Files
swift-mirror/lib/SILGen/SILGenDecl.cpp
2015-03-26 00:01:32 +00:00

2619 lines
96 KiB
C++

//===--- SILGenDecl.cpp - Implements Lowering of ASTs -> SIL for Decls ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "SILGen.h"
#include "Initialization.h"
#include "RValue.h"
#include "Scope.h"
#include "swift/SIL/FormalLinkage.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILDebuggerClient.h"
#include "swift/SIL/SILType.h"
#include "swift/SIL/TypeLowering.h"
#include "swift/AST/AST.h"
#include "swift/AST/Mangle.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/TypeMemberVisitor.h"
#include "swift/Basic/Fallthrough.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "llvm/ADT/SmallString.h"
#include <iterator>
using namespace swift;
using namespace Mangle;
using namespace Lowering;
void Initialization::_anchor() {}
void SILDebuggerClient::anchor() {}
namespace {
/// A "null" initialization that indicates that any value being initialized
/// into this initialization should be discarded. This represents AnyPatterns
/// (that is, 'var (_)') that bind to values without storing them.
class BlackHoleInitialization : public Initialization {
public:
BlackHoleInitialization()
: Initialization(Initialization::Kind::Ignored)
{}
SILValue getAddressOrNull() const override { return SILValue(); }
ArrayRef<InitializationPtr> getSubInitializations() const override {
return {};
}
};
/// An Initialization subclass used to destructure tuple initializations.
class TupleElementInitialization : public SingleBufferInitialization {
public:
SILValue ElementAddr;
TupleElementInitialization(SILValue addr)
: ElementAddr(addr)
{}
SILValue getAddressOrNull() const override { return ElementAddr; }
void finishInitialization(SILGenFunction &gen) override {}
};
}
bool Initialization::canForwardInBranch() const {
switch (kind) {
case Kind::Ignored:
case Kind::SingleBuffer:
return true;
// These initializations expect to be activated exactly once.
case Kind::LetValue:
case Kind::Translating:
return false;
case Kind::Tuple:
for (auto &subinit : getSubInitializations()) {
if (!subinit->canForwardInBranch())
return false;
}
return true;
}
llvm_unreachable("bad initialization kind!");
}
ArrayRef<InitializationPtr>
Initialization::getSubInitializationsForTuple(SILGenFunction &gen, CanType type,
SmallVectorImpl<InitializationPtr> &buf,
SILLocation Loc) {
assert(canSplitIntoSubelementAddresses() && "Client shouldn't call this");
switch (kind) {
case Kind::Tuple:
return getSubInitializations();
case Kind::Ignored:
// "Destructure" an ignored binding into multiple ignored bindings.
for (auto fieldType : cast<TupleType>(type)->getElementTypes()) {
(void) fieldType;
buf.push_back(InitializationPtr(new BlackHoleInitialization()));
}
return buf;
case Kind::LetValue:
case Kind::SingleBuffer: {
// Destructure the buffer into per-element buffers.
auto tupleTy = cast<TupleType>(type);
SILValue baseAddr = getAddress();
for (unsigned i = 0, size = tupleTy->getNumElements(); i < size; ++i) {
auto fieldType = tupleTy.getElementType(i);
SILType fieldTy = gen.getLoweredType(fieldType).getAddressType();
SILValue fieldAddr = gen.B.createTupleElementAddr(Loc,
baseAddr, i,
fieldTy);
buf.push_back(InitializationPtr(new
TupleElementInitialization(fieldAddr)));
}
finishInitialization(gen);
return buf;
}
case Kind::Translating:
// This could actually be done by collecting translated values, if
// we introduce new needs for translating initializations.
llvm_unreachable("cannot destructure a translating initialization");
}
llvm_unreachable("bad initialization kind");
}
namespace {
class CleanupClosureConstant : public Cleanup {
SILValue closure;
public:
CleanupClosureConstant(SILValue closure) : closure(closure) {}
void emit(SILGenFunction &gen, CleanupLocation l) override {
gen.B.emitStrongRelease(l, closure);
}
};
}
ArrayRef<Substitution> SILGenFunction::getForwardingSubstitutions() {
return F.getForwardingSubstitutions();
}
void SILGenFunction::visitFuncDecl(FuncDecl *fd) {
// Generate the local function body.
SGM.emitFunction(fd);
// If there are captures or we are in a generic context, build the local
// closure value for the function and store it as a local constant.
if (fd->getCaptureInfo().hasLocalCaptures()
|| F.getContextGenericParams()) {
SILValue closure =
emitClosureValue(fd, SILDeclRef(fd), F.getForwardingSubstitutions(), fd)
.forward(*this);
Cleanups.pushCleanup<CleanupClosureConstant>(closure);
LocalFunctions[SILDeclRef(fd)] = closure;
}
}
ArrayRef<InitializationPtr>
SingleBufferInitialization::getSubInitializations() const {
return {};
}
void TemporaryInitialization::finishInitialization(SILGenFunction &gen) {
if (Cleanup.isValid())
gen.Cleanups.setCleanupState(Cleanup, CleanupState::Active);
};
namespace {
/// An Initialization of a tuple pattern, such as "var (a,b)".
class TupleInitialization : public Initialization {
public:
/// The sub-Initializations aggregated by this tuple initialization.
/// The TupleInitialization object takes ownership of Initializations pushed
/// here.
SmallVector<InitializationPtr, 4> subInitializations;
TupleInitialization() : Initialization(Initialization::Kind::Tuple) {}
SILValue getAddressOrNull() const override {
if (subInitializations.size() == 1)
return subInitializations[0]->getAddressOrNull();
else
return SILValue();
}
ArrayRef<InitializationPtr> getSubInitializations() const override {
return subInitializations;
}
void finishInitialization(SILGenFunction &gen) override {
for (auto &sub : subInitializations)
sub->finishInitialization(gen);
}
};
class StrongReleaseCleanup : public Cleanup {
SILValue box;
public:
StrongReleaseCleanup(SILValue box) : box(box) {}
void emit(SILGenFunction &gen, CleanupLocation l) override {
gen.B.emitStrongRelease(l, box);
}
};
class ReleaseValueCleanup : public Cleanup {
SILValue v;
public:
ReleaseValueCleanup(SILValue v) : v(v) {}
void emit(SILGenFunction &gen, CleanupLocation l) override {
if (v.getType().isAddress())
gen.B.emitDestroyAddr(l, v);
else
gen.B.emitReleaseValueOperation(l, v);
}
};
/// Cleanup to destroy an initialized variable.
class DeallocStackCleanup : public Cleanup {
SILValue Addr;
public:
DeallocStackCleanup(SILValue addr) : Addr(addr) {}
void emit(SILGenFunction &gen, CleanupLocation l) override {
gen.B.createDeallocStack(l, Addr);
}
};
/// Cleanup to destroy an initialized 'var' variable.
class DestroyLocalVariable : public Cleanup {
VarDecl *Var;
public:
DestroyLocalVariable(VarDecl *var) : Var(var) {}
void emit(SILGenFunction &gen, CleanupLocation l) override {
gen.destroyLocalVariable(l, Var);
}
};
/// Cleanup to destroy an uninitialized local variable.
class DeallocateUninitializedLocalVariable : public Cleanup {
VarDecl *Var;
public:
DeallocateUninitializedLocalVariable(VarDecl *var) : Var(var) {}
void emit(SILGenFunction &gen, CleanupLocation l) override {
gen.deallocateUninitializedLocalVariable(l, Var);
}
};
/// An initialization of a local 'var'.
class LocalVariableInitialization : public SingleBufferInitialization {
/// The local variable decl being initialized.
VarDecl *Var;
SILGenFunction &Gen;
/// The cleanup we pushed to deallocate the local variable before it
/// gets initialized.
CleanupHandle DeallocCleanup;
/// The cleanup we pushed to destroy and deallocate the local variable.
CleanupHandle ReleaseCleanup;
bool DidFinish = false;
public:
/// Sets up an initialization for the allocated box. This pushes a
/// CleanupUninitializedBox cleanup that will be replaced when
/// initialization is completed.
LocalVariableInitialization(VarDecl *var, SILGenFunction &gen)
: Var(var), Gen(gen) {
// Push a cleanup to destroy the local variable. This has to be
// inactive until the variable is initialized.
gen.Cleanups.pushCleanupInState<DestroyLocalVariable>(CleanupState::Dormant,
var);
ReleaseCleanup = gen.Cleanups.getTopCleanup();
// Push a cleanup to deallocate the local variable.
gen.Cleanups.pushCleanup<DeallocateUninitializedLocalVariable>(var);
DeallocCleanup = gen.Cleanups.getTopCleanup();
}
~LocalVariableInitialization() override {
assert(DidFinish && "did not call VarInit::finishInitialization!");
}
SILValue getAddressOrNull() const override {
assert(Gen.VarLocs.count(Var) && "did not emit var?!");
return Gen.VarLocs[Var].value;
}
void finishInitialization(SILGenFunction &gen) override {
assert(!DidFinish &&
"called LocalVariableInitialization::finishInitialization twice!");
Gen.Cleanups.setCleanupState(DeallocCleanup, CleanupState::Dead);
Gen.Cleanups.setCleanupState(ReleaseCleanup, CleanupState::Active);
DidFinish = true;
}
};
/// Initialize a writeback buffer that receives the value of a 'let'
/// declaration.
class LetValueInitialization : public Initialization {
/// The VarDecl for the let decl.
VarDecl *vd;
/// The address of the buffer used for the binding, if this is an address-only
/// let.
SILValue address;
/// The cleanup we pushed to destroy the local variable.
CleanupHandle DestroyCleanup;
bool DidFinish = false;
public:
LetValueInitialization(VarDecl *vd, SILGenFunction &gen)
: Initialization(Initialization::Kind::LetValue), vd(vd)
{
auto &lowering = gen.getTypeLowering(vd->getType());
// Decide whether we need a temporary stack buffer to evaluate this 'let'.
// There are three cases we need to handle here: parameters, initialized (or
// bound) decls, and uninitialized ones.
bool needsTemporaryBuffer;
bool isUninitialized = false;
assert(!isa<ParamDecl>(vd)
&& "should not bind function params on this path");
if (vd->getParentPatternBinding() && !vd->getParentInitializer()) {
// This value is uninitialized (and unbound) if it has a pattern binding
// decl, with no initializer value.
assert(!vd->hasNonPatternBindingInit() && "Bound values aren't uninit!");
// If this is a let-value without an initializer, then we need a temporary
// buffer. DI will make sure it is only assigned to once.
needsTemporaryBuffer = true;
isUninitialized = true;
} else {
// If this is a let with an initializer or bound value, we only need a
// buffer if the type is address only.
needsTemporaryBuffer = lowering.isAddressOnly();
}
if (needsTemporaryBuffer) {
address = gen.emitTemporaryAllocation(vd, lowering.getLoweredType());
if (isUninitialized)
address = gen.B.createMarkUninitializedVar(vd, address);
DestroyCleanup = gen.enterDormantTemporaryCleanup(address, lowering);
gen.VarLocs[vd] = SILGenFunction::VarLoc::get(address);
} else {
// Push a cleanup to destroy the let declaration. This has to be
// inactive until the variable is initialized: if control flow exits the
// before the value is bound, we don't want to destroy the value.
gen.Cleanups.pushCleanupInState<DestroyLocalVariable>(
CleanupState::Dormant, vd);
DestroyCleanup = gen.Cleanups.getTopCleanup();
}
}
~LetValueInitialization() override {
assert(DidFinish && "did not call LetValueInit::finishInitialization!");
}
void emitDebugValue(SILValue v, SILGenFunction &gen) {
// Emit a debug_value[_addr] instruction to record the start of this value's
// lifetime.
