Files
swift-mirror/lib/AST/LookupVisibleDecls.cpp
Roman Levenstein 941e5b6a58 [patternmatch-silgen] Improve silken and diagnostics for switches on bools and tuples of bools.
This patch introduces a new kind of pattern for matching bool literals, i.e. true and false. Essentially, it is very similar to a pattern for matching enum elements, but simpler. Most of the code is just a boiler plate code copy/pasted from the code for enum element patterns. The only different thing is the emitBoolDispatch function, which emits a SIL code for matching bools.

With this patch, we don't get any false non-exhaustive switch diagnostics for switches on bools anymore. And we have a lot of radars complaining about it. For example rdar://16514545 and rdar://20130240.

Note, that this patch fixes the non-exhaustive switch diagnostics without changing the internal representation of bools. Implementing bool as an enum would have the same effect when it comes to these diagnostics and we would get this diagnostics fix for free, i.e. without any code committed here. But implementing bools-as-enums is an ongoing work and I'm investigating its performance implications. If we become confident that bool-as-enum does not have a negative impact on performance and decide to merge it, then we can revert this patch as it would not be necessary anymore. But if we decide to skip the enum-as-bool approach to its performance issues, then we would have at least fixed the false non-exhaustive diagnostics for bools by means of this patch.

Swift SVN r26650
2015-03-27 22:43:47 +00:00

893 lines
30 KiB
C++

//===--- LookupVisibleDecls - Swift Name Lookup Routines ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the lookupVisibleDecls interface for visiting named
// declarations.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/NameLookup.h"
#include "swift/AST/AST.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Basic/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include <set>
using namespace swift;
void VisibleDeclConsumer::anchor() {}
void VectorDeclConsumer::anchor() {}
namespace {
struct LookupState {
private:
/// If \c false, an unqualified lookup of all visible decls in a
/// DeclContext.
///
/// If \c true, lookup of all visible members of a given object (possibly of
/// metatype type).
unsigned IsQualified : 1;
/// Is this a qualified lookup on a metatype?
unsigned IsOnMetatype : 1;
/// Did we recurse into a superclass?
unsigned IsOnSuperclass : 1;
unsigned InheritsSuperclassInitializers : 1;
LookupState()
: IsQualified(0), IsOnMetatype(0), IsOnSuperclass(0),
InheritsSuperclassInitializers(0) {}
public:
LookupState(const LookupState &) = default;
static LookupState makeQualified() {
LookupState Result;
Result.IsQualified = 1;
return Result;
}
static LookupState makeUnqalified() {
LookupState Result;
Result.IsQualified = 0;
return Result;
}
bool isQualified() const { return IsQualified; }
bool isOnMetatype() const { return IsOnMetatype; }
bool isOnSuperclass() const { return IsOnSuperclass; }
bool isInheritsSuperclassInitializers() const {
return InheritsSuperclassInitializers;
}
LookupState withOnMetatype() const {
auto Result = *this;
Result.IsOnMetatype = 1;
return Result;
}
LookupState withOnSuperclass() const {
auto Result = *this;
Result.IsOnSuperclass = 1;
return Result;
}
LookupState withInheritsSuperclassInitializers() const {
auto Result = *this;
Result.InheritsSuperclassInitializers = 1;
return Result;
}
LookupState withoutInheritsSuperclassInitializers() const {
auto Result = *this;
Result.InheritsSuperclassInitializers = 0;
return Result;
}
};
} // unnamed namespace
static bool areTypeDeclsVisibleInLookupMode(LookupState LS) {
// Nested type declarations can be accessed only with unqualified lookup or
// on metatypes.
return !LS.isQualified() || LS.isOnMetatype();
}
static bool isDeclVisibleInLookupMode(ValueDecl *Member, LookupState LS,
const DeclContext *FromContext,
LazyResolver *TypeResolver) {
if (TypeResolver)
TypeResolver->resolveDeclSignature(Member);
// Check accessibility when relevant.
