;
auto *SelfBB = SelfVal->getParentBlock();
if (DT->dominates(SelfBB, InsertBefore->getParent()))
return true;
if (auto LI = dyn_cast<LoadInst>(SelfVal)) {
// Are we loading a value from an address in a struct defined at a point
// dominating the hoist point.
auto Val = LI->getOperand();
bool DoesNotDominate;
StructElementAddrInst *SEI;
while ((DoesNotDominate = !DT->dominates(Val->getParentBlock(),
InsertBefore->getParent())) &&
(SEI = dyn_cast<StructElementAddrInst>(Val)))
Val = SEI->getOperand();
return !DoesNotDominate;
}
return false;
}
bool swift::ArraySemanticsCall::canHoist(SILInstruction *InsertBefore,
DominanceInfo *DT) const {
auto Kind = getKind();
switch (Kind) {
default:
break;
case ArrayCallKind::kCheckIndex:
case ArrayCallKind::kArrayPropsIsNativeTypeChecked:
case ArrayCallKind::kGetElementAddress:
case ArrayCallKind::kGetCount:
case ArrayCallKind::kGetCapacity:
return canHoistArrayArgument(SemanticsCall, getSelf(), InsertBefore, DT);
case ArrayCallKind::kGetElement:
// Not implemented yet.
return false;
case ArrayCallKind::kCheckSubscript: {
auto IsNativeArg = getArrayPropertyIsNativeTypeChecked();
ArraySemanticsCall IsNative(IsNativeArg,
"array.props.isNativeTypeChecked", true);
if (!IsNative) {
// Do we have a constant parameter?
auto *SI = dyn_cast<StructInst>(IsNativeArg);
if (!SI)
return false;
if (!isa<IntegerLiteralInst>(SI->getOperand(0)))
return false;
} else if (!IsNative.canHoist(InsertBefore, DT))
// Otherwise, we must be able to hoist the function call.
return false;
return canHoistArrayArgument(SemanticsCall, getSelf(), InsertBefore, DT);
}
case ArrayCallKind::kMakeMutable: {
return canHoistArrayArgument(SemanticsCall, getSelf(), InsertBefore, DT);
}
} // End switch.
return false;
}
/// Copy the array load to the insert point.
static SILValue copyArrayLoad(SILValue ArrayStructValue,
SILInstruction *InsertBefore,
DominanceInfo *DT) {
if (DT->dominates(ArrayStructValue->getParentBlock(),
InsertBefore->getParent()))
return ArrayStructValue;
auto *LI = cast<LoadInst>(ArrayStructValue);
// Recursively move struct_element_addr.
ValueBase *Val = LI->getOperand();
auto *InsertPt = InsertBefore;
while (!DT->dominates(Val->getParentBlock(), InsertBefore->getParent())) {
auto *Inst = cast<StructElementAddrInst>(Val);
Inst->moveBefore(InsertPt);
Val = Inst->getOperand();
InsertPt = Inst;
}
return cast<LoadInst>(LI->clone(InsertBefore));
}
static ApplyInst *hoistOrCopyCall(ApplyInst *AI, SILInstruction *InsertBefore,
bool LeaveOriginal, DominanceInfo *DT) {
if (!LeaveOriginal) {
AI->moveBefore(InsertBefore);
} else {
// Leave the original and 'hoist' a clone.
AI = cast<ApplyInst>(AI->clone(InsertBefore));
}
placeFuncRef(AI, DT);
return AI;
}
/// Hoist or copy the self argument of the semantics call.
/// Return the hoisted self argument.
static SILValue hoistOrCopySelf(ApplyInst *SemanticsCall,
SILInstruction *InsertBefore,
DominanceInfo *DT, bool LeaveOriginal) {
auto SelfConvention = getSelfParameterConvention(SemanticsCall);
assert((SelfConvention == ParameterConvention::Direct_Owned ||
SelfConvention == ParameterConvention::Direct_Guaranteed) &&
"Expect @owned or @guaranteed self");
auto Self = SemanticsCall->getSelfArgument();
bool IsOwnedSelf = SelfConvention == ParameterConvention::Direct_Owned;
// Emit matching release for owned self if we are moving the original call.
if (!LeaveOriginal && IsOwnedSelf) {
SILBuilderWithScope Builder(SemanticsCall);
Builder.createReleaseValue(SemanticsCall->getLoc(), Self, Builder.getDefaultAtomicity());
}
auto NewArrayStructValue = copyArrayLoad(Self, InsertBefore, DT);
// Retain the array.