SILLocation PrologueLoc(vd);
PrologueLoc.markAsPrologue();
if (address.isValid())
gen.B.createDebugValueAddr(PrologueLoc, v);
else
gen.B.createDebugValue(PrologueLoc, v);
}
SILValue getAddressOrNull() const override {
return address;
}
ArrayRef<InitializationPtr> getSubInitializations() const override {
return {};
}
void bindValue(SILValue value, SILGenFunction &gen) override {
assert(!gen.VarLocs.count(vd) && "Already emitted this vardecl?");
// If we're binding an address to this let value, then we can use it as an
// address later. This happens when binding an address only parameter to
// an argument, for example.
if (value.getType().isAddress())
address = value;
gen.VarLocs[vd] = SILGenFunction::VarLoc::get(value);
emitDebugValue(value, gen);
}
void finishInitialization(SILGenFunction &gen) override {
assert(!DidFinish &&
"called LetValueInit::finishInitialization twice!");
assert(gen.VarLocs.count(vd) && "Didn't bind a value to this let!");
if (DestroyCleanup != CleanupHandle::invalid())
gen.Cleanups.setCleanupState(DestroyCleanup, CleanupState::Active);
DidFinish = true;
}
};
/// An initialization for a global variable.
class GlobalInitialization : public SingleBufferInitialization {
/// The physical address of the global.
SILValue address;
public:
GlobalInitialization(SILValue address) : address(address)
{}
SILValue getAddressOrNull() const override {
return address;
}
void finishInitialization(SILGenFunction &gen) override {
// Globals don't need to be cleaned up.
}
};
class DebuggerInitialization : public GlobalInitialization {
public:
DebuggerInitialization(SILValue address) : GlobalInitialization(address) {
}
};
/// Cleanup that writes back to a inout argument on function exit.
class CleanupWriteBackToInOut : public Cleanup {
VarDecl *var;
SILValue inoutAddr;
public:
CleanupWriteBackToInOut(VarDecl *var, SILValue inoutAddr)
: var(var), inoutAddr(inoutAddr) {}
void emit(SILGenFunction &gen, CleanupLocation l) override {
// Assign from the local variable to the inout address with an
// 'autogenerated' copyaddr.
l.markAutoGenerated();
gen.B.createCopyAddr(l, gen.VarLocs[var].value, inoutAddr,
IsNotTake, IsNotInitialization);
}
};
/// Initialize a variable of reference-storage type.
class ReferenceStorageInitialization : public Initialization {
InitializationPtr VarInit;
public:
ReferenceStorageInitialization(InitializationPtr &&subInit)
: Initialization(Initialization::Kind::Translating),
VarInit(std::move(subInit)) {}
ArrayRef<InitializationPtr> getSubInitializations() const override { return {}; }
SILValue getAddressOrNull() const override { return SILValue(); }
void translateValue(SILGenFunction &gen, SILLocation loc,
ManagedValue value) override {
value.forwardInto(gen, loc, VarInit->getAddress());
}
void finishInitialization(SILGenFunction &gen) override {
VarInit->finishInitialization(gen);
}
};
/// InitializationForPattern - A visitor for traversing a pattern, generating
/// SIL code to allocate the declared variables, and generating an
/// Initialization representing the needed initializations.
struct InitializationForPattern
: public PatternVisitor<InitializationForPattern, InitializationPtr>
{
SILGenFunction &Gen;
InitializationForPattern(SILGenFunction &Gen) : Gen(Gen) {}
// Paren, Typed, and Var patterns are noops, just look through them.
InitializationPtr visitParenPattern(ParenPattern *P) {
return visit(P->getSubPattern());
}
InitializationPtr visitTypedPattern(TypedPattern *P) {
return visit(P->getSubPattern());
}
InitializationPtr visitVarPattern(VarPattern *P) {
return visit(P->getSubPattern());
}
// AnyPatterns (i.e, _) don't require any storage. Any value bound here will
// just be dropped.
InitializationPtr visitAnyPattern(AnyPattern *P) {
return InitializationPtr(new BlackHoleInitialization());
}
// Bind to a named pattern by creating a memory location and initializing it
// with the initial value.
InitializationPtr visitNamedPattern(NamedPattern *P) {
if (!P->getDecl()->hasName()) {
// Unnamed parameters don't require any storage. Any value bound here will
// just be dropped.
return InitializationPtr(new BlackHoleInitialization());
}
auto Ty = P->hasType() ? P->getType() : Type();
return Gen.emitInitializationForVarDecl(P->getDecl(), Ty);
}
// Bind a tuple pattern by aggregating the component variables into a
// TupleInitialization.
InitializationPtr visitTuplePattern(TuplePattern *P) {
TupleInitialization *init = new TupleInitialization();
for (auto &elt : P->getFields())
init->subInitializations.push_back(visit(elt.getPattern()));
return InitializationPtr(init);
}
// TODO: Handle bindings from 'case' labels and match expressions.
#define INVALID_PATTERN(Id, Parent) \
InitializationPtr visit##Id##Pattern(Id##Pattern *) { \
llvm_unreachable("pattern not valid in argument or var binding"); \
}
#define PATTERN(Id, Parent)
#define REFUTABLE_PATTERN(Id, Parent) INVALID_PATTERN(Id, Parent)
#include "swift/AST/PatternNodes.def"
#undef INVALID_PATTERN
};
} // end anonymous namespace
/// Get or create SILGlobalVariable for a given global VarDecl.
SILGlobalVariable *SILGenModule::getSILGlobalVariable(VarDecl *gDecl,
ForDefinition_t forDef) {
// First mangle the global VarDecl.
llvm::SmallString<32> mangledName;
{
llvm::raw_svector_ostream buffer(mangledName);
// As a special case, Clang functions and globals don't get mangled at all.
// FIXME: When we can import C++, use Clang's mangler.
bool specialCase = false;
if (auto clangDecl = gDecl->getClangDecl()) {
if (auto namedClangDecl = dyn_cast<clang::DeclaratorDecl>(clangDecl)) {
if (auto asmLabel = namedClangDecl->getAttr<clang::AsmLabelAttr>()) {
buffer << '\01' << asmLabel->getLabel();
} else {
buffer << namedClangDecl->getName();
}
specialCase = true;
}
}
if (!specialCase) {
buffer << "_T";
Mangler mangler(buffer);
mangler.mangleEntity(gDecl, ResilienceExpansion(0), 0);
}
}
// Check if it is already created, and update linkage if necessary.
for (SILGlobalVariable &v : M.getSILGlobals()) {
if (v.getName() == mangledName) {
// Update the SILLinkage here if this is a definition.
if (forDef == ForDefinition) {
v.setLinkage(getSILLinkage(getDeclLinkage(gDecl), ForDefinition));
v.setDeclaration(false);
}
return &v;
}
}
// Get the linkage for SILGlobalVariable.
SILLinkage link = getSILLinkage(getDeclLinkage(gDecl), forDef);
Type ty = gDecl->getType();
// If a NSString * global was imported as a String, emit a SIL global of type
// NSString.
if (gDecl->getClangDecl() && ty->isEqual(M.Types.getStringType())) {
ty = M.Types.getNSStringType();
}
auto silTy = M.Types.getLoweredType(AbstractionPattern(ty),
ty->getCanonicalType()).getObjectType();
auto *silGlobal = SILGlobalVariable::create(M, link,
makeModuleFragile ? IsFragile : IsNotFragile,
mangledName, silTy,
None, gDecl);
silGlobal->setDeclaration(!forDef);
return silGlobal;
}
InitializationPtr
SILGenFunction::emitInitializationForVarDecl(VarDecl *vd, Type patternType) {
// If this is a computed variable, we don't need to do anything here.
// We'll generate the getter and setter when we see their FuncDecls.
if (!vd->hasStorage())
return InitializationPtr(new BlackHoleInitialization());
if (vd->isDebuggerVar()) {
DebuggerClient *DebugClient = SGM.SwiftModule->getDebugClient();
assert(DebugClient && "Debugger variables with no debugger client");
SILDebuggerClient *SILDebugClient = DebugClient->getAsSILDebuggerClient();
assert(SILDebugClient && "Debugger client doesn't support SIL");
SILValue SV = SILDebugClient->emitLValueForVariable(vd, B);
VarLocs[vd] = SILGenFunction::VarLoc::get(SV);
return InitializationPtr(new DebuggerInitialization(SV));
}
CanType varType = vd->getType()->getCanonicalType();
assert(!isa<InOutType>(varType) && "local variables should never be inout");
// If this is a 'let' initialization for a non-global, set up a
// let binding, which stores the initialization value into VarLocs directly.
if (vd->isLet() && vd->getDeclContext()->isLocalContext() &&
!isa<ReferenceStorageType>(varType))
return InitializationPtr(new LetValueInitialization(vd, *this));
// If the variable has no initial value, emit a mark_uninitialized instruction
// so that DI tracks and enforces validity of it.
bool isUninitialized =
vd->getParentPatternBinding() && !vd->getParentInitializer();
// If this is a global variable, initialize it without allocations or
// cleanups.
InitializationPtr Result;
if (!vd->getDeclContext()->isLocalContext()) {
auto *silG = SGM.getSILGlobalVariable(vd, NotForDefinition);
SILValue addr = B.createGlobalAddr(vd, silG);
if (isUninitialized)
addr = B.createMarkUninitializedVar(vd, addr);
VarLocs[vd] = SILGenFunction::VarLoc::get(addr);
Result = InitializationPtr(new GlobalInitialization(addr));
} else {
Result = emitLocalVariableWithCleanup(vd, isUninitialized);
}
// If we're initializing a weak or unowned variable, this requires a change in
// type.
if (isa<ReferenceStorageType>(varType))
Result = InitializationPtr(new
ReferenceStorageInitialization(std::move(Result)));
return Result;
}
void SILGenFunction::visitPatternBindingDecl(PatternBindingDecl *D) {
// Allocate the variables and build up an Initialization over their
// allocated storage.
for (auto entry : D->getPatternList()) {
InitializationPtr initialization =
InitializationForPattern(*this).visit(entry.ThePattern);
// If an initial value expression was specified by the decl, emit it into
// the initialization. Otherwise, mark it uninitialized for DI to resolve.
if (auto *Init = entry.Init) {
FullExpr Scope(Cleanups, CleanupLocation(Init));
emitExprInto(Init, initialization.get());
} else {
initialization->finishInitialization(*this);
}
}
}
InitializationPtr
SILGenFunction::emitPatternBindingInitialization(Pattern *P) {
return InitializationForPattern(*this).visit(P);
}
/// Enter a cleanup to deallocate the given location.