if (!Member->getDeclContext()->isLocalContext() &&
!isa<GenericTypeParamDecl>(Member) && !isa<ParamDecl>(Member) &&
FromContext->getASTContext().LangOpts.EnableAccessControl) {
if (Member->isInvalid() && !Member->hasAccessibility())
return false;
if (!Member->isAccessibleFrom(FromContext))
return false;
}
if (auto *FD = dyn_cast<FuncDecl>(Member)) {
// Can not call static functions on non-metatypes.
if (!LS.isOnMetatype() && FD->isStatic())
return false;
// Otherwise, either call a function or curry it.
return true;
}
if (auto *VD = dyn_cast<VarDecl>(Member)) {
// Can not use static properties on non-metatypes.
if (!(LS.isQualified() && LS.isOnMetatype()) && VD->isStatic())
return false;
// Can not use instance properties on metatypes.
if (LS.isOnMetatype() && !VD->isStatic())
return false;
return true;
}
if (isa<EnumElementDecl>(Member)) {
// Can not reference enum elements on non-metatypes.
if (!(LS.isQualified() && LS.isOnMetatype()))
return false;
}
if (auto CD = dyn_cast<ConstructorDecl>(Member)) {
// Constructors with stub implementations can not be called in Swift.
if (CD->hasStubImplementation())
return false;
if (LS.isQualified() && LS.isOnSuperclass()) {
// Can not call initializers from a superclass, except for inherited
// convenience initializers.
return LS.isInheritsSuperclassInitializers() && CD->isInheritable();
}
}
if (isa<TypeDecl>(Member))
return areTypeDeclsVisibleInLookupMode(LS);
return true;
}
static void doGlobalExtensionLookup(Type BaseType,
SmallVectorImpl<ValueDecl *> &FoundDecls,
const DeclContext *CurrDC,
LookupState LS,
DeclVisibilityKind Reason,
LazyResolver *TypeResolver) {
auto nominal = BaseType->getAnyNominal();
// Look in each extension of this type.
for (auto extension : nominal->getExtensions()) {
bool validatedExtension = false;
for (auto Member : extension->getMembers()) {
if (auto VD = dyn_cast<ValueDecl>(Member))
if (isDeclVisibleInLookupMode(VD, LS, CurrDC, TypeResolver)) {
// Resolve the extension, if we haven't done so already.
if (!validatedExtension && TypeResolver) {
TypeResolver->resolveExtension(extension);
validatedExtension = true;
}
FoundDecls.push_back(VD);
}
}
}
// Handle shadowing.
removeShadowedDecls(FoundDecls, CurrDC->getParentModule(), TypeResolver);
}
/// \brief Enumerate immediate members of the type \c BaseType and its
/// extensions, as seen from the context \c CurrDC.
///
/// Don't do lookup into superclasses or implemented protocols.
static void lookupTypeMembers(Type BaseType, VisibleDeclConsumer &Consumer,
const DeclContext *CurrDC,
LookupState LS, DeclVisibilityKind Reason,
LazyResolver *TypeResolver) {
NominalTypeDecl *D = BaseType->getAnyNominal();
assert(D && "should have a nominal type");
bool LookupFromChildDeclContext = false;
const DeclContext *TempDC = CurrDC;
while (!TempDC->isModuleContext()) {
if (TempDC == D) {
LookupFromChildDeclContext = true;
break;
}
TempDC = TempDC->getParent();
}
SmallVector<ValueDecl*, 2> FoundDecls;
if (LookupFromChildDeclContext) {
// Current decl context is contained inside 'D', so generic parameters
// are visible.
if (D->getGenericParams())
for (auto Param : *D->getGenericParams())
if (isDeclVisibleInLookupMode(Param, LS, CurrDC, TypeResolver))
FoundDecls.push_back(Param);
}
for (Decl *Member : D->getMembers()) {
if (auto *VD = dyn_cast<ValueDecl>(Member))
if (isDeclVisibleInLookupMode(VD, LS, CurrDC, TypeResolver))
FoundDecls.push_back(VD);
}
doGlobalExtensionLookup(BaseType, FoundDecls, CurrDC, LS, Reason,
TypeResolver);
// Report the declarations we found to the consumer.
