Files
swift-mirror/lib/AST/Expr.cpp
John McCall 08d3460a19 Implement throw expressions. Untested.
Tests tomorrow for this and 'catch', I promise. :)

Swift SVN r26432
2015-03-23 08:10:15 +00:00

848 lines
28 KiB
C++

//===--- Expr.cpp - Swift Language Expression ASTs ------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expr class and subclasses.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Expr.h"
#include "swift/Basic/Unicode.h"
#include "swift/AST/Decl.h" // FIXME: Bad dependency
#include "swift/AST/Stmt.h"
#include "swift/AST/AST.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/AvailabilitySpec.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/TypeLoc.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Twine.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// Expr methods.
//===----------------------------------------------------------------------===//
// Only allow allocation of Stmts using the allocator in ASTContext.
void *Expr::operator new(size_t Bytes, ASTContext &C,
unsigned Alignment) {
return C.Allocate(Bytes, Alignment);
}
StringRef Expr::getKindName(ExprKind K) {
switch (K) {
#define EXPR(Id, Parent) case ExprKind::Id: return #Id;
#include "swift/AST/ExprNodes.def"
}
llvm_unreachable("bad ExprKind");
}
template <class T> static SourceLoc getStartLocImpl(const T *E);
template <class T> static SourceLoc getEndLocImpl(const T *E);
template <class T> static SourceLoc getLocImpl(const T *E);
// Helper functions to check statically whether a method has been
// overridden from its implementation in Expr. The sort of thing you
// need when you're avoiding v-tables.
namespace {
template <typename ReturnType, typename Class>
constexpr bool isOverriddenFromExpr(ReturnType (Class::*)() const) {
return true;
}
template <typename ReturnType>
constexpr bool isOverriddenFromExpr(ReturnType (Expr::*)() const) {
return false;
}
template <bool IsOverridden> struct Dispatch;
/// Dispatch down to a concrete override.
template <> struct Dispatch<true> {
template <class T> static SourceLoc getStartLoc(const T *E) {
return E->getStartLoc();
}
template <class T> static SourceLoc getEndLoc(const T *E) {
return E->getEndLoc();
}
template <class T> static SourceLoc getLoc(const T *E) {
return E->getLoc();
}
template <class T> static SourceRange getSourceRange(const T *E) {
return E->getSourceRange();
}
};
/// Default implementations for when a method isn't overridden.
template <> struct Dispatch<false> {
template <class T> static SourceLoc getStartLoc(const T *E) {
return E->getSourceRange().Start;
}
template <class T> static SourceLoc getEndLoc(const T *E) {
return E->getSourceRange().End;
}
template <class T> static SourceLoc getLoc(const T *E) {
return getStartLocImpl(E);
}
template <class T> static SourceRange getSourceRange(const T *E) {
return { E->getStartLoc(), E->getEndLoc() };
}
};
}
template <class T> static SourceRange getSourceRangeImpl(const T *E) {
static_assert(isOverriddenFromExpr(&T::getSourceRange) ||
(isOverriddenFromExpr(&T::getStartLoc) &&
isOverriddenFromExpr(&T::getEndLoc)),
"Expr subclass must implement either getSourceRange() "
"or getStartLoc()/getEndLoc()");
return Dispatch<isOverriddenFromExpr(&T::getSourceRange)>::getSourceRange(E);
}
SourceRange Expr::getSourceRange() const {
switch (getKind()) {
#define EXPR(ID, PARENT) \
case ExprKind::ID: return getSourceRangeImpl(cast<ID##Expr>(this));
#include "swift/AST/ExprNodes.def"
}
llvm_unreachable("expression type not handled!");
}
template <class T> static SourceLoc getStartLocImpl(const T *E) {
return Dispatch<isOverriddenFromExpr(&T::getStartLoc)>::getStartLoc(E);
}
SourceLoc Expr::getStartLoc() const {
switch (getKind()) {
#define EXPR(ID, PARENT) \
case ExprKind::ID: return getStartLocImpl(cast<ID##Expr>(this));
#include "swift/AST/ExprNodes.def"
}
llvm_unreachable("expression type not handled!");
}
template <class T> static SourceLoc getEndLocImpl(const T *E) {
return Dispatch<isOverriddenFromExpr(&T::getEndLoc)>::getEndLoc(E);
}
SourceLoc Expr::getEndLoc() const {
switch (getKind()) {
#define EXPR(ID, PARENT) \
case ExprKind::ID: return getEndLocImpl(cast<ID##Expr>(this));
#include "swift/AST/ExprNodes.def"
}
llvm_unreachable("expression type not handled!");
}
template <class T> static SourceLoc getLocImpl(const T *E) {
return Dispatch<isOverriddenFromExpr(&T::getLoc)>::getLoc(E);
}
SourceLoc Expr::getLoc() const {
switch (getKind()) {
#define EXPR(ID, PARENT) \
case ExprKind::ID: return getLocImpl(cast<ID##Expr>(this));
#include "swift/AST/ExprNodes.def"
}
llvm_unreachable("expression type not handled!");
}
Expr *Expr::getSemanticsProvidingExpr() {
if (IdentityExpr *IE = dyn_cast<IdentityExpr>(this))
return IE->getSubExpr()->getSemanticsProvidingExpr();
if (DefaultValueExpr *DE = dyn_cast<DefaultValueExpr>(this))
return DE->getSubExpr()->getSemanticsProvidingExpr();
return this;
}
Expr *Expr::getValueProvidingExpr() {
// For now, this is totally equivalent to the above.