CleanupHandle SILGenFunction::enterDeallocStackCleanup(SILValue temp) {
assert(temp.getType().isLocalStorage() &&
"must deallocate container operand, not address operand!");
Cleanups.pushCleanup<DeallocStackCleanup>(temp);
return Cleanups.getTopCleanup();
}
CleanupHandle SILGenFunction::enterDestroyCleanup(SILValue valueOrAddr) {
Cleanups.pushCleanup<ReleaseValueCleanup>(valueOrAddr);
return Cleanups.getTopCleanup();
}
namespace {
class EmitBBArguments : public CanTypeVisitor<EmitBBArguments,
/*RetTy*/ ManagedValue>
{
public:
SILGenFunction &gen;
SILBasicBlock *parent;
SILLocation loc;
bool functionArgs;
ArrayRef<SILParameterInfo> &parameters;
EmitBBArguments(SILGenFunction &gen, SILBasicBlock *parent,
SILLocation l, bool functionArgs,
ArrayRef<SILParameterInfo> &parameters)
: gen(gen), parent(parent), loc(l), functionArgs(functionArgs),
parameters(parameters) {}
ManagedValue getManagedValue(SILValue arg, CanType t,
SILParameterInfo parameterInfo) const {
switch (parameterInfo.getConvention()) {
case ParameterConvention::Direct_Deallocating:
// If we have a deallocating parameter, it is passed in at +0 and will not
// be deallocated since we do not allow for resurrection.
return ManagedValue::forUnmanaged(arg);
case ParameterConvention::Direct_Guaranteed:
case ParameterConvention::Indirect_In_Guaranteed:
// If we have a guaranteed parameter, it is passed in at +0, and its
// lifetime is guaranteed. We can potentially use the argument as-is
// if the parameter is bound as a 'let' without cleaning up.
return ManagedValue::forUnmanaged(arg);
case ParameterConvention::Direct_Unowned:
// An unowned parameter is passed at +0, like guaranteed, but it isn't
// kept alive by the caller, so we need to retain and manage it
// regardless.
return std::move(gen.emitManagedRetain(loc, arg));
case ParameterConvention::Indirect_Inout:
// An inout parameter is +0 and guaranteed, but represents an lvalue.
return ManagedValue::forLValue(arg);
case ParameterConvention::Direct_Owned:
case ParameterConvention::Indirect_In:
// An owned or 'in' parameter is passed in at +1. We can claim ownership
// of the parameter and clean it up when it goes out of scope.
return gen.emitManagedRValueWithCleanup(arg);
case ParameterConvention::Indirect_Out:
llvm_unreachable("should not emit @out parameters here");
}
}
ManagedValue visitType(CanType t) {
auto argType = gen.getLoweredType(t);
// Pop the next parameter info.
auto parameterInfo = parameters.front();
parameters = parameters.slice(1);
assert(argType == parent->getParent()
->mapTypeIntoContext(parameterInfo.getSILType()) &&
"argument does not have same type as specified by parameter info");
SILValue arg = new (gen.SGM.M)
SILArgument(parent, argType, loc.getAsASTNode<ValueDecl>());
ManagedValue mv = getManagedValue(arg, t, parameterInfo);
// If the value is a (possibly optional) ObjC block passed into the entry
// point of the function, then copy it so we can treat the value reliably
// as a heap object. Escape analysis can eliminate this copy if it's
// unneeded during optimization.
CanType objectType = t;
if (auto theObjTy = t.getAnyOptionalObjectType())
objectType = theObjTy;
if (functionArgs
&& isa<FunctionType>(objectType)
&& cast<FunctionType>(objectType)->getRepresentation()
== FunctionType::Representation::Block) {
SILValue blockCopy = gen.B.createCopyBlock(loc, mv.getValue());
mv = gen.emitManagedRValueWithCleanup(blockCopy);
}
return mv;
}
ManagedValue visitTupleType(CanTupleType t) {
SmallVector<ManagedValue, 4> elements;
auto &tl = gen.getTypeLowering(t);
bool canBeGuaranteed = tl.isLoadable();
// Collect the exploded elements.
for (auto fieldType : t.getElementTypes()) {
auto elt = visit(fieldType);
// If we can't borrow one of the elements as a guaranteed parameter, then
// we have to +1 the tuple.
if (elt.hasCleanup())
canBeGuaranteed = false;
elements.push_back(elt);
}
if (tl.isLoadable()) {
SmallVector<SILValue, 4> elementValues;
if (canBeGuaranteed) {
// If all of the elements were guaranteed, we can form a guaranteed tuple.
for (auto element : elements)
elementValues.push_back(element.getUnmanagedValue());
} else {
// Otherwise, we need to move or copy values into a +1 tuple.
for (auto element : elements) {
SILValue value = element.hasCleanup()
? element.forward(gen)
: element.copyUnmanaged(gen, loc).forward(gen);
elementValues.push_back(value);
}
}
auto tupleValue = gen.B.createTuple(loc, tl.getLoweredType(),
elementValues);
return canBeGuaranteed
? ManagedValue::forUnmanaged(tupleValue)
: gen.emitManagedRValueWithCleanup(tupleValue);
} else {
// If the type is address-only, we need to move or copy the elements into
// a tuple in memory.
// TODO: It would be a bit more efficient to use a preallocated buffer
// in this case.
auto buffer = gen.emitTemporaryAllocation(loc, tl.getLoweredType());
for (auto i : indices(elements)) {
auto element = elements[i];
auto elementBuffer = gen.B.createTupleElementAddr(loc, buffer,
i, element.getType().getAddressType());
if (element.hasCleanup())
element.forwardInto(gen, loc, elementBuffer);
else
element.copyInto(gen, elementBuffer, loc);
}
return gen.emitManagedRValueWithCleanup(buffer);
}
}
};
/// A visitor for traversing a pattern, creating
/// SILArguments, and binding variables to the argument names.
struct ArgumentInitVisitor :
public PatternVisitor<ArgumentInitVisitor, /*RetTy=*/ void>
{
SILGenFunction &gen;
SILFunction &f;
SILBuilder &initB;
/// An ArrayRef that we use in our SILParameterList queue. Parameters are
/// sliced off of the front as they're emitted.
ArrayRef<SILParameterInfo> parameters;
ArgumentInitVisitor(SILGenFunction &gen, SILFunction &f)
: gen(gen), f(f), initB(gen.B),
parameters(f.getLoweredFunctionType()->getParameters()) {
// If we have an out parameter, skip it.
if (parameters.size() && parameters[0].isIndirectResult())
parameters = parameters.slice(1);
}
ManagedValue makeArgument(Type ty, SILBasicBlock *parent, SILLocation l) {
assert(ty && "no type?!");
// Create an RValue by emitting destructured arguments into a basic block.
CanType canTy = ty->getCanonicalType();
return EmitBBArguments(gen, parent, l, /*functionArgs*/ true,
parameters).visit(canTy);
}
/// Create a SILArgument and store its value into the given Initialization,
/// if not null.
void makeArgumentIntoBinding(Type ty, SILBasicBlock *parent, VarDecl *vd) {
SILLocation loc(vd);
loc.markAsPrologue();
ManagedValue argrv = makeArgument(ty, parent, loc);
// Create a shadow copy of inout parameters so they can be captured
// by closures. The InOutDeshadowing guaranteed optimization will
// eliminate the variable if it is not needed.
if (auto inOutTy = vd->getType()->getAs<InOutType>()) {
SILValue address = argrv.getUnmanagedValue();
CanType objectType = inOutTy->getObjectType()->getCanonicalType();
// As a special case, don't introduce a local variable for
// Builtin.UnsafeValueBuffer, which is not copyable.
if (isa<BuiltinUnsafeValueBufferType>(objectType)) {
// FIXME: mark a debug location?
gen.VarLocs[vd] = SILGenFunction::VarLoc::get(address);
return;
}
// Allocate the local variable for the inout.
auto initVar = gen.emitLocalVariableWithCleanup(vd, false);
// Initialize with the value from the inout with an "autogenerated"
// copyaddr.
loc.markAutoGenerated();
gen.B.createCopyAddr(loc, address, initVar->getAddress(),
IsNotTake, IsInitialization);
initVar->finishInitialization(gen);
// Set up a cleanup to write back to the inout.
gen.Cleanups.pushCleanup<CleanupWriteBackToInOut>(vd, address);
} else if (vd->isLet()) {
// If the variable is immutable, we can bind the value as is.
// Leave the cleanup on the argument, if any, in place to consume the
// argument if we're responsible for it.
gen.VarLocs[vd] = SILGenFunction::VarLoc::get(argrv.getValue());
if (argrv.getType().isAddress())
gen.B.createDebugValueAddr(loc, argrv.getValue());
else
gen.B.createDebugValue(loc, argrv.getValue());
} else {
// If the variable is mutable, we need to copy or move the argument
// value to local mutable memory.
auto initVar = gen.emitLocalVariableWithCleanup(vd, false);
// If we have a cleanup on the value, we can move it into the variable.
if (argrv.hasCleanup())
argrv.forwardInto(gen, loc, initVar->getAddress());
// Otherwise, we need an independently-owned copy.
else
argrv.copyInto(gen, initVar->getAddress(), loc);
initVar->finishInitialization(gen);
}
}
// Paren, Typed, and Var patterns are no-ops. Just look through them.
void visitParenPattern(ParenPattern *P) {
visit(P->getSubPattern());
}
void visitTypedPattern(TypedPattern *P) {
visit(P->getSubPattern());
}
void visitVarPattern(VarPattern *P) {
visit(P->getSubPattern());
}
void visitTuplePattern(TuplePattern *P) {
// Destructure tuples into their elements.
for (size_t i = 0, size = P->getFields().size(); i < size; ++i)
visit(P->getFields()[i].getPattern());
}
void visitAnyPattern(AnyPattern *P) {
llvm_unreachable("unnamed parameters should have a ParamDecl");
}
void visitNamedPattern(NamedPattern *P) {
auto PD = P->getDecl();
if (!PD->hasName()) {
// A value bound to _ is unused and can be immediately released.
Scope discardScope(gen.Cleanups, CleanupLocation(P));
makeArgument(P->getType(), f.begin(), PD);
// Popping the scope destroys the value.
} else {
makeArgumentIntoBinding(P->getType(), f.begin(), PD);
}
}
#define PATTERN(Id, Parent)
#define REFUTABLE_PATTERN(Id, Parent) \
void visit##Id##Pattern(Id##Pattern *) { \
llvm_unreachable("pattern not valid in argument binding"); \
}
#include "swift/AST/PatternNodes.def"
};
/// Tuple values captured by a closure are passed as individual arguments to the
/// SILFunction since SILFunctionType canonicalizes away tuple types.
static SILValue
emitReconstitutedConstantCaptureArguments(SILType ty,
ValueDecl *capture,
SILGenFunction &gen) {
auto TT = ty.getAs<TupleType>();
if (!TT)
return new (gen.SGM.M) SILArgument(gen.F.begin(), ty, capture);
SmallVector<SILValue, 4> Elts;
for (unsigned i = 0, e = TT->getNumElements(); i != e; ++i) {
auto EltTy = ty.getTupleElementType(i);
auto EV =
emitReconstitutedConstantCaptureArguments(EltTy, capture, gen);
Elts.push_back(EV);
}
return gen.B.createTuple(capture, ty, Elts);
}
static void emitCaptureArguments(SILGenFunction &gen, CapturedValue capture) {
ASTContext &c = gen.getASTContext();
auto *VD = capture.getDecl();
auto type = VD->getType();
switch (gen.SGM.Types.getDeclCaptureKind(capture)) {
case CaptureKind::None:
break;
case CaptureKind::Constant: {
auto &lowering = gen.getTypeLowering(VD->getType());
// Constant decls are captured by value. If the captured value is a tuple
// value, we need to reconstitute it before sticking it in VarLocs.
SILType ty = lowering.getLoweredType();
SILValue val = emitReconstitutedConstantCaptureArguments(ty, VD, gen);
// If the original variable was settable, then Sema will have treated the
// VarDecl as an lvalue, even in the closure's use. As such, we need to
// allow formation of the address for this captured value. Create a
// temporary within the closure to provide this address.
if (VD->isSettable(VD->getDeclContext())) {
auto addr = gen.emitTemporaryAllocation(VD, ty);
gen.B.createStore(VD, val, addr);
val = addr;
}
gen.VarLocs[VD] = SILGenFunction::VarLoc::get(val);
if (!lowering.isTrivial())
gen.enterDestroyCleanup(val);
break;
}
case CaptureKind::Box: {
// LValues are captured as two arguments: a retained NativeObject that owns
// the captured value, and the address of the value itself.
SILType ty = gen.getLoweredType(type).getAddressType();
SILValue box = new (gen.SGM.M) SILArgument(gen.F.begin(),
SILType::getNativeObjectType(c),
VD);
SILValue addr = new (gen.SGM.M) SILArgument(gen.F.begin(), ty, VD);
gen.VarLocs[VD] = SILGenFunction::VarLoc::get(addr, box);
gen.Cleanups.pushCleanup<StrongReleaseCleanup>(box);
break;
}
case CaptureKind::StorageAddress: {
// Non-escaping stored decls are captured as the address of the value.