for (auto *VD : FoundDecls)
Consumer.foundDecl(VD, Reason);
}
/// Enumerate AnyObject declarations as seen from context \c CurrDC.
static void doDynamicLookup(VisibleDeclConsumer &Consumer,
const DeclContext *CurrDC,
LookupState LS,
LazyResolver *TypeResolver) {
class DynamicLookupConsumer : public VisibleDeclConsumer {
VisibleDeclConsumer &ChainedConsumer;
LookupState LS;
const DeclContext *CurrDC;
LazyResolver *TypeResolver;
llvm::DenseSet<std::pair<Identifier, CanType>> FunctionsReported;
llvm::DenseSet<CanType> SubscriptsReported;
llvm::DenseSet<std::pair<Identifier, CanType>> PropertiesReported;
public:
explicit DynamicLookupConsumer(VisibleDeclConsumer &ChainedConsumer,
LookupState LS, const DeclContext *CurrDC,
LazyResolver *TypeResolver)
: ChainedConsumer(ChainedConsumer), LS(LS), CurrDC(CurrDC),
TypeResolver(TypeResolver) {}
void foundDecl(ValueDecl *D, DeclVisibilityKind Reason) override {
// If the declaration has an override, name lookup will also have found
// the overridden method. Skip this declaration, because we prefer the
// overridden method.
if (D->getOverriddenDecl())
return;
// Initializers can not be found by dynamic lookup.
if (isa<ConstructorDecl>(D))
return;
// Check if we already reported a decl with the same signature.
if (auto *FD = dyn_cast<FuncDecl>(D)) {
assert(FD->getImplicitSelfDecl() && "should not find free functions");
(void)FD;
// Get the type without the first uncurry level with 'self'.
CanType T = D->getType()
->castTo<AnyFunctionType>()
->getResult()
->getCanonicalType();
auto Signature = std::make_pair(D->getName(), T);
if (!FunctionsReported.insert(Signature).second)
return;
} else if (isa<SubscriptDecl>(D)) {
auto Signature = D->getType()->getCanonicalType();
if (!SubscriptsReported.insert(Signature).second)
return;
} else if (isa<VarDecl>(D)) {
auto Signature =
std::make_pair(D->getName(), D->getType()->getCanonicalType());
if (!PropertiesReported.insert(Signature).second)
return;
} else {
llvm_unreachable("unhandled decl kind");
}
if (isDeclVisibleInLookupMode(D, LS, CurrDC, TypeResolver))
ChainedConsumer.foundDecl(D, DeclVisibilityKind::DynamicLookup);
}
};
DynamicLookupConsumer ConsumerWrapper(Consumer, LS, CurrDC, TypeResolver);
CurrDC->getParentSourceFile()->forAllVisibleModules(
[&](Module::ImportedModule Import) {
Import.second->lookupClassMembers(Import.first, ConsumerWrapper);
});
}
namespace {
typedef llvm::SmallPtrSet<TypeDecl *, 8> VisitedSet;
}
static DeclVisibilityKind getReasonForSuper(DeclVisibilityKind Reason) {
switch (Reason) {
case DeclVisibilityKind::MemberOfCurrentNominal:
case DeclVisibilityKind::MemberOfProtocolImplementedByCurrentNominal:
case DeclVisibilityKind::MemberOfSuper:
return DeclVisibilityKind::MemberOfSuper;
case DeclVisibilityKind::MemberOfOutsideNominal:
return DeclVisibilityKind::MemberOfOutsideNominal;
default:
llvm_unreachable("should not see this kind");
}
}
static void lookupDeclsFromProtocolsBeingConformedTo(
Type BaseTy, VisibleDeclConsumer &Consumer, LookupState LS,
const DeclContext *FromContext, DeclVisibilityKind Reason,
LazyResolver *TypeResolver, VisitedSet &Visited) {
NominalTypeDecl *CurrNominal = BaseTy->getAnyNominal();
if (!CurrNominal)
return;
for (auto Conformance : CurrNominal->getAllConformances(TypeResolver)) {
auto Proto = Conformance->getProtocol();
if (!Proto->isAccessibleFrom(FromContext))
continue;
DeclVisibilityKind ReasonForThisProtocol;
if (Reason == DeclVisibilityKind::MemberOfCurrentNominal)
ReasonForThisProtocol =
DeclVisibilityKind::MemberOfProtocolImplementedByCurrentNominal;
else
ReasonForThisProtocol = getReasonForSuper(Reason);
auto NormalConformance = Conformance->getRootNormalConformance();
for (auto Member : Proto->getMembers()) {
if (auto *ATD = dyn_cast<AssociatedTypeDecl>(Member)) {
// Skip type decls if they aren't visible, or any type that has a
// witness. This cuts down on duplicates.