// TODO:
// - tuple literal projection, which may become interestingly idiomatic
return getSemanticsProvidingExpr();
}
Initializer *Expr::findExistingInitializerContext() {
struct FindExistingInitializer : ASTWalker {
Initializer *TheInitializer = nullptr;
std::pair<bool,Expr*> walkToExprPre(Expr *E) override {
assert(!TheInitializer && "continuing to walk after finding context?");
if (auto closure = dyn_cast<AbstractClosureExpr>(E)) {
TheInitializer = cast<Initializer>(closure->getParent());
return { false, nullptr };
}
return { true, E };
}
} finder;
walk(finder);
return finder.TheInitializer;
}
bool Expr::isStaticallyDerivedMetatype() const {
// IF the result isn't a metatype, there's nothing else to do.
if (!getType()->is<AnyMetatypeType>())
return false;
const Expr *expr = this;
do {
// Skip syntax.
expr = expr->getSemanticsProvidingExpr();
// Direct reference to a type.
if (auto declRef = dyn_cast<DeclRefExpr>(expr))
return isa<TypeDecl>(declRef->getDecl());
if (isa<TypeExpr>(expr))
return true;
// A "." expression that refers to a member.
if (auto memberRef = dyn_cast<MemberRefExpr>(expr))
return isa<TypeDecl>(memberRef->getMember().getDecl());
// When the base of a "." expression is ignored, look at the member.
if (auto ignoredDot = dyn_cast<DotSyntaxBaseIgnoredExpr>(expr)) {
expr = ignoredDot->getRHS();
continue;
}
// Anything else is not statically derived.
return false;
} while (true);
}
bool Expr::isSuperExpr() const {
const Expr *expr = this;
do {
expr = expr->getSemanticsProvidingExpr();
if (isa<SuperRefExpr>(expr))
return true;
if (auto derivedToBase = dyn_cast<DerivedToBaseExpr>(expr)) {
expr = derivedToBase->getSubExpr();
continue;
}
if (auto metatypeConversion = dyn_cast<MetatypeConversionExpr>(expr)) {
expr = metatypeConversion->getSubExpr();
continue;
}
return false;
} while (true);
}
bool Expr::canAppendCallParentheses() const {
switch (getKind()) {
case ExprKind::Error:
return false;
case ExprKind::NilLiteral:
case ExprKind::IntegerLiteral:
case ExprKind::FloatLiteral:
case ExprKind::BooleanLiteral:
case ExprKind::CharacterLiteral:
case ExprKind::StringLiteral:
case ExprKind::InterpolatedStringLiteral:
case ExprKind::MagicIdentifierLiteral:
return true;
case ExprKind::DiscardAssignment:
// Legal but pointless.