SILType ty = gen.getLoweredType(type).getAddressType();
SILValue addr = new (gen.SGM.M) SILArgument(gen.F.begin(), ty, VD);
gen.VarLocs[VD] = SILGenFunction::VarLoc::get(addr);
break;
}
case CaptureKind::LocalFunction: {
// Local functions are captured by value.
assert(!type->is<LValueType>() && !type->is<InOutType>() &&
"capturing inout by value?!");
const TypeLowering &ti = gen.getTypeLowering(type);
SILValue value = new (gen.SGM.M) SILArgument(gen.F.begin(),
ti.getLoweredType(),
VD);
gen.LocalFunctions[SILDeclRef(VD)] = value;
gen.enterDestroyCleanup(value);
break;
}
case CaptureKind::GetterSetter: {
// Capture the setter and getter closures by value.
Type setTy = cast<AbstractStorageDecl>(VD)->getSetter()->getType();
SILType lSetTy = gen.getLoweredType(setTy);
SILValue value = new (gen.SGM.M) SILArgument(gen.F.begin(), lSetTy, VD);
gen.LocalFunctions[SILDeclRef(cast<AbstractStorageDecl>(VD)->getSetter(),
SILDeclRef::Kind::Func)] = value;
gen.enterDestroyCleanup(value);
SWIFT_FALLTHROUGH;
}
case CaptureKind::Getter: {
// Capture the getter closure by value.
Type getTy = cast<AbstractStorageDecl>(VD)->getGetter()->getType();
SILType lGetTy = gen.getLoweredType(getTy);
SILValue value = new (gen.SGM.M) SILArgument(gen.F.begin(), lGetTy, VD);
gen.LocalFunctions[SILDeclRef(cast<AbstractStorageDecl>(VD)->getGetter(),
SILDeclRef::Kind::Func)] = value;
gen.enterDestroyCleanup(value);
break;
}
}
}
} // end anonymous namespace
void SILGenFunction::emitProlog(AnyFunctionRef TheClosure,
ArrayRef<Pattern *> paramPatterns,
Type resultType) {
emitProlog(paramPatterns, resultType, TheClosure.getAsDeclContext());
// Emit the capture argument variables. These are placed last because they
// become the first curry level of the SIL function.
SmallVector<CapturedValue, 4> LocalCaptures;
TheClosure.getLocalCaptures(LocalCaptures);
for (auto capture : LocalCaptures)
emitCaptureArguments(*this, capture);
}
void SILGenFunction::emitProlog(ArrayRef<Pattern *> paramPatterns,
Type resultType, DeclContext *DeclCtx) {
// If the return type is address-only, emit the indirect return argument.
const TypeLowering &returnTI = getTypeLowering(resultType);
if (returnTI.isReturnedIndirectly()) {
auto &AC = getASTContext();
auto VD = new (AC) ParamDecl(/*IsLet*/ false, SourceLoc(),
AC.getIdentifier("$return_value"), SourceLoc(),
AC.getIdentifier("$return_value"), resultType,
DeclCtx);
IndirectReturnAddress = new (SGM.M)
SILArgument(F.begin(), returnTI.getLoweredType(), VD);
}
// Emit the argument variables in calling convention order.
ArgumentInitVisitor argVisitor(*this, F);
for (Pattern *p : reversed(paramPatterns)) {
// Add the SILArguments and use them to initialize the local argument
// values.
argVisitor.visit(p);
}
}
SILValue SILGenFunction::emitSelfDecl(VarDecl *selfDecl) {
// Emit the implicit 'self' argument.
SILType selfType = getLoweredLoadableType(selfDecl->getType());
SILValue selfValue = new (SGM.M) SILArgument(F.begin(), selfType, selfDecl);
VarLocs[selfDecl] = VarLoc::get(selfValue);
SILLocation PrologueLoc(selfDecl);
PrologueLoc.markAsPrologue();
B.createDebugValue(PrologueLoc, selfValue);
return selfValue;
}
void SILGenFunction::prepareEpilog(Type resultType, CleanupLocation CleanupL) {
auto *epilogBB = createBasicBlock();
// If we have a non-null, non-void, non-address-only return type, receive the
// return value via a BB argument.
NeedsReturn = resultType && !resultType->isVoid();
if (NeedsReturn) {
auto &resultTI = getTypeLowering(resultType);
if (!resultTI.isAddressOnly())
new (F.getModule()) SILArgument(epilogBB, resultTI.getLoweredType());
}
ReturnDest = JumpDest(epilogBB, getCleanupsDepth(), CleanupL);
}
bool SILGenModule::requiresObjCMethodEntryPoint(FuncDecl *method) {
// Property accessors should be generated alongside the property unless
// the @NSManagedAttr attribute is present.
if (method->isGetterOrSetter()) {
auto asd = method->getAccessorStorageDecl();
return asd->hasObjCGetterAndSetter() &&
!asd->getAttrs().hasAttribute<NSManagedAttr>();
}
return method->isObjC() || method->getAttrs().hasAttribute<IBActionAttr>();
}
bool SILGenModule::requiresObjCMethodEntryPoint(ConstructorDecl *constructor) {
return constructor->isObjC();
}
bool SILGenModule::requiresObjCDispatch(ValueDecl *vd) {
// Final functions never require ObjC dispatch.
if (vd->isFinal())
return false;
if (auto *fd = dyn_cast<FuncDecl>(vd)) {
// If a function has an associated Clang node, it's foreign and only has
// an ObjC entry point.
if (vd->hasClangNode())
return true;
// Property accessors should be generated alongside the property.
if (fd->isGetterOrSetter())
return requiresObjCDispatch(fd->getAccessorStorageDecl());
return fd->getAttrs().hasAttribute<DynamicAttr>();
}
if (auto *cd = dyn_cast<ConstructorDecl>(vd)) {
// If a function has an associated Clang node, it's foreign and only has
// an ObjC entry point.
if (vd->hasClangNode())
return true;
return cd->getAttrs().hasAttribute<DynamicAttr>();
}
if (auto *asd = dyn_cast<AbstractStorageDecl>(vd))
return asd->requiresObjCGetterAndSetter();
return vd->getAttrs().hasAttribute<DynamicAttr>();
}
bool SILGenModule::requiresObjCSuperDispatch(ValueDecl *vd) {
return requiresObjCDispatch(vd);
}
/// An ASTVisitor for populating SILVTable entries from ClassDecl members.
class SILGenVTable : public Lowering::ASTVisitor<SILGenVTable> {
public:
SILGenModule &SGM;
ClassDecl *theClass;
std::vector<SILVTable::Pair> vtableEntries;
SILGenVTable(SILGenModule &SGM, ClassDecl *theClass)
: SGM(SGM), theClass(theClass)
{
// Populate the superclass members, if any.
Type super = theClass->getSuperclass();
if (super && super->getClassOrBoundGenericClass())
visitAncestor(super->getClassOrBoundGenericClass());
}
~SILGenVTable() {
// Create the vtable.
SILVTable::create(SGM.M, theClass, vtableEntries);
}
void visitAncestor(ClassDecl *ancestor) {
// Recursively visit all our ancestors.
Type super = ancestor->getSuperclass();
if (super && super->getClassOrBoundGenericClass())
visitAncestor(super->getClassOrBoundGenericClass());
// Only visit the members for a class defined natively.
if (!ancestor->hasClangNode()) {
for (auto member : ancestor->getMembers())
visit(member);
}
}
// Add an entry to the vtable.
void addEntry(SILDeclRef member) {
/// Get the function to reference from the vtable.
auto getVtableEntryFn = [&](SILDeclRef entry) -> SILFunction* {
// If the member is dynamic, reference its dynamic dispatch thunk so that
// it will be redispatched, funneling the method call through the runtime
// hook point.
// TODO: Dynamic thunks could conceivably require reabstraction too.
if (member.getDecl()->getAttrs().hasAttribute<DynamicAttr>())
return SGM.getDynamicThunk(member, SGM.Types.getConstantInfo(member));
// The derived method may require thunking to match up to the ABI of the
// base method.
return SGM.emitVTableMethod(member, entry);
};
// Try to find an overridden entry.
// NB: Mutates vtableEntries in-place
// FIXME: O(n^2)
if (auto overridden = member.getOverriddenVTableEntry()) {
for (SILVTable::Pair &entry : vtableEntries) {
SILDeclRef ref = overridden;
do {
// Replace the overridden member.
if (entry.first == ref) {
// The entry is keyed by the least derived method.
entry = {ref, getVtableEntryFn(ref)};
return;
}
} while ((ref = ref.getOverridden()));
}
llvm_unreachable("no overridden vtable entry?!");
}
// If this is a final member and isn't overriding something, we don't need
// to add it to the vtable.
if (member.getDecl()->isFinal())
return;
// If this is dynamic and isn't overriding a non-dynamic method, it'll
// always be accessed by objc_msgSend, so we don't need to add it to the
// vtable.
if (member.getDecl()->getAttrs().hasAttribute<DynamicAttr>())
return;
// Otherwise, introduce a new vtable entry.
vtableEntries.emplace_back(member, getVtableEntryFn(member));
}
// Default for members that don't require vtable entries.
void visitDecl(Decl*) {}
void visitFuncDecl(FuncDecl *fd) {
// ObjC decls don't go in vtables.
if (fd->hasClangNode())
return;
// Observers don't get separate vtable entries.
if (fd->isObservingAccessor())
return;
addEntry(SILDeclRef(fd));
}
void visitConstructorDecl(ConstructorDecl *cd) {
// Stub constructors don't get an entry.
if (cd->hasStubImplementation())
return;
// Required constructors (or overrides thereof) have their allocating entry
// point in the vtable.
bool isRequired = false;
auto override = cd;
while (override) {
if (override->isRequired()) {
isRequired = true;
break;
}
override = override->getOverriddenDecl();
}
if (isRequired) {
addEntry(SILDeclRef(cd, SILDeclRef::Kind::Allocator));
}
// All constructors have their initializing constructor in the
// vtable, which can be used by a convenience initializer.
addEntry(SILDeclRef(cd, SILDeclRef::Kind::Initializer));
}
void visitVarDecl(VarDecl *vd) {
// Note: dynamically-dispatched properties have their getter and setter
// added to the vtable when they are visited.
}
void visitDestructorDecl(DestructorDecl *dd) {
if (dd->getParent()->isClassOrClassExtensionContext() == theClass) {
// Add the deallocating destructor to the vtable just for the purpose
// that it is referenced and cannot be eliminated by dead function removal.
addEntry(SILDeclRef(dd, SILDeclRef::Kind::Deallocator));
}
}
void visitSubscriptDecl(SubscriptDecl *sd) {
// Note: dynamically-dispatched properties have their getter and setter
// added to the vtable when they are visited.