if (areTypeDeclsVisibleInLookupMode(LS) &&
(!NormalConformance->hasTypeWitness(ATD) ||
NormalConformance->usesDefaultDefinition(ATD))) {
Consumer.foundDecl(ATD, ReasonForThisProtocol);
}
continue;
}
if (auto *VD = dyn_cast<ValueDecl>(Member)) {
if (TypeResolver)
TypeResolver->resolveDeclSignature(VD);
// Skip value requirements that have corresponding witnesses. This cuts
// down on duplicates.
if (!NormalConformance->hasWitness(VD) ||
NormalConformance->usesDefaultDefinition(VD) ||
NormalConformance->getWitness(VD, nullptr) == nullptr) {
Consumer.foundDecl(VD, ReasonForThisProtocol);
}
}
}
}
}
static void lookupVisibleMemberDeclsImpl(
Type BaseTy, VisibleDeclConsumer &Consumer, const DeclContext *CurrDC,
LookupState LS, DeclVisibilityKind Reason, LazyResolver *TypeResolver,
VisitedSet &Visited) {
// Just look through l-valueness. It doesn't affect name lookup.
BaseTy = BaseTy->getRValueType();
// Handle metatype references, as in "some_type.some_member". These are
// special and can't have extensions.
if (auto MTT = BaseTy->getAs<AnyMetatypeType>()) {
// The metatype represents an arbitrary named type: dig through to the
// declared type to see what we're dealing with.
Type Ty = MTT->getInstanceType();
// Just perform normal dot lookup on the type see if we find extensions or
// anything else. For example, type SomeTy.SomeMember can look up static
// functions, and can even look up non-static functions as well (thus
// getting the address of the member).
lookupVisibleMemberDeclsImpl(Ty, Consumer, CurrDC,
LookupState::makeQualified().withOnMetatype(),
Reason, TypeResolver, Visited);
return;
}
// Lookup module references, as on some_module.some_member. These are
// special and can't have extensions.
if (ModuleType *MT = BaseTy->getAs<ModuleType>()) {
AccessFilteringDeclConsumer FilteringConsumer(CurrDC, Consumer,
TypeResolver);
MT->getModule()->lookupVisibleDecls(Module::AccessPathTy(),
FilteringConsumer,
NLKind::QualifiedLookup);
return;
}
// If the base is a protocol, enumerate its members.
if (ProtocolType *PT = BaseTy->getAs<ProtocolType>()) {
if (PT->getDecl()->isSpecificProtocol(KnownProtocolKind::AnyObject)) {
// Handle AnyObject in a special way.
doDynamicLookup(Consumer, CurrDC, LS, TypeResolver);
return;
}
if (!Visited.insert(PT->getDecl()).second)
return;
for (auto Proto : PT->getDecl()->getProtocols())
lookupVisibleMemberDeclsImpl(Proto->getDeclaredType(), Consumer, CurrDC,
LS, getReasonForSuper(Reason), TypeResolver,
Visited);
lookupTypeMembers(PT, Consumer, CurrDC, LS, Reason, TypeResolver);
return;
}
// If the base is a protocol composition, enumerate members of the protocols.
if (auto PC = BaseTy->getAs<ProtocolCompositionType>()) {
for (auto Proto : PC->getProtocols())
lookupVisibleMemberDeclsImpl(Proto, Consumer, CurrDC, LS, Reason,
TypeResolver, Visited);
return;
}
// Enumerate members of archetype's requirements.