return true;
case ExprKind::DeclRef:
return !cast<DeclRefExpr>(this)->getDecl()->getName().isOperator();
case ExprKind::SuperRef:
case ExprKind::Type:
case ExprKind::OtherConstructorDeclRef:
case ExprKind::UnresolvedConstructor:
case ExprKind::DotSyntaxBaseIgnored:
return true;
case ExprKind::OverloadedDeclRef: {
auto *overloadedExpr = cast<OverloadedDeclRefExpr>(this);
if (overloadedExpr->getDecls().empty())
return false;
return !overloadedExpr->getDecls().front()->getName().isOperator();
}
case ExprKind::OverloadedMemberRef:
return true;
case ExprKind::UnresolvedDeclRef:
return cast<UnresolvedDeclRefExpr>(this)->getName().isOperator();
case ExprKind::MemberRef:
case ExprKind::DynamicMemberRef:
case ExprKind::DynamicSubscript:
case ExprKind::UnresolvedSpecialize:
case ExprKind::UnresolvedMember:
case ExprKind::UnresolvedDot:
case ExprKind::UnresolvedSelector:
return true;
case ExprKind::Sequence:
return false;
case ExprKind::Paren:
case ExprKind::DotSelf:
case ExprKind::Tuple:
case ExprKind::Array:
case ExprKind::Dictionary:
case ExprKind::Subscript:
case ExprKind::TupleElement:
return true;
case ExprKind::CaptureList:
case ExprKind::Closure:
case ExprKind::AutoClosure:
return false;
case ExprKind::Module:
case ExprKind::DynamicType:
return true;
case ExprKind::Throw:
case ExprKind::Try:
case ExprKind::InOut:
return false;
case ExprKind::RebindSelfInConstructor:
case ExprKind::OpaqueValue:
case ExprKind::BindOptional:
case ExprKind::OptionalEvaluation:
return false;
case ExprKind::ForceValue:
return true;
case ExprKind::OpenExistential:
return false;
case ExprKind::Call:
case ExprKind::PostfixUnary:
case ExprKind::DotSyntaxCall:
case ExprKind::ConstructorRefCall:
return true;
case ExprKind::PrefixUnary:
case ExprKind::Binary:
return false;
case ExprKind::Load:
case ExprKind::TupleShuffle:
case ExprKind::FunctionConversion:
case ExprKind::CovariantFunctionConversion:
case ExprKind::CovariantReturnConversion:
case ExprKind::MetatypeConversion:
case ExprKind::CollectionUpcastConversion:
case ExprKind::Erasure:
case ExprKind::MetatypeErasure:
case ExprKind::DerivedToBase:
case ExprKind::ArchetypeToSuper:
case ExprKind::ScalarToTuple:
case ExprKind::InjectIntoOptional:
case ExprKind::UnavailableToOptional:
case ExprKind::ClassMetatypeToObject:
case ExprKind::ExistentialMetatypeToObject:
case ExprKind::ProtocolMetatypeToObject:
case ExprKind::InOutToPointer:
case ExprKind::ArrayToPointer:
case ExprKind::StringToPointer:
case ExprKind::PointerToPointer:
case ExprKind::LValueToPointer:
case ExprKind::ForeignObjectConversion:
return false;
case ExprKind::ForcedCheckedCast:
case ExprKind::ConditionalCheckedCast:
case ExprKind::Is:
case ExprKind::Coerce:
return false;
case ExprKind::If:
case ExprKind::Assign:
case ExprKind::DefaultValue:
case ExprKind::UnresolvedPattern:
case ExprKind::AvailabilityQuery:
case ExprKind::EditorPlaceholder:
return false;
}
}
llvm::DenseMap<Expr *, Expr *> Expr::getParentMap() {
class RecordingTraversal : public ASTWalker {
public:
llvm::DenseMap<Expr *, Expr *> &ParentMap;
explicit RecordingTraversal(llvm::DenseMap<Expr *, Expr *> &parentMap)
: ParentMap(parentMap) { }
virtual std::pair<bool, Expr *> walkToExprPre(Expr *E) {
if (auto parent = Parent.getAsExpr())
ParentMap[E] = parent;
return { true, E };
}
};
llvm::DenseMap<Expr *, Expr *> parentMap;
RecordingTraversal traversal(parentMap);
walk(traversal);
return parentMap;
}
//===----------------------------------------------------------------------===//
// Support methods for Exprs.