}
};
static void emitTypeMemberGlobalVariable(SILGenModule &SGM,
GenericParamList *generics,
NominalTypeDecl *theType,
VarDecl *var) {
assert(!generics && "generic static properties not implemented");
if (var->getDeclContext()->isClassOrClassExtensionContext()) {
assert(var->isFinal() && "only 'static' ('class final') stored properties are implemented in classes");
}
SGM.addGlobalVariable(var);
}
/// An ASTVisitor for generating SIL from method declarations
/// inside nominal types.
class SILGenType : public TypeMemberVisitor<SILGenType> {
public:
SILGenModule &SGM;
NominalTypeDecl *theType;
Optional<SILGenVTable> genVTable;
SILGenType(SILGenModule &SGM, NominalTypeDecl *theType)
: SGM(SGM), theType(theType) {}
/// Emit SIL functions for all the members of the type.
void emitType() {
// Start building a vtable if this is a class.
if (auto theClass = dyn_cast<ClassDecl>(theType))
genVTable.emplace(SGM, theClass);
for (Decl *member : theType->getMembers()) {
if (genVTable)
genVTable->visit(member);
visit(member);
}
for (Decl *member : theType->getDerivedGlobalDecls()) {
SGM.visit(member);
}
// Emit witness tables for conformances of concrete types. Protocol types
// are existential and do not have witness tables.
if (isa<ProtocolDecl>(theType))
return;
for (auto *conformance : theType->getAllConformances(nullptr,
/*sorted=*/true)) {
if (conformance->isComplete() &&
isa<NormalProtocolConformance>(conformance))
SGM.getWitnessTable(conformance);
}
}
//===--------------------------------------------------------------------===//
// Visitors for subdeclarations
//===--------------------------------------------------------------------===//
void visitTypeAliasDecl(TypeAliasDecl *tad) {}
void visitAbstractTypeParamDecl(AbstractTypeParamDecl *tpd) {}
void visitNominalTypeDecl(NominalTypeDecl *ntd) {
SILGenType(SGM, ntd).emitType();
}
void visitFuncDecl(FuncDecl *fd) {
ProfilerRAII Profiler(SGM, fd);
SGM.emitFunction(fd);
// FIXME: Default implementations in protocols.
if (SGM.requiresObjCMethodEntryPoint(fd) &&
!isa<ProtocolDecl>(fd->getDeclContext()))
SGM.emitObjCMethodThunk(fd);
}
void visitConstructorDecl(ConstructorDecl *cd) {
ProfilerRAII Profiler(SGM, cd);
SGM.emitConstructor(cd);
if (SGM.requiresObjCMethodEntryPoint(cd) &&
!isa<ProtocolDecl>(cd->getDeclContext()))
SGM.emitObjCConstructorThunk(cd);
}
void visitDestructorDecl(DestructorDecl *dd) {
assert(isa<ClassDecl>(theType) && "destructor in a non-class type");
ProfilerRAII Profiler(SGM, dd);
SGM.emitDestructor(cast<ClassDecl>(theType), dd);
}
void visitEnumCaseDecl(EnumCaseDecl *ecd) {}
void visitEnumElementDecl(EnumElementDecl *ued) {
assert(isa<EnumDecl>(theType));
SGM.emitEnumConstructor(ued);
}
void visitPatternBindingDecl(PatternBindingDecl *pd) {
// Emit initializers for static variables.
if (!pd->isStatic()) return;
for (unsigned i = 0, e = pd->getNumPatternEntries(); i != e; ++i)
if (pd->getInit(i))
SGM.emitGlobalInitialization(pd, i);
}
void visitVarDecl(VarDecl *vd) {
// Collect global variables for static properties.
// FIXME: We can't statically emit a global variable for generic properties.
if (vd->isStatic() && vd->hasStorage()) {
return emitTypeMemberGlobalVariable(SGM, theType->getGenericParams(),
theType, vd);
}
visitAbstractStorageDecl(vd);
}
void visitAbstractStorageDecl(AbstractStorageDecl *asd) {
// FIXME: Default implementations in protocols.
if (asd->hasObjCGetterAndSetter() &&
!isa<ProtocolDecl>(asd->getDeclContext()))
SGM.emitObjCPropertyMethodThunks(asd);
}
};
void SILGenModule::visitNominalTypeDecl(NominalTypeDecl *ntd) {
SILGenType(*this, ntd).emitType();
}
void SILGenFunction::visitNominalTypeDecl(NominalTypeDecl *ntd) {
SILGenType(SGM, ntd).emitType();
}
void SILGenModule::emitExternalDefinition(Decl *d) {
switch (d->getKind()) {
case DeclKind::Func: {
// We'll emit all the members of an enum when we visit the enum.
if (isa<EnumDecl>(d->getDeclContext()))
break;
emitFunction(cast<FuncDecl>(d));
break;
}
case DeclKind::Constructor: {
auto C = cast<ConstructorDecl>(d);
// We'll emit all the members of an enum when we visit the enum.
if (isa<EnumDecl>(d->getDeclContext()))
break;
// For factories, we don't need to emit a special thunk; the normal
// foreign-to-native thunk is sufficient.
if (C->isFactoryInit())
break;
emitConstructor(C);
break;
}
case DeclKind::Enum: {
auto ed = cast<EnumDecl>(d);
// Emit the enum cases and derived conformance methods for the type.
for (auto member : ed->getMembers()) {
if (auto elt = dyn_cast<EnumElementDecl>(member))
emitEnumConstructor(elt);
else if (auto func = dyn_cast<FuncDecl>(member))
emitFunction(func);
else if (auto ctor = dyn_cast<ConstructorDecl>(member))
emitConstructor(ctor);
}
// Emit derived global decls.
for (auto derived : ed->getDerivedGlobalDecls()) {
emitFunction(cast<FuncDecl>(derived));
}
SWIFT_FALLTHROUGH;
}
case DeclKind::Struct:
case DeclKind::Class: {
// Emit witness tables.
for (auto c : cast<NominalTypeDecl>(d)->getLocalConformances(nullptr)) {
if (Types.protocolRequiresWitnessTable(c->getProtocol()) &&
c->isComplete() && isa<NormalProtocolConformance>(c))
getWitnessTable(c);
}
break;
}
case DeclKind::Protocol:
// Nothing to do in SILGen for other external types.
break;
case DeclKind::IfConfig:
// Any active decls have been added to their parent, so there's nothing
// else to emit.
break;
case DeclKind::Extension:
case DeclKind::PatternBinding:
case DeclKind::EnumCase:
case DeclKind::EnumElement:
case DeclKind::TopLevelCode:
case DeclKind::TypeAlias:
case DeclKind::AssociatedType:
case DeclKind::GenericTypeParam:
case DeclKind::Var:
case DeclKind::Param:
case DeclKind::Import:
case DeclKind::Subscript:
case DeclKind::Destructor:
case DeclKind::InfixOperator:
case DeclKind::PrefixOperator:
case DeclKind::PostfixOperator:
llvm_unreachable("Not a valid external definition for SILGen");
}
}
/// SILGenExtension - an ASTVisitor for generating SIL from method declarations
/// and protocol conformances inside type extensions.
class SILGenExtension : public TypeMemberVisitor<SILGenExtension> {
public:
SILGenModule &SGM;
SILGenExtension(SILGenModule &SGM)
: SGM(SGM) {}
/// Emit SIL functions for all the members of the extension.
void emitExtension(ExtensionDecl *e) {
for (Decl *member : e->getMembers())
visit(member);
if (!e->getExtendedType()->isExistentialType()) {
// Emit witness tables for protocol conformances introduced by the
// extension.
for (auto *conformance : e->getLocalConformances(nullptr)) {
if (conformance->isComplete() &&
isa<NormalProtocolConformance>(conformance))
SGM.getWitnessTable(conformance);
}
}
}
//===--------------------------------------------------------------------===//
// Visitors for subdeclarations
//===--------------------------------------------------------------------===//
void visitTypeAliasDecl(TypeAliasDecl *tad) {}
void visitAbstractTypeParamDecl(AbstractTypeParamDecl *tpd) {}
void visitNominalTypeDecl(NominalTypeDecl *ntd) {
SILGenType(SGM, ntd).emitType();
}
void visitFuncDecl(FuncDecl *fd) {
ProfilerRAII Profiler(SGM, fd);
SGM.emitFunction(fd);
if (SGM.requiresObjCMethodEntryPoint(fd))
SGM.emitObjCMethodThunk(fd);
}
void visitConstructorDecl(ConstructorDecl *cd) {
ProfilerRAII Profiler(SGM, cd);
SGM.emitConstructor(cd);
if (SGM.requiresObjCMethodEntryPoint(cd))
SGM.emitObjCConstructorThunk(cd);
}
void visitDestructorDecl(DestructorDecl *dd) {
llvm_unreachable("destructor in extension?!");
}
void visitPatternBindingDecl(PatternBindingDecl *pd) {
// Emit initializers for static variables.
if (!pd->isStatic()) return;
for (unsigned i = 0, e = pd->getNumPatternEntries(); i != e; ++i)
if (pd->getInit(i))
SGM.emitGlobalInitialization(pd, i);
}
void visitVarDecl(VarDecl *vd) {
if (vd->isStatic() && vd->hasStorage()) {
ExtensionDecl *ext = cast<ExtensionDecl>(vd->getDeclContext());
NominalTypeDecl *theType = ext->getExtendedType()->getAnyNominal();
return emitTypeMemberGlobalVariable(SGM, ext->getGenericParams(),
theType, vd);
}
visitAbstractStorageDecl(vd);
}
void visitEnumCaseDecl(EnumCaseDecl *ecd) {}
void visitEnumElementDecl(EnumElementDecl *ed) {
llvm_unreachable("enum elements aren't allowed in extensions");
}
void visitAbstractStorageDecl(AbstractStorageDecl *vd) {
if (vd->hasObjCGetterAndSetter())
SGM.emitObjCPropertyMethodThunks(vd);
}
};
void SILGenModule::visitExtensionDecl(ExtensionDecl *ed) {
SILGenExtension(*this).emitExtension(ed);
}
void SILGenFunction::emitLocalVariable(VarDecl *vd,
Optional<MarkUninitializedInst::Kind> MUIKind) {
assert(vd->getDeclContext()->isLocalContext() &&
"can't emit a local var for a non-local var decl");
assert(vd->hasStorage() && "can't emit storage for a computed variable");
assert(!VarLocs.count(vd) && "Already have an entry for this decl?");
SILType lType = getLoweredType(vd->getType()->getRValueType());
// The variable may have its lifetime extended by a closure, heap-allocate it
// using a box.
AllocBoxInst *allocBox = B.createAllocBox(vd, lType);
auto box = SILValue(allocBox, 0);
auto addr = SILValue(allocBox, 1);
// Mark the memory as uninitialized, so DI will track it for us.
if (MUIKind.hasValue())
addr = B.createMarkUninitialized(vd, addr, MUIKind.getValue());
/// Remember that this is the memory location that we're emitting the
/// decl to.
VarLocs[vd] = SILGenFunction::VarLoc::get(addr, box);
}
/// Create a LocalVariableInitialization for the uninitialized var.
InitializationPtr SILGenFunction::
emitLocalVariableWithCleanup(VarDecl *vd, bool NeedsMarkUninit) {
Optional<MarkUninitializedInst::Kind> MUIKind;
if (NeedsMarkUninit) MUIKind = MarkUninitializedInst::Var;
emitLocalVariable(vd, MUIKind);
return InitializationPtr(new LocalVariableInitialization(vd, *this));
}
/// Create an Initialization for an uninitialized temporary.
std::unique_ptr<TemporaryInitialization>
SILGenFunction::emitTemporary(SILLocation loc, const TypeLowering &tempTL) {
SILValue addr = emitTemporaryAllocation(loc, tempTL.getLoweredType());
return useBufferAsTemporary(loc, addr, tempTL);
}
/// Create an Initialization for an uninitialized buffer.
std::unique_ptr<TemporaryInitialization>
SILGenFunction::useBufferAsTemporary(SILLocation loc,
SILValue addr,
const TypeLowering &tempTL) {
CleanupHandle cleanup = enterDormantTemporaryCleanup(addr, tempTL);
return std::unique_ptr<TemporaryInitialization>(
new TemporaryInitialization(addr, cleanup));
}
CleanupHandle
SILGenFunction::enterDormantTemporaryCleanup(SILValue addr,
const TypeLowering &tempTL) {
if (tempTL.isTrivial())
return CleanupHandle::invalid();
Cleanups.pushCleanupInState<ReleaseValueCleanup>(CleanupState::Dormant, addr);
return Cleanups.getCleanupsDepth();
}
void SILGenFunction::destroyLocalVariable(SILLocation silLoc, VarDecl *vd) {
assert(vd->getDeclContext()->isLocalContext() &&
"can't emit a local var for a non-local var decl");
assert(vd->hasStorage() && "can't emit storage for a computed variable");
assert(VarLocs.count(vd) && "var decl wasn't emitted?!");
auto loc = VarLocs[vd];
// For a heap variable, the box is responsible for the value. We just need
// to give up our retain count on it.
if (loc.box) {
B.emitStrongRelease(silLoc, loc.box);
return;
}
// For 'let' bindings, we emit a release_value or destroy_addr, depending on
// whether we have an address or not.