if (ArchetypeType *Archetype = BaseTy->getAs<ArchetypeType>()) {
for (auto Proto : Archetype->getConformsTo())
lookupVisibleMemberDeclsImpl(Proto->getDeclaredType(), Consumer, CurrDC,
LS, getReasonForSuper(Reason),
TypeResolver, Visited);
if (auto superclass = Archetype->getSuperclass())
lookupVisibleMemberDeclsImpl(superclass, Consumer, CurrDC, LS,
getReasonForSuper(Reason), TypeResolver,
Visited);
return;
}
do {
NominalTypeDecl *CurNominal = BaseTy->getAnyNominal();
if (!CurNominal)
break;
// Look in for members of a nominal type.
lookupTypeMembers(BaseTy, Consumer, CurrDC, LS, Reason, TypeResolver);
lookupDeclsFromProtocolsBeingConformedTo(BaseTy, Consumer, LS, CurrDC,
Reason, TypeResolver, Visited);
// If we have a class type, look into its superclass.
ClassDecl *CurClass = dyn_cast<ClassDecl>(CurNominal);
if (CurClass && CurClass->hasSuperclass()) {
BaseTy = CurClass->getSuperclass();
Reason = getReasonForSuper(Reason);
bool InheritsSuperclassInitializers =
CurClass->inheritsSuperclassInitializers(TypeResolver);
if (LS.isOnSuperclass() && !InheritsSuperclassInitializers)
LS = LS.withoutInheritsSuperclassInitializers();
else if (!LS.isOnSuperclass()) {
LS = LS.withOnSuperclass();
if (InheritsSuperclassInitializers)
LS = LS.withInheritsSuperclassInitializers();
}
} else {
break;
}
} while (1);
}
namespace {
struct FoundDeclTy {
ValueDecl *D;
DeclVisibilityKind Reason;
FoundDeclTy(ValueDecl *D, DeclVisibilityKind Reason)
: D(D), Reason(Reason) {}
friend bool operator==(const FoundDeclTy &LHS, const FoundDeclTy &RHS) {
return LHS.D == RHS.D;
}
friend bool operator<(const FoundDeclTy &LHS, const FoundDeclTy &RHS) {
return LHS.D < RHS.D;
}
};
class OverrideFilteringConsumer : public VisibleDeclConsumer {
public:
std::set<ValueDecl *> AllFoundDecls;
std::map<Identifier, std::set<ValueDecl *>> FoundDecls;
llvm::SetVector<FoundDeclTy> DeclsToReport;
void foundDecl(ValueDecl *VD, DeclVisibilityKind Reason) override {
if (!AllFoundDecls.insert(VD).second)
return;
if (VD->isInvalid()) {
FoundDecls[VD->getName()].insert(VD);
DeclsToReport.insert(FoundDeclTy(VD, Reason));
return;
}
auto &PossiblyConflicting = FoundDecls[VD->getName()];
// Check all overriden decls.
{
auto *CurrentVD = VD->getOverriddenDecl();
while (CurrentVD) {
if (!AllFoundDecls.insert(CurrentVD).second)
break;
if (PossiblyConflicting.count(CurrentVD)) {
PossiblyConflicting.erase(CurrentVD);
PossiblyConflicting.insert(VD);
bool Erased = DeclsToReport.remove(
FoundDeclTy(CurrentVD, DeclVisibilityKind::LocalVariable));
assert(Erased);
(void)Erased;
DeclsToReport.insert(FoundDeclTy(VD, Reason));
return;
}
CurrentVD = CurrentVD->getOverriddenDecl();
}
}
auto FoundSignature = VD->getOverloadSignature();
for (auto I = PossiblyConflicting.begin(), E = PossiblyConflicting.end();
I != E; ++I) {
auto *OtherVD = *I;
if (OtherVD->isInvalid()) {
// For some invalid decls it might be impossible to compute the
// signature, for example, if the types could not be resolved.
continue;
}
if (conflicting(FoundSignature, OtherVD->getOverloadSignature())) {
if (VD->getFormalAccess() > OtherVD->getFormalAccess()) {
PossiblyConflicting.erase(I);
PossiblyConflicting.insert(VD);
bool Erased = DeclsToReport.remove(
FoundDeclTy(OtherVD, DeclVisibilityKind::LocalVariable));
assert(Erased);
(void)Erased;
DeclsToReport.insert(FoundDeclTy(VD, Reason));
}
return;
}
}
PossiblyConflicting.insert(VD);
DeclsToReport.insert(FoundDeclTy(VD, Reason));
}
};
} // unnamed namespace
/// \brief Enumerate all members in \c BaseTy (including members of extensions,
/// superclasses and implemented protocols), as seen from the context \c CurrDC.