//===----------------------------------------------------------------------===//
static APInt getIntegerLiteralValue(bool IsNegative, StringRef Text,
unsigned BitWidth) {
llvm::APInt Value(BitWidth, 0);
// swift encodes octal differently from C
bool IsCOctal = Text.size() > 1 && Text[0] == '0' && isdigit(Text[1]);
bool Error = Text.getAsInteger(IsCOctal ? 10 : 0, Value);
assert(!Error && "Invalid IntegerLiteral formed"); (void)Error;
if (IsNegative)
Value = -Value;
if (Value.getBitWidth() != BitWidth)
Value = Value.sextOrTrunc(BitWidth);
return Value;
}
APInt IntegerLiteralExpr::getValue(StringRef Text, unsigned BitWidth) {
return getIntegerLiteralValue(/*IsNegative=*/false, Text, BitWidth);
}
APInt IntegerLiteralExpr::getValue() const {
assert(!getType().isNull() && "Semantic analysis has not completed");
assert(!getType()->is<ErrorType>() && "Should have a valid type");
return getIntegerLiteralValue(
isNegative(), getDigitsText(),
getType()->castTo<BuiltinIntegerType>()->getGreatestWidth());
}
static APFloat getFloatLiteralValue(bool IsNegative, StringRef Text,
const llvm::fltSemantics &Semantics) {
APFloat Val(Semantics);
APFloat::opStatus Res =
Val.convertFromString(Text, llvm::APFloat::rmNearestTiesToEven);
assert(Res != APFloat::opInvalidOp && "Sema didn't reject invalid number");
(void)Res;
if (IsNegative) {
auto NegVal = APFloat::getZero(Semantics, /*negative*/ true);
Res = NegVal.subtract(Val, llvm::APFloat::rmNearestTiesToEven);
assert(Res != APFloat::opInvalidOp && "Sema didn't reject invalid number");
(void)Res;
return NegVal;
}
return Val;
}
APFloat FloatLiteralExpr::getValue(StringRef Text,
const llvm::fltSemantics &Semantics) {
return getFloatLiteralValue(/*IsNegative*/false, Text, Semantics);
}
llvm::APFloat FloatLiteralExpr::getValue() const {
assert(!getType().isNull() && "Semantic analysis has not completed");
assert(!getType()->is<ErrorType>() && "Should have a valid type");
return getFloatLiteralValue(isNegative(), getDigitsText(),
getType()->castTo<BuiltinFloatType>()->getAPFloatSemantics());
}
StringLiteralExpr::StringLiteralExpr(StringRef Val, SourceRange Range)
: LiteralExpr(ExprKind::StringLiteral, /*Implicit=*/false), Val(Val),
Range(Range) {
StringLiteralExprBits.Encoding = static_cast<unsigned>(UTF8);
StringLiteralExprBits.IsSingleUnicodeScalar =
unicode::isSingleUnicodeScalar(Val);
StringLiteralExprBits.IsSingleExtendedGraphemeCluster =
unicode::isSingleExtendedGraphemeCluster(Val);
}
void DeclRefExpr::setDeclRef(ConcreteDeclRef ref) {
if (auto spec = getSpecInfo())
spec->D = ref;
else
DOrSpecialized = ref;
}
void DeclRefExpr::setSpecialized() {
if (isSpecialized())
return;
ConcreteDeclRef ref = getDeclRef();
void *Mem = ref.getDecl()->getASTContext().Allocate(sizeof(SpecializeInfo),
alignof(SpecializeInfo));
auto Spec = new (Mem) SpecializeInfo;
Spec->D = ref;
DOrSpecialized = Spec;
}
void DeclRefExpr::setGenericArgs(ArrayRef<TypeRepr*> GenericArgs) {
ValueDecl *D = getDecl();
assert(D);
setSpecialized();
getSpecInfo()->GenericArgs = D->getASTContext().AllocateCopy(GenericArgs);
}
ConstructorDecl *OtherConstructorDeclRefExpr::getDecl() const {
return cast_or_null<ConstructorDecl>(Ctor.getDecl());
}
MemberRefExpr::MemberRefExpr(Expr *base, SourceLoc dotLoc,
ConcreteDeclRef member, SourceRange nameRange,
bool Implicit, AccessSemantics semantics)
: Expr(ExprKind::MemberRef, Implicit), Base(base),
Member(member), DotLoc(dotLoc), NameRange(nameRange) {
MemberRefExprBits.Semantics = (unsigned) semantics;
MemberRefExprBits.IsSuper = false;