SILValue Val = loc.value;
if (!Val.getType().isAddress())
B.emitReleaseValueOperation(silLoc, Val);
else
B.emitDestroyAddr(silLoc, Val);
}
void SILGenFunction::deallocateUninitializedLocalVariable(SILLocation silLoc,
VarDecl *vd) {
assert(vd->getDeclContext()->isLocalContext() &&
"can't emit a local var for a non-local var decl");
assert(vd->hasStorage() && "can't emit storage for a computed variable");
assert(VarLocs.count(vd) && "var decl wasn't emitted?!");
auto loc = VarLocs[vd];
// Ignore let values captured without a memory location.
if (!loc.value.getType().isAddress()) return;
assert(loc.box && "captured var should have been given a box");
B.createDeallocBox(silLoc, loc.value.getType().getObjectType(),
loc.box);
}
//===----------------------------------------------------------------------===//
// ObjC method thunks
//===----------------------------------------------------------------------===//
static SILValue emitBridgeObjCReturnValue(SILGenFunction &gen,
SILLocation loc,
SILValue result,
CanType origNativeTy,
CanType substNativeTy,
CanType bridgedTy) {
Scope scope(gen.Cleanups, CleanupLocation::getCleanupLocation(loc));
ManagedValue native = gen.emitManagedRValueWithCleanup(result);
ManagedValue bridged = gen.emitNativeToBridgedValue(loc, native,
AbstractCC::ObjCMethod,
origNativeTy,
substNativeTy,
bridgedTy);
return bridged.forward(gen);
}
/// Take a return value at +1 and adjust it to the retain count expected by
/// the given ownership conventions.
static void emitObjCReturnValue(SILGenFunction &gen,
SILLocation loc,
SILValue result,
CanType nativeTy,
SILResultInfo resultInfo) {
// Bridge the result.
result = emitBridgeObjCReturnValue(gen, loc, result, nativeTy, nativeTy,
resultInfo.getType());
// Autorelease the bridged result if necessary.
switch (resultInfo.getConvention()) {
case ResultConvention::Autoreleased:
gen.B.createAutoreleaseReturn(loc, result);
return;
case ResultConvention::UnownedInnerPointer:
case ResultConvention::Unowned:
assert(gen.getTypeLowering(result.getType()).isTrivial()
&& "nontrivial result is returned unowned?!");
SWIFT_FALLTHROUGH;
case ResultConvention::Owned:
gen.B.createReturn(loc, result);
return;
}
}
/// Take an argument at +0 and bring it to +1.
static SILValue emitObjCUnconsumedArgument(SILGenFunction &gen,
SILLocation loc,
SILValue arg) {
auto &lowering = gen.getTypeLowering(arg.getType());
// If address-only, make a +1 copy and operate on that.
if (lowering.isAddressOnly()) {
auto tmp = gen.emitTemporaryAllocation(loc, arg.getType().getObjectType());
gen.B.createCopyAddr(loc, arg, tmp, IsNotTake, IsInitialization);
return tmp;
}
lowering.emitRetainValue(gen.B, loc, arg);
return arg;
}
/// Bridge argument types and adjust retain count conventions for an ObjC thunk.
static SILFunctionType *emitObjCThunkArguments(SILGenFunction &gen,
SILLocation loc,
SILDeclRef thunk,
SmallVectorImpl<SILValue> &args){
SILDeclRef native = thunk.asForeign(false);
auto objcInfo = gen.SGM.Types.getConstantFunctionType(thunk);
auto swiftInfo = gen.SGM.Types.getConstantFunctionType(native);
// Borrow the context archetypes from the unthunked function.
SILFunction *orig = gen.SGM.getFunction(native, NotForDefinition);
gen.F.setContextGenericParams(orig->getContextGenericParams());
SmallVector<ManagedValue, 8> bridgedArgs;
bridgedArgs.reserve(objcInfo->getParameters().size());
// Emit the indirect return argument, if any.
if (objcInfo->hasIndirectResult()) {
SILType argTy = gen.F.mapTypeIntoContext(
objcInfo->getIndirectResult().getSILType());
auto arg = new (gen.F.getModule()) SILArgument(gen.F.begin(), argTy);
bridgedArgs.push_back(ManagedValue::forUnmanaged(arg));
}
// Emit the other arguments, taking ownership of arguments if necessary.
auto inputs = objcInfo->getParametersWithoutIndirectResult();
auto nativeInputs = swiftInfo->getParametersWithoutIndirectResult();
assert(!inputs.empty());
assert(inputs.size() == nativeInputs.size());
for (unsigned i = 0, e = inputs.size(); i < e; ++i) {
SILType argTy = gen.F.mapTypeIntoContext(inputs[i].getSILType());
SILValue arg = new(gen.F.getModule()) SILArgument(gen.F.begin(), argTy);
// If this parameter is deallocating, emit an unmanged rvalue and
// continue. The object has the deallocating bit set so retain, release is
// irrelevent.
if (inputs[i].isDeallocating()) {
bridgedArgs.push_back(ManagedValue::forUnmanaged(arg));
continue;
}
// If the argument is a block, copy it.
if (argTy.isBlockPointerCompatible()) {
auto copy = gen.B.createCopyBlock(loc, arg);
// If the argument is consumed, we're still responsible for releasing the
// original.
if (inputs[i].isConsumed())
gen.emitManagedRValueWithCleanup(arg);
arg = copy;
}
// Convert the argument to +1 if necessary.
else if (!inputs[i].isConsumed()) {
arg = emitObjCUnconsumedArgument(gen, loc, arg);
}
auto managedArg = gen.emitManagedRValueWithCleanup(arg);
bridgedArgs.push_back(managedArg);
}
assert(bridgedArgs.size() == objcInfo->getParameters().size() &&
"objc inputs don't match number of arguments?!");
assert(bridgedArgs.size() == swiftInfo->getParameters().size() &&
"swift inputs don't match number of arguments?!");
// Bridge the input types.
Scope scope(gen.Cleanups, CleanupLocation::getCleanupLocation(loc));
assert(bridgedArgs.size() == nativeInputs.size());
for (unsigned i = 0, size = bridgedArgs.size(); i < size; ++i) {
SILType argTy = gen.F.mapTypeIntoContext(
swiftInfo->getParameters()[i].getSILType());
ManagedValue native =
gen.emitBridgedToNativeValue(loc,
bridgedArgs[i],
AbstractCC::ObjCMethod,
argTy.getSwiftType());
SILValue argValue;
if (nativeInputs[i].isConsumed())
argValue = native.forward(gen);
else
argValue = native.getValue();
args.push_back(argValue);
}
return objcInfo;
}
void SILGenFunction::emitNativeToForeignThunk(SILDeclRef thunk) {
assert(thunk.isForeign);
SILDeclRef native = thunk.asForeign(false);
auto loc = thunk.getAsRegularLocation();
loc.markAutoGenerated();
Scope scope(Cleanups, CleanupLocation::getCleanupLocation(loc));
// Bridge the arguments.
SmallVector<SILValue, 4> args;
auto objcFnTy = emitObjCThunkArguments(*this, loc, thunk, args);
auto nativeInfo = getConstantInfo(native);
auto swiftResultTy = nativeInfo.SILFnType->getResult()
.map([&](CanType t) { return F.mapTypeIntoContext(t)->getCanonicalType(); });
auto objcResultTy = objcFnTy->getResult()
.map([&](CanType t) { return F.mapTypeIntoContext(t)->getCanonicalType(); });
// Call the native entry point.
SILValue nativeFn = emitGlobalFunctionRef(loc, native, nativeInfo);
auto subs = F.getForwardingSubstitutions();
auto substTy = nativeFn.getType().castTo<SILFunctionType>()
->substGenericArgs(SGM.M, SGM.M.getSwiftModule(), subs);
SILValue result = B.createApply(loc, nativeFn,
SILType::getPrimitiveObjectType(substTy),
swiftResultTy.getSILType(), subs, args);
scope.pop();
emitObjCReturnValue(*this, loc, result, nativeInfo.LoweredType.getResult(),
objcResultTy);
}
void SILGenFunction::emitObjCDestructor(SILDeclRef dtor) {
auto dd = cast<DestructorDecl>(dtor.getDecl());
auto cd = cast<ClassDecl>(dd->getDeclContext());
MagicFunctionName = DeclName(SGM.M.getASTContext().getIdentifier("deinit"));
RegularLocation loc(dd);
if (dd->isImplicit())
loc.markAutoGenerated();
SILValue selfValue = emitSelfDecl(dd->getImplicitSelfDecl());
// Create a basic block to jump to for the implicit destruction behavior
// of releasing the elements and calling the superclass destructor.
// We won't actually emit the block until we finish with the destructor body.
prepareEpilog(Type(), CleanupLocation::getCleanupLocation(loc));
// Emit the destructor body.
emitStmt(dd->getBody());
Optional<SILValue> maybeReturnValue;
SILLocation returnLoc(loc);
std::tie(maybeReturnValue, returnLoc) = emitEpilogBB(loc);
if (!maybeReturnValue)
return;
auto cleanupLoc = CleanupLocation::getCleanupLocation(loc);
// Note: the ivar destroyer is responsible for destroying the
// instance variables before the object is actually deallocated.
// Form a reference to the superclass -dealloc.
Type superclassTy = ArchetypeBuilder::mapTypeIntoContext(dd,
cd->getSuperclass());
assert(superclassTy && "Emitting Objective-C -dealloc without superclass?");
ClassDecl *superclass = superclassTy->getClassOrBoundGenericClass();
auto superclassDtorDecl = superclass->getDestructor();
SILDeclRef superclassDtor(superclassDtorDecl,
SILDeclRef::Kind::Deallocator,
SILDeclRef::ConstructAtBestResilienceExpansion,
SILDeclRef::ConstructAtNaturalUncurryLevel,
/*isForeign=*/true);
auto superclassDtorType = SGM.getConstantType(superclassDtor);
SILValue superclassDtorValue = B.createSuperMethod(
cleanupLoc, selfValue, superclassDtor,
superclassDtorType);
// Call the superclass's -dealloc.
SILType superclassSILTy = getLoweredLoadableType(superclassTy);
SILValue superSelf = B.createUpcast(cleanupLoc, selfValue, superclassSILTy);
ArrayRef<Substitution> subs
= superclassTy->gatherAllSubstitutions(SGM.M.getSwiftModule(), nullptr);
auto substDtorType = superclassDtorType.castTo<SILFunctionType>()
->substGenericArgs(SGM.M, SGM.M.getSwiftModule(), subs);
B.createApply(cleanupLoc, superclassDtorValue,
SILType::getPrimitiveObjectType(substDtorType),
substDtorType->getResult().getSILType(),
subs, superSelf);
// Return.
B.createReturn(returnLoc, emitEmptyTuple(cleanupLoc));
}
//===----------------------------------------------------------------------===//
// Global initialization
//===----------------------------------------------------------------------===//
namespace {
/// A visitor for traversing a pattern, creating
/// global accessor functions for all of the global variables declared inside.
struct GenGlobalAccessors : public PatternVisitor<GenGlobalAccessors>
{
/// The module generator.