///
/// This operation corresponds to a standard "dot" lookup operation like "a.b"
/// where 'self' is the type of 'a'. This operation is only valid after name
/// binding.
static void lookupVisibleMemberDecls(
Type BaseTy, VisibleDeclConsumer &Consumer, const DeclContext *CurrDC,
LookupState LS, DeclVisibilityKind Reason, LazyResolver *TypeResolver) {
OverrideFilteringConsumer ConsumerWrapper;
VisitedSet Visited;
lookupVisibleMemberDeclsImpl(BaseTy, ConsumerWrapper, CurrDC, LS, Reason,
TypeResolver, Visited);
// Report the declarations we found to the real consumer.
for (const auto &DeclAndReason : ConsumerWrapper.DeclsToReport)
Consumer.foundDecl(DeclAndReason.D, DeclAndReason.Reason);
}
namespace {
struct FindLocalVal : public StmtVisitor<FindLocalVal> {
const SourceManager &SM;
SourceLoc Loc;
VisibleDeclConsumer &Consumer;
FindLocalVal(const SourceManager &SM, SourceLoc Loc,
VisibleDeclConsumer &Consumer)
: SM(SM), Loc(Loc), Consumer(Consumer) {}
bool isReferencePointInRange(SourceRange R) {
return SM.rangeContainsTokenLoc(R, Loc);
}
void checkValueDecl(ValueDecl *D, DeclVisibilityKind Reason) {
Consumer.foundDecl(D, Reason);
}
void checkPattern(const Pattern *Pat, DeclVisibilityKind Reason) {
switch (Pat->getKind()) {
case PatternKind::Tuple:
for (auto &field : cast<TuplePattern>(Pat)->getFields())
checkPattern(field.getPattern(), Reason);
return;
case PatternKind::Paren:
case PatternKind::Typed:
case PatternKind::Var:
return checkPattern(Pat->getSemanticsProvidingPattern(), Reason);
case PatternKind::Named:
return checkValueDecl(cast<NamedPattern>(Pat)->getDecl(), Reason);
case PatternKind::NominalType: {
for (auto &elt : cast<NominalTypePattern>(Pat)->getElements())
checkPattern(elt.getSubPattern(), Reason);
return;
}
case PatternKind::EnumElement: {
auto *OP = cast<EnumElementPattern>(Pat);
if (OP->hasSubPattern())
checkPattern(OP->getSubPattern(), Reason);
return;
}
case PatternKind::OptionalSome:
checkPattern(cast<OptionalSomePattern>(Pat)->getSubPattern(), Reason);
return;
case PatternKind::Bool: {
auto *BP = cast<BoolPattern>(Pat);
if (BP->hasSubPattern())
checkPattern(BP->getSubPattern(), Reason);
return;
}
// Handle non-vars.
case PatternKind::Is:
case PatternKind::Expr:
case PatternKind::Any:
return;
}
}
void checkGenericParams(GenericParamList *Params,
DeclVisibilityKind Reason) {
if (!Params)
return;
for (auto P : *Params)
checkValueDecl(P, Reason);
}
void checkSourceFile(const SourceFile &SF) {
for (Decl *D : SF.Decls)
if (TopLevelCodeDecl *TLCD = dyn_cast<TopLevelCodeDecl>(D))
visit(TLCD->getBody());
}
void visitBreakStmt(BreakStmt *) {}
void visitContinueStmt(ContinueStmt *) {}
void visitFallthroughStmt(FallthroughStmt *) {}
void visitFailStmt(FailStmt *) {}
void visitReturnStmt(ReturnStmt *) {}
void visitIfStmt(IfStmt *S) {
for (auto entry : S->getCond())
if (auto *PBD = entry.getBinding())
for (auto entry : PBD->getPatternList())
checkPattern(entry.ThePattern, DeclVisibilityKind::LocalVariable);
visit(S->getThenStmt());
if (S->getElseStmt())
visit(S->getElseStmt());
}
void visitIfConfigStmt(IfConfigStmt * S) {
// Active members are attached to the enclosing declaration, so there's no
// need to walk anything within.