}
Type OverloadSetRefExpr::getBaseType() const {
if (isa<OverloadedDeclRefExpr>(this))
return Type();
if (auto *DRE = dyn_cast<OverloadedMemberRefExpr>(this)) {
return DRE->getBase()->getType()->getRValueType();
}
llvm_unreachable("Unhandled overloaded set reference expression");
}
bool OverloadSetRefExpr::hasBaseObject() const {
if (Type BaseTy = getBaseType())
return !BaseTy->is<AnyMetatypeType>();
return false;
}
SequenceExpr *SequenceExpr::create(ASTContext &ctx, ArrayRef<Expr*> elements) {
void *Buffer = ctx.Allocate(sizeof(SequenceExpr) +
elements.size() * sizeof(Expr*),
alignof(SequenceExpr));
return ::new(Buffer) SequenceExpr(elements);
}
SourceLoc TupleExpr::getStartLoc() const {
if (LParenLoc.isValid()) return LParenLoc;
if (getNumElements() == 0) return SourceLoc();
return getElement(0)->getStartLoc();
}
SourceLoc TupleExpr::getEndLoc() const {
if (hasTrailingClosure() || RParenLoc.isInvalid()) {
if (getNumElements() == 0) return SourceLoc();
return getElements().back()->getEndLoc();
}
return RParenLoc;
}
TupleExpr::TupleExpr(SourceLoc LParenLoc, ArrayRef<Expr *> SubExprs,
ArrayRef<Identifier> ElementNames,
ArrayRef<SourceLoc> ElementNameLocs,
SourceLoc RParenLoc, bool HasTrailingClosure,
bool Implicit, Type Ty)
: Expr(ExprKind::Tuple, Implicit, Ty),
LParenLoc(LParenLoc), RParenLoc(RParenLoc),
NumElements(SubExprs.size())
{
TupleExprBits.HasTrailingClosure = HasTrailingClosure;
TupleExprBits.HasElementNames = !ElementNames.empty();
TupleExprBits.HasElementNameLocations = !ElementNameLocs.empty();
assert(LParenLoc.isValid() == RParenLoc.isValid() &&
"Mismatched parenthesis location information validity");
assert(ElementNames.empty() || ElementNames.size() == SubExprs.size());
assert(ElementNameLocs.empty() ||
ElementNames.size() == ElementNameLocs.size());
// Copy elements.
memcpy(getElements().data(), SubExprs.data(),
SubExprs.size() * sizeof(Expr *));
// Copy element names, if provided.
if (hasElementNames()) {
memcpy(getElementNamesBuffer().data(), ElementNames.data(),
ElementNames.size() * sizeof(Identifier));
}
// Copy element name locations, if provided.
if (hasElementNameLocs()) {
memcpy(getElementNameLocsBuffer().data(), ElementNameLocs.data(),
ElementNameLocs.size() * sizeof(SourceLoc));
}
}
TupleExpr *TupleExpr::create(ASTContext &ctx,
SourceLoc LParenLoc,
ArrayRef<Expr *> SubExprs,
ArrayRef<Identifier> ElementNames,
ArrayRef<SourceLoc> ElementNameLocs,
SourceLoc RParenLoc, bool HasTrailingClosure,
bool Implicit, Type Ty) {
unsigned size = sizeof(TupleExpr);
size += SubExprs.size() * sizeof(Expr*);
size += ElementNames.size() * sizeof(Identifier);
size += ElementNameLocs.size() * sizeof(SourceLoc);
void *mem = ctx.Allocate(size, alignof(TupleExpr));
return new (mem) TupleExpr(LParenLoc, SubExprs, ElementNames, ElementNameLocs,
RParenLoc, HasTrailingClosure, Implicit, Ty);
}
TupleExpr *TupleExpr::createEmpty(ASTContext &ctx, SourceLoc LParenLoc,
SourceLoc RParenLoc, bool Implicit) {
return create(ctx, LParenLoc, { }, { }, { }, RParenLoc,
/*HasTrailingClosure=*/false, Implicit,
TupleType::getEmpty(ctx));
}
TupleExpr *TupleExpr::createImplicit(ASTContext &ctx, ArrayRef<Expr *> SubExprs,
ArrayRef<Identifier> ElementNames) {
return create(ctx, SourceLoc(), SubExprs, ElementNames, { }, SourceLoc(),
/*HasTrailingClosure=*/false, /*Implicit=*/true, Type());
}
ArrayRef<Expr *> CollectionExpr::getElements() const {
if (auto paren = dyn_cast<ParenExpr>(SubExpr)) {
// FIXME: Hack. When this goes away, remove IdentityExpr's friendship of
// CollectionExpr.