if (IsOwnedSelf) {
SILBuilderWithScope Builder(InsertBefore, SemanticsCall);
Builder.createRetainValue(SemanticsCall->getLoc(), NewArrayStructValue,
Builder.getDefaultAtomicity());
}
return NewArrayStructValue;
}
ApplyInst *swift::ArraySemanticsCall::hoistOrCopy(SILInstruction *InsertBefore,
DominanceInfo *DT,
bool LeaveOriginal) {
assert(canHoist(InsertBefore, DT) &&
"Must be able to hoist the semantics call");
auto Kind = getKind();
switch (Kind) {
case ArrayCallKind::kArrayPropsIsNativeTypeChecked:
case ArrayCallKind::kGetCount:
case ArrayCallKind::kGetCapacity: {
assert(SemanticsCall->getNumArguments() == 1 &&
"Expect 'self' parameter only");
auto HoistedSelf =
hoistOrCopySelf(SemanticsCall, InsertBefore, DT, LeaveOriginal);
auto *Call =
hoistOrCopyCall(SemanticsCall, InsertBefore, LeaveOriginal, DT);
Call->setSelfArgument(HoistedSelf);
return Call;
}
case ArrayCallKind::kCheckSubscript:
case ArrayCallKind::kCheckIndex: {
auto HoistedSelf =
hoistOrCopySelf(SemanticsCall, InsertBefore, DT, LeaveOriginal);
SILValue NewArrayProps;
if (Kind == ArrayCallKind::kCheckSubscript) {
// Copy the array.props argument call.
auto IsNativeArg = getArrayPropertyIsNativeTypeChecked();
ArraySemanticsCall IsNative(IsNativeArg,
"array.props.isNativeTypeChecked", true);
if (!IsNative) {
// Do we have a constant parameter?
auto *SI = dyn_cast<StructInst>(IsNativeArg);
assert(SI && isa<IntegerLiteralInst>(SI->getOperand(0)) &&
"Must have a constant parameter or an array.props.isNative call "
"as argument");
SI->moveBefore(&*DT->findNearestCommonDominator(
InsertBefore->getParent(), SI->getParent())
->begin());
auto *IL = cast<IntegerLiteralInst>(SI->getOperand(0));
IL->moveBefore(&*DT->findNearestCommonDominator(
InsertBefore->getParent(), IL->getParent())
->begin());
} else {
NewArrayProps = IsNative.copyTo(InsertBefore, DT);
}
// Replace all uses of the check subscript call by a use of the empty
// dependence. The check subscript call is no longer associated with
// another operation.
auto EmptyDep = SILBuilderWithScope(SemanticsCall)
.createStruct(SemanticsCall->getLoc(),
SemanticsCall->getType(), {});
SemanticsCall->replaceAllUsesWith(EmptyDep);
}
// Hoist the call.
auto Call = hoistOrCopyCall(SemanticsCall, InsertBefore, LeaveOriginal, DT);
Call->setSelfArgument(HoistedSelf);
if (NewArrayProps) {
// Set the array.props argument.
Call->setArgument(1, NewArrayProps);
}
return Call;
}
case ArrayCallKind::kMakeMutable: {
assert(!LeaveOriginal && "Copying not yet implemented");
// Hoist the call.
auto Call = hoistOrCopyCall(SemanticsCall, InsertBefore, LeaveOriginal, DT);
return Call;
}
default:
llvm_unreachable("Don't know how to hoist this instruction");
break;
} // End switch.
}
void swift::ArraySemanticsCall::removeCall() {
if (getSelfParameterConvention(SemanticsCall) ==
ParameterConvention::Direct_Owned) {
SILBuilderWithScope Builder(SemanticsCall);
Builder.createReleaseValue(SemanticsCall->getLoc(), getSelf(),
Builder.getDefaultAtomicity());
}
switch (getKind()) {
default: break;
case ArrayCallKind::kCheckSubscript: {
// Remove all uses with the empty tuple ().
auto EmptyDep = SILBuilderWithScope(SemanticsCall)
.createStruct(SemanticsCall->getLoc(),
SemanticsCall->getType(), {});
SemanticsCall->replaceAllUsesWith(EmptyDep);
}
break;
case ArrayCallKind::kGetElement: {
// Remove the matching isNativeTypeChecked and check_subscript call.