}
void visitWhileStmt(WhileStmt *S) {
for (auto entry : S->getCond())
if (auto *PBD = entry.getBinding())
for (auto entry : PBD->getPatternList())
checkPattern(entry.ThePattern, DeclVisibilityKind::LocalVariable);
visit(S->getBody());
}
void visitDoWhileStmt(DoWhileStmt *S) {
visit(S->getBody());
}
void visitDoStmt(DoStmt *S) {
visit(S->getBody());
}
void visitForStmt(ForStmt *S) {
if (!isReferencePointInRange(S->getSourceRange()))
return;
visit(S->getBody());
for (Decl *D : S->getInitializerVarDecls()) {
if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
checkValueDecl(VD, DeclVisibilityKind::LocalVariable);
}
}
void visitForEachStmt(ForEachStmt *S) {
if (!isReferencePointInRange(S->getSourceRange()))
return;
visit(S->getBody());
checkPattern(S->getPattern(), DeclVisibilityKind::LocalVariable);
}
void visitBraceStmt(BraceStmt *S) {
if (!isReferencePointInRange(S->getSourceRange()))
return;
for (auto elem : S->getElements()) {
if (Stmt *S = elem.dyn_cast<Stmt*>())
visit(S);
}
for (auto elem : S->getElements()) {
if (Decl *D = elem.dyn_cast<Decl*>()) {
if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
checkValueDecl(VD, DeclVisibilityKind::LocalVariable);
}
}
}
void visitSwitchStmt(SwitchStmt *S) {
if (!isReferencePointInRange(S->getSourceRange()))
return;
for (CaseStmt *C : S->getCases()) {
visit(C);
}
}
void visitCaseStmt(CaseStmt *S) {
if (!isReferencePointInRange(S->getSourceRange()))
return;
for (const auto &CLI : S->getCaseLabelItems()) {
checkPattern(CLI.getPattern(), DeclVisibilityKind::LocalVariable);
}
visit(S->getBody());
}
void visitDoCatchStmt(DoCatchStmt *S) {
if (!isReferencePointInRange(S->getSourceRange()))
return;
visit(S->getBody());
visitCatchClauses(S->getCatches());
}
void visitCatchClauses(ArrayRef<CatchStmt*> clauses) {
// TODO: some sort of binary search?
for (auto clause : clauses) {
visitCatchStmt(clause);
}
}
void visitCatchStmt(CatchStmt *S) {
if (!isReferencePointInRange(S->getSourceRange()))
return;
checkPattern(S->getErrorPattern(), DeclVisibilityKind::LocalVariable);
visit(S->getBody());
}
};
} // end anonymous namespace
void swift::lookupVisibleDecls(VisibleDeclConsumer &Consumer,
const DeclContext *DC,
LazyResolver *TypeResolver,
bool IncludeTopLevel,
SourceLoc Loc) {
const Module &M = *DC->getParentModule();
const SourceManager &SM = DC->getASTContext().SourceMgr;
auto Reason = DeclVisibilityKind::MemberOfCurrentNominal;
// If we are inside of a method, check to see if there are any ivars in scope,
// and if so, whether this is a reference to one of them.
while (!DC->isModuleScopeContext()) {
const ValueDecl *BaseDecl = nullptr;
GenericParamList *GenericParams = nullptr;
Type ExtendedType;
auto LS = LookupState::makeUnqalified();
// Skip initializer contexts, we will not find any declarations there.
if (isa<Initializer>(DC)) {
DC = DC->getParent();
LS = LS.withOnMetatype();
}
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(DC)) {
// Look for local variables; normally, the parser resolves these
// for us, but it can't do the right thing inside local types.