SILGenModule &SGM;
/// The Builtin.once token guarding the global initialization.
SILGlobalVariable *OnceToken;
/// The function containing the initialization code.
SILFunction *OnceFunc;
/// A reference to the Builtin.once declaration.
FuncDecl *BuiltinOnceDecl;
GenGlobalAccessors(SILGenModule &SGM,
SILGlobalVariable *OnceToken,
SILFunction *OnceFunc)
: SGM(SGM), OnceToken(OnceToken), OnceFunc(OnceFunc)
{
// Find Builtin.once.
auto &C = SGM.M.getASTContext();
SmallVector<ValueDecl*, 2> found;
C.TheBuiltinModule
->lookupValue({}, C.getIdentifier("once"),
NLKind::QualifiedLookup, found);
assert(found.size() == 1 && "didn't find Builtin.once?!");
BuiltinOnceDecl = cast<FuncDecl>(found[0]);
}
// Walk through non-binding patterns.
void visitParenPattern(ParenPattern *P) {
return visit(P->getSubPattern());
}
void visitTypedPattern(TypedPattern *P) {
return visit(P->getSubPattern());
}
void visitVarPattern(VarPattern *P) {
return visit(P->getSubPattern());
}
void visitTuplePattern(TuplePattern *P) {
for (auto &elt : P->getFields())
visit(elt.getPattern());
}
void visitAnyPattern(AnyPattern *P) {}
// When we see a variable binding, emit its global accessor.
void visitNamedPattern(NamedPattern *P) {
SGM.emitGlobalAccessor(P->getDecl(), OnceToken, OnceFunc);
}
#define INVALID_PATTERN(Id, Parent) \
void visit##Id##Pattern(Id##Pattern *) { \
llvm_unreachable("pattern not valid in argument or var binding"); \
}
#define PATTERN(Id, Parent)
#define REFUTABLE_PATTERN(Id, Parent) INVALID_PATTERN(Id, Parent)
#include "swift/AST/PatternNodes.def"
#undef INVALID_PATTERN
};
} // end anonymous namespace
/// Emit a global initialization.
void SILGenModule::emitGlobalInitialization(PatternBindingDecl *pd,
unsigned pbdEntry) {
// Generic and dynamic static properties require lazy initialization, which
// isn't implemented yet.
if (pd->isStatic()) {
auto theType = pd->getDeclContext()->getDeclaredTypeInContext();
assert(!theType->is<BoundGenericType>()
&& "generic static properties not implemented");
(void)theType;
}
// Emit the lazy initialization token for the initialization expression.
auto counter = anonymousSymbolCounter++;
// Pick one variable of the pattern. Usually it's only one variable, but it
// can also be something like: var (a, b) = ...
Pattern *pattern = pd->getPattern(pbdEntry);
VarDecl *varDecl = nullptr;
pattern->forEachVariable([&](VarDecl *D) {
varDecl = D;
});
assert(varDecl);
llvm::SmallString<20> onceTokenBuffer;
llvm::raw_svector_ostream onceTokenStream(onceTokenBuffer);
Mangler tokenMangler(onceTokenStream);
tokenMangler.mangleGlobalInit(varDecl, counter, false);
auto onceTy = BuiltinIntegerType::getWordType(M.getASTContext());
auto onceSILTy
= SILType::getPrimitiveObjectType(onceTy->getCanonicalType());
// TODO: include the module in the onceToken's name mangling.
// Then we can make it fragile.
auto onceToken = SILGlobalVariable::create(M, SILLinkage::Private,
makeModuleFragile,
onceTokenStream.str(), onceSILTy);
onceToken->setDeclaration(false);
// Emit the initialization code into a function.
llvm::SmallString<20> onceFuncBuffer;
llvm::raw_svector_ostream onceFuncStream(onceFuncBuffer);
Mangler funcMangler(onceFuncStream);
funcMangler.mangleGlobalInit(varDecl, counter, true);
SILFunction *onceFunc = emitLazyGlobalInitializer(onceFuncStream.str(), pd,
pbdEntry);
// Generate accessor functions for all of the declared variables, which
// Builtin.once the lazy global initializer we just generated then return
// the address of the individual variable.
GenGlobalAccessors(*this, onceToken, onceFunc)
.visit(pd->getPattern(pbdEntry));
}
namespace {
// Is this a free function witness satisfying a static method requirement?
static IsFreeFunctionWitness_t isFreeFunctionWitness(ValueDecl *requirement,
ValueDecl *witness) {
if (!witness->getDeclContext()->isTypeContext()) {
assert(!requirement->isInstanceMember()
&& "free function satisfying instance method requirement?!");
return IsFreeFunctionWitness;
}
return IsNotFreeFunctionWitness;
}
/// Emit a witness table for a protocol conformance.
class SILGenConformance : public Lowering::ASTVisitor<SILGenConformance> {
public:
SILGenModule &SGM;
NormalProtocolConformance *Conformance;
std::vector<SILWitnessTable::Entry> Entries;
SILLinkage Linkage;
SILGenConformance(SILGenModule &SGM, NormalProtocolConformance *C)
// We only need to emit witness tables for base NormalProtocolConformances.
: SGM(SGM), Conformance(C->getRootNormalConformance()),
Linkage(SGM.Types.getLinkageForProtocolConformance(Conformance,
ForDefinition))
{
// Not all protocols use witness tables.
if (!SGM.Types.protocolRequiresWitnessTable(Conformance->getProtocol()))
Conformance = nullptr;
}
SILWitnessTable *emit() {
// Nothing to do if this wasn't a normal conformance.
if (!Conformance)
return nullptr;
// Reference conformances for refined protocols.
auto protocol = Conformance->getProtocol();
for (auto base : protocol->getInheritedProtocols(nullptr))
emitBaseProtocolWitness(base);
// Emit witnesses in protocol declaration order.
for (auto reqt : protocol->getMembers())
visit(reqt);
// Check if we already have a declaration or definition for this witness
// table.
if (auto *wt = SGM.M.lookUpWitnessTable(Conformance, false).first) {
// If we have a definition already, just return it.
//
// FIXME: I am not sure if this is possible, if it is not change this to an
// assert.
if (wt->isDefinition())
return wt;
// If we have a declaration, convert the witness table to a definition.
if (wt->isDeclaration()) {
wt->convertToDefinition(Entries, SGM.makeModuleFragile);
// Since we had a declaration before, its linkage should be external,
// ensure that we have a compatible linkage for sanity. *NOTE* we are ok
// with both being shared since we do not have a shared_external
// linkage.
assert(stripExternalFromLinkage(wt->getLinkage()) == Linkage &&
"Witness table declaration has inconsistent linkage with"
" silgen definition.");
// And then override the linkage with the new linkage.
wt->setLinkage(Linkage);
return wt;
}
}
// Otherwise if we have no witness table yet, create it.
return SILWitnessTable::create(SGM.M, Linkage, SGM.makeModuleFragile,
Conformance, Entries);
}
void emitBaseProtocolWitness(ProtocolDecl *baseProtocol) {
// Only include the witness if the base protocol requires it.
if (!SGM.Types.protocolRequiresWitnessTable(baseProtocol))
return;
auto foundBaseConformance
= Conformance->getInheritedConformances().find(baseProtocol);
assert(foundBaseConformance != Conformance->getInheritedConformances().end()
&& "no inherited conformance for base protocol");
auto conformance = foundBaseConformance->second;
Entries.push_back(SILWitnessTable::BaseProtocolWitness{
baseProtocol,
conformance,
});
// Emit the witness table for the base conformance if it belongs to this
// module or is shared.
if (conformance->getDeclContext()->getParentModule()
== SGM.SwiftModule
|| SGM.Types.getLinkageForProtocolConformance(
conformance->getRootNormalConformance(),
NotForDefinition)
== SILLinkage::Shared)
SGM.getWitnessTable(conformance->getRootNormalConformance());
}
/// Fallback for unexpected protocol requirements.
void visitDecl(Decl *d) {
d->print(llvm::errs());
llvm_unreachable("unhandled protocol requirement");
}
void visitFuncDecl(FuncDecl *fd) {
// FIXME: Emit getter and setter (if settable) witnesses.
// For now we ignore them, like the IRGen witness table builder did.
if (fd->isAccessor())
return;
// Find the witness in the conformance.
ConcreteDeclRef witness = Conformance->getWitness(fd, nullptr);
emitFuncEntry(fd, witness.getDecl(), witness.getSubstitutions());
}
void emitFuncEntry(FuncDecl *fd, ValueDecl *witnessDecl,
ArrayRef<Substitution> WitnessSubstitutions) {
// Emit the witness thunk and add it to the table.
// If this is a non-present optional requirement, emit a MissingOptional.
if (!witnessDecl) {
assert(fd->getAttrs().hasAttribute<OptionalAttr>() &&
"Non-optional protocol requirement lacks a witness?");
Entries.push_back(SILWitnessTable::MissingOptionalWitness{ fd });
return;
}
// TODO: multiple resilience expansions?
// TODO: multiple uncurry levels?
SILDeclRef requirementRef(fd, SILDeclRef::Kind::Func,
ResilienceExpansion::Minimal);
// Free function witnesses have an implicit uncurry layer imposed on them by
// the inserted metatype argument.
auto isFree = isFreeFunctionWitness(fd, witnessDecl);
unsigned witnessUncurryLevel = isFree ? requirementRef.uncurryLevel - 1
: requirementRef.uncurryLevel;
SILDeclRef witnessRef(witnessDecl, SILDeclRef::Kind::Func,
SILDeclRef::ConstructAtBestResilienceExpansion,
witnessUncurryLevel);
SILFunction *witnessFn =
SGM.emitProtocolWitness(Conformance, Linkage, requirementRef, witnessRef,
isFree, WitnessSubstitutions);
Entries.push_back(
SILWitnessTable::MethodWitness{requirementRef, witnessFn});
}
void visitConstructorDecl(ConstructorDecl *cd) {
SILDeclRef requirementRef(cd, SILDeclRef::Kind::Allocator,
ResilienceExpansion::Minimal);
ConcreteDeclRef witness = Conformance->getWitness(cd, nullptr);
SILDeclRef witnessRef(witness.getDecl(), SILDeclRef::Kind::Allocator,
SILDeclRef::ConstructAtBestResilienceExpansion,
requirementRef.uncurryLevel);
SILFunction *witnessFn =
SGM.emitProtocolWitness(Conformance, Linkage, requirementRef, witnessRef,
IsNotFreeFunctionWitness,
witness.getSubstitutions());
Entries.push_back(
SILWitnessTable::MethodWitness{requirementRef, witnessFn});
}
void visitAbstractStorageDecl(AbstractStorageDecl *d) {
// Find the witness in the conformance.
ConcreteDeclRef witness = Conformance->getWitness(d, nullptr);
auto *witnessSD = cast<AbstractStorageDecl>(witness.getDecl());
emitFuncEntry(d->getGetter(), witnessSD->getGetter(),
witness.getSubstitutions());
if (d->isSettable(d->getDeclContext()))
emitFuncEntry(d->getSetter(), witnessSD->getSetter(),
witness.getSubstitutions());
if (auto materializeForSet = d->getMaterializeForSetFunc())
emitFuncEntry(materializeForSet, witnessSD->getMaterializeForSetFunc(),
witness.getSubstitutions());
}
void visitAssociatedTypeDecl(AssociatedTypeDecl *td) {
// Find the substitution info for the witness type.
const auto &witness = Conformance->getTypeWitness(td, /*resolver=*/nullptr);
// Emit the record for the type itself.