return llvm::makeArrayRef(&paren->SubExpr, 1);
}
if (auto tuple = dyn_cast<TupleExpr>(SubExpr))
return tuple->getElements();
return llvm::makeArrayRef(&SubExpr, 1);
}
static ValueDecl *getCalledValue(Expr *E) {
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
return DRE->getDecl();
Expr *E2 = E->getValueProvidingExpr();
if (E != E2) return getCalledValue(E2);
return nullptr;
}
ValueDecl *ApplyExpr::getCalledValue() const {
return ::getCalledValue(Fn);
}
RebindSelfInConstructorExpr::RebindSelfInConstructorExpr(Expr *SubExpr,
VarDecl *Self)
: Expr(ExprKind::RebindSelfInConstructor, /*Implicit=*/true,
TupleType::getEmpty(Self->getASTContext())),
SubExpr(SubExpr), Self(Self)
{}
void AbstractClosureExpr::setParams(Pattern *P) {
ParamPattern = P;
// Change the DeclContext of any parameters to be this closure.
if (P) {
P->forEachVariable([&](VarDecl *VD) {
VD->setDeclContext(this);
});
}
}
Type AbstractClosureExpr::getResultType() const {
if (getType()->is<ErrorType>())
return getType();
return getType()->castTo<FunctionType>()->getResult();
}
bool AbstractClosureExpr::hasSingleExpressionBody() const {
if (auto closure = dyn_cast<ClosureExpr>(this))
return closure->hasSingleExpressionBody();
return true;
}
#define FORWARD_SOURCE_LOCS_TO(CLASS, NODE) \
SourceRange CLASS::getSourceRange() const { \
return (NODE)->getSourceRange(); \
} \
SourceLoc CLASS::getStartLoc() const { \
return (NODE)->getStartLoc(); \
} \
SourceLoc CLASS::getEndLoc() const { \
return (NODE)->getEndLoc(); \
} \
SourceLoc CLASS::getLoc() const { \
return (NODE)->getStartLoc(); \
}
FORWARD_SOURCE_LOCS_TO(ClosureExpr, Body.getPointer())
Expr *ClosureExpr::getSingleExpressionBody() const {
assert(hasSingleExpressionBody() && "Not a single-expression body");
return cast<ReturnStmt>(Body.getPointer()->getElements()[0].get<Stmt *>())
->getResult();
}
void ClosureExpr::setSingleExpressionBody(Expr *NewBody) {
cast<ReturnStmt>(Body.getPointer()->getElements()[0].get<Stmt *>())
->setResult(NewBody);
}
FORWARD_SOURCE_LOCS_TO(AutoClosureExpr, Body)
void AutoClosureExpr::setBody(Expr *E) {
auto &Context = getASTContext();
auto *RS = new (Context) ReturnStmt(SourceLoc(), E);
Body = BraceStmt::create(Context, E->getStartLoc(), { RS }, E->getEndLoc());
}
Expr *AutoClosureExpr::getSingleExpressionBody() const {
return cast<ReturnStmt>(Body->getElements()[0].get<Stmt *>())->getResult();
}
FORWARD_SOURCE_LOCS_TO(UnresolvedPatternExpr, subPattern)
UnresolvedSelectorExpr::UnresolvedSelectorExpr(Expr *subExpr, SourceLoc dotLoc,
DeclName name,
ArrayRef<ComponentLoc> components)
: Expr(ExprKind::UnresolvedSelector, /*implicit*/ false),
SubExpr(subExpr), DotLoc(dotLoc), Name(name)
{
assert(name.getArgumentNames().size() + 1 == components.size() &&
"number of component locs does not match number of name components");
auto buf = getComponentsBuf();
std::uninitialized_copy(components.begin(), components.end(),
buf.begin());
}
UnresolvedSelectorExpr *UnresolvedSelectorExpr::create(ASTContext &C,
Expr *subExpr, SourceLoc dotLoc,
DeclName name,
ArrayRef<ComponentLoc> components) {
assert(name.getArgumentNames().size() + 1 == components.size() &&
"number of component locs does not match number of name components");
void *buf = C.Allocate(sizeof(UnresolvedSelectorExpr)
+ (name.getArgumentNames().size() + 1)
* sizeof(ComponentLoc),
alignof(UnresolvedSelectorExpr));
return ::new (buf) UnresolvedSelectorExpr(subExpr, dotLoc, name, components);
}
unsigned ScalarToTupleExpr::getScalarField() const {
unsigned result = std::find(Elements.begin(), Elements.end(), Element())
- Elements.begin();
assert(result != Elements.size()
&& "Tuple elements are missing the scalar 'hole'");
return result;
}
TypeExpr::TypeExpr(TypeLoc TyLoc)
: Expr(ExprKind::Type, /*implicit*/false), Info(TyLoc) {
Type Ty = TyLoc.getType();
if (Ty && Ty->hasCanonicalTypeComputed())
setType(MetatypeType::get(Ty, Ty->getASTContext()));
}
TypeExpr::TypeExpr(Type Ty)
: Expr(ExprKind::Type, /*implicit*/true), Info(TypeLoc::withoutLoc(Ty)) {
if (Ty->hasCanonicalTypeComputed())
setType(MetatypeType::get(Ty, Ty->getASTContext()));
}
/// Return a TypeExpr for a simple identifier and the specified location.