// FIXME: when we can parse and typecheck the function body partially for
// code completion, AFD->getBody() check can be removed.
if (Loc.isValid() && AFD->getBody()) {
FindLocalVal(SM, Loc, Consumer).visit(AFD->getBody());
}
for (auto *P : AFD->getBodyParamPatterns())
FindLocalVal(SM, Loc, Consumer)
.checkPattern(P, DeclVisibilityKind::FunctionParameter);
// Constructors and destructors don't have 'self' in parameter patterns.
if (isa<ConstructorDecl>(AFD) || isa<DestructorDecl>(AFD))
Consumer.foundDecl(AFD->getImplicitSelfDecl(),
DeclVisibilityKind::FunctionParameter);
if (AFD->getExtensionType()) {
ExtendedType = AFD->getExtensionType();
BaseDecl = AFD->getImplicitSelfDecl();
DC = DC->getParent();
if (auto *FD = dyn_cast<FuncDecl>(AFD))
if (FD->isStatic())
ExtendedType = MetatypeType::get(ExtendedType);
}
// Look in the generic parameters after checking our local declaration.
GenericParams = AFD->getGenericParams();
} else if (auto ACE = dyn_cast<AbstractClosureExpr>(DC)) {
if (Loc.isValid()) {
auto CE = cast<ClosureExpr>(ACE);
FindLocalVal(SM, Loc, Consumer).visit(CE->getBody());
}
} else if (auto ED = dyn_cast<ExtensionDecl>(DC)) {
ExtendedType = ED->getExtendedType();
BaseDecl = ExtendedType->getNominalOrBoundGenericNominal();
} else if (auto ND = dyn_cast<NominalTypeDecl>(DC)) {
ExtendedType = ND->getDeclaredType();
BaseDecl = ND;
}
if (BaseDecl) {
::lookupVisibleMemberDecls(ExtendedType, Consumer, DC, LS, Reason,
TypeResolver);
}
// Check the generic parameters for something with the given name.
if (GenericParams) {
FindLocalVal(SM, Loc, Consumer)
.checkGenericParams(GenericParams,
DeclVisibilityKind::GenericParameter);
}
DC = DC->getParent();
Reason = DeclVisibilityKind::MemberOfOutsideNominal;
}
SmallVector<Module::ImportedModule, 8> extraImports;
if (auto SF = dyn_cast<SourceFile>(DC)) {
if (Loc.isValid()) {
// Look for local variables in top-level code; normally, the parser
// resolves these for us, but it can't do the right thing for
// local types.
FindLocalVal(SM, Loc, Consumer).checkSourceFile(*SF);
}
if (IncludeTopLevel) {
auto &cached = SF->getCachedVisibleDecls();
if (!cached.empty()) {
for (auto result : cached)
Consumer.foundDecl(result, DeclVisibilityKind::VisibleAtTopLevel);
return;
}
SF->getImportedModules(extraImports, Module::ImportFilter::Private);
}
}
if (IncludeTopLevel) {
using namespace namelookup;
SmallVector<ValueDecl *, 0> moduleResults;
auto &mutableM = const_cast<Module&>(M);
lookupVisibleDeclsInModule(&mutableM, {}, moduleResults,
NLKind::UnqualifiedLookup,
ResolutionKind::Overloadable,
TypeResolver, DC, extraImports);
for (auto result : moduleResults)
Consumer.foundDecl(result, DeclVisibilityKind::VisibleAtTopLevel);
if (auto SF = dyn_cast<SourceFile>(DC))
SF->cacheVisibleDecls(std::move(moduleResults));
}
}
void swift::lookupVisibleMemberDecls(VisibleDeclConsumer &Consumer, Type BaseTy,
const DeclContext *CurrDC,
LazyResolver *TypeResolver) {
::lookupVisibleMemberDecls(BaseTy, Consumer, CurrDC,
LookupState::makeQualified(),
DeclVisibilityKind::MemberOfCurrentNominal,
TypeResolver);
}