Entries.push_back(SILWitnessTable::AssociatedTypeWitness{td,
witness.getReplacement()->getCanonicalType()});
// Emit records for the protocol requirements on the type.
assert(td->getConformingProtocols(nullptr).size()
== witness.getConformances().size()
&& "number of conformances in assoc type substitution do not match "
"number of requirements on assoc type");
// The conformances should be all null or all nonnull.
assert(witness.getConformances().empty()
|| (witness.getConformances()[0]
? std::all_of(witness.getConformances().begin(),
witness.getConformances().end(),
[&](const ProtocolConformance *C) -> bool {
return C;
})
: std::all_of(witness.getConformances().begin(),
witness.getConformances().end(),
[&](const ProtocolConformance *C) -> bool {
return !C;
})));
for (unsigned i = 0, e = td->getConformingProtocols(nullptr).size(); i < e;
++i) {
auto protocol = td->getConformingProtocols(nullptr)[i];
// Only reference the witness if the protocol requires it.
if (!SGM.Types.protocolRequiresWitnessTable(protocol))
continue;
ProtocolConformance *conformance = nullptr;
// If the associated type requirement is satisfied by an associated type,
// these will all be null.
if (witness.getConformances()[0]) {
auto foundConformance = std::find_if(witness.getConformances().begin(),
witness.getConformances().end(),
[&](ProtocolConformance *c) {
return c->getProtocol() == protocol;
});
assert(foundConformance != witness.getConformances().end());
conformance = *foundConformance;
}
Entries.push_back(SILWitnessTable::AssociatedTypeProtocolWitness{
td, protocol, conformance
});
}
}
void visitPatternBindingDecl(PatternBindingDecl *pbd) {
// We only care about the contained VarDecls.
}
void visitIfConfigDecl(IfConfigDecl *icd) {
// We only care about the active members, which were already subsumed by the
// enclosing type.
}
};
} // end anonymous namespace
SILWitnessTable *
SILGenModule::getWitnessTable(ProtocolConformance *conformance) {
auto normal = conformance->getRootNormalConformance();
// If we've already emitted this witness table, return it.
auto found = emittedWitnessTables.find(normal);
if (found != emittedWitnessTables.end())
return found->second;
SILWitnessTable *table = SILGenConformance(*this, normal).emit();
emittedWitnessTables.insert({normal, table});
return table;
}
/// FIXME: This should just be a call down to Types.getLoweredType(), but I
/// really don't want to thread an old-type/interface-type pair through all
/// of TypeLowering.
static SILType
getWitnessFunctionType(SILModule &M,
AbstractionPattern origRequirementTy,
CanAnyFunctionType witnessSubstTy,
CanAnyFunctionType witnessSubstIfaceTy,
unsigned uncurryLevel) {
// Lower the types to uncurry and get ExtInfo.
CanType origLoweredTy;
if (auto origFTy = dyn_cast<AnyFunctionType>(origRequirementTy.getAsType()))
origLoweredTy = M.Types.getLoweredASTFunctionType(origFTy,
uncurryLevel,
None);
else
origLoweredTy = origRequirementTy.getAsType();
auto witnessLoweredTy
= M.Types.getLoweredASTFunctionType(witnessSubstTy, uncurryLevel, None);
auto witnessLoweredIfaceTy
= M.Types.getLoweredASTFunctionType(witnessSubstIfaceTy, uncurryLevel, None);
// Convert to SILFunctionType.
auto fnTy = getNativeSILFunctionType(M, origLoweredTy,
witnessLoweredTy,
witnessLoweredIfaceTy);
return SILType::getPrimitiveObjectType(fnTy);
}
SILFunction *
SILGenModule::emitProtocolWitness(ProtocolConformance *conformance,
SILLinkage linkage,
SILDeclRef requirement,
SILDeclRef witness,
IsFreeFunctionWitness_t isFree,
ArrayRef<Substitution> witnessSubs) {
// Get the type of the protocol requirement and the original type of the
// witness.
// FIXME: Rework for interface types.
auto requirementInfo = Types.getConstantInfo(requirement);
auto requirementTy
= cast<PolymorphicFunctionType>(requirementInfo.FormalType);
unsigned witnessUncurryLevel = witness.uncurryLevel;
// Substitute the 'self' type into the requirement to get the concrete
// witness type.
auto witnessSubstTy = cast<AnyFunctionType>(
requirementTy
->substGenericArgs(conformance->getDeclContext()->getParentModule(),
conformance->getType())
->getCanonicalType());
GenericParamList *conformanceParams = conformance->getGenericParams();
// If the requirement is generic, reparent its generic parameter list to
// the generic parameters of the conformance.
CanType methodTy = witnessSubstTy.getResult();
if (auto pft = dyn_cast<PolymorphicFunctionType>(methodTy)) {
auto &reqtParams = pft->getGenericParams();
// Preserve the depth of generic arguments by adding an empty outer generic
// param list if the conformance is concrete.
GenericParamList *outerParams = conformanceParams;
if (!outerParams)
outerParams = GenericParamList::getEmpty(getASTContext());
auto methodParams
= reqtParams.cloneWithOuterParameters(getASTContext(), outerParams);
methodTy = CanPolymorphicFunctionType::get(pft.getInput(), pft.getResult(),
methodParams,
pft->getExtInfo());
}
// If the conformance is generic, its generic parameters apply to
// the witness as its outer generic param list.
if (conformanceParams) {
witnessSubstTy = CanPolymorphicFunctionType::get(witnessSubstTy.getInput(),
methodTy,
conformanceParams,
witnessSubstTy->getExtInfo());
} else {
witnessSubstTy = CanFunctionType::get(witnessSubstTy.getInput(),
methodTy,
witnessSubstTy->getExtInfo());
}
// If the witness is a free function, consider the self argument
// uncurry level.
if (isFree)
++witnessUncurryLevel;
// The witness SIL function has the type of the AST-level witness, at the
// abstraction level of the original protocol requirement.
assert(requirement.uncurryLevel == witnessUncurryLevel &&
"uncurry level of requirement and witness do not match");
// Work out the interface type for the witness.
auto reqtIfaceTy
= cast<GenericFunctionType>(requirementInfo.FormalInterfaceType);
// Substitute the 'self' type into the requirement to get the concrete witness
// type, leaving the other generic parameters open.
CanAnyFunctionType witnessSubstIfaceTy = cast<AnyFunctionType>(
reqtIfaceTy->partialSubstGenericArgs(conformance->getDeclContext()->getParentModule(),
conformance->getInterfaceType())
->getCanonicalType());
// If the conformance is generic, its generic parameters apply to the witness.
GenericSignature *sig
= conformance->getGenericSignature();
if (sig) {
if (auto gft = dyn_cast<GenericFunctionType>(witnessSubstIfaceTy)) {
SmallVector<GenericTypeParamType*, 4> allParams(sig->getGenericParams().begin(),
sig->getGenericParams().end());
allParams.append(gft->getGenericParams().begin(),
gft->getGenericParams().end());
SmallVector<Requirement, 4> allReqts(sig->getRequirements().begin(),
sig->getRequirements().end());
allReqts.append(gft->getRequirements().begin(),
gft->getRequirements().end());
GenericSignature *witnessSig = GenericSignature::get(allParams, allReqts);
witnessSubstIfaceTy = cast<GenericFunctionType>(
GenericFunctionType::get(witnessSig,
gft.getInput(), gft.getResult(),
gft->getExtInfo())
->getCanonicalType());
} else {
assert(isa<FunctionType>(witnessSubstIfaceTy));
witnessSubstIfaceTy = cast<GenericFunctionType>(
GenericFunctionType::get(sig,
witnessSubstIfaceTy.getInput(),
witnessSubstIfaceTy.getResult(),
witnessSubstIfaceTy->getExtInfo())
->getCanonicalType());
}
}
// Lower the witness type with the requirement's abstraction level.
// FIXME: We should go through TypeConverter::getLoweredType once we settle
// on interface types.
/*
SILType witnessSILType = Types.getLoweredType(
AbstractionPattern(requirementTy),
witnessSubstTy,
requirement.uncurryLevel);
*/
SILType witnessSILType = getWitnessFunctionType(M,
AbstractionPattern(requirementTy),
witnessSubstTy,
witnessSubstIfaceTy,
requirement.uncurryLevel);
// Mangle the name of the witness thunk.
llvm::SmallString<128> nameBuffer;
{
llvm::raw_svector_ostream nameStream(nameBuffer);
nameStream << "_TTW";
Mangler mangler(nameStream);
mangler.mangleProtocolConformance(conformance);
if (auto ctor = dyn_cast<ConstructorDecl>(requirement.getDecl())) {
mangler.mangleConstructorEntity(ctor, /*isAllocating=*/true,
ResilienceExpansion::Minimal,
requirement.uncurryLevel);
} else {
assert(isa<FuncDecl>(requirement.getDecl())
&& "need to handle mangling of non-Func SILDeclRefs here");
auto requiredDecl = cast<FuncDecl>(requirement.getDecl());
auto accessorKind = requiredDecl->getAccessorKind();
if (accessorKind != AccessorKind::NotAccessor) {
mangler.mangleAccessorEntity(accessorKind,
requiredDecl->getAddressorKind(),
requiredDecl->getAccessorStorageDecl(),
ResilienceExpansion::Minimal);
} else {
mangler.mangleEntity(requiredDecl, ResilienceExpansion::Minimal,
requirement.uncurryLevel);
}
}
}
// Collect the context generic parameters for the witness.
GenericParamList *witnessContextParams = conformanceParams;
// If the requirement is generic, reparent its parameters to the conformance
// parameters.
if (auto reqtParams = requirementInfo.InnerGenericParams) {
// Preserve the depth of generic arguments by adding an empty outer generic
// param list if the conformance is concrete.
GenericParamList *outerParams = conformanceParams;
if (!outerParams)
outerParams = GenericParamList::getEmpty(getASTContext());
witnessContextParams
= reqtParams->cloneWithOuterParameters(getASTContext(), outerParams);
}
auto *f = SILFunction::create(M, linkage, nameBuffer,
witnessSILType.castTo<SILFunctionType>(),
witnessContextParams,
SILLocation(witness.getDecl()),
IsNotBare,
IsTransparent,
makeModuleFragile ? IsFragile : IsNotFragile,
IsThunk);
f->setDebugScope(new (M)
SILDebugScope(RegularLocation(witness.getDecl()), *f));
// Create the witness.
SILGenFunction(*this, *f)
.emitProtocolWitness(conformance, requirement, witness, witnessSubs,isFree);
f->verify();
return f;
}
SILFunction * SILGenModule::
getOrCreateReabstractionThunk(GenericParamList *thunkContextParams,
CanSILFunctionType thunkType,
CanSILFunctionType fromType,
CanSILFunctionType toType,
IsFragile_t Fragile) {
// Mangle the reabstraction thunk.
llvm::SmallString<256> buffer;
{
llvm::raw_svector_ostream stream(buffer);
Mangler mangler(stream);
// This is actually the SIL helper function. For now, IR-gen
// makes the actual thunk.
stream << "_TTR";
if (auto generics = thunkType->getGenericSignature()) {
stream << 'G';
mangler.mangleGenericSignature(generics,
ResilienceExpansion::Minimal);
}
// Substitute context parameters out of the "from" and "to" types.
auto fromInterfaceType
= Types.getInterfaceTypeOutOfContext(fromType, thunkContextParams);
auto toInterfaceType
= Types.getInterfaceTypeOutOfContext(toType, thunkContextParams);
mangler.mangleType(fromInterfaceType,
ResilienceExpansion::Minimal, /*uncurry*/ 0);
mangler.mangleType(toInterfaceType,
ResilienceExpansion::Minimal, /*uncurry*/ 0);
}
auto loc = RegularLocation::getAutoGeneratedLocation();
return M.getOrCreateSharedFunction(loc,
buffer.str(),
thunkType,
IsBare, IsTransparent,
Fragile, IsThunk);
}