ArraySemanticsCall IsNative(getTypeCheckedArgument(),
"array.props.isNativeTypeChecked");
ArraySemanticsCall SubscriptCheck(getSubscriptCheckArgument(),
"array.check_subscript");
if (SubscriptCheck)
SubscriptCheck.removeCall();
// array.isNativeTypeChecked might be shared among several get_element
// calls. The last user should delete it.
if (IsNative && getSingleNonDebugUser((ApplyInst *)IsNative) ==
SemanticsCall) {
deleteAllDebugUses(IsNative);
(*IsNative).replaceAllUsesWithUndef();
IsNative.removeCall();
}
}
break;
}
SemanticsCall->eraseFromParent();
SemanticsCall = nullptr;
}
SILValue
swift::ArraySemanticsCall::getArrayPropertyIsNativeTypeChecked() const {
switch (getKind()) {
case ArrayCallKind::kCheckSubscript:
return SemanticsCall->getArgument(1);
case ArrayCallKind::kGetElement:
return getTypeCheckedArgument();
default:
llvm_unreachable("Must have an array.props argument");
}
}
bool swift::ArraySemanticsCall::doesNotChangeArray() const {
switch (getKind()) {
default: return false;
case ArrayCallKind::kArrayPropsIsNativeTypeChecked:
case ArrayCallKind::kCheckSubscript:
case ArrayCallKind::kCheckIndex:
case ArrayCallKind::kGetCount:
case ArrayCallKind::kGetCapacity:
case ArrayCallKind::kGetElement:
return true;
}
}
bool swift::ArraySemanticsCall::mayHaveBridgedObjectElementType() const {
assert(hasSelf() && "Need self parameter");
auto Ty = getSelf()->getType();
if (auto BGT = Ty.getAs<BoundGenericStructType>()) {
// Check the array element type parameter.
bool isClass = true;
for (auto EltTy : BGT->getGenericArgs()) {
if (EltTy->isBridgeableObjectType())
return true;
isClass = false;
}
return isClass;
}
return true;
}
bool swift::ArraySemanticsCall::canInlineEarly() const {
switch (getKind()) {
default:
return false;
case ArrayCallKind::kAppendContentsOf:
case ArrayCallKind::kReserveCapacityForAppend:
case ArrayCallKind::kAppendElement:
// append(Element) calls other semantics functions. Therefore it's
// important that it's inlined by the early inliner (which is before all
// the array optimizations). Also, this semantics is only used to lookup
// Array.append(Element), so inlining it does not prevent any other
// optimization.
return true;
}
}
SILValue swift::ArraySemanticsCall::getInitializationCount() const {
if (getKind() == ArrayCallKind::kArrayUninitialized) {
// Can be either a call to _adoptStorage or _allocateUninitialized.
// A call to _adoptStorage has the buffer as AnyObject as the first
// argument. The count is the second argument.
// A call to _allocateUninitialized has the count as first argument.
SILValue Arg0 = SemanticsCall->getArgument(0);
if (Arg0->getType().isExistentialType() ||
Arg0->getType().hasReferenceSemantics())
return SemanticsCall->getArgument(1);
else return SemanticsCall->getArgument(0);
}
if (getKind() == ArrayCallKind::kArrayInit &&
SemanticsCall->getNumArguments() == 3)
// Repeated-value array initializer. Arguments are the value to
// repeat, the count, and the value's type.
return SemanticsCall->getArgument(1);
return SILValue();
}
SILValue swift::ArraySemanticsCall::getArrayValue() const {
if (getKind() == ArrayCallKind::kArrayUninitialized) {
TupleExtractInst *ArrayDef = nullptr;
for (auto *Op : SemanticsCall->getUses()) {
auto *TupleElt = dyn_cast<TupleExtractInst>(Op->getUser());
if (!TupleElt)
return SILValue();
switch (TupleElt->getFieldNo()) {
default:
return SILValue();
case 0: {
// Should only have one tuple extract after CSE.
if (ArrayDef)
return SILValue();
ArrayDef = TupleElt;
break;
}
case 1: /*Ignore the storage address */ break;
}
}
return SILValue(ArrayDef);
}
if (getKind() == ArrayCallKind::kArrayInit)
return SILValue(SemanticsCall);
return SILValue();
}
SILValue swift::ArraySemanticsCall::getArrayElementStoragePointer() const {
if (getKind() == ArrayCallKind::kArrayUninitialized) {
TupleExtractInst *ArrayElementStorage = nullptr;
for (auto *Op : SemanticsCall->getUses()) {
auto *TupleElt = dyn_cast<TupleExtractInst>(Op->getUser());
if (!TupleElt)
return SILValue();
switch (TupleElt->getFieldNo()) {
default:
return SILValue();
case 0: {
// Ignore the array value.
break;
}
case 1:
// Should only have one tuple extract after CSE.
if (ArrayElementStorage)
return SILValue();
ArrayElementStorage = TupleElt;
break;
}
}
return SILValue(ArrayElementStorage);
}
return SILValue();
}
bool swift::ArraySemanticsCall::replaceByValue(SILValue V) {
assert(getKind() == ArrayCallKind::kGetElement &&
"Must be a get_element call");
// We only handle loadable types.