TypeExpr *TypeExpr::createForDecl(SourceLoc Loc, TypeDecl *Decl) {
ASTContext &C = Decl->getASTContext();
assert(Loc.isValid());
auto *Repr = new (C) SimpleIdentTypeRepr(Loc, Decl->getName());
Repr->setValue(Decl);
return new (C) TypeExpr(TypeLoc(Repr, Type()));
}
TypeExpr *TypeExpr::createForSpecializedDecl(SourceLoc Loc, TypeDecl *D,
ArrayRef<TypeRepr*> args,
SourceRange AngleLocs) {
ASTContext &C = D->getASTContext();
assert(Loc.isValid());
auto *Repr = new (C) GenericIdentTypeRepr(Loc, D->getName(),
args, AngleLocs);
Repr->setValue(D);
return new (C) TypeExpr(TypeLoc(Repr, Type()));
}
// Create an implicit TypeExpr, with location information even though it
// shouldn't have one. This is presently used to work around other location
// processing bugs. If you have an implicit location, use createImplicit.
TypeExpr *TypeExpr::createImplicitHack(SourceLoc Loc, Type Ty, ASTContext &C) {
// FIXME: This is horrible.
if (Loc.isInvalid()) return createImplicit(Ty, C);
auto Name = C.getIdentifier("<<IMPLICIT>>");
auto *Repr = new (C) SimpleIdentTypeRepr(Loc, Name);
Repr->setValue(Ty);
auto *Res = new (C) TypeExpr(TypeLoc(Repr, Ty));
Res->setImplicit();
Res->setType(MetatypeType::get(Ty, C));
return Res;
}
ArchetypeType *OpenExistentialExpr::getOpenedArchetype() const {
auto type = getOpaqueValue()->getType();
if (auto metaTy = type->getAs<MetatypeType>())
type = metaTy->getInstanceType();
return type->castTo<ArchetypeType>();
}
AvailabilityQueryExpr *AvailabilityQueryExpr::create(
ASTContext &ctx, SourceLoc PoundLoc,
ArrayRef<VersionConstraintAvailabilitySpec *> queries,
SourceLoc RParenLoc) {
unsigned size = sizeof(AvailabilityQueryExpr) +
queries.size() * sizeof(VersionConstraintAvailabilitySpec *);
void *Buffer = ctx.Allocate(size, alignof(AvailabilityQueryExpr));
return ::new (Buffer) AvailabilityQueryExpr(PoundLoc, queries, RParenLoc);
}
SourceLoc AvailabilityQueryExpr::getEndLoc() const {
if (RParenLoc.isInvalid()) {
if (NumQueries == 0) {
return PoundLoc;
}
return getQueries()[NumQueries - 1]->getSourceRange().End;
}
return RParenLoc;
}
void AvailabilityQueryExpr::getPlatformKeywordRanges(
SmallVectorImpl<CharSourceRange> &PlatformRanges) {
for (unsigned int i = 0; i < NumQueries; i ++) {
auto Loc = (getQueriesBuf()[i])->getPlatformLoc();
auto Platform = (getQueriesBuf()[i])->getPlatform();
switch (Platform) {
case PlatformKind::none:
break;
#define AVAILABILITY_PLATFORM(X, PrettyName) \
case PlatformKind::X: \
PlatformRanges.push_back(CharSourceRange(Loc, strlen(#X))); \
break;
#include "swift/AST/PlatformKinds.def"
}
}
}