if (!V->getType().isLoadable(*SemanticsCall->getFunction()))
return false;
// Expect a check_subscript call or the empty dependence.
auto SubscriptCheck = getSubscriptCheckArgument();
ArraySemanticsCall Check(SubscriptCheck, "array.check_subscript");
auto *EmptyDep = dyn_cast<StructInst>(SubscriptCheck);
if (!Check && (!EmptyDep || !EmptyDep->getElements().empty()))
return false;
SILBuilderWithScope Builder(SemanticsCall);
auto &ValLowering = Builder.getTypeLowering(V->getType());
if (hasGetElementDirectResult()) {
ValLowering.emitCopyValue(Builder, SemanticsCall->getLoc(), V);
SemanticsCall->replaceAllUsesWith(V);
} else {
auto Dest = SemanticsCall->getArgument(0);
// Expect an alloc_stack initialization.
auto *ASI = dyn_cast<AllocStackInst>(Dest);
if (!ASI)
return false;
ValLowering.emitCopyValue(Builder, SemanticsCall->getLoc(), V);
ValLowering.emitStoreOfCopy(Builder, SemanticsCall->getLoc(), V, Dest,
IsInitialization_t::IsInitialization);
}
removeCall();
return true;
}
bool swift::ArraySemanticsCall::replaceByAppendingValues(
SILFunction *AppendFn, SILFunction *ReserveFn,
const SmallVectorImpl<SILValue> &Vals, SubstitutionMap Subs) {
assert(getKind() == ArrayCallKind::kAppendContentsOf &&
"Must be an append_contentsOf call");
assert(AppendFn && "Must provide an append SILFunction");
auto *F = SemanticsCall->getFunction();
// We only handle loadable types.
if (any_of(Vals, [F](SILValue V) -> bool {
return !V->getType().isLoadable(*F);
}))
return false;
CanSILFunctionType AppendFnTy = AppendFn->getLoweredFunctionType();
SILValue ArrRef = SemanticsCall->getArgument(1);
SILBuilderWithScope Builder(SemanticsCall);
auto Loc = SemanticsCall->getLoc();
auto *FnRef = Builder.createFunctionRefFor(Loc, AppendFn);
if (Vals.size() > 1) {
// Create a call to reserveCapacityForAppend() to reserve space for multiple
// elements.
FunctionRefBaseInst *ReserveFnRef =
Builder.createFunctionRefFor(Loc, ReserveFn);
SILFunctionType *ReserveFnTy =
ReserveFnRef->getType().castTo<SILFunctionType>();
assert(ReserveFnTy->getNumParameters() == 2);
StructType *IntType =
ReserveFnTy->getParameters()[0].getArgumentType(F->getModule(), ReserveFnTy)
->castTo<StructType>();
StructDecl *IntDecl = IntType->getDecl();
VarDecl *field = IntDecl->getStoredProperties()[0];
SILType BuiltinIntTy =SILType::getPrimitiveObjectType(
field->getInterfaceType()->getCanonicalType());
IntegerLiteralInst *CapacityLiteral =
Builder.createIntegerLiteral(Loc, BuiltinIntTy, Vals.size());
StructInst *Capacity = Builder.createStruct(Loc,
SILType::getPrimitiveObjectType(CanType(IntType)), {CapacityLiteral});
Builder.createApply(Loc, ReserveFnRef, Subs, {Capacity, ArrRef});
}
for (SILValue V : Vals) {
auto SubTy = V->getType();
auto &ValLowering = Builder.getTypeLowering(SubTy);
auto CopiedVal = ValLowering.emitCopyValue(Builder, Loc, V);
auto *AllocStackInst = Builder.createAllocStack(Loc, SubTy);
ValLowering.emitStoreOfCopy(Builder, Loc, CopiedVal, AllocStackInst,
IsInitialization_t::IsInitialization);
SILValue Args[] = {AllocStackInst, ArrRef};
Builder.createApply(Loc, FnRef, Subs, Args);
Builder.createDeallocStack(Loc, AllocStackInst);
if (!isConsumedParameter(AppendFnTy->getParameters()[0].getConvention())) {
ValLowering.emitDestroyValue(Builder, Loc, CopiedVal);
}
}
CanSILFunctionType AppendContentsOfFnTy =
SemanticsCall->getReferencedFunctionOrNull()->getLoweredFunctionType();
if (AppendContentsOfFnTy->getParameters()[0].getConvention() ==
ParameterConvention::Direct_Owned) {
SILValue SrcArray = SemanticsCall->getArgument(0);
Builder.createReleaseValue(SemanticsCall->getLoc(), SrcArray,
Builder.getDefaultAtomicity());
}
removeCall();
return true;
}